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Abstract We consider the case of hyperbolic basic sets � of saddle type for holo-
morphic maps f : P

2
C → P

2
C. We study equilibrium measures μφ associated to a

class of Hölder potentials φ on �, and find the measures μφ of iterates of arbitrary
Bowen balls. Estimates for the pointwise dimension δμφ of μφ that involve Lyapunov
exponents and a correction term are found, and also a formula for the Hausdorff
dimension of μφ in the case when the preimage counting function is constant on �.
For terminal/minimal saddle sets we prove that an invariant measure ν obtained as
a wedge product of two positive closed currents, is in fact the measure of maximal
entropy for the restriction f |�. This allows then to obtain formulas for the measure ν
of arbitrary balls, and to give a formula for the pointwise dimension and the Hausdorff
dimension of ν.
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1472 J. E. Fornaess, E. Mihailescu

1 Introduction

The dynamics of holomorphic endomorphisms in higher dimensions presents many
interesting geometric and ergodic aspects based on the interplay of complex dynamics,
hyperbolic smooth dynamics and ergodic theory (see [10,12,13], etc.) In this paper
we study the problem of holomorphic endomorphisms of P

2
C which are hyperbolic

on basic sets of saddle type� (see [12] and [25] for hyperbolicity in the non-invertible
case). An arbitrary holomorphic map f : P

2 → P
2 is given by three homogeneous

polynomials [P0 : P1 : P2] each of them having the same degree d. We will say that d
is the degree (or the algebraic degree) of f . For such maps f : P

2 → P
2 Fornaess and

Sibony have defined a positive closed current T = limn
( f n)∗ω

dn which can be written
locally in C

3\{0} as ddcG where G is the Green function associated to f . This allows
them to define a probability measure μ = T ∧ T which is f -invariant and mixing (see
[13]); it was shown in [3] thatμ is the unique measure of maximal entropy log d2 for f .

In the case when f is hyperbolic on a basic set � one may study also the measure
of maximal entropy of the restriction of f on�. This measure has different properties
thanμ; for instance if� is a saddle set then it has both negative and positive Lyapunov
exponents.

Given a compact f -invariant set � one forms the natural extension (or inverse
limit) �̂ := {(x, x−1, x−2, . . .)}, f (x−i ) = x−i+1, x−i ∈ �, i ≥ 1}. The natural
extension is a compact metric space with the canonical metric (see [12,25], etc.) On
the natural extension �̂ there exists a shift homeomorphism f̂ : �̂ → �̂ defined by
f̂ (x̂) = ( f (x), x, x−1, . . .), x̂ ∈ �̂. We denote the canonical projection by π : �̂ →
�,π(x̂) = x, x̂ ∈ �̂.

Hyperbolicity for endomorphisms is defined as a continuous splitting of the tangent
bundle over �̂ into stable and unstable directions (see [12,25]); the stable directions
depend only on base points, but unstable directions depend nevertheless on whole
prehistories x̂ ∈ �̂ (i.e. past trajectories) and not only on x . Hyperbolic maps on basic
sets were also studied for instance in [7,19,22], etc. If f is hyperbolic on � then
we have local stable manifolds W s

r (x) and local unstable manifolds W u
r (x̂) where

x̂ ∈ �̂. Also notice that � is not necessarily totally invariant. Thus for x ∈ � we
may have some f -preimages of x in � and others outside �. Moreover the number
of f -preimages of x that remain in � may vary with x . So the endomorphism case is
subtle and very different from the case of diffeomorphisms.

Now given an arbitrary probability measure μ on a compact metric space X one
can define the lower pointwise dimension and the upper pointwise dimension at x ∈ X
respectively by:

δμ(x) := lim inf
ρ→0

logμ(B(x, ρ))

log ρ
, and δ̄μ(x) := lim sup

ρ→0

logμ(B(x, ρ))

log ρ

In case they coincide, we call the common value δμ(x) the pointwise dimension of μ
at x ∈ X (see [24]). Also one can define the Hausdorff dimension of μ by:

H D(μ) := inf{H D(Z), Z borelian set with μ(X\Z) = 0}
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Equilibrium measures on saddle sets of holomorphic maps 1473

In [31] Young proved that for a hyperbolic measure μ (i.e. without zero Lyapunov
exponents) invariated by a smooth diffeomorphism f of a surface, we have μ-a.e the
formula

δμ = hμ

(
1

χu(μ)
− 1

χs(μ)

)
,

where χs(μ), χu(μ) are the negative, respectively positive Lyapunov exponents of μ.
For analytic endomorphisms f on the Riemann sphere P

1
C, Manning proved in

[16] that if f is hyperbolic on its Julia set J ( f ) and has no critical points in J ( f ), then
for any ergodic f -invariant probability measure μ on J ( f ) the Hausdorff dimension
of μ is given by:

H D(μ) = hμ
χ(μ)

,

where χ(μ) is the (only) Lyapunov exponent ofμ. This formula was later extended by
Mane (see [15]) to the case of all rational maps (i.e. not only hyperbolic) and invariant
ergodic probabilities with positive Lyapunov exponent.

However the situation for higher dimensional endomorphisms and their invariant
measures is different (see also [11]). Barreira Pesin and Schmeling [1] proved a product
property for invariant hyperbolic measures under smooth diffeomorphisms, which
allows to compute the pointwise dimension as the sum of stable and unstable pointwise
dimensions. In the case of polynomial endomorphisms Binder and DeMarco gave in [2]
estimates for the Hausdorff dimension of the measure of maximal entropy μ = T ∧ T
which involve Lyapunov exponents of μ. In [8] Dinh and Dupont extended those
estimates to the case of meromorphic endomorphisms of P

k . De Thelin studied in [6]
invariant measures (in general non-ergodic) with both negative and positive Lyapunov
exponents. And in [9] Dupont obtained in the case of holomorphic endomorphisms
on P

k a lower bound for the lower pointwise dimension of an ergodic f -invariant
measure with positive Lyapunov exponents.

Our case here is different from those above, in that we study the measure of maximal
entropy of the restriction of the endomorphism f to a saddle basic set �, and not
the measure of maximal entropy on the whole of P

2. In fact we will consider more
generally equilibrium (Gibbs) measures for Hölder potentials φ on �, such that φ
satisfies an inequality relating the number of f -preimages remaining in � and the
topological pressure of φ.

In the case when � is a terminal saddle basic set, i.e. when the iterates of f
form a normal family on W u(�̂)\�, Diller and Jonsson have introduced a measure
νi = σ u ∧T which is f -invariant and supported on�. For the case of a minimal saddle
basic set � for an s-hyperbolic map on P

2, Fornaess and Sibony introduced in [12] a
probability measure ν = T ∧ σ as a wedge product of positive closed currents; this
measure is also f -invariant and mixing. Examples of terminal sets can be obtained by
perturbations of already known examples (see [7,12]).

Our main results are:
First we study equilibrium measures of Hölder potentials on a basic set �. If

the smooth endomorphism f : P
2 → P

2 is hyperbolic on � and if φ is a Hölder

123



1474 J. E. Fornaess, E. Mihailescu

potential on �, there exists a unique equilibrium measure μφ for φ, i.e. a measure
which maximizes in the Variational Principle (see [14,30], etc.) P(φ) = sup{hμ +∫
φdμ,μ f − invariant}. Equilibrium measures for stable potentials were also used

for instance in [19] to show that the stable dimension cannot be 2 on a basic saddle
set � in P

2.
In the sequel we shall use Hölder continuous potentialsφwhich satisfy the following

inequality

φ + log d ′ < P(φ) on �, (1)

where d ′ is an upper bound on the number of f -preimages in � of an arbitrary point.
Notice that d ′ may even be 1, when the restriction to � is a homeomorphism (as in
the examples from [22]). The inequality (1) will help in estimating the measure μφ of
arbitrary iterates of Bowen balls. For instance if φ ≡ 0 it says that htop( f |�) > log d ′,
which in a sense is the more interesting case. In Corollary 4 we give a case when
log d ′ = htop( f |�), a condition which implies that f is expanding on � (see also
[17]). In the same Corollary 4 and in Examples we discuss also other cases for the
upper bound d ′.

In Theorem 1 we will give precise estimates of the measure μφ of an arbitrary
iterate of a Bowen ball. This will help us obtain estimates and in some cases even
exact formulas for the pointwise dimension and the Hausdorff dimension of μφ .
In particular we prove that the measure μφ is exact dimensional in those cases. In
Corollary 1 we give estimates for δμφ in the case when the number of preimages
remaining in � is not constant.

In particular Theorem 1 applies to negative potentials of type t log |D fs(x)|, and in
Corollary 2 we obtain the pointwise dimension of the equilibrium measure μs of the
stable potential δs log |D fs(x)|, where δs is the Hausdorff dimension of the intersection
between a stable manifold and �.

We prove in Theorem 2 that for a terminal set � the measure νi from above, is in
fact the measure of maximal entropy μ0 of the restriction f |�; and if � is minimal
and c-hyperbolic for the Axiom A holomorphic map f , then the measure ν from above
is equal to μ0 as well.

In Corollaries 3, 4 we estimate, and in certain cases give formulas for the pointwise
dimension of the measures νi , ν on terminal, respectively minimal saddle sets; in
Corollary 4 we give complete formulas for the pointwise dimension of ν, for all the
possible minimal c-hyperbolic saddle sets of a map of degree 2.

In the end we will give also examples of holomorphic maps and equilibrium mea-
sures of Hölder potentials on terminal saddle sets, for which the (upper/lower) point-
wise dimension can be estimated/computed. Some of these examples are obtained as
perturbations of polynomial maps and we can see that the bound d ′ on the number of
preimages can vary by changing the parameters; for instance in some cases d ′ = 1,
in other cases d ′ = 2, etc. See also the classification from [17], of perturbations of
(z, w) → (z2 + c, w2) in terms of 1-sided Bernoullicity and of their preimage count-
ing function behavior. Other examples of equilibrium measures on terminal sets for
holomorphic maps will be obtained by Ueda’s method.
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Equilibrium measures on saddle sets of holomorphic maps 1475

2 Equilibrium measures of Hölder potentials. Green currents. Transversal
measures

In the sequel we consider a holomorphic map f : P
2 → P

2 of degree d; this means
that f is given as [ f0 : f1 : f2], where f0, f1, f2 are homogeneous polynomials
in coordinates (z0, z1, z2), of common degree d. We know also that the topological
entropy of f on P

2 is equal to log d2 (see [13]).
We will work on a basic set �, i.e. an f -invariant compact set � for which there

exists a neighbourhood U such that ∩n∈Z f n(U ) = � and f |� is topologically transi-
tive. If the non-invertible map f is hyperbolic on the basic set�, then from the Spectral
Decomposition Theorem (see [14,25])� can be written as the union of finitely many
mutually disjoint subsets�i s.t there exists a positive integer m with f m(�i ) = �i , i
and f m |�i topologically mixing.

Notice that we only have forward invariance of �, but not total invariance; this
means that f (�) = � but an arbitrary point x ∈ � may have in general also
f -preimages outside �.

On a basic set � for f , let us now consider a continuous potential φ : � → R.
Then from the Variational Principle, we know that the topological pressure satisfies
P(φ) = sup{hμ + ∫

φdμ,μ f-invariant probability measure on �}. If φ is Hölder
continuous on� and f is hyperbolic on�, then there exists a unique measureμφ which
attains the supremum in the Variational Principle, and it is called the equilibrium
measure, or the Gibbs state of φ (see [14] for the diffeomorphism case and [20] for
the endomorphism case). It follows from above that hμφ + ∫

φdμφ = P(φ).
Denote by Bn(x, ε) := {y ∈ �, d( f i y, f i x) < ε, 0 ≤ i ≤ n − 1} a Bowen ball,

i.e. the set of points which ε-follow the orbit of order n of x .
Recall now that there exists a unique correspondence between f -invariant measures

m on� and f̂ -invariant measures m̂ on �̂ and thatπ∗m̂ = m. Then by working with the
homeomorphism f̂ on �̂ and then projecting, it was proved in [20] that the equilibrium
measure μφ satisfies the following estimates on Bowen balls:

1

C
eSnφ(x)−n P(φ) ≤ μφ(Bn(x, ε)) ≤ CeSnφ(x)−n P(φ), (2)

for every n > 0, where Snφ(x) := φ(x)+ · · · + φ( f n−1(x)) is the consecutive sum
and C is a positive constant independent of x, n.

Definition 1 Given a basic set � for the map f , denote by d(x) := Card{ f −1(x) ∩
�}, x ∈ � and call it the preimage counting function on �.

If � is a connected basic set such that the critical set does not intersect �, i.e.
C f ∩� = ∅ and if there exists a neighbourhood U of� with f −1(�)∩ U = �, then
the preimage counting function d(·) is constant on � (see [19]). Notice also that the
preimage counting function is not necessarily preserved when taking perturbations;
see Example 1 at the end of paper, where by perturbing a 2-to-1 basic set we may
obtain a basic set on which the restriction is 1-to-1.

Now let us recall the following Lemma proved in [18] which relates the measures
of various subsets of Bowen balls, subsets which iterate to the same image:
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1476 J. E. Fornaess, E. Mihailescu

Lemma 1 Let f be an endomorphism, hyperbolic on a basic set �; consider also a
Holder continuous potential φ on � and μφ be the unique equilibrium measure of
φ. Let a small ε > 0, two disjoint Bowen balls Bk(y1, ε), Bm(y2, ε) and a borelian
set A ⊂ f k(Bk(y1, ε)) ∩ f m(Bm(y2, ε)), s.t μφ(A) > 0; denote by A1 := f −k A ∩
Bk(y1, ε), A2 := f −m A ∩ Bm(y2, ε) and assume that μφ(∂A1) = μφ(∂A2) = 0.
Then there exists a positive constant Cε independent of k,m, y1, y2 such that

1

Cε
μφ(A2) · eSkφ(y1)

eSmφ(y2)
· e(m−k)P(φ) ≤ μφ(A1) ≤ Cεμφ(A2) · eSkφ(y1)

eSmφ(y2)
· e(m−k)P(φ)

We shall say that two functions Q1(n, x) and Q2(n, x) are comparable if there
exists a positive constant C such that 1

C Q1(n, x) ≤ Q2(n, x) ≤ C Q1(n, x) for all
n > 0 and x ; this will be denoted by Q1 ≈ Q2. The constant C is sometimes called a
comparability constant.

The next Definition is similar to that of s-hyperbolicity (see [12]), but it refers only
to a fixed basic set, not to the whole nonwandering set.

Definition 2 Let � be a basic set for a map f on a manifold M . We say that f is
c-hyperbolic on� if f is hyperbolic on�, there exists a neighbourhood U of�with
f −1(�) ∩ U = � and if the critical set C f of f does not intersect �.

For a holomorphic endomorphism f on P
2, let us remind now some properties of

the associated positive closed Green current T (see [13] for more details). First there
exists a continuous plurisubharmonic function G on C

3\{0} called the Green function
of f , satisfying G(F(z)) = d · G(z) where F : C

3\{0} → C
3\{0} is the lift of f

relative to the canonical projection π2 : C
3 → P

2. We have G ∈ P1, where P1 is the
cone of plurisubharmonic functions u on C

3\{0} satisfying the homogeneity condition
u(λz) = log |λ| + u(z), λ ∈ C and z ∈ C

3\{0}. Recall also that

π∗
2 T = ddcG,

and that the Green measure μ = T ∧ T is mixing.
In [12] Fornaess and Sibony studied also s-hyperbolic holomorphic maps on P

2

and minimal saddle basic sets, for the ordering �i � � j if W u(�̂i ) ∩ W s(� j ) �= ∅.
A related notion introduced in [7] is that of a terminal set in the case of a holomorphic
map f on P

2. Here f is not assumed to have Axiom A and the condition refers only
to � itself. A saddle set � is called terminal if for any x̂ ∈ �̂, the iterates of f
restricted to W u

loc(x̂)\� form a normal family. Notice that if f is Axiom A and if
� is minimal, then for any x̂ ∈ �̂ the global unstable set W u(x̂) does not intersect
any global stable set of any other basic set, thus W u(�̂)\� is contained in the union
of basins of attraction of attracting cycles; hence in this case minimal sets are also
terminal. Examples of minimal sets for holomorphic maps on P

2 were given in [12],
and examples of terminal sets in [7]. Various types of hyperbolicity for holomorphic
maps, and the associated sets of points whose prehistories do not always converge to
the support of the corresponding Green measure were studied also in [21].

In [12], Fornaess and Sibony constructed positive closed currents σ on minimal
sets for s-hyperbolic maps, by using forward iterates of unstable disks (or equivalently
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Equilibrium measures on saddle sets of holomorphic maps 1477

of disks which are transverse to local stable directions). If D is an unstable disk
then

f n
� ([D])

dn
→ σ ·

∫
D ∧ T

Then using the positive closed (1, 1) current σ , they constructed an invariant measure
ν on � as

ν = σ ∧ T

Let us remind now the properties of the transversal measures μ̂s
x associated to

a hyperbolic structure on �; they are built in the same fashion as in [27] (see also
[28]), but on the natural extension �̂. The key to that proof is the existence for dif-
feomorphisms of a Markov partition; in our endomorphism case, we have instead a
Markov partition on the inverse limit �̂ (see [26]). Moreover the inverse limit �̂ has
local product structure, in fact it is a Smale space (see [14,26]).

One obtains then a system of transversal measures μ̂s
x on Ŵ s

loc(x), where we denote

by Ŵ s
loc(x) and Ŵ u

loc(x̂) the lifts to �̂ of the local stable intersection W s
loc(x) ∩ �,

respectively of the local unstable intersection W u
loc(x̂)∩�. More precisely Ŵ s

loc(x) :=
π−1(W s

loc(x) ∩�) and Ŵ u
loc(x̂) := π−1(W u

loc(x̂) ∩�), x̂ ∈ �̂.
Let us assume without loss of generality that all the stable and unstable local

manifolds we work with, are of size r for some r > 0 small enough. Then the measures
μ̂s

x satisfy the following properties:

(i) if χ s
x,y : Ŵ s

r (x) → Ŵ s
r (y) is the holonomy map given by χ s

x,y(ξ̂ ) = Ŵ u
r (ξ̂ ) ∩

Ŵ s
r (y), then μ̂s

x (A) = μ̂s
y(χ

s
x,y(A)) for any borelian set A.

(ii) f̂�μ̂s
x = ehtop( f |�)μ̂s

f (x)| f̂ (Ŵ s
r (x))

(iii) suppμ̂s
x = Ŵ s(x).

In fact from [27] and [28] applied to our case on �̂, it follows that there exist
also unstable transversal measures, denoted by μ̂u

x̂ on Ŵ u
r (x̂), x̂ ∈ �̂ with similar

properties. And moreover the measure of maximal entropy on �̂ denoted by μ̂0, can
be written as the product of transversal stable measures μ̂s

y with transversal unstable
measures μ̂x̂ i.e.

μ̂0(φ) =
∫

Ŵ s
r (x)

⎛
⎜⎜⎝

∫

Ŵ u
r (ŷ)

φ dμ̂u
ŷ

⎞
⎟⎟⎠ dμ̂s

x (ŷ), (3)

for any function φ defined on a neighbourhood of x̂ ∈ �̂.
Transversal measures associated to stable/unstable foliations are subject to a unicity

result by Bowen and Marcus [5], which can be applied on the natural extension �̂.
Recall now that in [7] Diller and Jonsson introduced a positive current σ u by

using transversal measures (see also the diffeomorphism case in [27,28]); namely in
a neighbourhood of x ∈ �,
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1478 J. E. Fornaess, E. Mihailescu

〈σ u, χ〉 =
∫

Ŵ s
loc

⎛
⎜⎝

∫
W u

loc(ŷ)

χ

⎞
⎟⎠ dμ̂s

x (ŷ),

where μ̂s
x are transversal measures on Ŵ s

loc(x) := π−1(W s
loc(x). Here we use a differ-

ent notation for these measures, in order to emphasize that they are supported on lifts
of local stable manifolds. If � is terminal, then they defined an invariant probability
measure on �,

νi = σ u ∧ T

We use the notation νi in order to emphasize the way the current σ u was constructed
with the help of the inverse limit.

In general from the Spectral Decomposition Theorem a basic set � can be written
as a union�1 ∪· · ·∪�m of mutually disjoint compact subsets, and there exist positive
integers n1, . . . , nm s.t f n j invariates� j and f n j is topologically mixing on� j (see
[14]). Thus it is natural to assume that f is topologically mixing on �.

In Theorem 2 we will prove that the measures ν, νi defined above are both equal to
the measure of maximal entropy of f |� if � is (topologically) mixing.

3 The measure μφ of an iterate of a Bowen ball, and pointwise dimensions.
Geometric description of the measure of maximal entropy on saddle sets

Define first the set

B(n, k, z, ε) := f n(Bn+k(z, ε)), z ∈ �, n > 0, k > 0

This set is an iterate of a Bowen ball and when n and k vary, we can adjust the sides
of B(n, k, z, ε) arbitrarily; in particular we can make it have (almost) equal sides in
the stable and unstable directions. The idea of adjusting in order to obtain “round
balls” used in estimating the pointwise dimension, was also employed in [31]. For
more generality we state the next Theorem in the real setting for a function which is
conformal on both stable and unstable manifolds, although our main application in
this article will be to holomorphic maps on P

2.

Theorem 1 Let f : M → M be a C2 map on a Riemannian manifold M and� ⊂ M
be a basic set such that f is c-hyperbolic on �, f is conformal on both stable and
unstable local manifolds over � and the preimage counting function is constant and
equal to d ′ on�. Consider also a Hölder continuous potential φ on� which satisfies
φ(x) + log d ′ < P(φ),∀x ∈ �, and let μφ its equilibrium measure. Then for any
z ∈ �, positive integers k, n and small ε > 0 we have the following formula, with
comparability constants independent of z, k, n:

μφ(B(n, k, z, ε)) ≈ eSn+kφ(z)

(d ′)k
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Moreover the pointwise dimension of μφ exists μφ-a.e, is denoted by δμφ , and we
have:

δμφ = H D(μφ) = hμφ

(
1

χu(μφ)
− 1

χs(μφ)

)
+ log d ′ · 1

χs(μφ)

Proof Recall that Snφ(y) is defined as the consecutive sum φ(y)+ φ( f (y))+ · · · +
φ( f n−1(y)), y ∈ �. Let us take a point z ∈ �, a positive integer n and x := f n(z).
By definition B(n, k, z, ε) = f n(Bn+k(z, ε)). Now we assumed that the preimage
counting function d(·) is constant on � and equal to d ′. Thus every point y from �

has exactly d ′ f -preimages remaining in �.
Next we assumed φ + log d ′ < P(φ); so if we define the real-valued function

φ̄ := φ− P(φ)+ log d ′, then P(φ̄) = P(φ)− P(φ)+ log d ′ = log d ′ and also φ̄ < 0
on�. Then since φ and φ̄ are cohomologous, they have the same equilibrium measure
μφ . Therefore we will assume in the sequel that φ < 0 on � and P(φ) = log d ′.

Consider now prehistories in �̂ of an arbitrary point y ∈ B(n, k, z, ε) ⊂ �; for
such a prehistory ŷ = (y, y−1, y−2, . . .) let us denote by n(ŷ) the smallest positive
integer m satisfying Smφ(y−m) ≤ Snφ(z); since φ < 0 on �, it is clear that such
an m must exist for any prehistory ŷ ∈ �̂. So Sn(ŷ)−1φ(y−n(ŷ)+1) > Snφ(z) while
Sn(ŷ)φ(y−n(ŷ)) ≤ Snφ(z). Call such a finite prehistory (y, y−1, . . . , y−n(ŷ)) a maximal
prehistory.

We intend to get an estimate of the measureμφ(B(n, k, z, ε) from the f -invariance
of μφ and the comparison estimates between the different pieces of its preimage set
using Lemma 1. We will write B(n, k, z, ε) as a union of subsets E which are contained
in forward iterates of Bowen balls; the question is how these iterates intersect and what
is the relation between various components of preimage sets of different orders.

In fact since we know that B(n, k, z, ε) = f n(Bn+k(z, ε)), it means that every point
in B(n, k, z, ε) has an f n-preimage in Bn+k(z, ε). But in estimatingμφ(B(n, k, z, ε))
we have to consider all f n-preimages in � of points from B(n, k, z, ε), in order to
use the f -invariance of μφ ; so we will compare various f m-preimages of subsets of
B(n, k, z, ε) with the corresponding f n-preimages from Bn+k(z, ε). Our standard for
comparison of all these preimages of various orders of points in B(n, k, z, ε), will be
those preimages belonging to Bn+k(z, ε).

Take an arbitrary point y ∈ B(n, k, z, ε) and a prehistory ŷ ∈ �̂ of y; then y ∈
f n(Bn+k(z, ε))∩ f n(ŷ)(Bn(ŷ)(y−n(ŷ), ε)). Let us take all the prehistories ŷ of y in �̂;
along each such prehistory we go until reaching the preimage of order n(ŷ). It is clear
that there exists only a finite collection P(y) of such maximal prehistories of y, since
φ < 0 on the compact set � and since we cannot continue to add indefinitely values
of φ on consecutive preimages until reaching the value Snφ(z). Denote by E(y) the
intersection of the iterates f n(ŷ)(Bn(ŷ)(y−n(ŷ), ε)) over all the prehistories ŷ of y in

�̂ (i.e. in fact over the finite prehistories of P(y)).
We shall cover the set B(n, k, z, ε) with mutually disjoint subsets of various sets

of type E(y), y ∈ B(n, k, z, ε). Actually we can cover B(n, k, z, ε) with a collection
F of sets F , each such F belonging to E(y) for some y ∈ B(n, k, z, ε). Now if
F ⊂ E(y), denote by
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1480 J. E. Fornaess, E. Mihailescu

F(ŷ) := B(y−n(ŷ), ε) ∩ f −n(ŷ)(F)

From the definition of E(y) we know that F = f n(ŷ)(F(ŷ)), where we recall that
n(ŷ) was defined above with respect to Snφ(z). Recall also that for y ∈ �, the set
of “maximal” prehistories of type (y, y−1, . . . , y−n(ŷ)) for ŷ ∈ �̂ prehistory of y, is
denoted by P(y).

Take now two prehistories ŷ, ŷ′ of y belonging to �̂ and go along these prehistories
until we reach n(ŷ) and n(ŷ′) respectively. We want to compare the measure μφ on
the preimages of F along these maximal prehistories by using Lemma 1.

1

C
μφ(F(ŷ))

e
Sn(ŷ′)φ(y′

−n(ŷ′))

eSn(ŷ)φ(y−n(ŷ))
· e(n(ŷ)−n(ŷ′))P(φ) ≤ μφ(F(ŷ

′))

≤ Cμφ(F(ŷ))
e

Sn(ŷ′)φ(y′
−n(ŷ′))

eSn(ŷ)φ(y−n(ŷ))
· e(n(ŷ)−n(ŷ′))P(φ), (4)

where C is a positive constant independent of y, ŷ, ŷ′, x .
On the other hand from the definition of n(ŷ), n(ŷ′)we know that |Sn(ŷ)φ(y−n(ŷ))−

Snφ(z)| ≤ M and |Sn(ŷ′)φ(y
′
−n(ŷ′)) − Snφ(z)| ≤ M , for some positive constant M .

Therefore since P(φ) = log d ′ we obtain (by taking perhaps a larger C) that:

1

C
μφ(F(ŷ))e

(n(ŷ)−n(ŷ′)) log d ′ ≤ μφ(F(ŷ
′)) ≤ Cμφ(F(ŷ))e

(n(ŷ)−n(ŷ′)) log d ′
(5)

We add now the measures of various preimages F(ŷ) of F , over all finite “maximal”
prehistories from P(y), in order to obtain the measure μφ(F), where recall that F ⊂
E(y). We take into consideration the fact that any point in� has (d ′)m f m-preimages
in�,m > 0. Thus if n(ŷ) is say the largest maximal order associated to any prehistory
from P(y), and if ŷ′ is another prehistory of y with n(ŷ′) = n(ŷ)− 1, then from (5)
it follows that

μφ(F(ŷ)) ≈ μφ(F(ŷ
′)) · 1

d ′ ,

where the comparability constant is C above (i.e. a positive universal constant). Now
if we add the measures μφ(F(ŷ)) over all prehistories which coincide with ŷ′ up to
order n(ŷ)− 1, we obtain μφ(F(ŷ′)).

Similarly we order the integers n(ŷ), ŷ ∈ P(y) in decreasing order and then add
successively the measures of preimages F(ŷ) using (5) and the fact that each point
has exactly d ′ f -preimages in �. Thus if we compare the measures of F(ŷ) with the
measure of the f n-preimage F( f nz, . . . , z) of F in Bn+k(z, ε), we obtain that∑

ŷ∈P(y)
μφ(F(ŷ)) ≈ μφ(F( f nz, f n−1z, . . . , z)) · (d ′)n

But now the sets F ∈ F were chosen mutually disjoint modulo μφ , hence their
preimages will be mutually disjoint too (recall that C f ∩� = ∅); thus by adding over
F ∈ F
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∑
F∈F

∑
ŷ∈P(y),F⊂E(y)

μφ(F(ŷ)) ≈ μφ(Bn+k(z, ε)) · (d ′)n

Thus from the f -invariance ofμφ and by adding as above all the measures of preim-
ages along maximal prehistories, we obtain the following formula for the measure μφ
of an arbitrary “rectangle” B(n, k, z, ε) with sides in the stable and in the unstable
directions and centered on �:

μφ(B(n, k, z, ε)) ≈ μφ(Bn+k(z, ε)) · (d ′)n ≈ eSn+kφ(z)

(d ′)k
, (6)

where the comparability constants are independent of n, k, z, x . Then the above for-
mula helps us obtain the measure μφ of an arbitrary ball centered on �.

As an application we obtain the pointwise dimension of such an equilibrium mea-
sure μφ . We know from definition that B(n, k, z, ε) = f n(Bn+k(z, ε)). Since f is
holomorphic on P

2, it follows from conformality on the local stable/unstable manifolds
that the set B(n, k, z, ε) has a side comparable to ε|D f n

s (z)| in the stable direction,
and a side comparable to ε|D f n

u (z)||D f n+k
u (z)|−1 = ε|D f k

u (x)|−1 in the unstable
direction.

Now for some n, k the set B(n, k, z, ε) becomes “round”, i.e. the stable side and the
unstable side become comparable with a fixed comparability constant. So if x = f n(z),
we want

ρn := ε|D f n
s (z)| ≈ ε|D f k

u (x)|−1

In general for a continuous functionψ : � → R, an f -invariant ergodic probability
measureμ on� and τ > 0, let us define the following set of well-behaved points with
respect to μ:

Gn(ψ,μ, τ) :=
{

y ∈ �, |1

n
Snψ(y)−

∫
ψdμ| < τ

}
, n > 0

Then from Birkhoff Ergodic Theorem we have μ(Gn(ψ,μ, τ)) → 1 when n → ∞;
so for every τ ′ > 0 there is n(τ ′) > 0 such that μ(Gn(ψ,μ,μ)) > 1 − τ ′ for
n > n(τ ′).

We apply this to our case for the ergodic measure μφ and the functions log |D fs |
and log |D fu | which are continuous and bounded on � (as f has no critical points in
�). If z ∈ Gn(log |D fs |, μφ, τ ) and x = f n(z) ∈ Gk(log |D fu |, μφ, τ ), then∣∣∣∣1

n
Sn log |D fs | (z)−

∫
log |D fs | dμφ

∣∣∣∣ < τ and

∣∣∣∣1

k
Sk log |D fu |(x)

−
∫

log |D fu | dμφ

∣∣∣∣ < τ

The question is how large is the set of such z′s. From above it follows that
μφ( f −n(Gk(log |D fu |, μφ, τ )) = μφ(Gk(log |D fu |, μφ, τ )) > 1−τ ′ andμφ(Gn(log
|D fs |, μφ, τ )) > 1 − τ ′, for n > n(τ ′). Thus for n large enough:

μφ(Gn(log |D fs |, μφ, τ ) ∩ f −nGk(log |D fu |, μφ, τ )) > 1 − 2τ ′ (7)
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1482 J. E. Fornaess, E. Mihailescu

We now come back to the problem of the pointwise dimension of μφ . It is clear
from above that if B(n, k, z, ε) has comparable sides (i.e. it is “round”), then k must
depend on n, so denote it by k(z, n). Let us consider also

χs(μφ) :=
∫

log |D fs | dμφ, χu(μφ) :=
∫

log |D fu | dμφ,

the Lyapunov exponents of the ergodic measure μφ in the stable, respectively unstable
directions; they will be denoted also by χs, χu for simplicity. As μφ is ergodic (see
[30]) we have that μφ-a.e, 1

n Sn log |D fs | →n→∞ χs and 1
k Sk log |D fu | →k→∞ χu .

Thus if |D f n
s (z)| ≈ |D f k(z,n)

u (x)|−1, it follows that

− log C

n
− Sk(z,n) log |D fu |(x)

k(z, n)
· k(z, n)

n
≤ Sn log |D fs |(z)

n

≤ log C

n
− Sk(z,n) log |D fu |(x)

k(z, n)
· k(z, n)

n

Thus since n → ∞, we have k(z,n)
n →n→∞ −χs

χu
. But then, using also (6) one sees that

if B(n, k, z, ε) is a “round”ball, i.e. with sides of comparable size ρn = ε|D f n
s (z)|

then for μφ-a.e z ∈ �

logμφ(B(n, k(z, n), z, ε))

log ρn
→

n→∞

∫
φdμφ − χs

χu
· ∫
φdμφ + χs

χu
· log d ′

χs

Therefore the pointwise dimension ofμφ is well-defined and forμφ-almost all z ∈ �,
it is given by:

δμφ (z) =
∫
φ dμφ ·

(
1

χs
− 1

χu

)
+ log d ′

χu

But μφ is the equilibrium measure for φ and we assumed P(φ) = log d ′, so P(φ) =
log d ′ = hμφ + ∫

φdμφ . Hence from above for μφ-a.e z ∈ � we obtain

δμφ (z) = hμφ

(
1

χu
− 1

χs

)
+ log d ′ · 1

χs
,

In conclusion the measure μφ is exact dimensional on � and it satisfies the above
formula.

The fact that the Hausdorff dimension of μφ takes the same value as δμφ follows
from a criterion of Young (see [31]), since the pointwise dimension is constantμφ-a.e.

��
Even if the preimage counting function d(·) is not constant on �, still we obtain

bounds for the measure of iterates of Bowen balls, and estimates for the lower pointwise
dimension:
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Corollary 1 In the setting of Theorem 1 assume the preimage counting function sat-
isfies d(x) ≤ d ′ for μφ-a.e x ∈ � and that φ(x)+ log d ′ < P(φ) for all x ∈ �; then
for μφ-a.e x ∈ �

δμφ (x) ≥ hμφ

(
1

χu(μφ)
− 1

χs(μφ)

)
+ log d ′ · 1

χs(μφ)

Proof Clear by applying (6).

An application of Theorem 1 will be to equilibrium states of potentials of type
t�s on folded fractals �, where �s(x) := log |D fs(x)|, x ∈ �. In our noninvertible
case, it is somewhat similar to the product structure formula for pointwise dimension
from [1].

Corollary 2 In the same setting as in Theorem 1, denote byμs the equilibrium measure
of δs�s , where δs(x) := H D(W s

r (x)∩�) is assumed to be positive for some x ∈ �.
Then δs = δs(x) does not depend on x and for μs -a.e x ∈ �,

δμs (x) = hμs

χu(μs)
+ δs

Proof From [17] and references therein it follows that if f is conformal on local stable
manifolds over � and d ′-to-1 on �, then the stable dimension δs does not depend on
x , and that it is equal to the unique zero of the pressure function t → P(t�s − log d ′).
Thus P(δs�s) = log d ′ and if δs > 0, it follows that the condition

δs�s + log d ′ < P(δs�s)

is satisfied. Now P(δs�s) = hμs + δs
∫
�sdμs = hμs + δsχs(μs) = log d ′. Hence

from Theorem 1 we obtain μs-a.e:

δμs (x) = hμs

(
1

χu(μs)
− 1

χs(μs)

)
+ log d ′

χs(μs)

= hμs

χu(μs)
+ δsχs(μs)

χs(μs)
= hμs

χu(μs)
+ δs

��
Next we shall return to the holomorphic case and prove that the measure of maximal

entropy of the restriction of f to terminal sets can be described geometrically as a
wedge product of positive currents, by using a unicity result of Bowen and Marcus
with respect to local holonomy maps.

Theorem 2 (a) Let f : P
2 → P

2 be a holomorphic map of degree d and � be a
terminal mixing saddle set. Then νi is equal to the measure of maximal entropy
μ0 on �.

(b) Let f : P
2 → P

2 be an Axiom A holomorphic map of degree d, which is
c-hyperbolic on the mixing minimal saddle set �. Then νi = ν = μ0, where μ0
is the maximal entropy measure of f |�.
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1484 J. E. Fornaess, E. Mihailescu

Proof (a) Recall from Sect. 2 the construction of the current σ u ; then in [7] the
measure νi is defined as the wedge product σ u ∧ T , where the positive closed current
σ u is constructed with the help of the stable transversal measures μ̂s

x , x ∈ �. Recall
also that π |Ŵ u

r (x̂)
: Ŵ u

r (x̂) → W u
r (x̂) is a bijection (see [20]), so any function φ on

Ŵ u
r (x̂) determines uniquely a function denoted again with φ on W u

r (x̂). Then from the
measure νi we can form a system of measures on the lifts of local unstable manifolds
Ŵ u

r (x̂), x̂ ∈ �̂ in the following way:

ν̂u
x̂ (φ) =

∫
W u

r (x̂)

φT |W u
r (x̂)

We assumed that f is mixing on�; in fact (topological) mixing of f on� is equivalent
to mixing of f̂ on �̂. Define stable holonomy maps between lifts to �̂ of local unstable
manifolds, namely

χu
x̂,ŷ : Ŵ u

r (x̂) → Ŵ u
r (ŷ), χ

u
x̂,ŷ(ξ̂ ) := Ŵ u

r (ŷ) ∩ Ŵ s
r (ξ̂ ), ξ̂ ∈ Ŵ u

r (x̂)

We wish to prove that the measures ν̂u
x̂ are transversal and invariant with respect to

stable holonomy maps in the Smale space structure of �̂, in the sense of Bowen and
Marcus [5]. From the way the local unstable manifolds were constructed as determined
by prehistories, it follows that there is a bijection between W u

r (x̂)∩� and its lift Ŵ u
r (x̂)

(see also [20]). Given a borelian set Â ⊂ Ŵ u
r (x̂), there exists a unique borelian set

A ⊂ W u
r (x̂) ∩� such that π is a bijection between Â and A. From the definition of

ν̂u
x̂ , we know that

ν̂u
x̂ ( Â) =

∫
A∩W u

r (x̂)∩�
ddcG|W u

r (x̂)

Denote now the unstable intersection W u
r (x̂)∩�by Z(x̂) for x̂ ∈ �̂. Consider points

x, y in a subset of � belonging to an open set V ∈ P
2 so there exists a holomorphic

inverse s : V → C
3\{0} of π2. Then for r small we can identify Z(x̂), Z(ŷ)with their

respective lifts to C
3\{0} for any prehistories x̂, ŷ ∈ �̂. Since there are no critical

points of f in � and since we work on �, it follows that Z(x̂) can be split into
mutually disjoint subsets on which f n is injective, i.e. Z(x̂) = ∪i Zi,n(x̂), f n|Zi,n(x̂) :
Zi,n(x̂) → Zn

i (x̂) is bijective, and moreover Zn
i (x̂), i are mutually disjoint. It follows

that f n(Z(x̂)) = ∪i Zn
i (x̂). Now if Z(x̂) is contained in V , then f n(Z(x̂))may not be

contained in V ; but, if f n(Z(x̂)) is contained say in V1 ∪ V2 where V1, V2 are open
sets in P

2 as above, with respective local inverses s1, s2 of π2, and if V1 ∩ V2 �= ∅,
then there exists a holomorphic function ρ on V1 ∩ V2 so that s1 = ρs2 on V1 ∩ V2. So

ddc(G ◦ s1) = ddc(G(ρs2)) = ddc log |ρ| + ddc(G ◦ s2) = ddc(G ◦ s2)

This implies that working with ddcG on C
3\{0} is the same as working on P

2.
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Now G ◦ F = d · G and f n : Zi,n(x̂) → Zn
i (x̂) is bijective hence

∫
Zn

i (x̂)
ddcG =

dn
∫

Zi,n(x̂)
ddcG. Thus by adding over all the indices i we obtain:

∫
f n(Z(x̂))

ddcG = dn
∫

Z(x̂)

ddcG (8)

Now let x, y ∈ � closer than r/2 and iterate Z(x̂) and Z(ŷ) for some prehistories
x̂, ŷ ∈ �̂. We also take as above, the subsets Zi,n(ŷ) such that f n : Zi,n(ŷ) → Zn

i (ŷ) is
a bijection, Zn

i (ŷ), i are mutually disjoint and f n(Z(ŷ) = ∪Zn
i (ŷ). If Zi,n(x̂), Zi,n(ŷ)

has diameter small enough, then it follows that Zn
i (x̂), Zn

i (ŷ) both have diameter
bounded above by r and they are very close to each other, in fact d(Zn

i (x̂), Zn
i (ŷ)) →

0 for each i , when n → ∞. This follows as in the Laminated Distortion Lemma
(see [19]) since the distances between iterates of points on stable manifolds decrease
exponentially, and the unstable derivative |D fu | is Hölder continuous.

Now if ψ is a smooth test function equal to 1 on a fixed neighbourhood of Zn
i we

have
∫

Zn
i (x̂)

ddcG = ∫
Zn

i (x̂)
ψddcG = ∫

Zn
i (x̂)

Gddcψ hence since ddcψ is continuous

and Zn
i (x̂) and Zn

i (ŷ) are close, we obtain similar to [12] that for n large enough

∣∣∣∣∣∣∣∣
∫

f n(A)∩Zn
i (x̂)

ddcG −
∫

f n(χu
x̂,ŷ(A))∩Zn

i (ŷ)

ddcG

∣∣∣∣∣∣∣∣
≤ εm2(Z

n
i (x̂)),

where m2 is the Lebesgue measure on P
2. Now we add these inequalities over i and

use the fact proved in Proposition 5.3 of [12] that m2( f n(Z(x̂))) ≤ Cdn, n > 0.
Hence by dividing with dn , using (8), and letting n → ∞ we obtain

∫
A∩Z(x̂) ddcG =∫

χu
x̂,ŷ(A)∩Z(ŷ) ddcG. We lift then to the natural extension, keeping in mind that there

exists a homeomorphism between Z(x̂) and Ŵ u
r (x̂). Hence on �̂ we have:

ν̂u
x̂ ( Â) = ν̂ŷ(χ

u
x̂,ŷ( Â)), Â borelian set inŴ u

r (x̂)

The above equality can be extended next to general borelian sets contained in global
unstable sets Ŵ u(x̂) = ∪n≥0 f̂ n(Ŵ u

r (x̂)), x̂ ∈ �̂. Thus by a theorem of Bowen and
Marcus (see main result of [5]), extended to the mixing homeomorphism f̂ on �̂, it
follows that there exists a positive constant γ such that

ν̂u
x̂ = γ · μ̂u

0,x̂ ,

for any x̂ ∈ �̂, where μ̂u
0,x̂ are the transversal measures given by the measure of

maximal entropy μ̂0 on �̂ (as in [27,28]); see also (3). In fact if μ0 is the unique
measure of maximal entropy on� and if μ̂0 is the unique measure of maximal entropy
on �̂, then
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μ0 = π∗μ̂0 and hμ0 = htop( f |�) = htop( f̂ |
�̂
) = hμ̂0

The measure νi is constructed with the transversal stable measures μ̂s
x (which we

denote also by μ̂s
0,x ). Now from [26] we know that any f -invariant measure μ on �

can be lifted uniquely to an f̂ -invariant measure μ̂ on �̂ such that π∗μ̂ = μ. In our
case we denote by ν̂i this unique lift of νi to �̂. Since both ν̂i and μ̂0 are ergodic
probabilities on �̂, it follows that γ = 1 and that

μ̂0 = ν̂i , hence μ0 = νi

(b) Let us assume now that f has Axiom A, that � is a minimal basic set (i.e. the
unstable set of� does not intersect the stable set of any other basic set�′) and that f
is c-hyperbolic on�. Then from Sect. 2 there exists a positive closed (1, 1) current σ
supported on the global unstable set W u(�̂) such that if D is a local disk transverse to
the stable direction, then f n∗ ([D])

dn → (
∫ [D] ∧ T )σ . Without loss of generality assume

that the disk D is chosen such that
∫ [D] ∧ T = 1; and also that T has no mass on the

boundary ∂D of D.
We have from [12] that on a neighbourhood � of a point x ∈ � there exists a

measure λ on the space of holomorphic maps from a local unstable disk�1 to a local
stable disk �2 such that

σ =
∫

[W u
r (ŷ)]dλ(gŷ),

where W u
r (ŷ) are local unstable manifolds intersecting�, [W u

r (ŷ)] are the respective
currents of integration and gŷ : �1 → �2 is an arbitrary holomorphic map whose
graph is W u

r (ŷ). Then ν = σ∧T is supported only on�; hence we can define measures
ν̂s

x on Ŵ s
r (x) by

ν̂s
x ( Â) = λ({gŷ, ŷ ∈ Â})

Thus from the way the function gŷ was defined, namely as a function whose graph is
W u

r (ŷ), it follows that these measures are invariant to the local holonomy map between
Ŵ s

r (x) and Ŵ s
r (y) for x, y close. Also by covering with small flow boxes it follows

we can extend this property globally. Therefore from [5] we obtain that

ν̂s
x = γ · μ̂s

0,x ,

where the constant γ > 0 does not depend on x ∈ �. Now ν was defined as integration
of T on local unstable manifolds followed by integration with respect to transversal
measures; by using a) we obtain that ν̂ = μ̂0, and thus ν = μ0. Hence on minimal
saddle basic sets the measure ν is equal to the measure νi and both are equal to the
measure of maximal entropy μ0 on �. ��

Now that we know that the measure νi is equal to the measure of maximal entropy
μ0, and to ν when f has Axiom A and� is minimal, we find its pointwise dimension.
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Corollary 3 (a) Let � be a mixing terminal saddle set for a holomorphic map
f : P

2 → P
2 of degree d, s.t� does not intersect the critical set C f of f . If each

point in � has at most d ′ f -preimages in � and if d ′ < d, then for μφ-a.e z,

δνi
(z) ≥ log d ·

(
1

χu(νi )
− 1

χs(νi )

)
+ log d ′ · 1

χs(νi )

(b) If� is a mixing terminal saddle set for a holomorphic map f on P
2 of degree d,

if C f ∩� = ∅ and if the preimage counting function is constant equal to d ′ on
� for d ′ ≤ d, then we have:

δνi = H D(νi ) = log d ·
(

1∫
log |D fu | dνi

− 1∫
log |D fs | dνi

)

+ log d ′ · 1∫
log |D fs | dνi

,

(c) Let f : P
2 → P

2 be a holomorphic Axiom A map of degree d, which
is c-hyperbolic on a connected minimal saddle set�. Then the preimage counting
function is constant on �, with value denoted d ′, and

δν = H D(ν) = log d ·
(

1

χu(ν)
− 1

χs(ν)

)
+ log d ′ · 1

χs(ν)

Proof (a) We use the result of [7] that the topological entropy of f |� is equal to log d
if � is a terminal saddle basic set. From Theorem 2 we have that νi = μ0, the
measure of maximal entropy on�; hence hμ0 = htop( f |�). Then the inequality
follows from Corollary 1 in case the number of preimages in� is bounded above
by d ′.

(b) If� is terminal, then from Theorem 2 we know that νi is equal toμ0 the measure
of maximal entropy of f |�; also since the topological entropy of f |� is log d, it
follows that hνi = log d.
If the preimage counting function is constant and equal to d ′, then in case d ′ < d,
we have that condition φ + log d ′ < P(φ) is satisfied on � for φ ≡ 0. So one
can apply Theorem 1 in order to obtain the pointwise dimension of νi ; and since
δνi is constant, then H D(νi ) = δνi .
There remains only the case d ′ = d. In this case every point in � has d
f -preimages in� and htop( f |�) = log d (from [7]). Thus the unique zero of the
function t → P(t log |D fs | − log d) is equal to 0; so from [17] the function f |�
is expanding. In this expanding case we have that Bn(z, ε) is itself a round ball
of μ0-measure comparable to 1

dn [from the estimates of equilibrium measures
on Bowen balls in (2)]. At the same time the radius of this ball is comparable to
ε|D f n

u (z)|−1. Hence the lower and upper pointwise dimensions of νi coincide
and the pointwise dimension and Hausdorff dimension of νi are both equal to

δμ0 = H D(μ0) = log d

χu(μ0)
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(c) In this case if � is connected and f is c-hyperbolic on �, it follows from [19]
that the preimage counting function is constant on �. Also � cannot be written
as a disjoint union of compact sets, so it is mixing for an iterate of f . So we can
apply Theorem 1 for the measure ν which, according to Theorem 2 is equal to
μ0, and thus has entropy log d.

��
Remark If f is a smooth endomorphism hyperbolic on a basic set �, then by taking
a smooth perturbation g of f , it follows that g has also a basic set �g on which it
is hyperbolic (see [25]). Also if � is connected then �̂ is connected, so from the
conjugacy of f̂ |

�̂
to ĝ|

�̂g
, �̂g is connected and thus �g is connected too.

However the dynamics of perturbations g may be very different; for instance per-
turbations of toral endomorphisms are not conjugated necessarily to the original maps,
and may even have infinitely many unstable manifolds through a given point. See also
the examples of perturbations of polynomial maps from [22]. ��

For minimal c-hyperbolic sets of maps of degree 2 we can determine the possible
values of the pointwise dimension of ν; recall that the preimage counting function is
constant if � is connected.

Corollary 4 Let f be an Axiom A holomorphic map on P
2 of degree 2, which is c-

hyperbolic on a connected minimal saddle set� and let ν be the measure of maximal
entropy of f |�. Then we have exactly one of the following two possibilities:

(1) the preimage counting function of f is equal to 1 on �; then f |� is a homeo-
morphism and

δν = log 2 ·
(

1∫
log |D fu | dν

− 1∫
log |D fs | dν

)

(2) or, the preimage counting function of f is equal to 2 on�; then f |� is expanding
and

δν = log 2 · 1∫
log |D fu | dν

Proof If f has Axiom A and� is minimal then� is terminal, thus from [7] it follows
that htop( f |�) = log 2. Now if� is connected and if there exists a neighbourhood U of
�with f −1(�)∩U = � then the preimage counting function is constant on�. If the
preimage counting function is equal to d ′ on� it follows that d ′ ≤ 2, otherwise from
Misiurewicz–Przytycki Theorem (see [14]) we would have htop( f |�) ≥ log d ′ >
log 2 which is impossible, as we saw above.

So we either have d ′ = 1 or d ′ = 2. In the first case we can apply Theorem 1
for the potential φ ≡ 0 since log d ′ < P(0) = log d on �. In this case f |� is a
homeomorphism (like for instance the family of polynomial perturbations constructed
in [22]).

In the second case if d ′ = 2, the stable dimension δs := H D(W s
r (z) ∩�) is equal

to the unique zero of the pressure function t → P(t log |D fs | − log 2) (see [19] and
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references therein); but since htop( f |�) = log 2, the zero of this pressure function is
indeed equal to 0. Then δs = 0 and we can apply the result of [17] saying that in this
case, f must be expanding on �.

From Theorem 2 the measure ν is equal toμ0, i.e. the measure of maximal entropy.
Therefore from Theorem 1 the pointwise dimension of ν is

δν = log 2 · 1∫
log |D fu | dν

��
Examples and remarks

(1) First notice that the map f0(z, w) = (z2 + c, w2) is 2-to-1 and expanding on
�0 = {p0(c)} × S1, where p0(c) is the fixed attracting point of z → z2 + c for |c|
is small enough. In [22] there was constructed a class of perturbations of f0 which
are homeomorphic on their respective basic sets. This shows in particular that the
preimage counting function is not necessarily preserved by perturbations. These are
maps of type

fε(z, w) = (z2 + c + aεz + bεw + dεzw + eεw2, w2),

for b �= 0, |c| small and 0 < ε < ε(a, b, c, d, e). Then fε has a basic set �ε (close to
�0), on which it is hyperbolic and has a homeomorphic restriction.

For 0 < ε < ε(a, b, c, d, e) it also follows that fε is c-hyperbolic on�ε since there
are no critical points of fε in�ε and since there exists a neighbourhood U of�ε such
that f −1

ε (�ε) ∩ U = �ε. Indeed for ε fixed if there were no such neighbourhood,
then for any neighbourhood V of �ε there would exist a point y ∈ V \�ε with
fε(y) ∈ �ε. Thus for any n > 0 there would exist points yn ∈ B(�ε,

1
n ) with

fε(yn) = xn ∈ �ε, and since � is compact we can assume xn → x ∈ �ε. Since
there are no critical points of fε in �ε, it follows that there exists a positive distance
η0 s. t d(yn, zn) > η0, where zn is another preimage of xn belonging to �ε (such zn

must exist since fε(�ε) = �ε). Then without loss of generality we can assume that
yn → y so y ∈ � since d(yn,�) <

1
n . But perhaps after passing to a subsequence,

zn → z ∈ �; then from above d(y, z) > η0/2. But this is a contradiction since fε is
homeomorphic on �ε. Hence there must exist a neighbourhood U of �ε satisfying

f −1
ε (�ε) ∩ U = �ε

Also notice that if we fix a, b, c, d, e, ε as above and perturb now fε, we obtain another
map g which has a saddle basic set �g on which g is hyperbolic and homeomorphic.
This example shows that the bound d ′ on the number of preimages remaining in �,
can be very different among perturbations. For endomorphisms which are hyperbolic
on basic sets �, there exists a connection between the maximality of the number of
preimages, 1-sided Bernoullicity of the measure of maximal entropy and the expanding
property on � (see [17]).
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(2) Examples of terminal sets can be obtained by perturbations of known examples
f and �; if W u(�̂)\� is contained in the union of basins of finitely many attracting
cycles of f , then any small perturbation g has a saddle basic set �g close to �, and
W u(�̂g)\�g is also contained in the union of basins of attraction of g; hence �g is
terminal too.

Also the topological entropy of restrictions is preserved by perturbations, i.e.
htop( f |�) = htop(g|�g ). Thus by perturbing the known examples (like products
of hyperbolic rational maps, or Ueda type examples of [12], see [12]), we obtain more
examples of terminal sets. As noticed before if � is connected, then the basic set �g

is connected too. And if f is mixing on � then f̂ is mixing on �̂; hence from the
conjugacy on inverse limits, we obtain that g is mixing on �g as well.

We can take for instance examples constructed by Ueda’s method (see [29]); if
� : P

1 × P
1 → P

2 is the Segre map �([z0 : z1], [w0 : w1]) = [z0w0 : z1w1 :
z0w1 + z1w0], and f : P

1 → P
1 is a rational map then there exists F : P

2 → P
2

holomorphic of the same degree as f , so that

�( f, f ) = F ◦�

If f is hyperbolic on its Julia set J ( f ) (i.e. expanding), then F is hyperbolic on basic
sets of type

� = �({periodic sink of f } × J ( f ))

The saddle set � is terminal and topologically mixing for F . Let us consider now
also a holomorphic perturbation G of F with a corresponding basic set �G , which
is close to �. From above it follows that �G is terminal and mixing saddle set for G.

Consider also Hölder potentialsφ on�G satisfying inequality (1) with respect to G;
for instance, in the setting of Corollary 3 we can take φ sufficiently small in C0-norm
s.t (1) is still satisfied. Now for each such φ we have an equilibrium measure μφ on
�G . Then it follows that one can apply Theorem 1, Corollary 1 and Corollary 3 in
order to obtain the values of μφ on iterates of Bowen balls in�G , and also in order to
estimate the (upper/lower) pointwise dimensions of μφ .

In particular we obtain information about the (upper/lower) pointwise dimensions
for the measure μ0,G of maximal entropy of the restriction G|�G .
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