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Abstract We study new phenomena associated with the dynamics of higher dimensional
non-invertible, hyperbolic maps f on basic sets of saddle type; the dynamics in this case
presents important differences from the case of diffeomorphisms or expanding maps. We
show that the stable dimension (i.e. the Hausdorff dimension of the intersection between
local stable manifolds and the basic set) and the unstable dimension (similar definition) give
a lot of information about the dynamical/ergodic properties of endomorphisms on folded
basic sets. We prove a geometric flattening phenomenon associated to the stable dimension,
i.e. we show that if the stable dimension is zero at a point, then the fractal � must be con-
tained in a submanifold and f is expanding on �. We characterize folded attractors and
folded repellers, as those basic sets with full unstable dimension, respectively with full sta-
ble dimension. We classify possible dynamical behaviors, and establish when is the system
(�,f,μ) 1-sided or 2-sided Bernoulli for certain equilibrium measures μ on folded basic
sets, for a class of perturbation maps.

Keywords Endomorphisms on folded basic sets of saddle type · Stable/unstable
dimensions · 1-sided and 2-sided Bernoulli systems · Invariant manifolds · Hyperbolic
attractors/repellers

1 Introduction and Outline of the Paper

The dynamics of hyperbolic diffeomorphisms on basic sets has been studied in detail.
Strange attractors are examples of basic sets, which combine properties like the existence of
SRB measures with a complicated dynamical behaviour ([2, 3, 20, 22]). For one-dimensional
maps it is necessary that the map must be non-invertible in order to have exponential sepa-
ration of orbits (a feature of chaotic behaviour, see [14]). So non-invertible maps on folded
basic sets are natural; their dynamics is shown to be different than that of diffeomorphisms.
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In this paper we deal with the different case of a smooth endomorphism f (i.e. a smooth
map f on a Riemannian manifold which is not necessarily invertible), in higher dimension;
moreover f is assumed to be hyperbolic on a basic set �. Such basic sets for smooth endo-
morphisms will also be called folded basic sets. As the map f is not necessarily invertible,
nor necessarily expanding on �, we cannot apply many of the tools from those two cases.
Our map is considered in general to have both stable and unstable directions along the basic
set. In the non-invertible case there appear some phenomena which are not encountered in
the diffeomorphism case, like the fact that the stable dimension (i.e. the Hausdorff dimension
of the intersection between local stable manifolds and the basic set �) is not always equal to
the zero of the pressure of the stable potential. Also we do not have always the continuity of
the stable dimension; in [11] were constructed perturbations fε of f (z,w) := (z2 + c,w2),
(z,w) ∈ C

2, s.t. fε is homeomorphism on the respective basic set �ε . In other examples,
namely a family of hyperbolic skew product endomorphisms, there appear both Cantor sets
of points in fibers with uncountably many prehistories, and also infinitely many points in
fibers having only one prehistory (see [9]).

For an endomorphism on a basic set �, one has the natural extension �̂, but this space
is not a manifold so we loose the differentiability properties. A very important role in de-
termining (or estimating) the stable dimension is played by the number of f -preimages of a
point x ∈ �, that actually remain in �. As the set � is not necessarily totally invariant, we
may not have all the preimages of a point from �, to remain in �. In [11] we proved esti-
mates in the hyperbolic case relating this number of preimages remaining in �, to the stable
dimension. Then in [12] we proved that, if a map is conformal on local stable manifolds,
and if this number of preimages is constant (i.e. f |� is d-to-one), then the stable dimension
is equal to the unique zero of the pressure t → P (t�s − logd). We also gave estimates for
the stable dimension by using a new concept, that of inverse pressure ([12]). In [13] we ex-
tended these results to the case when the function given by the number of preimages from �,
denoted by d(·), is locally constant; and also to the case when d(·) is just bounded above by
a continuous function ω(·).

Hyperbolic diffeomorphisms on basic sets, together with equilibrium measures of Holder
potentials, are conjugated to Bernoulli shifts (see [2]); this holds since for diffeomorphisms
there exist Markov partitions of arbitrarily small diameters on the respective basic sets (see
[2, 22]). We have a complete classification of 2-sided Bernoulli shifts with the help of the
measure-theoretic entropy, given in the papers of Ornstein (see for example [6]). However
for 1-sided Bernoulli shifts, the above classification is no longer true; indeed we must have
also that the numbers of preimages of points, is the same, for the two shifts. And still,
there are 1-sided Bernoulli shifts with the same measure theoretic entropy and the same
index, which are not isomorphic (Parry and Walters, [16]). This points to the subtle chaotic
nature of non-invertible maps and the significant changes in dynamics that their foldings
produce; see also the notion of folding entropy (introduced in [21]) which is adapted to
this case. Ruelle (see [19]) proved that an expanding map, with the equilibrium measure of a
Holder continuous potential, is isomorphic to a 1-sided Markov chain, due to the existence of
Markov partitions in the expanding case. However 1-sided Markov chains are not necessarily
isomorphic to 1-sided Bernoulli shifts ([16]). In our case, for non-invertible smooth maps
which are not necessarily expanding, we do not have Markov partitions in general, so we
cannot code the dynamics on �. Difficulties appear also since, a priori there may exist
infinitely many local unstable manifolds through a point from �; in the non-invertible case
we do not have a nice foliation with unstable manifolds like in the diffeomorphism case.

Outline of Main Results First we will give the definition for basic sets of endomorphisms,
and for the preimage counting function d(·); we recall also some estimates for the stable
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dimension. Hyperbolic attractors and repellers are for instance, particular examples of basic
sets.

In Theorem 1 we prove a quite surprising geometric flattening phenomenon related to the
stable dimension, in certain partially conformal higher dimensional cases; this result says
that, if the stable dimension is zero at some point of the basic set �, then the preimage
counting function is locally constant on � and � is contained in a union of finitely many
invariant submanifolds. So the stable dimension (a local metric invariant) influences strongly
the geometry of the entire fractal set �. In case � is connected, we will show in Theorem 2
that f |� is expanding. And that, if the pair (�,f ) is endowed with the measure of maximal
entropy, then it becomes tree very weakly Bernoulli; this implies that it is a uniform measure-
preserving endomorphism, and thus 1-sided Bernoulli by a result from [4]. By perturbing a
hyperbolic map f on a connected basic set �, we obtain many examples, namely connected
hyperbolic basic sets �g corresponding to the perturbations g of f .

In Theorem 3 we show that a smooth non-expanding endomorphism having non-zero sta-
ble dimension, cannot be 1-sided Bernoulli if endowed with a certain equilibrium measure.
We make precise also what we mean by repellers (and local repellers), and prove some of
their properties related to the stable dimension and to their stability under perturbations. In
Theorem 4 and in Theorem 5 we give necessary and sufficient conditions for a folded ba-
sic set to be a (local) repeller, respectively an attractor, in terms of their stable dimension,
respectively unstable dimension. In the non-invertible setting, the two cases are not just the
reverse of each other. We also give a strict lower bound for the folding entropy of the stable
equilibrium measure in Proposition 4.

Then in Theorem 6 we give a classification of the dynamical and symbolical behavior for
a class of polynomial endomorphisms on their respective basic sets. We obtain in this case
relations between the stable dimension and the 1-sided (or 2-sided) Bernoullicity of certain
equilibrium measures on those basic sets. We give also a number of examples of dynamical
behavior on folded basic sets, among which connected non-Anosov hyperbolic repellers.

2 Main Results and Applications

Basic sets for hyperbolic non-invertible maps appear naturally in many instances. For exam-
ple we mention the horseshoes with overlaps from [1], folded drapes or veils such as maps
of type (x, y) → ((A − x − B1y)x, (A − B2x − y)y) (for certain values of the parameters
given in [3]), various expanding maps ([6, 19]), hyperbolic skew products with overlaps in
fibers, polynomial maps which are hyperbolic on locally maximal invariant sets, etc.; see
also [17] for ergodic properties of Axiom A endomorphisms.

We work with a smooth (say C 2) map f : M → M on a Riemannian manifold; this map,
which is not necessarily invertible, is called a smooth endomorphism. Let us denote by Cf

the critical set of f , i.e. the set of points, around which f is not a local diffeomorphism.

Definition 1 An uncountable, compact set � is a basic set (or folded basic set) for the
smooth endomorphism f , if there exists a neighbourhood U of � s.t. � = ⋂

n∈Z
f n(U),

and if f is topologically transitive on �.

Definition 2 A basic set � for an endomorphism f is called an attractor if there exists a
neighbourhood (denoted also by U without loss of generality) such that f (Ū) ⊂ U . A basic
set � will be called a repeller if there exists a neighbourhood U such that Ū ⊂ f (U).
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If � is a compact invariant set for f , then one can introduce the natural ex-
tension �̂ := {x̂ := (x, x−1, x−2, . . .), f (x−i ) = x−i+1 ∈ �, i ≥ 1, x0 = x}, the canon-
ical projection π : �̂ → �, π(x̂) := x and the shift homeomorphism f̂ : �̂ → �̂,
f̂ (x̂) = (f (x), x, x−1, x−2, . . .), x̂ ∈ �̂. The finite sequences of consecutive preimages
(x, x−1, . . . , x−n) with f (x−i ) = x−i+1, i = 1, . . . , n are called finite prehistories of length n,
and the infinite sequences of consecutive preimages x̂ = (x, x−1, . . .) are called prehistories
(or full prehistories). A point y ∈ � such that f n(y) = x for some n ≥ 1, will be called an
n-preimage of x, or an f n-preimage of x.

In this paper we work with endomorphisms f which are hyperbolic on basic sets ([20]),
i.e. there exists a uniform splitting of the tangent bundle over �̂ into a stable direction Es

x and
an unstable direction Eu

x̂
which depends on a full prehistory x̂. The local stable manifold is

denoted by Ws
r (x) and the local unstable manifold by Wu

r (x̂). The local unstable manifolds
may not form an unstable foliation over �, and they may intersect each other both in �

and/or outside �. We assume throughout the paper that the critical set does not intersect the
basic set �. Define the stable potential �s(x) := log |Dfs(x)|, x ∈ �, where |Dfs(x)| is the
norm of the stable derivative Df |Es

x
, x ∈ �; and similarly the unstable potential �u(x̂) :=

− log |Dfu(x̂)|, x̂ ∈ �̂.

Definition 3 In the above setting, fix a positive r such that Ws
r (x), Wu

r (x̂) exist. Then
the Hausdorff dimension HD(Ws

r (x) ∩ �) is called the stable dimension at x ∈ �, and
HD(Wu

r (x̂) ∩ �) is called the unstable dimension at x̂ ∈ �̂.

Unlike in the case of diffeomorphisms on surfaces (or that of conformal diffeomor-
phisms), when the stable dimension is equal to the unique zero of the pressure t → P (t�s)

(see [7]), in the endomorphism case the usual Bowen type equation is not always true (coun-
terexamples in [11]).

Definition 4 In the above setting, let � be a basic set for f : M → M , s.t. Cf ∩ � = ∅. We
denote by d(x) := Card{y ∈ �,f (y) = x}, x ∈ � and call it the preimage counting function
on �.

One notices that, as Cf ∩ � = ∅, we cannot have preimages with multiplicity greater
than 1 near �. So all the preimages of x are simple. In this case, by the compactness of �,
it follows that the function d(·) is upper semi-continuous on �. We will define later another
notion, that of index of a point, with respect to an invariant measure supported on � ([16]);
the two notions are not the same however. The preimage counting function intervenes in es-
timates for the stable dimension in the non-invertible case ([11–13]). The following theorem
combines results from [11, 12]:

Theorem (Bowen-type formula for the stable dimension in the endomorphisms case) As-
sume that f : M → M is a smooth endomorphism which is hyperbolic on a basic set � such
that Cf ∩ � = ∅ and f is conformal on stable manifolds. Then if there exist positive inte-
gers d1, d2 such that d1 ≤ d(x) ≤ d2, x ∈ �, it follows that td2 ≤ δs(x) ≤ td1 , ∀x ∈ �, where
for any p > 0, tp denotes the unique zero of the pressure function t → P (t�s − logp).
In particular if the number of preimages remaining in � is constant and equal to d , then
δs(x) = td .

We prove now one of our main results in this paper, namely that the stable dimension
influences strongly the geometry of the whole folded basic set:
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Theorem 1 Let f : M → M be a smooth endomorphism which is hyperbolic on a basic
set � with Cf ∩ � = ∅ and such that f is conformal on local stable manifolds. Assume
that d is the maximum possible value of d(·) on �, and that there exists a point x ∈ �

where δs(x) = td = 0. Then it follows that d(·) ≡ d on � and there exist a finite number
of unstable manifolds whose union contains �. In particular if � is connected, then there
exists an invariant unstable manifold containing �, and f |� is expanding.

Proof If d is the maximum value taken by the preimage counting function d(·) on �, and if
δs(x) = td , then we showed in [13] that d(y) = d,∀y ∈ �; and thus δs(y) = td , y ∈ �, from
[12]. By definition of td , we have

P (td�
s − logd) = 0. (1)

In the endomorphism case we obtain similarly, as in the diffeomorphism case of [2],
estimates for equilibrium measures on Bowen balls. If φ is a Holder continuous potential
on �, there exists a unique equilibrium measure for φ, which is denoted by μφ . This follows
from the bijection between f -invariant probabilities on �, and f̂ -invariant probabilities on
�̂; μ is an equilibrium measure for φ on � if and only if its unique f̂ -invariant lifting to �̂

is an equilibrium measure for φ ◦ π . For a Holder continuous function φ on � let us denote
by μφ its unique equilibrium measure. We denote by Bn(y, ε) := {z ∈ �, d(f iz, f iy) < ε,
i = 0, . . . , n−1} the (n, ε)-Bowen ball centered at y. Then given a Holder potential φ on �,
one can show, similarly as for diffeomorphisms ([2, 22]) and by working in �̂, that there
exist constants Aε,Bε > 0 so that, for any y ∈ �, n > 0, we have:

Aεe
Sn(φ)−nP (φ) ≤ μφ

(
Bn(y, ε)

) ≤ Bεe
Sn(φ)−nP (φ)).

Thus from (1) and since td = 0, we obtain:

Aε

dn
≤ μ0

(
Bn(y, ε)

) ≤ Bε

dn
, (2)

where μ0 is the measure of maximal entropy for f |�.
For two quantities depending on y ∈ �, n > 0 we will say that they are comparable if

their quotient is bounded above and below by two positive numbers, independently on y, n;
this is for example the case in (2) for the quantities μ0(Bn(x, ε)) and 1

dn .
We want to show now that the cardinality of Ws

r (x) ∩ � is finite. Indeed, let us assume
that there are at least N different points inside Ws

r (x) ∩ � and denote their set by F :=
{y1, . . . , yN }. Let us take also a fixed, small ε > 0. There exists n = n(N) sufficiently large
so that any set of type f n(Bn(z, ε))∩Ws

r (x) is disjoint from any set of type f n(Bn(w, ε))∩
Ws

r (x) if z,w are n-preimages in � of yi , yj respectively, and i �= j , 1 ≤ i, j ≤ N . But now
the inclination of local unstable manifolds with respect to Ws

r (x) is bounded below by some
positive constant, since they are transversal to Ws

r (x) and depend uniformly on prehistories
from the compact space �̂. This implies that given a point y ∈ F and an n-preimage z ∈ �

of y, we have that the union
⋃

ξ∈F, ξ �=y

⋃
w∈f −nξ∩� f n(Bn(w, ε)) does not contain the entire

set f n(Bn(z, ε)). This implies that, in the difference set

Bn(z, ε) \
[ ⋃

ξ∈F, ξ �=y

⋃

w∈f −nξ∩�

Bn(w, ε)

]

,

there must exist at least M(N,ε) mutually disjoint Bowen balls of type Bn+k(N,ε)(ζ,

ε/ l(N, ε)), where k(N, ε), l(N, ε) are positive integers. We also recall that, since Cf ∩



Local Geometry and Dynamical Behavior on Folded Basic Sets 159

� = ∅, there exists a positive constant ε0 such that d(z,w) > ε0 if f (z) = f (w) and
z �= w,z,w ∈ �. Thus if w,z are different n-preimages of the same point from �, then
Bn(z,4ε) ∩ Bn(w,4ε) = ∅ if ε is small enough. By applying the estimates from (2) we
obtain that there exists a positive constant Dε , such that

1 ≥ μs

(⋃

y∈F

⋃

y−n∈f −ny∩�

Bn(y−n, ε)

)

≥ Dε ·
∑

y∈F,z∈f −ny∩�

μs

(
Bn(z, ε)

) ≥ DεAεNdn · 1

dn
.

So the number of points in Ws
r (x) ∩ � must be finite and bounded above by N(ε), for

any x ∈ �. We recall however that any hyperbolic basic set has local product struc-
ture, thus the intersection between any local stable manifold Ws

r (x) and any local unsta-
ble manifold Wu

r (ŷ), x ∈ �, ŷ ∈ �̂ must belong to �, for any r > 0 small. Hence �

must be contained in the union of at most finitely many unstable manifolds, each of type
Wu(x̂, T ) := ⋃T

i=0 f i(Wu
r (x̂)) for some T > 0.

From the finiteness of Ws
r (x) ∩ �, it follows that there exists a small ρ > 0 such that

Ws
ρ(x) ∩ � = {x}, x ∈ �. Also notice that � does not have isolated points, since it was

assumed to be uncountable and topologically transitive.
Let us assume now that � is connected and contained in the union of the local unstable

manifolds Wu
1 ∪· · ·∪Wu

N . Let us consider for example the intersection between Wu
1 and Wu

2 .
If there would exist a point y ∈ � ∩ Wu

1 \ Wu
2 , close to Wu

1 ∩ Wu
2 , then Ws

ρ(y) ∩ Wu
2 would

be in � from the local product structure (since we work only near points from �, the above
intersection is actually an intersection between Ws

ρ(y) and Wu
r (ζ̂ ) for some ζ̂ ∈ �̂). But

this is a contradiction since we saw that Ws
ρ(y) ∩ � = {y}. So � must be contained in

intersections of two or more manifolds Wu
i , i = 1, . . . ,N . Now if there would exist only

two such manifolds Wu
1 and Wu

2 , and if � ⊂ Wu
1 ∩ Wu

2 , we are done, since it follows that
� ⊂ Wu

1 . If not, since we assumed that � is connected, there would exist at least another
Wu

3 and �12 := Wu
1 ∩ Wu

2 would intersect �23 := Wu
2 ∩ Wu

3 in a point y. But then, again
from the non-existence of isolated points in �, there must exist some point z ∈ �23 as close
as we want to y. Since z ∈ � and f is hyperbolic on �, we can construct the local stable
manifold Ws

ρ(z); as z is very close to y ∈ Wu
1 , we will have that Ws

ρ(z) intersects Wu
1 in a

point ξ ∈ �. But then we obtain a contradiction since Ws
ρ(z) ∩ � would contain more than

one point.
The other cases of intersections between the unstable manifolds Wu

i are treated similarly.
Thus if � is connected, it must be contained in only one unstable manifold Wu, more

precisely in the union of finitely many iterations of one local unstable manifold. In particular
it follows that f |� is an expanding map in this case. �

We now prove that in the previous Theorem, under the assumption that f |� is expanding
(which happens, as we saw, when � is connected) we have that the measure preserving
system (�,f,μ0) is 1-sided Bernoulli, where μ0 is the unique measure of maximal entropy.
In order to do so, we need some notions and results from [4]. Let us denote by T the tree
of f -preimages belonging to �, where a node at level n is followed at level n + 1 by its
f -preimages in �. A (T ,�)-name is a function h : T → �; h is called tree adapted if for
any node v and different f -preimages z,w of v, we have h(vz) �= h(vw). Given a point
x ∈ �, we shall denote by Tx the (T ,�)-name represented by the tree of f -preimages of x

from �. Let now a function g : � → � and G the σ -algebra on � generated by the pullback
of the σ -algebra B of borelians of �. We shall say that g generates if

∨
i g

−i (G) = B. We
denote also by A the collection of all bijections of the nodes of T that preserve the tree
structure, and by An the set of bijections of the set of nodes up to level n, preserving also
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the tree structure. Then for any n > 1, we can define a metric on the space of (T ,�)-names
by

tn(g,h) := inf
A∈An

1

n

∑

0<|v|≤n

1

d |v| d
(
h(v), g(Av)

)
.

Then we shall say as in [4], that the uniform measure preserving system (�,f,μ) and
the tree adapted map g : � → � are tree very weakly Bernoulli if for any ε > 0 and all n

large enough, there exists a set G(ε,n) with μ(G(ε,n)) > 1 − ε, such that tn(Tz, Tw) < ε,
∀z,w ∈ G(ε,n).

Theorem 2 Assume that � is a hyperbolic basic set for a smooth endomorphism f , such
that f |� is d-to-1, td = 0 and f |� is expanding. Then (�,f,μ0) is 1-sided Bernoulli, where
μ0 is the unique measure of maximal entropy.

Proof We know that, if f |� is expanding, then (�,f,μφ) is isomorphic to a 1-sided Markov
chain from [19], where μφ is the equilibrium measure of an arbitrary Holder potential φ.
However, as was shown in [16], not all 1-sided Markov chains are isomorphic to 1-sided
Bernoulli shifts (unlike the 2-sided Markov chains, which are indeed isomorphic to 2-sided
Bernoulli chains, see [6]); this is an important difference between the invertible and non-
invertible cases. For the non-invertible case one has to apply more sophisticated results; we
shall use results of Hoffman and Rudolph ([4]) about a necessary and sufficient condition
which guarantees 1-sided Bernoullicity for certain uniform endomorphisms.

If f |� is expanding and d-to-1, we know that μ0 is the limit of a sequence of measures
of type μx

n := 1
dn

∑
y∈f −nx∩� δy ([6, 19]). This implies that

μ0
(
f (A)

) = dμ0(A),

for any borelian set A so that f |A is injective. So the Jacobian of the measure μ0 ([15]) is
constant and equal to d , which implies that the conditional probabilities of the preimages
of μ0-almost all points from � are the same, namely 1

d
([15]). On the other hand, if μ0 is

a measure of maximal entropy and td = 0, we have that P (− logd) = 0, hence htop(f |�) =
logd . Thus hμ0 = logd , the conditional probabilities of the preimages are all 1

d
, and f |� is

d-to-1. Therefore (�,f,μ0) is a uniform measure preserving endomorphism, as defined in
[4].

We now use the fact that f |� is expanding and open (since f |� is d-to-1). It is easy to
show then that f |� is topologically exact. So for any ε > 0 small there exists some positive
integer N so that, given any y, z ∈ � and any N -preimage y−N ∈ � of y, there exists an
N -preimage z−N ∈ � of z, such that

d(y−N, z−N) < ε. (3)

From the fact that f is uniformly expanding on �, it follows that N depends only on ε. As
the generating function we will take the identity Id : � → � which obviously generates the
σ -algebra of borelians on �. From (3), and the fact that local inverse iterates of f contract
distances, we infer that given any points y, z ∈ �, there exists N = N(ε) such that for any
n > N , and any n-preimage y−n ∈ � of y, there exists a unique n-preimage z−n of z, so
that z−n ∈ Bn(y−n, ε); and vice-versa, for any n-preimage z−n ∈ � of z, there is a unique
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n-preimage y−n ∈ � of y with y−n ∈ Bn(z−n, ε). Therefore for any ε > 0, there exists N(ε)

so that we have:

tn(Ty, Tz) < Cε, ∀y, z ∈ �, n > N(ε), (4)

where C > 0 is a constant, independent of ε, n, y, z (C depends only on the minimum ex-
pansion coefficient of f on �). So in our case the set G(ε,n) from the definition of tree
very weakly Bernoulli, is the whole �. Thus the measure preserving uniform endomophism
(�,f,μ0) and the generating function Id : � → � are tree very weakly Bernoulli. In con-
clusion it follows from [4] that (�,f,μ0) is 1-sided Bernoulli. �

We look now at the opposite case, when the stable dimension is positive. We prove that
an endomorphism with positive stable dimension at some point, cannot be 1-sided Bernoulli
if endowed with a certain equilibrium measure.

Theorem 3 Let f be a smooth endomorphism, which is hyperbolic on a basic set �, such
that �∩Cf = ∅ and f is conformal on stable manifolds. Assume that there exists a point x ∈
� with δs(x) > 0, and denote by μs the equilibrium measure of the potential δs(x) · �s(·).
Then the measure preserving system (�,f,μs) cannot be 1-sided Bernoulli.

Proof We assumed that δs(x) > 0. As δs(x) · �s is a Holder continuous potential on �,
it follows that it has a unique equilibrium measure μs . From the definition of equilibrium
measures:

P
(
δs(x)�s

) = hμs + δs(x) ·
∫

�

�s(y) dμs(y). (5)

Assume now that (�,f,μs) is isomorphic to the 1-sided Bernoulli shift (
+
d , σ,ρp),

where ρp is the probability measure induced on 
+
d by the probability vector p.

We recall the notion of index for a measure preserving endomorphism f : (X,μ) →
(X,μ) on a Lebesgue space ([16]). As (X,μ) is Lebesgue, it follows that the partition into
preimage sets of points, {f −1(x), x ∈ �} is measurable and thus one can form the canonical
system of conditional measures μz for μ-almost all z ∈ � ([18]).

If f : X → X is assumed to be at most countable-to-one, we can define the index:

indf,μ(z) := Card(suppμz), for μ-almost all z ∈ �.

The index is defined almost everywhere, it is a measurable function and it is preserved by
isomorphisms of measure preserving systems ([16]). Therefore in our case, if (�,f,μs)

is isomorphic to (
+
d , σ,ρp), then the index indf,μs is equal to d μs -almost everywhere.

From definition we know that d = indf,μs (y) ≤ Card(f −1(y)∩�), for μs -almost all y ∈ �.
Now any non-empty open set must contain Bowen balls; so by using the estimates for the
μs -measure of Bowen balls, we obtain that the μs -measure of any open non-empty set is
strictly positive. Thus recalling the notion of preimage counting function from Definition 4,
we obtain that:

d(y) ≥ d, for y in a dense set in �. (6)

This implies that

δs(y) ≤ td , y ∈ �
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by a result from [12]; here again td is the unique zero of the pressure function t → P (t�s −
logd). Indeed in [12], when covering � with Bowen balls, one can take the centers of all
these balls to be in the respective dense subset; this implies the last displayed inequality
for any point y ∈ �. Therefore we have that P (δs(x)�s − logd) ≥ 0; but since μs is the
equilibrium measure of the potential δs(x)�s we obtain:

hμs + δs(x) ·
∫

�

�s(y) dμs(y) ≥ logd.

Recalling however that δs(x) > 0 and that �s < 0 on the compact set �, we have:

hμs ≥ logd − δs(x) ·
∫

�

�s(y) dμs(y) > logd. (7)

But since we assumed the existence of an isomorphism between (�,f,μs) and (
+
d , σ,ρp),

we should have hμs = hρp ; hence from (7), it follows that hρp > logd . However by using the
Variational Principle for entropy we obtain hρp ≤ htop(σ ) = logd . This gives a contradiction.
Therefore the measure preserving system (�,f,μs) cannot be 1-sided Bernoulli. �

We study now a class of basic sets on which the endomorphism is locally constant-to-
one, namely repellers (cf. Definition 2). They will be proved to be stable under perturbations,
giving thus plenty of examples, obtained from simpler ones.

Proposition 1 If � is a repeller for f , then the preimage counting function d(·) is locally
constant on �. Also if � is a hyperbolic repeller, then the local stable manifolds are con-
tained in �.

Proof It is enough to prove that f −1(�) ∩ U = � for the neighbourhood U from Defini-
tion 2. Thus let us take a point x ∈ � and y ∈ U with f (y) = x. Since y ∈ U and Ū ⊂ f (U),
there will exist a preimage y−1 ∈ U of y, then a preimage y−2 ∈ U of y−1, etc. We obtain
thus a full prehistory of y belonging to U . And from the fact that x = f (y) ∈ �, we see that
f i(y) ∈ U, i ≥ 0. Now since � = ⋂

n∈Z
f n(U), it follows that y ∈ �. Recalling also that

Cf ∩ � = ∅ we have that d(·) is locally constant.
Now let us take a local stable manifold Ws

r (x) and let y ∈ Ws
r (x). Then if r > 0 is

sufficiently small, we have that Ws
r (x) ⊂ U and thus y has a full prehistory belonging to U .

Meanwhile, f iy ∈ U , i ≥ 0 since y ∈ Ws
r (x). From the definition of basic set, it follows that

y ∈ �, hence Ws
r (x) ⊂ �. �

Proposition 2 If � is a hyperbolic repeller for a smooth endomorphism f , and if g is a
close C 1-perturbation of f near �, it follows that g has a hyperbolic repeller �g close
to �. Moreover if � is connected, then �g is also connected.

Proof If g is a perturbation of f , then there exists a conjugating homeomorphism �g :
�̂ → �̂g commuting with f̂ and ĝ ([8, 20]). Since � is a repeller, there exists a neigh-
bourhood U of � such that Ū ⊂ f (U). Now if g is a close perturbation of f , it follows
that Ū ⊂ g(U), so �g := ⋂

n∈Z
gn(U) is a repeller for g. It can be shown easily that g is

hyperbolic on �g too.
For the last statement, assume that � is in addition connected. Then �̂ is connected too,

and hence �̂g is connected; thus �g = π(�̂g) is connected as well. This connectedness
property holds for any basic set �, not only for repellers. �
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In conclusion for a hyperbolic repeller �, the stable dimension at any point is equal to
the real dimension of the stable manifold.

We introduced in [10] the notion of local repeller, which is a basic set � which con-
tains some local stable manifold. If f |� is open and � is not a repeller, then � is not a
local repeller either ([10]). Let us denote the real dimension of the stable tangent subspaces
by ds , and the real dimension of the unstable tangent subspaces by du; they are non-negative
integers.

Theorem 4 Let � be a basic set for a hyperbolic endomorphism f such that Cf ∩ � = ∅
and f is conformal on local stable manifolds. Then � is a local repeller if and only if there
exists x ∈ � with δs(x) = ds .

Proof If � is a local repeller there must exist local stable manifolds contained in �, thus
there is some point x ∈ � with δs(x) = ds .

The converse is proved in [10] for the case ds = 2, and can be extended to the general
case in the same way (if f is conformal on local stable manifolds). �

Proposition 3 Let � be a hyperbolic basic set for a smooth endomorphism f , such that
Cf ∩ � = ∅; assume that f is conformal on stable manifolds (which are supposed to have
real dimension ds ). Assume also that the stable dimension is strictly less than ds at all points
of �. Then for any C 1 perturbation fε of f , there exists a hyperbolic basic set �ε of fε , close
to �. Moreover the stable dimension is strictly less than ds at all points of �ε , hence �ε

cannot be a repeller for fε .

Proof If the stable dimension at any point of � is strictly less than ds , it follows that �

cannot be a local repeller. Therefore if fε is a C 1 perturbation of f , it follows from [10]
that �ε cannot be a local repeller for fε . Then applying Theorem 1 of [10] (or an easy
generalization of that theorem to the general case of stable dimension ds ), we obtain that
the stable dimension δs(y) < ds for any point y ∈ �ε . Therefore �ε cannot be a repeller for
fε . �

Ruelle studied in [21] a notion of folding entropy. In our setting we assume � is a basic
set for f and μ is an f -invariant probability measure on �. Then the folding entropy of μ

is defined as the conditional entropy

Fμ(f ) := Hμ(ε|f −1ε),

where ε is the partition of � into single points.

Proposition 4 Assume that the basic set � is not a local repeller, Cf ∩ � = ∅ and f is
conformal on local stable manifolds. Then for any f -invariant probability measure μ on �,
it follows that

hμ < Fμ(f ) −
∫

�

ds�
s(x) dμ(x).

In particular P (ds�
s) < Fμs (f ), where μs is the equilibrium measure of ds�

s .

Proof From the conformality of f on local stable manifolds, it follows that log |detDfs(x)|
= ds log |Dfs(x)|, x ∈ �, where we recall that ds is the real dimension of the stable tangent
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subspaces. From [5] we have the first inequality above, with less or equal sign, and also that
equality happens if and only if μ has absolutely continuous conditional measures on the
stable manifolds.

But we saw in [10] that, if � is not a local repeller, then δs(x) < ds , x ∈ �, where ds

denotes the common real dimension of the stable manifolds. Now recall that the conditional
measures on local stable manifolds (their existence is proved in [5]) are probability measures
supported on stable intersections of type Ws

r (x) ∩ � for μ-almost all x ∈ �.
Since HD(Ws

r (x)∩�) < ds , x ∈ � we obtain that these conditional measures of μ on lo-
cal stable manifolds cannot be absolutely continuous with respect to the induced Lebesgue
measures. We also notice that if λ−

i denote a negative Lyapunov exponent of multiplic-
ity mi(x), then

∫ ∑
i λi(x)−mi(x) dμ(x) = ds

∫
�

�s(x) dμ(x), from the Birkhoff Ergodic
Theorem. So the first inequality from the statement is indeed strict. The second inequality
follows from the Variational Principle for pressure. �

As examples of hyperbolic repellers, one can take hyperbolic toral endomorphisms; in
that case � is the entire torus. Other non-Anosov examples can be obtained by perturbations
of hyperbolic product maps. For instance we can take f : P

1
C × T

2 → P
1
C × T

2, f ([z0 :
z1], (x, y)) = ([z2

0 : z2
1], fA(x, y)), where fA is the toral endomorphism induced by a 2 × 2

integer-valued matrix A; assume also that A is hyperbolic, i.e. it has one eigenvalue of
absolute value strictly less than 1, and another eigenvalue with absolute value strictly larger
than 1. Then the basic set � := S1 × T2 is a connected hyperbolic repeller for f . We can
take then a perturbation fε of f , which will present a hyperbolic repeller �ε , close to �.
From Proposition 2 it follows that �ε is also connected.

We saw that hyperbolic repellers are characterized (in certain cases) with the help of the
stable dimension, and one can use the unstable dimension to determine whether a hyper-
bolic basic set is an attractor. The two cases are however very different in the non-invertible
setting, and imply different methods. Indeed in [10] we used the inverse pressure to get the
result for local repellers, whereas for the attractor case we use results from [8] and [17].

Theorem 5 Let � a hyperbolic basic set for a smooth endomorphism f : M → M defined
on a Riemannian manifold. Assume that f is conformal on local unstable manifolds (which
are supposed to have real dimension du). Then � is an attractor for f if and only if there
exists x̂ ∈ �̂ with δu(x̂) = du.

Proof From [8] we know that if f is conformal on local unstable manifolds, then the unsta-
ble dimension δu(x̂) is equal to the unique zero of the pressure function t → P (t�u), where
�u(x̂) := − log |Dfu(x̂)|, x̂ ∈ �̂. On the other hand, it was shown in [17] that the basic set
� is an attractor for f if and only if P (− log |detDfu(·)|) = 0.

Since f is conformal on local unstable manifolds, and since the real dimension of the
unstable tangent subspaces is du, we obtain − log |detDfu(x̂)| = −du log |Dfu(x̂)|, x̂ ∈ �̂.
In conclusion � is an attractor if and only if P (du�

u) = 0, which is equivalent to δu(x̂) = du,
x̂ ∈ �̂. �

We now give a Classification Theorem for the possible dynamical behaviors that a certain
class of smooth maps may present on their respective basic sets:

Theorem 6 For some small |c|, c ∈ C \ {0}, let us consider the polynomial map f (z,w) =
(z2 + c,w2), (z,w) ∈ C

2. Let also a polynomial fε which is a smooth perturbation of f

and let �ε be the corresponding basic set of fε close to the set � := {pc} × S1 (where pc
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is the fixed attracting point of z → z2 + c). Then we may have exactly one of the following
possibilities:

(a) There exists a point x ∈ �ε where δs(x) = 0. Then there exists a manifold W such that
�ε ⊂ W , fε|�ε is expanding and fε|�ε is 2-to-1. In this case the stable dimension is
0 at any point from �ε , and the measure preserving system (�ε, fε,μ0,ε) is 1-sided
Bernoulli (where μ0,ε is the unique measure of maximal entropy for fε|�ε ).

(b) There exists a point x ∈ �ε with 0 < δs(x) < 2. Then the stable dimension is positive
at any point of �ε , and the measure preserving system (�ε, fε,μs,ε) cannot be 1-sided
Bernoulli, where μs,ε is the equilibrium measure of the potential δs(x)�s

ε . We have two
subcases:
(b1) fε|�ε is a homeomorphism, and in this case the measure preserving system

(�ε, fε,μφ) is 2-sided Bernoulli for any Holder continuous potential φ, where
μφ is the equilibrium measure of φ.

(b2) there exist both points with only one fε-preimage in �ε , as well as points with two
fε-preimages in �ε ; the set of points with one fε-preimage in �ε has non-empty
interior.

Proof (a) If fε is a smooth perturbation of f , then it has a hyperbolic basic set �ε and we are
in the situation of Theorem 1. Moreover notice that, from the existence of a homeomorphism
between �̂ and �̂ε , it follows that �ε is connected. So we have that, if there exists a point
from �ε with zero stable dimension, then �ε is contained in an unstable manifold, f |�ε

is expanding and fε|�ε is 2-to-1. Now notice that from the existence of the conjugation
between (�̂, f̂ ) and (�̂ε, f̂ε), we have htop(fε|�ε ) = log 2; hence t2 = 0. Thus if fε|�ε is
expanding and 2-to-1, we obtain from Theorem 2 that (�ε, fε,μ0) is 1-sided Bernoulli.

(b) This follows from Theorem 3. In case fε|�ε is 1-to-1, it follows that it is a homeomor-
phism, thus a diffeomorphism near �ε . We can calculate then the stable dimension as for a
diffeomorphism, from the usual Bowen type equation, as the unique zero of the pressure of
the stable potential.

If the set of points with only one fε-preimage in �ε had empty interior, there would exist
a dense set of points in �ε , each one having two fε-preimages in �ε . But since the preimage
counting function is upper semi-continuous, we conclude that every point from �ε would
have two fε-preimages. So we are back in case (a). Thus we either have subcase (b1) or
subcase (b2). Also from Proposition 3 we see immediately that δs(x) < 2, ∀x ∈ �ε . �

In the end, we make the observation that there may exist cases of hyperbolic endomor-
phisms which are homeomorphisms on their basic sets, for instance the polynomial maps
of [11],

fε(z,w) = (
z2 + aεz + bεw + c + dεzw + eεw2,w2

)
, (z,w) ∈ C

2,

where b �= 0, 0 �= |c| < c(a, b, d, e), 0 < ε < ε(a, b, c, d, e). This map was shown to be
hyperbolic on its respective basic set �ε := ⋂

n∈Z
f n(U), where U is some small neigh-

bourhood of � := {pc} × S1, where pc is the unique fixed attracting point of z → z2 + c.
Also we proved that fε|�ε is a homeomorphism (case (b1) of Theorem 6). Thus the stable
dimension in this case can be computed from the Bowen equation δs(x) = ts , where ts is the
unique zero of the function t → P (t�s

ε).
One can have also the basic set contained in an unstable manifold (case (a) of Theorem 6).

For example the map fε(z,w) = (z2 + εw4,w2), (z,w) ∈ C
2 has a basic set �ε close to
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{0} × S1. Moreover its basic set is contained in the submanifold

W := {
(z,w) ∈ C

2, z = α · w2)
}
,

where α = 1−√
1−4ε

2 . In fact we have in this case f (W) = W = f −1(W). In this case fε is
expanding and 2-to-1 on �ε , and the stable dimension is everywhere equal to 0.

It is more difficult to give examples where the number of preimages varies. Still if f

and � are in this case, we can take approximating continuous functions ω(·) so that d(y) ≤
ω(y), y ∈ �. For example, if d(·) takes only two values on �, namely d(x) = d1, x ∈ �1 and
d(y) = d2, y ∈ �2, and if �̊1 �= ∅, we may take a continuous function ω(·) so that ω ≡ d2 on
a neighbourhood V2 of �2, ω ≡ d1 on some open set V1 with V̄1 ⊂ �̊1 and d1 ≤ ω(x) ≤ d2

for other points x ∈ �. Then from [13], we know that td1 ≥ δs(x) ≥ tω , where tω is the unique
zero of the pressure function t → P (t�s − logω).

In the general case d(·) may take only finitely many values on the compact set � and we
can proceed in a similar fashion with approximating functions ω in order to get estimates
for the stable dimension.
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