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Abstract We study the entropy production for inverse SRB measures for a class of hy-
perbolic folded repellers presenting both expanding and contracting directions. We prove
that for most such maps we obtain strictly negative entropy production of the respective in-
verse SRB measures. Moreover we provide concrete examples of hyperbolic folded repellers
where this happens.

Keywords Inverse SRB measures · Entropy production · Folded repellers · Anosov
endomorphisms · SRB measures · Fractal sets

1 Introduction

In this note we study certain properties related to the entropy production of invariant mea-
sures on a repeller Λ for a smooth C 2 endomorphism f : M → M , defined on a Riemannian
manifold M . By repeller we mean a compact invariant set Λ for which there exists a neigh-
borhood U such that Ū ⊂ f (U) and such that Λ = ⋂

n≤0 f n(U). Sometimes we will call
such repellers, folded repellers to emphasize that the map is not necessarily invertible on
them. We shall work in the sequel with hyperbolic saddle-type repellers, i.e. f is assumed
to be hyperbolic as a non-invertible map on Λ (see [12, 19], etc.) and it has both stable and
unstable directions in the tangent bundle; the map f is not assumed to be expanding on Λ.

For Anosov diffeomorphisms or for diffeomorphisms having a hyperbolic attractor, we
have the existence of Sinai-Ruelle-Bowen (SRB) measures (see for instance [1, 3–5, 17, 20,

E. Mihailescu (�)
Institute of Mathematics “Simion Stoilow” of the Romanian Academy, P.O. Box 1-764, 014700,
Bucharest, Romania
e-mail: Eugen.Mihailescu@imar.ro
url: www.imar.ro/~mihailes

M. Urbański
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23], etc.) SRB measures exist also for smooth endomorphisms with hyperbolic attractors
and are equal to the equilibrium measures of the unstable potentials, on inverse limit spaces
(see [15]).

In [11] it was introduced also an inverse SRB measure μ− on a hyperbolic folded sad-
dle repeller Λ, which may be interpreted as the distribution of past trajectories of Lebesgue
almost all points in a neighborhood of Λ; this includes also the case of Anosov endomor-
phisms.

For a non-invertible smooth map f on a Riemannian manifold M and an f -invariant
probability μ on M , Ruelle defined in [18] the entropy production of μ by ef (μ) := Ff (μ)−∫

log |det(Df )(x)|dμ(x), where Ff (μ) is the folding entropy of μ with respect to f . Ff (μ)

is defined as the conditional entropy Hμ(ε|f −1ε), where ε is the single point partition. In
general it is a natural problem to establish the sign of the entropy production of an invariant
measure.

We are concerned here with finding the sign of the entropy production especially for in-
verse SRB measures, and to prove that there are many (in a certain sense to be discussed
later) examples of repellers whose respective inverse SRB measures have negative entropy
production rate. We study first the case of hyperbolic repellers, then the case of Anosov
endomorphisms and their associated inverse SRB measures. In particular this applies to hy-
perbolic toral endomorphisms fA, and perturbations of them. Recall that perturbations of
hyperbolic toral endomorphisms are not necessarily conjugated to the linear toral endomor-
phisms [14].

Here we will show in Proposition 1 that for hyperbolic saddle-type repellers, the entropy
production of the respective inverse SRB measure μ− is less or equal than 0, and that it is
equal to 0 only if μ− is equal to the SRB measure μ+; in this last case the Jacobian (in
the Euclidean sense) being cohomologous to a constant. Moreover we show that most maps
in a neighborhood of a given Anosov endomorphism f , have inverse SRB measures with
strictly negative entropy production.

Then in Corollary 1 we prove that for most endomorphisms, in the sense discussed
in Proposition 1, the associated inverse SRB measure is not a limit of measures of type
1
n

∑
0≤k<n ρ ◦ f −k , where ρ is absolutely continuous with respect to Lebesgue measure.

In Corollary 2 we construct explicit examples of perturbations of hyperbolic toral en-
domorphisms, whose inverse SRB measures have strictly negative entropy production. Also
in the same Corollary we show that there are examples of perturbations of toral endomor-
phisms whose forward SRB measures have strictly positive entropy production. Finally, in
Corollary 3 we also study the entropy production for a hyperbolic folded repeller, which is
not Anosov.

Entropy production, its sign and fluctuations, have important physical meaning and ap-
plications in nonequilibrium statistical mechanics, as shown in [2, 6, 7, 17, 18], etc.

2 Entropy Production for Inverse SRB Measures. Examples of Repellers

Let us consider a C 2 non-invertible map f : M → M on a compact Riemannian manifold M ,
and Λ be a transitive repeller of f , such that f is hyperbolic on Λ. Sometimes Λ may be the
whole manifold as in the case of Anosov endomorphisms. Hyperbolicity is understood here
in the sense of non-invertible maps, i.e. the unstable tangent spaces depend on the whole
backward trajectories from the inverse limit space Λ̂ := {x̂ = (x, x−1, x−2, . . . , ) with x−i ∈
‘Λ,f (x−i ) = x−i+1, i ≥ 1}, see [12, 19]. Also the local unstable manifolds depend on back-
ward trajectories; there is some r > 0 and local stable and local unstable manifolds, Ws

r (x)
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and Wu
r (x̂) for any x̂ ∈ Λ̂. We use a standard notation, namely Dfs(x) := Df |Es

x
, x ∈ Λ

and Dfu(x̂) := Df |Eu
x̂
, x̂ ∈ Λ̂. Examples and properties of endomorphisms with some hy-

perbolicity have been studied by many authors, for instance [5, 9, 10, 12, 14, 19, 21, 22],
etc.

Notice that if Λ is a repeller, then the local stable manifolds are contained in Λ. Hy-
perbolicity on Λ assures the existence of a unique equilibrium (Gibbs) measure μφ for any
given Hölder continuous potential φ on Λ; equilibrium measures are of great interest and
have been studied intensively in the literature (for instance [1, 4, 8, 12, 17, 20], etc.).

Let us now recall the notion of inverse SRB measure, introduced in [11]. Let Λ be a
connected hyperbolic repeller for a C 2 endomorphism f : M → M defined on a Riemannian
manifold M , and assume f has no critical points in Λ. We assume that each point in Λ has a
constant number of f -preimages in Λ; this happens for instance if Λ is a connected repeller
(see [11]). Let V be a neighborhood of Λ in M and for any z ∈ V define the measures

μz
n := 1

n

∑

y∈f −nz∩V

1

d(f (y)) . . . d(f n(y))

n∑

i=1

δf iy, (1)

where d(y) is the number of f -preimages belonging to V of a point y ∈ V (d(·) is called
also the degree function). Then we proved in [11] that there exists an f -invariant measure
μ− on Λ, a neighborhood V of Λ, a Borel set A ⊂ V with m(V \ A) = 0 (where m is the
Lebesgue measure on M) and a subsequence nk → ∞ so that for any z ∈ A, μz

nk
→

k→∞
μ−.

The measure μ− is called the inverse SRB measure on the repeller.
It was proved in [11] that μ− is equal to the equilibrium measure of Φs(x) :=

log |detDfs(x)|, x ∈ Λ. This inverse SRB measure is not just the SRB measure for f −1,
since f is non-invertible. From [11] μ− is the unique f -invariant measure μ which has ab-
solutely continuous conditional measures on local stable manifolds; if f |Λ is d-to-1, then
μ− is also the unique f -invariant probability on Λ satisfying an inverse Pesin entropy for-
mula:

hμ−(f ) = logd −
∫

Λ

∑

i,λi (μ
−,x)<0

λi

(
μ−, x

)
mi

(
μ−, x

)
dμ−(x), (2)

where λi(μ
−, x) are the Lyapunov exponents of μ− at x, with multiplicity mi(μ

−, x).
At the same time, for an Anosov endomorphism f on M (or for a hyperbolic attrac-

tor), we know from [15] that there exists a unique SRB measure μ+ which satisfies a Pesin
entropy formula, and which is the projection of the equilibrium measure of the unstable po-
tential Φu(x̂) := − log |detDfu(x̂)|, x̂ ∈ M̂ . We give now the definition of folding entropy,
and entropy production, according to Ruelle [18].

Definition 1 Let f : M → M be an endomorphism and μ an f -invariant probability on M ,
then the folding entropy Ff (μ) of μ is the conditional entropy: Ff (μ) := Hμ(ε|f −1ε),
where ε is the partition into single points. Also define the entropy production of μ by:

ef (μ) := Ff (μ) −
∫

log
∣
∣detDf (x)

∣
∣dμ(x)

From [16] it follows that we can use the measurable single point partition ε in order
to desintegrate the invariant measure μ into a canonical family of conditional measures
μx supported on the finite fiber f −1(x) for μ-a.e. x. Thus the entropy of the conditional
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measure of μ on f −1(x) is H(μx) = −∑
y∈f −1(x) μx(y) logμx(y). From [13] we have also

Jf (μ)(x) = 1
μf (x)(x)

, μ-a.e. x, hence

Ff (μ) =
∫

logJf (μ)(x)dμ(x) (3)

The following Proposition gives conditions for Anosov endomorphisms to have inverse
SRB measures of negative entropy production, and shows that “many” endomorphisms fall
in this category. An important class of Anosov endomorphisms to which the next Proposition
applies, are the hyperbolic toral endomorphisms and their perturbations.

Proposition 1 Let f be a C 2 endomorphism on a connected Riemannian manifold M and
let Λ be a hyperbolic saddle-type repeller for f such that f is d-to-1 on Λ, and f has no
critical points in Λ. Consider an arbitrary small C 2 perturbation g of f and let μ−

g be the
inverse SRB measure of g on the respective hyperbolic repeller Λg . Then:

(a) eg(μ
−
g ) ≤ 0 and Fg(μ

−
g ) = logd .

(b) If f is an Anosov endomorphism on M , then there exists a neighborhood V of f in
C 2(M,M) and a set W ⊂ V such that W is open and dense in the C 2 topology in V and
s.t. for any g ∈ W we have eg(μ

−
g ) < 0.

Proof (a) If g is close enough to f then it has a repeller Λg close to Λ, and g is also
hyperbolic on Λg and does not have critical points in Λg . Since g is a small perturbation
of f and since Λg is a repeller, it follows that every point in Λg has exactly the same
number d of g-preimages in Λg . From the discussion above, since g has no critical points,
we can construct the inverse SRB measure μ−

g which is the equilibrium measure of the
stable potential Φs

g(x) = log |detDgs(x)|, x ∈ Λg ; this implies that μ−
g is ergodic too, and

its Lyapunov exponents are constant μ−
g -a.e. on Λg . Thus from [11], it follows that μ−

g is the
weak limit of a sequence of measures of type (1), where the degree function d(·) is constant
and equal to d everywhere near Λg .

This implies then that the Jacobian of μ−
g is constant and equal to d ; indeed for any small

borelian set B , we have that a point x ∈ g(B) if and only if there is exactly one g-preimage
x−1 of x in B , hence we can use this fact in the above convergence of measures towards μ−.
Therefore

Fg

(
μ−

g

) =
∫

logJg

(
μ−

g

)
(x)dμ−

g (x) = logd

And from (2) we have that

hμ−
g
(g) = logd −

∑

λi (μ
−
g )<0

λi

(
μ−

g

)
,

where the negative Lyapunov exponents are repeated according to their respective multiplic-
ities. Thus if eg(μ

−
g ) > 0, it would follow from the g-invariance of μ−

g , that

Fg

(
μ−

g

)
>

∫

log |detDg|dμ−
g = 1

n

∫

log
∣
∣detDgn

∣
∣dμ−

g , n ≥ 1

Hence from the last two displayed formulas and Birkhoff Ergodic Theorem, we obtain
hμ−

g
(g) >

∑
λi (μ

−
g )>0 λi(μ

−
g ), which gives a contradiction with Ruelle’s inequality. Hence
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for any perturbation g,

eg

(
μ−

g

) ≤ 0

(b) From [15] we can construct the SRB measure of f , denoted by μ+
f , which is the

projection by π∗ of the equilibrium measure of Φu
f (x̂) = − log |detDfu(x̂)|, x̂ ∈ M̂ . In par-

ticular μ+
f is ergodic, hence its Lyapunov exponents are constant μ+

f -a.e. If the entropy pro-
duction ef (μ+

f ) were strictly negative, then Ff (μ+
f ) <

∫
log |detDf |dμ+

f . Since from [9],
hμ+

f
(f ) ≤ Ff (μ+

f ) − ∑
λi (μ

+
f

)<0 λi(μ
+
f ), it would follow that hμ+

f
(f ) <

∑
λi (μ

+
f

)>0 λi(μ
+
f ),

which is a contradiction to the fact that the SRB measure satisfies Pesin entropy formula.
Consequently,

ef

(
μ+

f

) ≥ 0

Now if ef (μ−
f ) = 0, then Ff (μ−

f ) = ∫
log |detDf |dμ−

f ; hence from the Birkhoff Ergodic
Theorem and [9] we obtain:

hμ−
f
(f ) =

∫

log |detDf |dμ−
f −

∑

λi (μ
−
f

)<0

λi

(
μ−

f

) =
∑

λi (μ
−
f

)>0

λi

(
μ−

f

)
,

where the positive Lyapunov exponents are repeated according to their multiplicities. Thus
from the uniqueness of the f -invariant measure satisfying Pesin entropy formula, we obtain
that μ−

f = μ+
f . Recalling from above that μ−

f is the equilibrium measure of the stable poten-
tial Φs and μ+

f is the equilibrium measure of the unstable potential Φu, we see from Livshitz
Theorem (see [8]), that μ−

f = μ+
f if and only if |detDf | is cohomologous to a constant.

Now if g is a small perturbation of f , it follows from above and from Livshitz Theorem
(see for instance [8]), that |detDg| is cohomologous to a constant if and only if there exists
a constant c such that for any n ≥ 1, Sn(|detDg|)(x) = nc, ∀x ∈ Fix(gn). As the set of g’s
not satisfying the above equalities is open and dense in V , we obtain the conclusion. �

A particular case where Proposition 1 applies is for a hyperbolic (linear) toral endomor-
phism fA, and for smooth perturbations g of fA. Unlike for hyperbolic toral automorphisms,
perturbations of hyperbolic toral endomorphisms are not necessarily conjugated to the linear
ones (see [14]). For toral endomorphisms fA, it is easy to see that the entropy production of
any invariant measure is non-positive, i.e. efA

(μ) ≤ 0. However we see later in Corollary 2
that this is not true for perturbations of fA.

Now for an Anosov endomorphism f and an absolutely continuous measure ρ with
respect to the Lebesgue measure on M , let us consider the measures:

1

n

∑

0≤k<n

ρ ◦ f −k (4)

Corollary 1 Consider an Anosov endomorphism f on the compact connected Riemannian
manifold M such that f has no critical points in M , and |detDf | is not cohomologous to
a constant on M . Then the inverse SRB measure μ−

f is not a weak limit of a sequence of
type (4).

Proof As was proved in [18], the entropy production of any limit of measures of type (4)
is nonnegative. On the other hand, if |detDf | is not cohomologous to a constant, then
ef (μ−

f ) < 0. Thus in our case μ−
f is not a weak limit of measures of type (4). �
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We now give concrete examples of Anosov endomorphisms and of repellers whose in-
verse SRB measures have negative entropy production:

Corollary 2 (Inverse SRB measure with negative entropy production) Consider the hyper-
bolic toral endomorphism on T

2 given by f (x, y) = (2x + 2y,2x + 3y) (mod 1) and its
smooth perturbation

g(x, y) = (2x + 2y + ε sin 2πy,2x + 3y + 2ε sin 2πy) (mod 1)

Then the inverse SRB measure of g has negative entropy production, while the SRB measure
of g has positive entropy production, i.e.

eg

(
μ−

g

)
< 0 and eg

(
μ+

g

)
> 0

Proof First of all we notice that f is given by an integer valued matrix A which has one
eigenvalue larger than 1 and another eigenvalue in (0,1), hence f is an Anosov endomor-
phism on T

2. Thus for ε > 0 small enough, we have that g (which from its expression, is well
defined as an endomorphism on T

2) is hyperbolic as well. We calculate now the determinant
of the derivative of g as

detDg(x, y) = 2 + 4πε cos 2πy

Now, from Proposition 1 we see that eg(μ
−
g ) < 0 if and only if the function |detDg| is

cohomologous to a constant. But this is equivalent from the Livshitz conditions [8] to the
fact that there exists a constant c such that

Sn

(|detDg|)(x) = nc, x ∈ Fix
(
gn

)
, n ≥ 1

In our case let us notice that both (0,0) and (0, 1
2 ) are fixed points for the map g. However

∣
∣detDg(0,0)

∣
∣ = 2 + 4πε, whereas

∣
∣
∣
∣detDg

(

0,
1

2

)∣
∣
∣
∣ = 2 − 4πε

So the Livshitz condition above is not satisfied, and |detDg| is not cohomologous to a
constant. Hence according to Theorem 1 we obtain eg(μ

−
g ) < 0 and eg(μ

+
g ) > 0. �

Example There exist also examples of fractal non-invertible hyperbolic repellers (f,Λ)

which are not Anosov endomorphisms, but which are d-to-1 for some integer d and we
can still construct the inverse SRB measures. We follow here the idea of [11] to employ
smooth (say C 2) perturbations of certain product basic sets. For these examples as well, we
can apply the fact that the Jacobian of the inverse SRB measure μ− is constant, the equality
in the inverse Pesin entropy formula for the measure μ− (see (2)), and Ruelle’s inequality.
In this way we obtain the same result as in Proposition 1(a).

For instance, let us take f : PC
1 × T

2 → PC
1 × T

2 given by

fg

([z0 : z1], (x, y)
) = ([

zk
0 : zk

1

]
, g(x, y)

)
,

where k ≥ 2 is fixed, and g is a C 2 perturbation of a hyperbolic toral endomorphism fA :
T

2 → T
2 without critical points. Then fg has a connected hyperbolic repeller Λ := S1 × T

2

in the phase space P
1
C × T

2, and fg is k|det(A)|-to-1 on Λ.

Author's personal copy



Entropy Production for a Class of Inverse SRB Measures 887

Let us consider now the following smooth perturbation of fg , namely fε,g : PC
1 × T

2 →
PC

1 × T
2,

fε,g

([z0 : z1], (x, y)
) := ([

zk
0 + εzk

1 · e2πi(2x+y) : z2
1

]
, g(x, y)

)

From its construction we see that fε,g is well defined as a C 2 endomorphism on PC
1 × T

2.
It follows from Proposition 3 of [11] that fε,g has a connected hyperbolic repeller

Λε,g :=
⋂

n≤0

f n
ε,g(V ),

for a neighborhood V of Λ. Also Λε,g is close to Λ, fε,g has stable and unstable directions
on Λε,g , and fε,g is k|det(A)|-to-1 on Λε,g . The repeller Λε,g has a complicated fractal
structure with self-intersections. From [11] it follows that the endomorphism fε,g has an
inverse SRB measure μ−

ε,g on Λε,g .

Corollary 3 In the above setting for any C 2 perturbation g of a hyperbolic toral endomor-
phism fA : T

2 → T
2, it follows that the entropy production of the inverse SRB measure of

the associated endomorphism fε,g : PC
1 × T

2 → PC
1 × T

2 is negative, i.e.

efε,g

(
μ−

ε,g

)
< 0

Proof Since Λε,g is a connected repeller, it follows from Propositions 1 and 3 of [11], that
the number of fε,g-preimages in Λε,g of a point from Λε,g , is constant. Then we can apply
[11] (see also (2)) to show that

hμ−
ε,g

(fε,g) = Ffε,g

(
μ−

ε,g

) −
∑

λi (μ
−
ε,g)<0

λi

(
μ−

ε,g

)
,

where the Lyapunov exponents are repeated according to their multiplicities. Then as in the
proof of Proposition 1(a), we see that efε,g (μ

−
ε,g) ≤ 0. However we cannot have efε,g (μ

−
ε,g) =

0 since otherwise, as in the proof of Proposition 1(b) it would follow that the inverse SRB
measure μ−

ε,g satisfies the equality in the (usual) Pesin formula. Then from a Volume Lemma
(see [15]), this would imply that Λε,g is an attractor.

But from construction, the basic set Λε,g is a hyperbolic repeller close to Λ, thus it cannot
have a neighborhood U with fε,g(U) ⊂ U ; hence Λε,g is not an attractor. Therefore for any
C 2 perturbation g of fA, the entropy production of the inverse SRB measure of the associated
endomorphism fε,g is negative, i.e. efε,g (μ

−
ε,g) < 0. �
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