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a b s t r a c t

In this paper, we study the dynamics and ergodic theory of certain economic models
which are implicitly defined. We consider 1-dimensional and 2-dimensional overlapping
generations models, a cash-in-advance model, heterogeneous markets and a cobweb
model with adaptive adjustment. We consider the inverse limit spaces of certain chaotic
invariant fractal sets and their metric, ergodic and stability properties. The inverse limits
give the set of intertemporal perfect foresight equilibria for the economic problem
considered. First we show that the inverse limits of these models are stable under
perturbations. We then employ utility functions on inverse limits in our case. We give two
ways to rank such utility functions. First, when perturbing certain dynamical systems, we
rank utility functions in terms of their average values with respect to invariant probability
measures on inverse limits, especially with respect to measures of maximal entropy. For
families of certain unimodal maps we can adjust both the discount factor and the system
parameters in order to obtain maximal average value of the utility. The second way to
rank utility functions (for more general maps on hyperbolic sets) will be to use equilibrium
measures of these utility functions on inverse limits; they optimize average values of utility
functions while at the same time keeping the disorder in the system as low as possible in
the long run.

© 2012 Elsevier Inc. All rights reserved.

1. Non-invertible economic models. Outline of main results

Non-invertible dynamical systems have found many applications in various economic models, in which the equilibrium
at time t + 1 is not uniquely defined by the one at time t; instead there may exist several such optimal states at time t + 1.
We refer to these systems as implicitly defined economic systems.

In this paper, we study the dynamical and ergodic properties of such systems which present chaotic behaviour
on certain invariant sets. Among the economic systems with non-invertible (or backward) dynamics there are the
1-dimensional and the 2-dimensional overlapping generations models, the cash-in-advance model, the cobweb model
with adaptive adjustment and a class of models representing heterogeneous market agents with adaptively rational rules.
The common feature of all these models is that they are given by non-invertible dynamical systems and present chaotic
behaviour. In some of these models, we have hyperbolic horseshoes (as in the cobweb model, see [1,2]), in others transversal
homoclinic/heteroclinic orbits from saddle points (see the heterogeneous market model, [3]), or yet in others there exist snap-
back repellers, as in the 1-dimensional and 2-dimensional overlapping generations models for certain offer curves (see [4]).
Also in the case of unimodalmapsmodelling someoverlapping generations scenarios,wehave chaotic behaviour on repelling
invariant Cantor sets (as for the logistic map Fν with ν > 4, see [5,6]).
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For such non-invertible dynamical systems, the inverse limits are very important since they provide a natural framework
in which the system ‘‘unfolds’’ and they give sequences of intertemporal equilibria. Also as we will see they are important
sincemany results from the theory of expansive homeomorphisms can be applied on inverse limits, in particular those about
lifts of invariantmeasures. Equilibriummeasures of Holder potentials are significant examples of invariantmeasures and they
are very important for the evolution of the system. For instance, the measure of maximal entropy gives the distribution on
the phase space associated to ‘‘maximal chaos’’. The Sinai–Ruelle–Bowen measure (see [7,8]) on a hyperbolic attractor or of
an Anosov diffeomorphism is again an equilibrium measure (for the unstable potential), and gives the limiting distribution
of the forward iterates of Lebesgue-almost all points in a neighbourhood of the attractor. Thus it is a natural measure or
physical measure of the system since it can be actually observed in experiments/computer simulations.

Another important feature for economic dynamical systems is that of stability. We are interested if a certain model is
stable on invariant sets at small fluctuations. In our case, since we work with infinite sequences of intertemporal equilibria,
one would like to have stability of the shifts on the inverse limit spaces.

The standard method of studying evolution of a system in economics is to use random (stochastic) dynamical systems
which transfers exogenous random ‘‘shocks’’ to the system. However a system which presents chaotic behaviour, has also
complicated endogenous fluctuations.

Also given an implicitly defined economic systemwith its inverse limit of intertemporal equilibria and an utility function
on these equilibria, a central government/central bank may want to find a distribution on the set of intertemporal equilibria
which maximizes the average value of the utility, but at the same time keeps the disorder in the system as little as possible
in the long run. If W (·) is a utility function on Λ̂ and µ̂ is a f̂ -invariant measure on Λ̂ with measure-theoretic entropy hµ̂,
then the maximum in µ̂ of the expression

Λ̂

W (x̂)dµ̂(x̂) + hµ̂

is attained for the equilibriummeasure µ̂W ofW (see for instance [9] for the Variational Principle for Topological Pressure). So
the equilibriummeasuresmay provide a goodway to do that, andwewill be able to give geometric and statistical properties
of these measures. One of the defining characteristics of chaos is sensitive dependence on initial conditions, that is, even if
we start with two initial states that are quite close to each other, still over time, they may become very far from each other.
The equilibrium measures will permit us to estimate themeasures of sets of points which stay close up to n iterations.

We will use the notion of chaotic map several times. We say that f is chaotic on an invariant set X if f is topologically
transitive on X and f has sensitive dependence on initial conditions (see for e.g. [6]).

Themain sections and results of the paper are the following:
Firstwe review some important economicmodelswith non-invertible dynamics, like the overlapping generationsmodel,

the cash-in-advancemodel, the cobwebmodel with adaptive adjustments and the heterogeneousmarketmodel. A common
feature of all these models is the backward dynamics born out of implicitly defined difference equations. Also in many
instances we have chaotic invariant sets for these models, given by horseshoes, or by snap-back repellers, or by transverse
homoclinic orbits. Therefore we have hyperbolicity on certain invariant sets or conjugation of an iterate with the shift on
some 1-sided symbol space Σ+

m .
In Theorem 1 we will prove that by slightly perturbing the parameters of these difference equation, we obtain again the

same dynamical properties, for instance density of periodic points, topological transitivity, etc.
We study then utility functions on inverse limits for non-invertible economic systems. Invariant measures for a dynamical

system are very important since they preserve the ergodic and dynamical properties of the system in time; in fact from
any measure one can form canonically an invariant measure by a well-known procedure (see for e.g. [9]). We will give two
options to rank utility functions: one using average values with respect to invariant probability borelian measures, especially
measures of maximal entropy (which best describe the chaotic distribution of the system over time), and another by using
equilibrium measures of the utility functions, which give the best average value while keeping the system as under control
as possible.

The first option is given in Theorem2wherewe rankutility functions of systems given by certain unimodalmaps according
to their average values with respect to invariant borelian measures µ̂ on the inverse limits, especially with respect to
measures of maximal entropy. For certain expanding systems, namely for logistic maps Fν, ν > 4 we are able to compare
in Corollary 1 the average utility values with respect to the corresponding measures of maximal entropy when perturbing
both the discount factor β of the utilityW , as well as the system parameter ν > 4.

Then in Theorem 3 we will prove that the inverse limits of certain invariant sets for these models are expansive, and
have also the specification property. This will allow us in Theorem 4 to show that given a Holder continuous potential, we
can associate to it a special probability measure called an equilibrium measure (see [9,10] for definitions). This equilibrium
measure can be estimated precisely, on sets of points remaining close to each other up to a certain positive iterate (i.e. on
Bowen balls). We can apply these results to utility functions from economics, which are shown to be Holder potentials.

The second option to rank utility functions we consider, is to maximize the ratio between the exponential of the average
value with respect to µ̂ and the measure µ̂ of the set of points from the inverse limit that remain close up to a certain
number of iterates. In this way we find the distribution µ̂ which maximizes the average utility value but at the same time
keeps the ‘‘disorder’’ of the system (i.e. the entropy of µ̂) as small as possible (equivalently the measure of the set of points
which shadow xup to ordern, is as large as possible). Equilibriummeasures ofHolder potentials on the inverse limit have also
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other various statistical properties, like Exponential Decay of Correlations onHolder observables (see [10]). Then in Theorem5
we approximate the average value of the utility on inverse limits with those of simpler potentials.

Let us remind now several examples of economic dynamical systems, which are non-invertible:
1. The 1-dimensional overlapping generations model.
This model was proposed initially by Grandmont [11] and studied by various authors [4,12,5,13]. In this model we have

an economy with constant population divided into young and old agents, and with a household sector and a production
sector. A typical agent lives for the 2 periods, works when young and consumes when old and he receives a salary for his
work in the first period. There is a perishable consumption good and one unit of it is produced with one unit of labour. If
money is supplied in a fixed amount, sayM , then we have at time t , that wtℓt = M , where wt is the wage rate and ℓt is the
labour. At the same time,M = pt+1ct+1 where pt+1 is the expected price of the consumption good at time t+1 and ct+1 is the
amount of future consumption. Now agents have an utility function of type U = V1(ℓ∗ −ℓt)+V2(ct+1)where ℓ∗ is the fixed
labour endowment of the young and ℓ∗ −ℓt is the leisure at time t . Agents would like to have both asmuch leisure currently
as well as consumption when old. Thus under the budget constraint from above M = wyℓt = pt+1ct+1 the optimization
problem above gives, by the method of Lagrange multipliers, an implicit difference equation: ℓt = χ(ct+1), where χ(·) is
the offer curve. Since by assumption one unit of labour produces one unit of consumption good, we have ℓt = ct , hence by
denoting ℓt by xt , we obtain

yt = χ(yt+1). (1)

AsGrandmont showed in [11], inmany cases the offer curve is not given by amonotonic/injective function,making (1) a non-
invertible difference equation. Thus for a level of consumption at time t there may be several levels of optimal consumption
at time t + 1. In this case we study the backward dynamics of the system, i.e. the sequences of future consumption levels
allowed by (1). The backward dynamics given by relation (1) is chaotic in certain cases. For instance a condition was given
by Mitra and extended in [4] in order to guarantee the existence of a snap-back repeller. Let us first recall the definition of a
snap-back repeller (see [14,15]), and that of the one-sided shift:

Definition 1. Let a smooth function f : U → U , where U is an open set in Rn, n ≥ 1. Suppose that p is a fixed repelling
point of f , i.e. all the eigenvalues of Df (p) are larger than 1 in absolute value, and assume that there exists another point
x0 ≠ p in a repelling neighbourhood of p, so that f m(x0) = p and detDf (f i(x0)) ≠ 0, 1 ≤ i ≤ m. Then p is called a snap-back
repeller of f .

Definition 2. We will denote by Σ+
m (where m ≥ 2) the space of 1-sided infinite sequences formed with m symbols, i.e.

Σ+
m = {(i0, i1, i2, . . .), ij ∈ {1, . . . ,m}, j ≥ 0}. We have the shift map on Σ+

m , namely σm : Σ+
m → Σ+

m , σm(i0, i1, . . .) =

(i1, i2, . . .). The space Σ+
m is compact with the product topology.

Snap-back repellers appear only for non-invertible maps, and are important since they are similar to transverse
homoclinic orbits (see [9] for e.g.) Marotto proved the following:

Theorem (Marotto). Let p a snap-back repeller for a smooth non-invertible map f and O(x0) a homoclinic orbit of x0 towards
the repelling fixed point p, i.e.O(x0) = {. . . , x−i, . . . , x0, f (x0), . . . , p}, with f (x−i) = x−i+1, i ≥ 1. Then in any neighbourhood
of the orbit O(x0) there exists a Cantor set Λ on which some iterate of f is topologically conjugated to the shift on the space Σ+

2
of one-sided infinite sequences on 2 symbols. Hence f itself is chaotic on Λ.

For many economic models, the offer curve χ(·) is given by a smooth (or piecewise smooth) unimodal map (see
[11,4,5,13]). We shall recall some of their properties; for more information, see [12,5,13], etc.

A continuous map f : [a, b] → [a, b] is called unimodal if f is not monotone and there exists a point c ∈ (a, b) so that
f (c) ∈ [a, b] and f is increasing on [a, c) and decreasing on (c, b]. Type A unimodal maps are unimodal maps satisfying
f (a) = a and f (c) < b. Type B unimodal maps are those satisfying f (a) > a and f (b) = a. Type C maps are of the form
f : [a, b] → R s. t f is not monotone, f (a) = f (b) = a and f (c) > b. Type C maps are not strictly speaking unimodal as the
map f does not take necessarily values inside the same interval [a, b], but in general they are considered ‘‘unimodal’’ too. In
certain cases when the offer curve χ is unimodal, one can find snap-back repellers (see [4]):

Proposition. Let χ : I → I be a unimodal smooth function on the unit interval, with a maximum point at xm and a fixed point
at x∗. If χ3(xm) < x∗, then x∗ is a snap-back repeller and thus there exists an invariant Cantor set Λ ⊂ I on which an iterate of
χ is topologically conjugate to the shift; so χ is chaotic and has positive topological entropy.

We will need in conjunction with unimodal maps and their inverse limits, the notions of topological attractor and
asymptotically stable attractor. First given a continuous map f : X → X on a metric space and a closed forward invariant set
K ⊂ X , we call the basin of attraction of K the set B(K) := {y ∈ X, ω(y) ⊂ K}, i.e. the set of points having all the accumulation
points of their iterates, contained in K . Then we say that K is a topological attractor, if B(K) contains a residual set in an open
neighbourhood U of K (i.e. the complement of B(K) in U is contained in a countable union of nowhere dense subsets) and
if there is no closed forward invariant subset K ′

⊂ K s.t. B(K) and B(K ′) coincide up to a countable union of nowhere dense
sets. If K is f -invariant (i.e. f (K) = K ), it has arbitrarily close neighbourhood V s.t. f (V ) ⊂ V and the basin B(K) is open,
then we say that K is an asymptotically stable attractor.
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Definition 3. Given a continuous map f : X → X on a metric space (X, d), we form the inverse limit (X̂, f̂ ), where
X̂ := {x̂ = (x, x−1, x−2, . . .), f (x−i) = x−i+1, i ≥ 1} and f̂ : X̂ → X̂, f (x, x−1, . . .) = (f (x), x, x−1, . . .), x̂ ∈ X̂ . We
consider the topology induced on X̂ from the infinite product of X with itself. In fact X̂ is a metric space with the metric

d(x̂, ŷ) =


i≥0

d(x−i, y−i)

2i
, x̂, ŷ ∈ X̂ .

For a C3 smooth map f on the interval [a, b], the Schwarzian derivative is Sf (x) :=
f ′′′(x)
f ′(x) −

3
2 (

f ′′(x)
f ′(x) )

2, x ∈ [a, b]. We have
then, by collecting several results (see [5,6] and references therein) the following:

Theorem (Attractors in Inverse Limit Spaces of Unimodal Maps).
(a) Let f be a type A unimodal map on the interval [0, 1], with Sf < 0 on [0, 1]. If f 2(c) = f (1) > 0 and f ′(0) > 1, then

0̂ = (0, 0, . . .) is an asymptotically stable attractor and a topological attractor for f̂ and it is the only topological attractor
for f̂ .

(b) Let f : [0, 1] → [0, 1] be a unimodal map of type B with Sf < 0 and assume that f has a unique fixed point p ∈ (c, 1] that
is repelling for f s.t. f (0) > p. Then the point p̂ = (p, p, . . .) ∈ [0, 1] is an asymptotically stable attractor and a topological
attractor for f̂ and it is the only topological attractor of f̂ in [0, 1].

(c) Let f : [0, 1] → [0, 1] be a unimodal map of type B with Sf < 0 and with f (0) < p, where p is the unique fixed point in
(c, 1]. Assume that f has topological attractor P which is either chaotic or periodic. Then the basin of attraction of P contains
a union of n intervals A0, . . . , An−1 with f i(A0) ⊂ Ai, 1 ≤ i ≤ n − 1. Let Λ be the set of points in [0, 1] that are never
attracted to P. Then Λ is partitioned as Λ1 ∪ · · · ∪ Λm where Λj is an f -invariant transitive Cantor set and f |Λj is conjugate
to a subshift of finite type. Then the shift map f̂ has a unique topological attractor namely Λ̂0.

(d) Consider the Type C logistic map Fν(x) = νx(1 − x), x ∈ [0, 1] for ν > 4, and let Λν := ∩n≥0 F−n
ν ([0, 1]). Then Λν is

Fν-invariant and Fν is topologically conjugate to the shift on Σ+

2 . Also Λ̂ν is an asymptotically stable attractor for F̂ν .

2. The 2-dimensional overlapping generations model.
As in the 1-dimensional model before, we have an economy with two sectors, a household and a production sector

(see [4]). The household sector is the same as before, hence with perfect foresight, we have for the offer curve χ(·) :

ℓt = χ(ct+1). By comparison with the previous case, output is now produced both from labour ℓt supplied at time t by
the household sector, and by capital stock kt−1 from the previous period t−1, supplied by non-consuming companies which
tend to maximize their profits. The output yt is the minimum between ℓt and kt−1/a, where 1/a is the productivity of the
capital. We assume that the capital stock available at the beginning of period t +1 is kt = (1− δ)kt−1 + it , where 0 < δ < 1
is the depreciation rate of the capital and it is the investment, i.e. the portion of the output at time t which is invested in the
next period. Thus the consumption at time t is ct = yt − it , and at equilibrium we have yt = ℓt =

kt−1
a . One obtains then

the second order difference equation:

yt = χ


a

1 − δ +

1
a


yt+1 − ayt+2


.

Hence by substituting zt = yt and wt = yt+1 we obtain the implicitly defined system of equations:zt = χ


a

1 − δ +

1
a


zt+1 − awt+1


wt = zt+1.

(2)

In this model for certain parameter values (see [4]), the fixed point x∗ is a snap-back repeller, thus by the results of
Marotto (see [14,15]) in any neighbourhood of the orbit of the snap-back repeller there is an invariant set on which f is
chaotic and conjugate to a 1-sided shift.

3. Cash-in-advance model.
The followingmodel can be found in [16] or [17]. In this economy there exists a central government and a representative

agent, where the government consumes nothing and sets monetary policy. There exists also a cash good and a credit good,
and the agent has a utility function of type

∞
t=0

β tU(c1t , c2t), (3)

where β ∈ (0, 1) is the discount factor. The function U takes the form U(x, y) =
x1−σ

1−σ
+

y1−γ

1−γ
, with σ > 0, γ > 0. The cash

good c1t can be bought withmoneymt , which is carried over from period t−1. The credit good c2t does not require cash and
can be bought on credit. Each period the agent has an endowment y and c1t + c2t = y. We assume also that the cash good
costs the same price pt as the credit good. The agent wants to maximize his utility function by a choice of {c1t , c2t ,mt+1}t≥0
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subject to constraints: ptc1t ≤ mt , andmt+1 ≤ pty + (mt − ptc1t) + θMt − ptc2t , whereMt is the money supply controlled
by the government for a constant growth, Mt+1 = (1 + θ)Mt . Denote by xt = mt/pt the level of real money balance. We
obtain then an implicitly defined difference equation giving xt in terms of xt+1 with the help of a non-invertible map f , i.e.

xt = f (xt+1). (4)

For certain parameters, it can be shown (see [16]) that there exists an invariant interval [xl, xr ] such that the map f has a
periodic cycle of period 3. Hence according to Li–Yorke classic result (see [18]), the map f is chaotic on that interval. In fact
it can be shown that there exists an invariant subset of [xl, xr ] on which the map is conjugate to a subshift of finite type.

4. Cobweb model with adaptive adjustment-hedging.
In this model (see [1]) the supplier adjusts his production xt according to the realities of the market while keeping the

intention to reach a profit maximum x̃t+1. It is met for instance in agriculturalmarketswhere farmerswho plant for example
wheat cannot change their crop during the same year/period. This is a hedging rule

xt+1 = xt + α(x̃t+1 − xt),

with α ∈ (0, 1) the speed of adjustment. The aggregate supply from n identical producers is Xt = nxt , and the price is given
by pt =

c
Yβ
t
, where Yt is the demand at period t and c is a fixed parameter. We assume the market clears at each period, i.e.

Xt = Yt . Then after a change of variable we obtain the equation

zt+1 = fα,β(zt) = (1 − α)zt +
α

zβ
t

, (α, β) ∈ (0, 1) × (0, ∞). (5)

This function has a unique fixed point z = 1, which is a repeller if |f ′

α,β(1)| > 1, i.e. if β > 2−α
α

.
Then Onozaki et al. [1] showed that there exists a number β̄ > 2−α

α
s.t. for each β > β̄, f·,β(·) has a hyperbolic horseshoe

in the plane.
5. A heterogeneous market model.
Wewill give only the final formula for this 2-dimensional non-invertible case; more information can be found in [3]. One

has to study the dynamics of the non-invertible map:
zt+1 = zt


(1 − α) − α

b(1 − mt)

2B


mt+1 = tanh


βb
4

· z2t ·


b(1 − mt)

B
+ 1


+

β

2
(C2 − C1)


.

(6)

For this model, Foroni and Gardini proved in [3] that there are saddle cycles with homoclinic or heteroclinic transverse
intersections for certain parameters, which give rise to chaotic sets (horseshoes) by Smale’s Theorem or its variants (see
[6,19], etc.).

Conclusions:
In the examples above there exist parametrizations in which the system given implicitly zt = f (zt+1), has some

hyperbolic set Λ (in general without critical points) or a set where an iterate is conjugate to a 1-sided shift. The
dynamics/ergodic theory in these two cases are very similar. The hyperbolic case includes also the case with no contracting
directions, i.e. the expanding case. The implicit difference equation gives the backward dynamics of the model. We notice
that a point from the inverse limit Λ̂ given by x̂ = (x, x−1, . . .) represents in fact a sequence of future equilibria which are
allowed by the backward dynamics; so in the notation x̂ = (x, x−1, x−2, . . .), we start from a level of consumption of x, then
at time 1 we have a level of consumption x−1, then x−2 at time 2, and so on.

2. Metric and ergodic properties on inverse limits of chaotic economic models

For the implicitly defined economic models given before, we have seen that there exist invariant sets on which the
function (or one of its iterates) is conjugated to a shift on a symbol space; this invariant limit set Λ is usually obtained from
homoclinic/heteroclinic orbits or snap-back repellers and thus we have a hyperbolic structure on Λ (see [6,9,15], etc.)

Hyperbolicity is understood here in the endomorphism sense, in which the unstable directions and unstable manifolds
dependonwhole sequences of consecutive preimages (i.e. elements of Λ̂), not only onbasepoints (see [20–22] for definitions
and examples). We include in the hyperbolic case also the case of no contracting directions, i.e. the expanding case. For a
hyperbolic map f on a compact invariant set Λ and a small enough δ > 0, we denote by W s

δ (x) the local stable manifold
at the point x ∈ Λ, and by W u

δ (x̂) the local unstable manifold corresponding to the history x̂ ∈ Λ̂. Let us prove that in this
non-invertible hyperbolic case we have stability of the inverse limits:

Theorem 1. Let us consider one of the economic models from Section 1, given by a dynamical system f having a hyperbolic
invariant set Λ. Then given any dynamical system g obtained by a small C2 perturbation of the parameters of f , there exists a
g-invariant set Λg and a homeomorphism H : Λ̂ → Λ̂g such that ĝ ◦ H = H ◦ f̂ . Thus the dynamics of ĝ on Λ̂g is the same as
the dynamics of f̂ on Λ̂.
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Proof. From the discussion and references given in Section 1 we see that each model has, for certain parameter choices,
invariant sets obtained from homoclinic or heteroclinic orbits, snap-back repellers or horseshoes (like the cobweb model).
The hyperbolicity is obtained from Smale’s Theorem on transverse homoclinic or heteroclinic intersections (see [6]) or its
non-invertible variant given by Hale and Lin [19]. Now let U be a neighbourhood of Λ s.t. Λ = ∩n∈Z f −n(U). Then if g is
obtained from f by a small C2 perturbation, we can form the basic set Λg = ∩n∈Z g−n(U). If f is hyperbolic on Λ, then also
g will be hyperbolic on Λg . The hyperbolicity is understood as for endomorphisms, since f is not necessarily invertible on
Λ (for instance for Λ obtained from a snap back repeller, there are at least two points in Λ with f -image equal to the fixed
repelling point).

Hence from [20] we infer the existence of a conjugating homeomorphism H : Λ̂ → Λ̂g between the inverse limit of
(Λ, f ) and that of (Λg , g), which commutes with the lifts f̂ and ĝ . �

Notice also that by perturbations and by lifting to the inverse limit, the topological entropy is not changed, i.e.
htop(g|Λg) = htop(ĝ|Λ̂g

) = htop(f |Λ) = htop(f̂ |Λ̂). We discuss now the notion of utility function on the set of intertemporal
equilibria (see for e.g. [12,23]).

Definition 4. Consider a continuous function f : X → X which is non-invertible on the compact set X contained in R or R2,
and let X̂ be the inverse limit. A utility function on X̂ is a functionW : X̂ → R given by

W (x̂) =


i≥0

β iU(x−i),

where β ∈ (0, 1) is called the discount factor and,

(a) in the case X ⊂ (0, ∞) we have

U(x) :=
min{1, x}1−σ

1 − σ
+

(2 − min{1, x})1−γ

1 − γ
, x ∈ X, with σ > 0, γ > 0.

(b) in the case X ⊂ (0, 1) × (0, 1), we have

U(x, y) :=
x1−σ

1 − σ
+

y1−γ

1 − γ
, (x, y) ∈ X, with σ > 0, γ > 0.

The discount factor in the definition ofW expresses the fact that future levels of consumption in intertemporal equilibria
become less and less relevant to a representative consumer. In economic models with backward dynamics we form as
before the set of intertemporal equilibria i.e. the inverse limit Λ̂, where f |Λ : Λ → Λ is the restriction of the dynamical
system f to a compact invariant set Λ. In general f is assumed hyperbolic on Λ or conjugated to a subshift of finite type of
1-sided sequences. The consumers/agents have a utility function W given on Λ̂. A central government would like to know
the average value ofW over Λ̂. The question is with respect to which measure on Λ̂?

In general one uses probability measures which are preserved by the system (in fact from any arbitrary probability
measure we can form an invariant one, according to Krylov–Bogoliubov procedure, see [9]). Now an intertemporal
equilibrium x̂ ∈ Λ̂ represents in fact a sequence of future levels of consumption allowed by the implicit difference equations
of our economic model. In reality an agent may prefer some open sets of intertemporal equilibria over others, and thus not
all equilibria will have the same weight/importance, so it is important to use invariant probability measures µ̂ on the space
Λ̂ of intertemporal equilibria. Also if we denote by Bn(x̂, ε) the set of points ŷ ∈ Λ̂ which ε-shadow the orbit of x̂ up to n-th
iterate (called also a Bowen ball in Λ̂), we would like to have the measure µ̂ of Bn(x̂, ε) as large as possible. This means we
keep the disorder in the system as small as possible, and is equivalent to: as small an entropy hµ̂ as possible. Indeed it can be
shown in general (Brin–Katok Theorem, see [24]) that ifµ is an f -invariant ergodic measure on a space X , then forµ-almost
all x ∈ X ,

hµ = − lim
ε→0

lim
n

1
n
logµ(Bn(x, ε)).

For instance in the cash-in-advancemodel (see [12,17,23], etc.) the government controls themoney supply on themarket
by the growth ruleMt+1 = (1 + θ)Mt , where θ > 0 is the growth rate. For each θ there exists a different invariant interval
[xl(θ), xr(θ)] and inverse limit space Λ̂(θ). For a utility function W like in Definition 4, economists are interested also in
choosing the appropriate θ so that the average value


Λ̂(θ)

Wdµ̂θ is largest, where µ̂ is an invariant probability on Λ̂(θ).
In this way given a certain utility function, we can adjust the money growth rate θ in such a way that the average utility
value is largest. Many times we want to study systems from the point of view of the measure of maximal entropy, which
best describes the chaotic nature of the model. Also one can be interested in adjusting the discount factor β of W in order
to maximize the average utility value.

We will say below that a compact invariant set Λ is basic for f if there exists an open neighbourhood V of Λ s.t.
Λ = ∩n∈Z f n(V ) and if f is topologically (forward) transitive on Λ; such a set is also called locally maximal (see [9]). In
general the invariant limit sets we have considered in the economic models so far, are basic by construction.
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Let us recall the following result about invariant measures on inverse limits (see for instance [25]); recall that our
hyperbolic case includes also the expanding case.

Theorem (Invariant Measures on Inverse Limits). Let f : Λ → Λ be a continuous topologically transitive map on a compact
metric space Λ and let f̂ : Λ̂ → Λ̂ be its inverse limits. Then there is a bijective correspondence F between f -invariant measures
on Λ and f̂ -invariant measures on Λ̂, given by F (µ̂) = π∗(µ̂) (where π : Λ̂ → Λ, π(x̂) = x is the canonical projection).

Moreover if in addition f is hyperbolic on the basic set Λ, then for any Holder continuous potential φ onΛ there exists a unique
equilibrium measure µ̂φ◦π of φ ◦ π and π∗(µ̂φ◦π ) = µφ , where µφ is the equilibrium measure of φ on Λ.

We give now a formula for the average value of the utility with respect to any invariant measure on the inverse limit.

Theorem 2. Consider a continuous non-invertible map f defined on an open set V in R2 or in R, which has an invariant basic
set Λ. Let also W (x̂) =


i≥0 β iU(x−i) be a utility function on the inverse limit Λ̂ as in Definition 4. Then for any f̂ -invariant

borelian measure µ̂ on Λ̂ we have that the average value
Λ̂

Wdµ̂ =
1

1 − β


Λ

Udµ,

where µ = π∗(µ̂). If in addition f is hyperbolic on Λ and if µ0 is the unique f -invariant measure of maximal entropy on Λ and
µ̂0 is the unique measure of maximal entropy on Λ̂, then µ0 = π∗(µ̂0) and


Λ̂
Wdµ̂0 =

1
1−β


Λ
Udµ0.

Proof. If we take the approximating functions Wn(x̂) =
n

i=0 β iU(x−i), then Wn converge uniformly towards W since
∥W − Wn∥ ≤ Cβn, n ≥ 1. Hence


Λ̂
Wndµ̂ →

n→∞


Λ
Wndµ̂. Now recall that the measure µ̂ is f̂ -invariant hence

Λ̂

Wndµ̂ =


Λ̂

Wn ◦ f̂ ndµ̂ =


Λ̂

U(f nx) + βU(f n−1x) + · · · + βnU(x)dµ̂.

But now from the fact that µ = π∗(µ̂) we see that


Λ̂
g ◦ πdµ̂ =


Λ
gdµ, if g is any continuous function on Λ. From the

f -invariance of µ we have


Λ
U ◦ f idµ =


Λ
Udµ, i ≥ 0; thus in our case

Λ̂

Wndµ̂ =


Λ

U(f nx) + · · · + βnU(x)dµ(x) = (1 + β + · · · + βn)


Λ

U(x)dµ(x).

So from the approximation above, we obtain in conclusion that
Λ̂

Wdµ̂ =
1

1 − β


Λ

Udµ.

In particular from the Theorem on EquilibriumMeasures above, we obtain that the unique measure of maximal entropy
on Λ is the projection of the unique measure of maximal entropy on Λ̂, i.e. µ0 = π∗(µ̂0) and from the above,


Λ̂
Wdµ̂0 =

1
1−β


Λ
Udµ0. �

If we consider C2-perturbations g of a hyperbolic endomorphism f on a basic set Λ (including the case of a perturbation
of an expanding endomorphism on a basic set), then from Theorem 1 we see that there exists a g-invariant basic set Λg s.t.
g is hyperbolic on Λg and there exists a conjugating homeomorphism H : Λ̂ → Λ̂g with ĝ ◦ H = H ◦ f̂ . Then the measure
of maximal entropy on Λ̂g , denoted by µ̂0,g , is obtained as H∗(µ̂0), where µ̂0 is the unique measure of maximal entropy
on Λ. Thus in general we an calculate the average value of the utility W with respect to the measure of maximal entropy

Λ̂g
Wdµ̂0,g by applying Theorem 2 and the fact that µ0,g = (πg ◦ H ◦ f̂ )∗(µ̂0), i.e.

Λ̂g

Wdµ̂0 =
1

1 − β


Λg

Ud(πg ◦ H ◦ f̂ )∗(µ̂0).

The average values of U on Λg with respect to the corresponding measures of maximal entropy, are easier to estimate
than those on inverse limits. Economists can use this information to compare average utility values with respect to the
corresponding measures of maximal entropy for various perturbations, which in reality are translated by adjustments of
the money growth rates.

A case in which this average utility ranking can be applied nicely is for the 1-dimensional overlapping generations
economic model in which the backward dynamics is given by a Type C unimodal map (typically the logistic function
Fν(x) = νx(1 − x) with ν > 4). In this case a central government can choose both the ν and the β which maximize the
average utility value over the set of intertemporal equilibria, with respect to themeasure of maximal entropy (i.e. the invariant
measure describing the chaotic distribution over time).
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Corollary 1. Let a family of logistic maps given by Fν(x) = νx(1− x), x ∈ [0, 1]with ν > 4; then Fν has an invariant Cantor set
Λν . Consider also a utility function Wβ(x̂) =


i≥0 β iU(x−i) with U(x) :=

min{1,x}1−σ

1−σ
+

(2−min{1,x})1−γ

1−γ
, x ∈ (0, 1), for some

σ > 0, γ > 0. Then
Λ̂ν

Wβdµ̂0 =
1

1 − β


Σ

+

2

U ◦ h−1
ν dµ 1

2 , 12
,

where µ̂0 is the measure of maximal entropy on Λ̂ν, µ 1
2 , 12

is the measure of maximal entropy on Σ+

2 and hν : Λν → Σ+

2 is the

itinerary map, i.e. hν(x) = (j0, j1, . . .) s.t. F k
ν (x) ∈ Ijk , k ≥ 0 where F−1

ν ([0, 1]) = I1 ∪ I2, I1 ∩ I2 = ∅.

Proof. For the logistic map Fν with ν > 4 it is well known (see for instance [6]) that Fν has an invariant Cantor set Λν . For
ν > 2+

√
5 themap Fν is expanding in the Euclideanmetric, and for 4 < ν ≤ 2+

√
5, themap Fν is expanding in amodified

metric.
Also recall that F−1

ν ([0, 1]) = I1 ∪ I2 ⊂ [0, 1] where the subintervals I1, I2 are disjoint. Then we have the itinerary map
hν : Λν → Σ+

2 , h(x) = (j0, j1, . . .) given by F k
ν (x) ∈ Ijk , k ≥ 0, x ∈ Λν . It can be noticed that hν is a homeomorphismwhich

gives the conjugacy between Fν |Λν and σ2|Σ+

2
.

Now consider the measure of maximal entropy µ 1
2 , 12

on Σ+

2 ; we know (see for instance [9]) that µ 1
2 , 12

gives measure 1
2k

to each of the cylinders {ω̂ = (i0, . . . , ik−1, jk, . . .), jk, . . . ∈ {1, 2}} when i0, . . . , ik−1 are fixed, ranging in {1, 2}.
From the conjugacy above, h−1

ν transports the measure of maximal entropy µ 1
2 , 12

on Σ+

2 to the measure of maximal

entropy µ0 on Λν , i.e. (h−1
ν )∗(µ 1

2 , 12
) = µ0. And from the Theorem on Invariant Measures on Inverse Limits above, we know

that µ0 = π∗(µ̂0), where µ̂0 is the unique measure of maximal entropy on Λ̂ν . So by applying Theorem 2 we obtain that
Λ̂ν

Wβdµ̂0 =
1

1 − β


Σ

+

2

U ◦ h−1
ν dµ 1

2 , 12
. �

Sincewehave an expression for the itinerarymap hν not difficult to approximate, and since themeasureµ 1
2 , 12

is relatively
easy toworkwith, one can use Corollary 1 to find a pair of parameters (ν, β)maximizing the average utility valuewith respect
to the measure of maximal entropy

Λ̂ν

Wβ(x̂)dµ̂0(x̂).

Wewill now consider the second ranking option for utility functions, i.e. with respect to their equilibriummeasures. First
we give some general topological dynamics definitions and results.

Definition 5. A homeomorphism f : X → X on a metric space X is called expansive if there exists a positive constant δ0 s.t.
if d(f ix, f iy) < δ0, i ∈ Z then x = y.

The following property is very important for the existence of equilibrium measures of Holder continuous potentials
(see [10,9]).

Definition 6. Let a metric space X and a continuous map f : X → X . A specification S = (τ , P) consists of a finite collection
τ = {I1, . . . , Im} of finite intervals Ii = [ai, bi] ⊂ Z and a map P : T (S) = ∪

m
i=1 Ii → X s.t. for any t1, t2 ∈ Ij ∈ τ , we have

f t2−t1(P(t1)) = P(t2). The specification S is said to be n-spaced if ai+1 > bi + n, 1 ≤ i ≤ m and the minimal such n is called
the spacing of S. Let us denote also by L(S) = bm − a1. We say that S is ε-shadowed by a point x ∈ X if d(f n(x), P(n)) < ε
for all n ∈ T (S); if T (S) contains also negative integers, we shadow with iterates of a preimage of large order of x. The map
f has the specification property if for any ε > 0 there exists anM = Mε ∈ N s.t. anyM-spaced specification S is ε-shadowed
by a point of X and for any q ≥ M + L(S), there is a period-q orbit ε-shadowing S.

Remark. In the above definition, if x is the period-q point used in the shadowing and if a1 < 0, then instead of f a1(x)we can
take f kq+a1(x), for the smallest integer k ≥ 0 s.t. 0 ≤ kq + a1 < q (as the map is non-invertible); then use forward iterates
of this point f kq+a1(x) in the shadowing of the specification. �

Let us consider now a continuous map f : X → X on a metric space X and its inverse limit (X̂, f̂ ), where X̂ is the space
of infinite sequences of consecutive preimages and f̂ : X̂ → X̂ is the shift homeomorphism. In the sequel we will consider
mixing basic sets Λ, i.e. basic sets for the endomorphism f s.t. f is topologically mixing on Λ. In fact from the Spectral
Decomposition Theorem (see [10,9]), any basic set can be decomposed into a finite partition Λ1, . . . , Λs s.t. for each j there
is some iterate f kj which leaves Λj invariant and which is topologically mixing on Λj.

Theorem 3. Let us consider one of the examples from Section 1 that has a mixing basic set Λ on which f is hyperbolic. Then the
shift homeomorphism f̂ is expansive and has specification property on the inverse limit Λ̂.
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Proof. First of all let us show that f̂ is expansive on Λ̂. Let x̂, ŷ ∈ Λ̂ s.t. d(f̂ ix̂, f̂ iŷ) < δ for all i ∈ Z and some small δ > 0. Now
f is hyperbolic as an endomorphism onΛwhich from construction is a locallymaximal set, i.e. there exists a neighbourhood
U of Λ s.t. Λ = ∩n∈Z f n(U). Then if d(f̂ ix̂, f̂ iŷ) < δ, i ∈ Z, it follows that d(f ix, f iy) < δ, i ≥ 0, hence y ∈ W s

δ (x). On the
other hand if d(x−i, y−i) < δ, i ≥ 0, for certain prehistories x̂, ŷ ∈ Λ̂, it follows that y ∈ W u

δ (x̂). Now if Λ is a hyperbolic
locally maximal set for f it follows that it has local product structure (see [9]); thus W s

δ (x) ∩ W u
δ (x̂) = {x} for δ > 0 small

enough, so x = y. By repeating this argument for all preimages x−i we obtain that x−i = y−i, i ≥ 0. Therefore x̂ = ŷ, and f̂
is expansive on Λ̂.

Let us prove now that f̂ has the specification property on Λ̂. We assumed that f is hyperbolic and topologically mixing
on Λ. Then as in Theorem 18.3.9 of [9] we can adapt the proof to endomorphisms to show that f has specification property
on Λ.

In order to prove that f̂ has the specification property on Λ̂, let us consider a specification Ŝ in Λ̂, Ŝ = (τ̂ , P̂), where τ̂

is a collection of finitely many intervals in Z and P̂ is a correspondence between T (τ̂ ) and Λ̂. Assume that τ̂ = {I1, . . . , Im},
with Ii = [ai, bi] and that P̂(ai) = ω̂i

= (ωi, ωi
−1, . . .) ∈ Λ̂, 1 ≤ i ≤ m.

Consider a small ε > 0. We will construct now a specification S in Λ with bigger intervals than those of Ŝ. Assume that
diam(Λ) ≤ 1 and take r = r(ε) so large that 1

2r < ε/2. Then we see that if d(f j(x−r), f j(y−r)) < ε/4, 0 ≤ j ≤ r , then
d(x̂, ŷ) < ε, where x̂ = (x, x−1, . . .), ŷ = (y, y−1, . . .). Hence consider the specification S in Λ of the form (τ , P), where
τ = {[a1 − r, b1], . . . , [am − r, bm]} and P(ai − r) = ωi

−r , . . . , P(bi) = f bi−ai(ωi), 1 ≤ i ≤ m. If a1 − r < 0 then instead of
f a1−r(p)we take in the shadowing the iterate f kq+a1−r(p), for the smallest integer k ≥ 0 s.t. kq+a1−r ∈ [0, q). For the other
points in the orbit of p used for shadowing we take the positive iterates of f kq+a1−r(p), i.e. d(ω1

−r+1, f
kq+a1−r+1(p)) < ε/4,

etc.
Now assume that the specification Ŝ is (M+r)-spaced, whereM = M(ε/4) is the spacing from the specification property

of f |Λ corresponding to ε/4, and where r = r(ε) is given above. Then from the specification property of f on Λ it follows
that for q ≥ M+L(S) = M+L(Ŝ)+r there is a period-q orbit {p, f (p), . . . , f q−1(p)}which ε/4-shadows S. Then for r = r(ε)
we can take M̂(ε) := M(ε/4) + r , and the orbit of the periodic point of period q,

p̂ = (f kq+a1−r(p), f kq+a1−r−1(p), . . . , p, . . . , f kq+a1−r(p), . . .) ∈ Λ̂.

We know from the construction of S that the orbit of f kq+a1−r(p), ε/4-shadows the composite chain of points

{ω1
−r , . . . , ω

1, . . . , f b1−a1(ω1)} ∪ · · · ∪ {ωm
−r , . . . , ω

m, . . . , f bm−am(ωm)}.

Thus we have d(ω1
−r , f

kq+a1−r(p)) < ε/4, . . . , d(ω1, f kq+a1(p)) < ε/4, . . . , d(f b1−a1(ω1), f kq+b1(p)) < ε/4 and so on up
to the interval Im where d(ωm

−r , f
kq+am−r(p)) < ε/4, . . . , d(ωm, f kq+am(p)) < ε/4, . . . , d(f bm−am(ωm), f kq+bm(p)) < ε/4.

We want to prove that the orbit of p̂, ε-shadows the specification Ŝ. From above we obtain that

d(ω̂i, f̂ ai(p̂)) = d(ωi, f kq+a1−r+ai(p)) +
d(ωi

−1, f
kq+a1−r+ai−1(p))

2
+ · · · +

d(ωi
−r , f

kq+a1−r+ai−r(p))
2r

+ · · ·

< ε/4 + ε/8 + ε/2r+2
+

1
2r

< ε/2 + ε/2 = ε,

which follows from the way we chose r above, i.e. such that 1
2r < ε/2. Then we can similarly prove these inequalities up to

order bi when:

d(f̂ bi−ai ω̂i, f̂ bi p̂) = d(f bi−ai(ωi), f kq+a1−r+bi(p)) + · · · +
d(f bi−ai(ωi

−r), f
kq+a1−r+bi−rp)

2r
+ · · ·

< ε/4 + ε/8 + · · · + ε/2r+2
+

1
2r

< ε.

Since the above estimates can be done for all i = 1, . . . ,m we see that p̂, ε-shadows the specification Ŝ if Ŝ is M̂(ε) :=

(M(ε/4) + 2r)-spaced.
We notice that the integer r = r(ε) does not depend on the specification Ŝ; in conclusion for any ε > 0 we found a

positive integer M̂(ε) so that any M̂(ε)-spaced specification Ŝ in Λ̂ is ε-shadowedby a point in Λ̂, and for any q ≥ M̂(ε)+L(Ŝ)
there exists a period-q orbit ε-shadowing Ŝ.

In conclusion if f has specification property on Λ, then also f̂ has specification property on Λ̂ which finishes the proof of
the theorem. �

A representative agent may want to maximize the average value of his utility function with respect to a f̂ -invariant
measure µ̂ on Λ̂ but at the same time to have as much control on the system as possible in the long run. In other words a
possibility is to maximize the following sum giving the average value plus the control hµ̂:

AC(W )(µ̂) =


Λ̂

Wdµ̂ + hµ̂. (7)
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From the Variational Principle for Topological Pressure (see [9] for e.g.), we know that AC(W )(µ̂) is maximized for a
probability measure called the equilibrium measure of W . If W is Holder continuous and f̂ is expansive then this measure
is unique and will be denoted by µ̂W . This measure has important geometric properties and one can precisely estimate the
measure µ̂W of the Bowen balls Bn(x̂, ε) := {ŷ ∈ Λ̂, d(f̂ iŷ, f̂ ix̂) < ε, i = 0, . . . , n − 1} (see for e.g. [10,9]).

In particular when W is constant, the equilibrium measure of W is the measure of maximal entropy. Equilibrium
measures appear also as Sinai–Ruelle–Bowen measures in the case of hyperbolic attractors (see [7,8]) which give the limiting
distribution of forward trajectories of Lebesgue-almost all points in a neighbourhood of the attractor. In the case of non-
invertible hyperbolic repellers equilibrium measures of stable potentials appear also as inverse Sinai–Ruelle–Bowen measures
(see [26]), i.e. invariant measures describing the limiting distributions of preimages of large orders, of Lebesgue almost-all
points in a neighbourhood of the non-invertible repeller.

We have the following theorem giving the measure of a Bowen ball Bn(x, ε) in a metric space (see [9]); by Snφ(y) we
denote the consecutive sum φ(y) + φ(f (y)) + · · · + φ(f n−1(y)).

Theorem (Bowen’s Theorem on Equilibrium Measures). Let (X, d) be a compact metric space and f : X → X an expansive
homeomorphism with specification property and φ : X → R a Holder continuous potential on X. Then there exists exactly one
equilibrium measure for φ and

µφ = lim
n→∞

1
y∈Fix(f n)

eSnφ(y)


y∈Fix(f n)

eSnφ(y)δy.

Moreover we can estimate the measure µφ of Bowen balls by:

AεeSnφ(y)−nP(φ)
≤ µφ(Bn(y, ε)) ≤ BεeSnφ(y)−nP(φ), y ∈ X, n ≥ 1, (8)

where Aε, Bε > 0 are positive constants depending only on ε, and P(φ) is a number called the topological pressure of φ.

Now we notice that in the examples from Section 1 presenting a hyperbolic set, they are formed from non-critical
homoclinic orbits to repelling fixed points or from horseshoes without critical points.

Theorem 4. Consider one of the economic systems from Section 1 given by a non-invertible map f that has a hyperbolic mixing
basic set Λ containing no critical points of f . Let also a utility function W defined on the inverse limit space Λ̂ as in Definition 4.
Then there exists a unique equilibrium measure µ̂W of W on Λ̂ and for any ε > 0 there are positive constants Aε, Bε so that for
any x̂ ∈ Λ̂, n ≥ 1,

AεeSnW (x̂)−nP(W )
≤ µ̂W (Bn(x̂, ε)) ≤ BεeSnW (x̂)−nP(W ).

Proof. Let us consider the hyperbolic non-invertiblemap f restricted to the compact invariant setΛ ⊂ R2 having an inverse
limit Λ̂, andW as in Definition 4 (the same proof works in the 1-dimensional case). The utility functionW has an associated
discount factor β ∈ (0, 1).

We will show that W (x̂) =


i≥0 β iU(x−i) is Holder continuous on the metric space Λ̂. Let us notice first that for the
utility functions of Definition 4, the function U is Holder continuous. So there exists a constant C > 0 and an exponent
γ ∈ (0, 1] s. t |U(x) −U(y)| ≤ Cd(x, y)γ , x, y ∈ Λ, as the set Λ is compact. ButW (x̂) = U(x) + βU(x−1) + β2U(x−2) + · · · ,
so |W (x̂)−W (ŷ)| ≤ |U(x)−U(y)|+β|U(x−1)−U(y−1)|+β2

|U(x−2)−U(y−2)|+· · · , x̂, ŷ ∈ Λ̂. From the Holder condition
for U we obtain that |U(x−i) − U(y−i)| ≤ Cd(x−i, y−i)

γ , i ≥ 0. Hence

|W (x̂) − W (ŷ)| ≤ C · [d(x, y)γ + βd(x−1, y−1)
γ

+ · · · ], x̂, ŷ ∈ Λ̂. (9)

Without loss of generality assume that diam(Λ) = 1. Let us take now two close points x̂, ŷ ∈ Λ̂, d(x̂, ŷ) < δ ≪ 1. Recall
that we have a hyperbolic structure on Λ, and denote by Dfs(x) the restriction of Df (x) to the stable tangent space at x. If
x ≠ y are close, then we may have some of their preimages of order 1, x−1 and y−1 close as well. Denote by λ :=

1
infΛ |Dfs|

;
then 1 < λ < ∞ since there are no critical points in Λ. Assume also that γ > 0 is taken such that:

βλγ < 1. (10)

This is possible if we take γ > 0 small enough, since β ∈ (0, 1). From the definition of λ, we know that d(x−1, y−1) ≤

d(x, y)λ if x−1, y−1 are close too. Let us repeat this procedure with finite sequences of consecutive preimages x−m, y−m until
we have d(x, y)λm > ε0 for some fixed ε0; i.e.m is the first positive integer satisfying this condition. Then for a choice of x̂, ŷ
having on them-th positions respectively x−m, y−m, we obtain from (9):

|W (x̂) − W (ŷ)| ≤ C[d(x, y)γ + βd(x, y)γ λγ
+ · · · + βmd(x, y)γ λmγ

+ βm
].
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We know however thatm is related to d(x, y) and can be expressed in terms of it. Indeed from the condition onm, we have
thatm log λ ≥ log ε0

d(x,y) and hence

βm
≤ C1 · d(x, y)ρ

′

,

for some constant ρ ′ > 0. This together with the above relation mean that

|W (x̂) − W (ŷ)| ≤
C

1 − βλγ
d(x, y)γ + C1d(x, y)ρ

′

.

So by taking ρ := min{ρ ′, γ } we obtain that |W (x̂) −W (ŷ)| ≤ C2d(x, y)ρ . But d(x̂, ŷ) ≥ d(x, y), therefore we obtain Holder
continuity in this case, namely |W (x̂, ŷ)| ≤ C2d(x̂, ŷ)ρ .

Now assume that x̂, ŷ are not as above i.e. they do not shadow each other up to orderm but instead, for some 1 ≤ j ≤ m
there is a preimage y−j far from x−j, i.e. d(x−j, y−j) > ε0 (this follows from the fact that there are no critical points of f in Λ).
Assume that κ is the smallest such j. Then

|W (x̂) − W (ŷ)| ≤ C [d(x, y)γ + βλγ d(x, y) + · · · + βκλκγ d(x, y)γ + βκ ]

≤
C

1 − βλγ
d(x, y)γ + C1β

κ ,

for some constants C, C1 > 0. Assume first that d(x, y)γ ≤ βκ ; then |W (x̂) − W (ŷ)| ≤ C2β
κ . But d(x̂, ŷ) ≥

d(x−κ ,y−κ )

2κ ≥
ε0
2κ .

Hence there is a sufficiently small positive constant ρ and a constant C3 > 0 (both independent of x̂, ŷ) such that
|W (x̂) − W (ŷ)| ≤ C3d(x̂, ŷ)ρ . Now if we have the other case, i.e. d(x, y)γ ≥ βκ , then

|W (x̂) − W (ŷ)| ≤ C2d(x, y)γ ≤ C2d(x̂, ŷ)γ .

Hence we proved thatW is Holder continuous on Λ̂, i.e. there are positive constants C > 0, ρ > 0 so that for all x̂, ŷ ∈ Λ̂

we have

|W (x̂) − W (ŷ)| ≤ Cd(x̂, ŷ)ρ .

Now we can use Theorem 3 in order to prove that the homeomorphism f̂ is expansive and has specification property on Λ̂.
Since we showed that W is Holder continuous on Λ̂ it follows that it has a unique equilibrium measure µ̂W for which we
have the estimates on themeasure of Bowen balls from the previous Bowen’s theorem. Thus for any ε > 0 there are positive
constants Aε, Bε so that for x̂ ∈ Λ̂, n ≥ 1,

AεeSnW (x̂)−nP(W )
≤ µ̂W (Bn(x̂, ε)) ≤ BεeSnW (x̂)−nP(φ). �

The previous theorem gives us good estimates for the measure µ̂W of the set of points whose iterates remain close to the
trajectory of a certain initial condition, up to n consecutive iterates.

We show now that, if we consider the measure of maximal entropy µ̂0 and compare it to the equilibrium measure µ̂W

on Λ̂, then the average utility with respect to µ̂W is bigger than the average utility with respect to µ̂0.

Corollary 2. In the setting of Theorem 4 consider the measure of maximal entropy of f̂ on Λ̂ and the equilibrium measure µ̂W

of W on Λ̂. Then
Λ̂

Wdµ̂W ≥


Λ̂

Wdµ̂0.

Proof. From the Variational Principle for topological pressure we know that sup{hν +


Λ̂
Wdν, ν f̂ -invariant probability on

Λ̂} = P(W ) = hµ̂W +


Λ̂
Wdµ̂W . Hence since hµ̂0 = htop(f̂ ) we obtain

Λ̂

Wdµ̂0 + htop(f̂ ) ≤


Λ̂

Wdµ̂W + hµ̂W .

Then since htop(f̂ ) ≥ hµ̂W from the Variational Principle for Entropy (see [9]), we obtain the conclusion of the corollary. �

Given the specific form of our utility function, we can approximate µ̂W with equilibrium states of simpler functions.
Consider Wn(x̂) =


0≤i≤n β iU(x−i), x̂ ∈ Λ̂, for n ≥ 1. Similarly as in the proof of Theorem 4 we can show that Wn is a

Holder function on Λ̂, hence it has an equilibrium state µ̂Wn on Λ̂.
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Theorem 5. In the setting of Theorem 4, let a utility function W on Λ̂ and the functions Wn, n ≥ 1 as above. Then the average
value of the utility function with respect to µ̂W can be approximated with those of Wn, i.e.

Λ̂

Wdµ̂W −


Λ̂

Wndµ̂Wn

 −−−→
n→∞

0.

Proof. From Bowen’s Theorem applied to equilibrium measures on Λ̂ we have that

µ̂φ = lim
n→∞

1
x̂∈Fix(f̂ n)

eSnφ(x̂)


x̂∈Fix(f̂ n)

eSnφ(x̂)δx̂,

for any Holder continuous potential φ on Λ̂. Hence since

∥W − Wn∥ ≤
βn

1 − β
sup
Λ

|U|,

it follows that n · |W − Wn| converges uniformly to 0 and thus µ̂Wn → µ̂W weakly. Hence Wdµ̂W −


Wndµ̂Wn

 ≤

 Wdµ̂W −


Wdµ̂Wn

 +

 Wdµ̂Wn −


Wndµ̂Wn


≤

 Wdµ̂W −


Wdµ̂Wn

 +
βn

1 − β
· sup

Λ

|U|,

since ∥W − Wn∥ ≤
βn

1−β
supΛ |U| and since µ̂Wn is a probability measure. So from the weak convergence of µ̂Wn towards

µ̂W , we obtain the conclusion of the theorem. �
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