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For a hyperbolic map f on a saddle-type fractal Λ with self-intersections, the number

of f-preimages of a point x in Λ may depend on x. This makes estimates of the stable

dimensions more difficult than for diffeomorphisms or for maps which are constant-to-

one. We employ the thermodynamic formalism in order to derive estimates for the stable

Hausdorff dimension function δs on Λ, in the case when f is conformal on local stable

manifolds. These estimates are in terms of a continuous function ω on Λ, which bounds

the preimage counting function from below. As a corollary, we obtain that, if δs attains

its maximal possible value in Λ, then the stable dimension is constant throughout Λ,

and the preimage counting function is constant on at least an open dense subset of Λ.

In particular, this shows that, if at some point in Λ the stable dimension is equal to the

analogue of the similarity dimension in the stable direction at that point, then f behaves

very much like a homeomorphism on Λ. Finally, we also obtain results about the stable

upper box dimension for this class of fractals. We end the paper with a discussion of

two explicit examples.

1 Introduction and Statement of Results

In this paper, we investigate fractal basic sets Λ of saddle type that are invariant under

a noninvertible C2-endomorphism f of a Riemann manifold M into itself; these fractals
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are basic sets of f in the sense that Λ is compact, f-invariant, f |Λ is topologically

transitive and there exists a neighbourhood U of Λ satisfying Λ=⋂
n∈Z

fn(U ). The fact

that f is noninvertible produces complicated overlaps and foldings within Λ, which

influence the Hausdorff dimension of the sections through Λ; also the number of over-

laps does not necessarily have to be constant.

We will always assume that f is hyperbolic on Λ in the sense of Ruelle [23],

that is, for each backward orbit x̂ = (x, x−1, x−2, . . .) of x in Λ, where f(x−1)= x and

f(x−(i+1))= x−i ∈Λ for all i ∈ N, there exists a continuous splitting of the tangent bundle

over the space Λ̂ of all backward orbits of elements of Λ, called the natural extension

(or inverse limit) of the tuple (Λ, f), into stable spaces Es
x and unstable spaces Eu

x̂. It

is well known that Λ̂ is a compact metric space and that the lift f̂ : Λ̂→ Λ̂ of f to Λ̂,

given by f̂(x̂) := ( f(x), x, x−1, x−2, . . .), is a homeomorphism. Note that natural extensions

play an important role in the study of the dynamics of endomorphisms (see for instance

[11, 23]). As in the diffeomorphism case, for a hyperbolic endomorphism f on Λ, there

exist local stable manifolds Ws
r (x) and local unstable manifolds Wu

r (x̂), for each x ∈Λ
and x̂ ∈ Λ̂. Note that there may be infinitely many local unstable manifolds through a

given point in Λ and, unlike in the diffeomorphism case, these do not necessarily give

rise to a foliation.

We will consider in the sequel, the stable dimension at the point x ∈Λ, which is

defined by

δs(x) := dimH(W
s
r (x) ∩Λ),

where dimH refers to the Hausdorff dimension. To give estimates for the stable dimen-

sion is much more delicate than for the unstable dimension δu(x̂) := dimH(Wu
r (x̂) ∩Λ). In

fact, in [11] it was shown that δu(x̂) is constant on Λ̂ and that its value is given by the

unique zero of the pressure function P f̂ |Λ̂ (−t log |D fu|), where |D fu(x)| denotes the norm

of the derivative of f restricted to Eu
x̂. However, for the stable dimension we cannot

expect that a similar formula holds in general (see [12, 13, 25], etc.)

Before we state our main result, let us point out that in this paper we consider a

special type of hyperbolic endomorphisms which will be called c-hyperbolic. A map f is

c-hyperbolic on Λ if it is hyperbolic as an endomorphism over Λ, if it is conformal on all

local stable manifolds and if the set Λ does not contain any critical point of f .

Also, let us introduce the preimage counting function Δ :Λ→ N, which is given

for each x ∈Λ by

Δ(x) := Card( f−1(x) ∩Λ).
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Upper Estimates for Stable Dimensions on Fractal Sets with Variable Numbers of Foldings 3

One immediately verifies that Δ is upper semi-continuous and bounded on Λ (see e.g.

[15, Lemma 1]). Moreover, the stable potential function Φs on Λ is defined by Φs(x) :=
log |D fs(x)|, where |D fs(x)| denotes the norm of the derivative of f restricted to Es

x. We

are now in the position to state the main result of this paper.

Theorem 1. Let f : M → M be a C2-endomorphism which is c-hyperbolic on a basic

set Λ of f and for which there exists a continuous function ω :Λ→ (0,∞) such that

Δ(x)≥ω(x), for all x ∈Λ. Then, the following upper estimate is true for any point x ∈Λ:

δs(x)≤ tω,

where tω is the unique zero of the pressure function t 	→ P (tΦs − logω), associated to the

potential function tΦs − logω on Λ. �

Let us point out that one of the difficulties in proving this theorem is that the

map f is not necessarily expanding and that its inverse branches do not necessarily

contract small balls. In fact, some directions are even expanding in backward time.

Another difficulty is that the number of preimages of a point that remain in Λ is not

always constant over Λ.

The reader might like to recall that in their pioneering work Bowen [4] and Ruelle

[22] employed the thermodynamic formalism in order to derive dimension formulae for

rational maps. In fact, in the diffeomorphism case, it turned out that the stable and

the unstable dimension can in general be computed both as the zero of the pressure

function of the stable potential, respectively, the unstable potential (see [9]); for further

applications of the thermodynamic formalism in dimension theory, we refer to [1, 18]. It

is important to note that for an endomorphism f in higher dimension, a hyperbolic basic

set is not necessarily totally invariant. This is of course significantly different from the

case of Julia sets of rational maps in the complex 1D case.

Examples of perturbations of toral endomorphisms that are Anosov and the

unstable manifolds of which depend on the whole prehistory were given in [19]. Another

class of noninvertible hyperbolic maps with crossed invariant horseshoes was given by

Bothe [2]. Also, Simon [26] gave another class of noninvertible endomorphisms, for which

the Hausdorff dimension of the associated attractors can be computed with the help of

a pressure formula just as in the invertible case.

Examples of nonlinear hyperbolic skew products having Cantor sets of overlaps

in their fibers, were given in [13], where the strongly noninvertible character of these

maps has been established, and where it was shown that these skew products are far
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from being constant-to-one. In [13], it was shown that for these dynamical systems,

there exist Cantor sets in each of their fibers such that, through each point of these

Cantor sets, there pass uncountably many different local unstable manifolds. Also we

mention that, for this family of strongly noninvertible maps, one has information about

the function Δ(·); it was shown in [13] that on some subsets in the respective associated

basic set Λ, we have Δ= 1, while on other subsets we have Δ= 2. Hence, we can use this

in order to construct continuous functions ω as in Theorem 1, such that ω 
≡ 1 on Λ and

so that Δ(x)≥ω(x), x ∈Λ.

Another class of c-hyperbolic endomorphisms can be found by considering

hyperbolic basic sets of saddle type for holomorphic maps f : P
2
C → P

2
C on the 2-

dimensional complex projective space [11]. Let us also mention that in [12], the stable

dimension on basic sets was related to a notion of inverse pressure.

The paper continues by showing that an application of Theorem 1 gives rise to

the following proposition. Here, we consider the situation in which δs attains a maximal

value and show that in this case, δs has to be constant throughout Λ and that Δ has to

be equal to its least value d on an open dense subset.

Proposition 1. If in addition to the assumptions in Theorem 1 we have that the minimal

value of Δ on Λ is equal to d, and that there exists a point x ∈Λ at which δs is equal to

the unique zero td of the pressure function t 	→ P (tΦs − log d), then Δ is equal to d on an

open dense subset of Λ, and δs(y) is equal to td, for all y∈Λ. �

Note that the latter proposition can be applied in particular in the case when d is

equal to 1 and there is no overlap. In this situation, the stable dimension is equal to the

similarity dimension, and the proposition guarantees that there exists an open dense set

of points in Λ, each of these points having precisely one f-preimage in Λ. Therefore, in

this case the map behaves almost like a homeomorphism, when restricted toΛ. This par-

ticular situation is somewhat parallel to a result of Schief [24], although the setting and

proofs are completely different. We summarize these results in the following corollary:

Corollary 1. Let f : M → M be a C2-endomorphism which is c-hyperbolic on a basic set

Λ of f and for which there exists a point x ∈Λ such that δs(x) is equal to the unique zero

t1 of the pressure function t 	→ P (tΦs). Then there exists an open dense set of points in

Λ, each of them having precisely one f-preimage in Λ. Moreover, we have that δs(y)= t1,

for all points y∈Λ. �
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Upper Estimates for Stable Dimensions on Fractal Sets with Variable Numbers of Foldings 5

Also in Corollary 3 from Section 4, we will show how the above Corollary 1, can

be applied to a class of translations of horseshoes with overlaps previously studied by

Simon and Solomyak in [27].

Let us now remark that a combination of Theorem 1 with the main theorem in

[15] gives rise to the following result.

Corollary 2. If in addition to the assumptions in Theorem 1 we have that the preimage

counting function Δ is locally constant on Λ, then it follows that δs(x)= tω, for all x ∈Λ.

Here, tω is given as in Theorem 1. �

Finally, we consider the stable upper box dimension βs(x), which is given as the

upper box dimension dimB(Ws
r (x) ∩Λ) of the set Ws

r (x) ∩Λ, for each x ∈Λ. For a general

discussion of upper box dimension for fractal sets, we refer to [10, 18].

We show that the stable upper box dimension function βs(·) is constant through-

out Λ, and that in the situation when Δ is bounded from below, then similarly as in

Theorem 1, one derives an upper bound for its value. These results are summarized in

the following proposition.

Proposition 2. Let f : M → M be a C2-endomorphism which is c-hyperbolic on a saddle

basic set Λ of f . Then the following hold:

(a) If there exists a continuous function ω :Λ→ (0,∞) such thatΔ(x)≥ω(x), for

all x ∈Λ and if tω is defined as in Theorem 1, then we have

βs(y)≤ tω for all y∈Λ.

(b) The function βs is constant on Λ. �

In particular, the above results apply for hyperbolic basic sets of saddle type for

holomorphic maps f : P
2
C → P

2
C. We will end the paper by giving two further explicit

examples in which the above results can be applied. Our first example will be concerned

with certain horseshoes with overlaps in R
3 considered in [27]. The second example will

be on basic sets for a family of hyperbolic skew products studied in [13].

We close Section 1 with some comments on how the results in our paper relate

to previous work in this area.

In [6] (see also [16, 28]), Falconer studied self-affine fractals with overlaps

obtained from finitely many linear contractions Ti(x)= λix, i = 1, . . . , 	 in R satisfying

0< |λi|< 1 and
∑

1≤i≤	 |λi|< 1. He showed that the Hausdorff dimension of the invariant
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6 E. Mihailescu and B. Stratmann

set of the family of translated contractions {Ti + ai, : 1 ≤ i ≤ 	} is equal to s, for Lebesgue

almost all (a1, . . . ,a	) ∈ R × · · · × R; where s represents the similarity dimension, defined

as the solution of the equation ∑
1≤i≤	

|λi|s = 1.

We remark that this result may be extended also to similarities on R
n. However, the

result fails if the condition
∑

1≤i≤	 |λi|< 1 is not satisfied, as observed by Edgar [5], who

based his argument on a result by Przytycki and Urbański [20]. Indeed, if T1 = T2 =
(

1
2 0
0 λ

)
and if |λ|> 1

2 , then for Lebesgue almost every a= (a1,a2) ∈ R
2 the attractor Λ(a) of the

system {T1 + a1, T2 + a2} remains the same; and moreover if 1/λ is a Pisot number (i.e., an

algebraic integer such that the absolute value of all its algebraic conjugates is < 1), then

dimH(Λ(a)) < 2 − (log(1/λ))/ log 2 (see e.g., [28]). This shows that fractals originating

from overlapping constructions can have Hausdorff dimension less than their similarity

dimension.

In [24], Schief considered self-similar fractal sets K and showed that if for the

similarity dimension σ of K one has that the σ -dimensional Hausdorff measure Hσ (K)

is positive, then K satisfies the strong open set condition, that is, the system behaves

similarly to a homeomorphism on K. Note that this result is in the spirit of our results in

this paper, although the setting and the ideas of our proofs differ significantly from the

approach in [24]. More precisely, the assumptions in Proposition 1 are much weaker than

the ones in [24]. Namely, in order to obtain the “almost injectivity” of the system associ-

ated with Λ, we only require that the stable dimension δs(x) is equal to the zero t1 of the

pressure function t → P (tΦs), for some x ∈Λ; we do not require that Ht1(Ws
r (x) ∩Λ)> 0.

In our case here, t1 is the analog of the similarity dimension in the stable direction, in

the sense that it represents the dimension which one would obtain if the system were

invertible. In particular, if there exists some x ∈Λ for which Ht1(Ws
r (x) ∩Λ)> 0 is pos-

itive, then we have that the stable dimension is everywhere equal to t1 and that there

exists an open dense set of points in Λ which precisely have one preimage in Λ.

Also, in [25] Schmeling and Troubetzkoy introduced a class of endomorphisms

which are piecewise smooth and have hyperbolic attractors, and showed that the Young

dimension formula holds if and only if the endomorphism is invertible SRB-almost

everywhere. Moreover, in the papers [7, 14, 17], Hausdorff dimension on noninvertible

hyperbolic attractors was studied, in the case of various types of endomorphisms satis-

fying transversality conditions.

Mihailescu and Urbański [15] studied c-hyperbolic maps on Λ, for which Δ is

bounded from above by a continuous map η on Λ. In that paper the authors obtained a
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Upper Estimates for Stable Dimensions on Fractal Sets with Variable Numbers of Foldings 7

lower estimate for stable dimension, namely δs(x)≥ tη for all x ∈Λ, where tη represents

the unique zero of the pressure function t → P (tΦs − log η). Note that the proof for the

upper estimate in this paper, is very different from the proof for the lower estimate in

[15]. However, we can combine these two estimates, as done in Corollary 2, to obtain that

if the preimage counting function Δ is locally constant on Λ, then the stable dimension

is equal to tΔ throughout Λ.

2 Proof of Theorem 1

For ease of exposition, let us first consider the situation in which ω is locally constant

and takes on only two different positive integer values on Λ, namely d1 on the set V1

and d2 on the set V2. We then have that V1 ∪ V2 =Λ and that V1 and V2 are two disjoint

compact subsets of Λ. Hence, there exists ε0 > 0 such that the distance d(V1,V2) between

V1 and V2 is greater than ε0. For x ∈Λ and n∈ N, let Bn(x, ε) := {y∈Λ : d( fi(y), f i(x)) <

ε, 0 ≤ i ≤ n− 1} refer to the n-Bowen ball centered at x of radius ε > 0. Note that for

0< ε < ε0 we have that if y∈ Bn(x, ε) then f i(y) and fi(x) both belong to either V1 or V2,

for each 0 ≤ i ≤ n− 1. Recall that Φs(x) := log |D fs(x)|, x ∈Λ. Now, let t> tω be fixed. By

definition of tω, we have that there exists β > 0 such that

P (tΦs − logω) <−β.

Hence, by choosing ε > 0 sufficiently small, there exists a constant C > 0 such that for

each n∈ N large enough, there exists a minimal (n, ε)-spanning set En for Λ such that

∑
z∈En

(diam Un(z))
t · 1

Δ( f(z) · . . . ·Δ( fn(z))
< C e−βn< 1, (1)

where we have set Un(z) := fn(Bn(z, ε)) ∩ Ws
r (x) ∩Λ. Note that in here we have used the

fact that the set Un(z) is the intersection of an unstable tubular neighbourhood with

the fixed stable manifold Ws
r (x). Also, we used that |D fn

s (z)| is uniformly comparable to

diam Un(z), which follows from the fact that f is conformal on local stable manifolds.

In the sequel, let us denote W := Ws
r (x) ∩Λ. Our aim is to show that dimH(W)≤ t,

for each t> tω. The main idea of the proof is to extract suitable covers of W out of the

large set of covers which are given by taking n-preimages, such that at each step a dif-

ferent sum will be minimized. Note that we say that a point y is a k-preimage of x if

fk(y)= x. Each such n-preimage will be included in a Bowen ball of type Bn(z, ε), for

some z∈ En. This procedure is delicate, since at each step the number of preimages of
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8 E. Mihailescu and B. Stratmann

points belonging to Λ varies. The idea is to consider the k iterates of n-preimages, then

to subdivide Λ into various different subsets and finally, to find suitable covers of these

subsets, which minimize certain sums determined by the kth level.

First, note that since Λ is covered by the set of Bowen balls {Bn(z, ε) : z∈ En}, it

follows that {Un(z) : z∈ En} covers W. However, this cover is far too rich and we will have

to extract a suitable subcover. Indeed, by using a well-known theorem by Besicovitch

(see for e.g., [10]), there exists a subcover {5Un(z) : z∈ G(0)} of W such that {Un(z) : z∈
G(0)} consists of pairwise disjoint sets. Note that, since f is conformal on local stable

manifolds, we can assume that the sets Un(z) are in fact balls, and we shall denote the

radii of these balls by r(n, z), respectively; also, we write 5Un(z) to denote the ball of

radius 5r(n, z) centered at the center of Un(z).

The next step is to “inflate” this cover, that is, to enlarge it to a “richer” cover of

W. For this, we consider an (n− 1)-preimage of w in Λ, which we denote by w(n− 1), for

each point w ∈ W. Let us assume that w(n− 1) ∈ V1 and hence, that w(n− 1) has at least

d1 1-preimages in Λ. Now, since En is (n, ε)-spanning, for each point ξ ∈Λ, there exists

at least one point y∈ En such that ξ ∈ Bn(y, ε). However, we cannot have two 1-preimages

of some w(n− 1) belonging to different Bowen balls Bn(y, ε) and Bn(y′, ε) such that y

and y′ are both in G(0). This is an immediate consequence of the fact that the collection

{Un(z) : z∈ G(0)} consists of pairwise disjoint sets.

Therefore, by way of successive eliminations, we can find d1 pairwise disjoint

families, denoted by F(1,d1; 1), . . . ,F(1,d1; d1), such that {5Un(z) : z∈F(1,d2; i)} is a

cover of the set {w ∈ W :w(n− 1) ∈ V1}, for each 1 ≤ i ≤ d1. Obviously, for w(n− 1) ∈ V2,

we can proceed in a similar way, which then gives rise to d2 mutually disjoint fami-

lies F(1,d2; 1), . . . ,F(1,d2; d2) for which we have that {5Un(z) : z∈F(1,d2; j)} is a cover

of {w ∈ W :w(n− 1) ∈ V2}, for each 1 ≤ j ≤ d2. Note that, since d(V1,V2) > 0, we have that

F(1,d1; i) ∩ F(1,d2; j)= ∅, for all i and j, and that by construction we have that the so

obtained disjoint families are all contained in En. Next, we define the collection:

F(1) :=
2⋃

i=1

⋃
1≤ j≤di

F(1,di, j)

and let G(1,dk) be determined, for k∈ {1,2}, by the minimizing condition

∑
z∈G(1,dk)

(diam Un(z))t

Δ( f2(z)) · · ·Δ( fn(z))
= min

⎧⎨
⎩

∑
z∈F(1,dk;i)

(diam Un(z))t

Δ( f2(z)) · · ·Δ( fn(z))
: i ∈ {1, . . . ,dk}

⎫⎬
⎭ .
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Upper Estimates for Stable Dimensions on Fractal Sets with Variable Numbers of Foldings 9

For G(1) := G(1,d1) ∪ G(1,d2), we then obtain, by adding the sums over G(1,d1) and

G(1,d2),

∑
z∈G(1)

(diam Un(z))t

Δ( f2(z)) · · ·Δ( fn(z))
≤

∑
z∈F(1)

(diam Un(z))t

Δ( f(z)) · · ·Δ( fn(z))
. (2)

Note that here we have used the trivial fact that for each x ∈Λ we have that∑
y∈Λ, f(y)=x 1/Δ(x)= 1. Also, note that the sum over the family G(1) on the left-hand side

of the inequality in (2) is smaller than the sum over the larger family F(1) on the right-

hand side. However, and this is the crucial point, the summands on the right-hand side

have one more factor in their denominator than the summands on the left-hand side.

Let us now bring the argument to its next level by enlarging the family F(1)
as follows. Recall that for each w ∈ W we have fixed an (n− 1)-preimage w(n− 1) ∈Λ.

We now define w(n− 2) := f(w(n− 1)) and consider not only w(n− 1) but also the other

1-preimages of w(n− 2) in Λ. Subsequently, we will then take the 1-preimages of

these 1-preimages of w(n− 2) and obtain new covers of W. Indeed similarly as before,

if w(n− 2) ∈ V1 then we can construct, by successive eliminations, pairwise disjoint

families F(2,d1; 1), . . . ,F(2,d1; d1) by selecting the 1-preimages of the ith preimage of

w(n− 2), for each 1 ≤ i ≤ d1. In fact one of these families is F(1). As in the first step,

the sets {5Un(z) : z∈F(2,d1; i)} cover {w ∈ W :w(n− 2) ∈ V1}, for each i. Let us remark that

the procedure of successive elimination works, since if we take for instance the fam-

ily F(2,d1; 1), then for an arbitrary w ∈ W we cannot have two 1-preimages y and y′ of

w(n− 2) and 1-preimages ξ of y and ξ ′ of y′ such that ξ and ξ ′ are both contained in either

Bn(z, ε) or Bn(z′, ε), for some z, z′ ∈F(2,d1; 1). Indeed, since f2(Bn(z, ε)) ∩ f2(Bn(z′, ε)) 
= ∅,

in this situation it would follow that Un(z) ∩ Un(z′) 
= ∅ and hence we would have a con-

tradiction. This implies that there exist d1 disjoint families F(2,d1; i) corresponding to

the d1 1-preimages of w(n− 2) ∈ V1.

Clearly, we can proceed analogously in the case in which w(n− 2) ∈ V2, which

then gives rise to pairwise disjoint families F(2,d2; 1), . . . ,F(2,d2; d2) for which {5Un(z) :

z∈F(2,d2; j)} covers {w ∈ W :w(n− 2) ∈ V2}, for each j. Note that we cannot have rep-

etitions of points from En when taking the union of the collections F(2,di; j) over

all i ∈ {1,2} and 1 ≤ j ≤ di. Indeed, if we would have two 1-preimages y, y′ ∈Λ of some

w(n− 2) and two 1-preimages ξ, ξ ′ ∈Λ of y, and y′, respectively, so that ξ ∈ Bn(z, ε) and

ξ ′ ∈ Bn(z′, ε), for some z, z′ ∈F(2,d1; i), then it would follow that Un(z) ∩ Un(z′) 
= ∅, which

gives a contradiction. Moreover, by construction we have that F(2,d1; i) ∩ F(2,d2; j)= ∅,

for all i and j. This follows, since if f2(z) ∈ V1, for some z∈F(2,d1; i), and if at the same
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10 E. Mihailescu and B. Stratmann

time f2(z′) ∈ V2, for some z′ ∈F(2,d2; j), then it would follow that V1 ∩ V2 
= ∅ and hence,

we would get a contradiction.

Now, as in the first step, for each i ∈ {1,2} and 1 ≤ j ≤ di there exists a family

G(2,di, j) in {F(2,dk; 	) : k∈ {1,2},1 ≤ 	≤ dj} satisfying

∑
z∈G(2,di , j)

(diam Un(z))t

Δ( f2(z)) · · ·Δ( fn(z))
≤

∑
z∈F(2,di; j)

(diam Un(z))t

Δ( f(z))Δ( f2(z)) · · ·Δ( fn(z))
. (3)

Among these so obtained families G(2,di; j)we now choose for each i ∈ {1,2} a particular

family, which will be denoted by G(2,di), such that we have

∑
z∈G(2,di)

(diam Un(z))t

Δ( f3(z)) · · ·Δ( fn(z))
= min

⎧⎨
⎩

∑
z∈G(2,di; j)

(diam Un(z))t

Δ( f3(z)) · · ·Δ( fn(z))
: j ∈ {1, . . . ,di}

⎫⎬
⎭ . (4)

Combining (3) and (4), we now obtain, for each i ∈ {1,2}, that

∑
z∈G(2,di)

(diam Un(z))t

Δ( f3(z)) · · ·Δ( fn(z))
≤

∑
z∈⋃1≤ j≤di

G(2,di; j)

(diam Un(z))t

Δ( f2(z)) . . . Δ( fn(z))

≤
∑

z∈⋃1≤ j≤di
F(2,di; j)

(diam Un(z))t

Δ( f(z))Δ( f2(z)) . . . Δ( fn(z))
.

Therefore, by defining the collections

F(2) :=
⋃

i∈{1,2}

⋃
1≤ j≤di

F(2,di; j) and G(2) := G(2,d1) ∪ G(2,d2),

we have now shown that

∑
z∈G(2)

(diam Un(z))t

Δ( f3(z)) · · ·Δ( fn(z))
≤

∑
z∈F(2)

(diam Un(z))t

Δ( f(z)) · · ·Δ( fn(z))
. (5)

Continuing the above procedure, assume that we have constructed a family

F(k)⊂ En and a subfamily G(k) so that the sets (Un(z))z∈G(k) 5-cover W (meaning that

W ⊂⋃
z∈G(k) 5Un(z)), and such that

∑
z∈G(k)

(diam Un(z))t

Δ( fk+1(z)) · · ·Δ( fn(z))
≤
∑

z∈F(k)

(diam Un(z))t

Δ( f(z)) · · ·Δ( fn(z))
.
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Upper Estimates for Stable Dimensions on Fractal Sets with Variable Numbers of Foldings 11

For each w ∈ W, we then take the kth iterate of w(n− 1) and denote it by w(n− k − 1); this

is an (n− k − 1)-preimage of w in Λ. Now, if w(n− k − 1) ∈ V1 then it has d1 1-preimages

in Λ and to each of these we can apply the same procedure from step k.

In this way, we obtain by successive eliminations d1 mutually disjoint families

F(k + 1,d1; i),1 ≤ i ≤ d1 and inside each of these a subfamily G(k + 1,d1; i) such that

∑
z∈G(k+1,d1;i)

(diam Un(z))t

Δ( fk+1(z)) · · ·Δ( fn(z))
≤

∑
z∈F(k+1,d1;i)

(diam Un(z))t

Δ( f(z)) · · ·Δ( fn(z))
.

The successive elimination procedure works, since we cannot have two different 1-

preimages y and y′ of w(n− k − 1) having (n− k)-preimages ξ ∈Λ and ξ ′ ∈Λ, respec-

tively, such that ξ ∈ Bn(z, ε), ξ ′ ∈ Bn(z′, ε), for some z, z′ ∈F(k + 1,d1; i). Indeed, it would

then follow that the family {Un(z) : z∈F(k + 1,d1; i)} does not consist of pairwise dis-

joint sets, which clearly is a contradiction. Moreover, since V1 ∩ V2 = ∅, we must have

F(k + 1,d1; i) ∩ F(k + 1,d2; j)= ∅. Hence, there is no repetition of elements, when we

consider the union

F(k + 1) :=
⋃

1≤ j≤d1

F(k + 1,d1; j) ∪
⋃

1≤ j≤d2

F(k + 1,d2; j)

Now among the collections G(k + 1,d1; i), for 1 ≤ i ≤ d1, let us consider the collec-

tion which gives rise to the smallest sum of type

∑
z∈G(k+1,d1;i)

(diam Un(z))t

Δ( fk+2(z)) · · ·Δ( fn(z))
.

Denote this minimizing collection by G(k + 1,d1). Similarly, we obtain the collection

G(k + 1,d2). We now have that

∑
z∈G(k+1,d1)

(diam Un(z))t

Δ( fk+2(z)) · · ·Δ( fn(z))
≤

∑
z∈⋃1≤i≤d1

G(k+1,d1;i)

(diam Un(z))t

Δ( fk+1(z)) · · ·Δ( fn(z))

≤
∑

z∈⋃1≤i≤d1
F(k+1,d1;i)

(diam Un(z))t

Δ( f(z)) · · ·Δ( fn(z))
. (6)

Of course, we can proceed similarly for G(k + 1,d2). With G(k + 1) := G(k + 1,d1) ∪ G
(k + 1,d2), it follows from above that

∑
z∈G(k+1)

(diam Un(z))t

Δ( fk+2(z)) · · ·Δ( fn(z))
≤

∑
z∈⋃1≤i≤d1

F(k+1)

(diam Un(z))t

Δ( f(z)) · · ·Δ( fn(z))
.
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12 E. Mihailescu and B. Stratmann

Therefore, we obtain by finite induction a union F(n) of families in En, as well

as one particular family G(n) such that {5Un(z) : z∈ G(n)} covers the set W and has the

property that ∑
z∈G(n)

(diam Un(z))
t ≤

∑
z∈F(n)

(diam Un(z))t

Δ( f(z)) · · ·Δ( fn(z))
.

By combining this with the observation in (1) at the start of the proof, we obtain that

∑
z∈G(n)

(diam Un(z))
t < 1.

Since {5Un(z) : z∈ G(n)} is a covering of the set W = Ws
r (x) ∩Λ, we can now conclude that

δs(x)≤ t< tω.

In the more general case in which ω is a continuous function on Λ with the

property that ω(x)≤Δ(x), for all x ∈Λ, we proceed as follows. First note that by the

continuity of the function ω, we have that there exists an increasing positive function

ρ on (0,∞), such that ρ(ε) decreases to zero for ε tending to zero from above, and such

that for any y, z with d(y, z)≤ ε we have

|ω(y)− ω(z)| ≤ ρ(ε).

Since if y∈ Bn(z, ε) then f i(y) ∈ B( f iz, ε), the latter implies that if y∈ Bn(z, ε) then

|ω( fi(y))− ω( fi(z))| ≤ ρ(ε). Hence, since Δ(x)≥ω(x) for all x ∈Λ, it follows that for each

0 ≤ i ≤ n− 1 we have

Δ( f i(y))≥ω( fi(y))≥ω( fi(z))− ρ(ε).

Now in order to proceed, let us define the ε-pressure function Pε, for some arbitrary

potential function ψ , by the formula

Pε(ψ) := lim inf
n→∞

1

n
log inf

{∑
x∈E

exp

(
n−1∑
k=0

ψ( fk(x))

)
: E is a (n, ε)-spanning set for Λ

}

and let tε denote the unique zero of Pε(tΦs − log(ω − ρ(ε))). Then let t> tε be fixed and

note that the above proof goes through in the same way if in the sums appearing there,

we replace the function Δ by the function ω − ρ(ε). Indeed, this follows since, for all

0 ≤ i ≤ n− 1, we have that Δ( f i y)≥ω( fi(y))≥ω( fi(z))− ρ(ε), for each y∈ Bn(z, ε) and for

some arbitrary fixed element z contained in some minimal (n, ε)-spanning set En for Λ.
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Upper Estimates for Stable Dimensions on Fractal Sets with Variable Numbers of Foldings 13

In this way, the above inductive procedure gives rise to a family F(n)⊂ En and also to a

particular family G(n), such that {5Un(z) : z∈ G(n)} covers the set W and such that

∑
z∈G(n)

(diam Un(z))
t ≤

∑
z∈F(n)

(diam Un(z))t

(ω( f(z))− ρ(ε)) · · · (ω( fn(z))− ρ(ε))
< 1.

Now, for η > 0 sufficiently small and 0< ε < η, let τε,η refer to the unique zero of the pres-

sure function Pε(tΦs − log(ω − ρ(η))) and let τη denote the unique zero of the pressure

function P (tΦs − log(ω − ρ(η))). Since limε→0 Pε(ψ)= P (ψ) for each continuous function

ψ , it follows that limε→0 τε,η = τη.

On the other hand, let us note that for 0< ε < η, we have that ρ(ε) < ρ(η) and

therefore

tΦs − log(ω − ρ(ε))≤ tΦs − log(ω − ρ(η)).

This implies that τε ≤ τε,η. Now, consider some arbitrary fixed t> τη. For ε > 0 sufficiently

small, we then have that t> τε,η ≥ τε. Hence from the above, we obtain that for t in this

range and for n sufficiently large, there exists a cover {5Un(z) : z∈ G(n)} of W, such that

we have the inequality ∑
z∈G(n)

(diam Un(z))
t < 1.

This shows that t ≥ dimH(W) and therefore, since t> τη was chosen to be arbitrary, it

follows that τη ≥ dimH(W). Finally, observe that the continuity of the pressure function

implies that limη→0 τη = tω, and this then allows to deduce the desired inequality

dimH(W)≤ tω.

3 Proofs of Propositions 1 and 2

Proof of Proposition 1. Recall that here we assume that d is the minimal value of Δ

on Λ. Then note that, since Δ is upper semi-continuous on Λ and takes on only integer

values, it follows that ifΔ(x)= d for some x ∈Λ, then we have that the preimage counting

function Δ must be equal to d on some open neighbourhood of x. This implies that the

set

A := {x ∈Λ :Δ(x)= d}

has to be open in Λ. In order to show that A is dense in Λ, assume to the contrary,

that there exists a nonempty open set V ⊂Λ such that Δ(x)≥ d+ 1, for all x ∈ V . In this
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14 E. Mihailescu and B. Stratmann

situation, we can find a Lipschitz continuous function ψ on Λ such that d≤ψ(x)≤Δ(x),
for all x ∈Λ, and such that ψ ≡ d+ 1 on some open ball contained in V .

Now note that Theorem 1 implies that tψ ≥ δs(x), for all x ∈Λ. Also, since ψ(x)≥ d

for all x ∈Λ, we have that tψ ≤ td. Therefore, if, for some x ∈Λ, we have that td = δs(x),

then it follows that

td = tψ = δs(x).

Let us now consider the unique equilibrium measure μψ for the Hölder continuous

potential tdΦs − logψ (the existence and the uniqueness of μψ are guaranteed, since f is

hyperbolic on Λ, see [3, 8, 11]). Also, since μψ is an f-invariant probability measure for

which the Variational Principle holds for the potential tdΦs − log d, we have that

0 = P (tdΦ
s − log d)= P (tdΦ

s − logψ)= hμψ +
∫
Λ

(tdΦ
s − logψ)dμψ ≥ hμψ

+
∫
Λ

(tdΦ
s − log d)dμψ.

This shows that ∫
Λ

logψ dμψ ≤
∫
Λ

log ddμψ.

However, recall that logψ(y) > log d, for all y in some open ball contained in V . Moreover,

since μψ is an equilibrium measure, we have that μψ is positive on Bowen balls [3, 21]

and hence, it is positive on any open set in Λ. Clearly, this gives a contradiction and

therefore, it follows that Δ≡ d on a dense open set in Λ.

Now in order to show that, if Δ≡ d on an open dense set then δs(y)= td for all

y∈Λ, let us define the following set:

An := {x ∈Λ : x has precisely dnn-preimages yi and Δ( f j(yi))= d,

for all 0 ≤ j ≤ n and 1 ≤ i ≤ dn}

The aim is to show that An is open and dense in Λ, for each n∈ N. For this, we first

show that A1 is open in Λ. By definition, we have that if x ∈ A1 then x ∈ A and hence,

x has precisely d 1-preimages x1, . . . , xd ∈ A. Now, let y be a point close to x. Since A is

open, we can assume without loss of generality that y∈ A and hence, y has precisely d

preimages y1, . . . , yd ∈Λ. Since d is the least value Δ can attain on Λ and since f has no

critical points in Λ, we have that each of the yi is close to one of the xj. Since A is open

and since the xj are contained in A, it follows that yi ∈ A, for all 1 ≤ i ≤ d provided y is

close enough to x. This shows that y∈ A1 and hence it follows that A1 is open in Λ.
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Upper Estimates for Stable Dimensions on Fractal Sets with Variable Numbers of Foldings 15

In order to show that A1 is dense in Λ, consider some open set V in Λ. Since A is

dense in Λ, there exists some point y∈ A∩ V , which must have precisely d 1-preimages

y1, . . . , yd ∈Λ. Now, let B ⊂ A be a small ball centered at y. For each 1 ≤ i ≤ d, choose a

sufficiently small ball Bi centered at yi such that the resulting family of balls is pairwise

disjoint and such that f is injective on Bi and on B ⊂ f(Bi). The aim is to show that B ∩
f(Bi ∩ A) is open and dense in B. Indeed, if z∈ B ∩ f(Bi ∩ A), then z has a 1-preimage zi ∈
Bi ∩ A. Now, if z′ is close enough to z, then z′ belongs to A and hence z′ has a 1-preimage

z′
i ∈ Bi which lies close to zi. Since zi ∈ A and since A is open, it follows that z′

i ∈ A.

This implies then that B ∩ f(Bi ∩ A) is open in B. Also, if there were a nonempty open

set B ′ ⊂ B such that B ′ ∩ f(Bi ∩ A)= ∅, then Bi ∩ f−1(B ′) would be open and nonempty.

Clearly, this contradicts the fact that A dense in Λ. This shows that B ∩ f(Bi ∩ A) must

be open and dense in B, for all 1 ≤ i ≤ d. Since a finite intersection of open and dense

subsets is again open and dense, it now follows that A1 has to be open and dense

in Λ.

Clearly, the same methods as in the previous argument can be used to prove by

way of induction that An is open and dense in Λ, for each n∈ N. Therefore, we now have

that, for each n∈ N, there exists an open dense set An such that for every y∈ An there

exist exactly dn n-preimages y1, . . . , ydn ∈Λ of y such that Δ( fi yj)= d, for each 0 ≤ i ≤ n

and 1 ≤ j ≤ dn. This shows that in the proofs of Theorem 1 and the main theorem of [15]

one can work exclusively with points from
⋃

n∈N
An. Indeed, since An is open and dense

in Λ, it follows that for every z∈ En we can take a point z′ sufficiently close to z such that

fn(z′) ∈ An; thus, we obtain a set E ′
n with the same number of elements as En, which is

again (n, ε)-spanning and which can be used in the condition on the pressure, in order

to obtain good covers of Ws
r (x) ∩Λ. Then all the iterates up to order n of any z′ ∈ E ′

n will

have exactly d 1-preimages in Λ and thus we obtain δs(x)= td, for all points x ∈Λ. �

Proof of Proposition 2. (a) In the sequel, let x ∈Λ be fixed and put W := Ws
r (x) ∩Λ. As in

the proof of Theorem 1, for each ε > 0 sufficiently small, there exists n0 ∈ N and a minimal

(n0, ε)-spanning set En0 forΛ such that for each t> tω sufficiently large we have, for some

fixed β > 0, ∑
z∈En0

|D fn0
s (z)|t

ω( f(z) · · ·ω( fn0 z)
< e−βn0 <

1

2
. (7)

Let us assume En0 =: {e1, . . . , em0}. As before, define Un(z) := fn(Bn(z, ε)) ∩ Ws
r (x),

for n∈ N and z∈Λ. The aim is to construct a covering of W which consists of sets of

comparable diameter. For this, let {|D fn0
s (z)| : z∈ En0} =: {δ1, . . . , δm0} and then define for
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16 E. Mihailescu and B. Stratmann

n∈ N the value χ(n) by

χ(n) := inf

{
n∏

i=1

δ ji : 1 ≤ ji ≤ m0

}
.

Now, for each w ∈Λ and for each nn0-preimage w(−nn0) ∈Λ of w, we have that f jn0

(w(−nn0)) ∈ Bn0(zj, ε), for each 0 ≤ j ≤ n− 1. From this, we deduce that |D fnn0
s (w(−nn0))| ≥

χ(n). Next observe that in general, given any full prehistory ŵ= (w,w−1, . . .) ∈ Λ̂ of some

element w ∈Λ, there exists k(ŵ,n) ∈ N such that |D fk(ŵ,n)n0
s (w−k(ŵ,n)n0)| is comparable to

χ(n), that is,

C −1
0 · χ(n) < |D fk(ŵ,n)n0

s (w−k(ŵ,n)n0)|< C0 · χ(n),

where we have put C0 := supz∈Λ ·|D fn0
s (z)|. This shows that for w ∈ W we have that the

diameter diam Uk(ŵ,n)n0(w−k(ŵ,n)n0) is comparable to χ(n), where the comparability con-

stant does depend neither on w nor on n. Hence, the sets Uk(ŵ,n)n0(w−k(ŵ,n)n0) provide a

covering of W and their diameters are all of size comparable to χ(n). For later use, let us

remark that one can choose a point zk(ŵ,n)(ŵ) ∈ En0 such that w−n0k(ŵ,n) ∈ Bn0(zk(ŵ,n)(ŵ), ε)

and similarly, points zk(ŵ,n)− j(ŵ) ∈ En0 such that fn0 j(w−n0k(ŵ,n)) ∈ Bn0(zk(ŵ,n)− j(ŵ), ε), for

each 1 ≤ j < k(ŵ,n). Then recalling that En0 =: {e1, . . . , em0}, the inequality in (7) reads:

m0∑
i=1

δt
i

ω( f(ei)) · · ·ω( fn0(ei))
<

1

2
.

By raising both sides of this inequality to the power p∈ N and then summing over p, we

obtain

∑
p∈N

(
m0∑
i=1

δt
i

ω( f(ei)) · · ·ω( fn0(ei))

)p

=
∑
p∈N

∑
(i1,...,ip)∈{1,...,m0}p

δt
i1 · · · δt

ip

(ω( f(ei1)) · · ·ω( fn0(ei1))) · . . . · (ω( f(eip)) · · ·ω( fn0(eip)))
< 1. (8)

Let us now again consider some point w ∈Λ and its full prehistory

ŵ= (w,w−1, . . .) ∈ Λ̂. By the above, we then have that the orbit of w−k(ŵ,n)n0 under the

map fk(ŵ,n)n0 is shadowed by the consecutive linking of the n0-orbits of k(ŵ,n) points

from En0 . Then, the summand of the corresponding sum, associated with this orbit, is of

the form

(diam Uk(ŵ,n)n0(w−k(ŵ,n)n0))
t

(ω(zk(ŵ,n)(ŵ)) . . . ω( fn0(zk(ŵ,n)(ŵ)))) · · · (ω(z1(ŵ)) · · ·ω( fn0(z1(ŵ))))
. (9)
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Upper Estimates for Stable Dimensions on Fractal Sets with Variable Numbers of Foldings 17

We can now use the procedure of successive partial minimization and elimination, which

we used in the proof of Theorem 1, and this then leads to a covering of Ws
r (x) ∩Λ

consisting of sets of diameter comparable to χ(n). Indeed, as in the proof of Theorem 1,

here we use the fact that the denominators of the terms in (8) are products of evaluations

of ω along the forward orbit of the preimages.

In this fashion, we obtain a sum with terms as in (9), which is smaller than or

equal to the sum in (8). To this sum, we can apply the repeated partial minimization

procedure as in the proof of Theorem 1, in order to extract a subcover V such that in

the associated sum the denominators are successively eliminated; therefore, we arrive

at the inequality ∑
U∈V

(diam U )t < 1.

From this, it clearly follows then, that

βs(y)≤ tω for all y∈ Ws
r (x) ∩Λ.

(b) The aim is to show that the stable upper box-counting dimension βs is con-

stant on Λ. For this, note that since f is transitive on Λ, there must exist a point x ∈Λ
the set of preimages of which is dense in Λ. Therefore, if y∈Λ is some fixed arbitrary

point and if ε > 0, then there exists some n-preimage x−n of x such that d(x−n, y)= ε, for

certain n∈ N.

Then the local product structure on Λ (see [8]) implies that, if for some z∈Λ
the local unstable manifold Wu

r (ẑ) intersects Ws
r (y), then it also intersects Ws

r (x−n) at

a unique point contained in Λ. Likewise, any local unstable manifold, which inter-

sects Ws
r (x−n), will also intersect Ws

r (y) in a point from Λ. Note that if Ws
r (y) ∩Λ

is covered by balls U ∈ U of radius ε > 0, then the set Ws
r (x−n) ∩Λ is covered by the

same number of balls of radius at most C ′ε, for some fixed constant C ′ > 0. This fol-

lows, since the intersection Ws
r (x−n) ∩⋃ẑ∈Λ̂,z∈U Wu

r (ẑ) is contained in a ball of radius

C ′ε; indeed d(x−n, y)= ε and the inclination of local unstable manifolds with respect

to Ws
r (y) is bounded from below, a consequence of the uniform hyperbolicity of

f on Λ.

Also, if we cover Ws
r (x−n) ∩Λ with balls of radius ε, then we can consider all

the local unstable manifolds through the points of each of these balls, in order to

obtain balls of radius at most C ′ε that are contained in Ws
r (y). However, by setting

ε′ := ε|D fs(x−n)|n for ε > 0 sufficiently small, we have that every covering of Ws
r (x) ∩Λ

by balls of radius ε′ determines a covering of Ws
r (x−n) ∩Λ by balls of radius ε; and vice
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18 E. Mihailescu and B. Stratmann

versa. Therefore, we obtain that

βs(y)= βs(x) for all y∈Λ,

and consequently it follows that, the stable upper box dimension function is constant

on the fractal Λ. �

Remark. Let us assume for a moment that the following condition is satisfied: if

D is the maximum possible value of Δ on Λ, then, for each 1 ≤ i ≤ D − 1, the sets

Λi := {x ∈Λ :Δ(x)≤ i} have their respective closure contained in Λi+1. Note that, by

the upper semi-continuity of Δ on Λ, we have that the set ΛD := {x ∈Λ :Δ(x)= D} is

closed in Λ. Also, the upper semi-continuity of Δ implies that Λi is open in Λ, for

each 1 ≤ i ≤ D − 2. Owing to our assumption here, it is possible to fix some neigh-

bourhood Λi(ε) of Λ̄i such that Λi(ε)⊂Λi+1, for each 1 ≤ i ≤ D − 2. Also, let us fix

some neighbourhood ΛD−1(ε) of the closure of ΛD−1. Then define K0 :=ΛD \ΛD−1(ε),

K1 := Λ̄D−1 \ΛD−2(ε), K2 := Λ̄D−2 \ΛD−3(ε), . . . , KD−1 := Λ̄1 and note that the family {Kj :

0 ≤ j < D} consists of pairwise disjoint compact sets.

Using the above disjoint subsets, we infer that there exists a continuous func-

tion ψ on Λ such that ψ(x)= D for all x ∈ K0, D − 1 ≤ψ(x)≤ D for x ∈ΛD−1(ε) \ Λ̄D−1,

ψ(x)= D − 1 for x ∈ K1, and D − 2 ≤ψ(x)≤ D − 1 for x ∈ΛD−2(ε) \ Λ̄D−2, which can be

continued until we reach Λ1. By construction, we then have that Δ(x)≥ψ(x), for all

x ∈Λ. By applying Theorem 1, it follows that δs(x)≤ tψε , for all x ∈Λ and ε > 0. Also, by

choosing ε≥ ε′ appropriately, we can assume that Λi(ε
′)⊂Λi(ε). Therefore, we have for

each x ∈Λ that ψε(x) is increasing, for ε tending to zero. This implies that there exists

t∗ such that tψε tends to t∗ when ε tending to zero. Therefore, δs(x)≤ t∗, for every point

x ∈Λ. �

4 Two Examples

Example 1. We assume that the reader is familiar with the type of horseshoes intro-

duced by Simon and Solomyak [27]. They considered horseshoes with overlaps in R
3,

which are given by a C1+ε-transformation f , defined by

f(x, y, z) := (γ (x, z), η(y, z), ψ(z)) for all (x, y, z) ∈ [0,1] × [0,1] × I,

where I :=⋃m
i=1 ∈ Ii denotes the union of m compact pairwise disjoint intervals

I1, . . . , Im ⊂ (0,1); we also assume that m ≥ 3, that λ1 < |γ ′
x|, |η′

y|<λ2 for some 0<λ1 <

λ2 <
1
2 , that |ψ ′|> 1 on I, and that ψ(Ii)= [0,1], for all i = 1, . . . ,m. The basic set Λ of f is
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defined as before, namelyΛ :=⋂
n∈Z

fn([0,1]3). Let us now consider the following smooth

perturbations fτ of f :

fτ (x, y, z) := (γ (x, z)+ τi,1, η(y, z)+ τi,2, ψ(z)) for all (x, y, z) ∈ [0,1] × [0,1] × Ii,1 ≤ i ≤ m.

(10)

We will say that the parameter τ := (τ1,1, τ1,2, . . . , τm,1, τm,2) is f-admissible if we have the

condition:

fτ

( ⋃
1≤i≤m

[0,1]2 × Ii

)
⊂ (0,1)2 × [0,1].

It can be checked that the set of f-admissible parameters τ , is a nonempty open subset

of R
2m. Also, due to the expansion in the z-direction as well as the contractions with

respect to the (x, y)-coordinates, one can show that fτ is hyperbolic on the basic set Λτ

associated with fτ .

As in [27], one then verifies that for Lebesgue almost every f-admissible τ, we

have that the stable dimension of Λτ is given by the maximum of the zeros s1, and s2,

respectively, of certain pressure functions of log |γ ′
x|, and log |η′

y|, respectively, on the

symbolic space Σm. Let us now assume that on [0,1] × I, we have

|γ ′
x| = |η′

y| ≡ 1/m.

Then, from the proof of Theorem 1(i) of [27] and the fact that in this case both zeros

s1 and s2 are equal to 1, it follows that the stable dimension of Λτ is equal to 1, for

Lebesgue-almost every f-admissible τ .

However, in the above case we have that the zero t1,τ of the pressure function

t 	→ P fτ |Λτ (tΦ
s
τ ) for the stable potential function Φs

τ , is also equal to 1. This follows since

Φs
τ ≡ − log m, and since the topological entropy of fτ |Λτ is equal to log m. This latter fact

about entropy holds since the spanning sets of fτ |Λτ are determined only by the dynam-

ics of ψ in the z coordinate; however, this dynamics in the z-direction is conjugated to

the shift σm on Σm (since ψ expands Ii onto the whole interval [0,1] for each i = 1, . . . ,m)

and, as is well known, h(σm)= log m.

This shows then that t1,τ = 1. Also note that if |γ ′
x| = |η′

y| ≡ 1/m on [0,1] × I, then

fτ is c-conformal. Therefore, since δs = t1,τ , we can now apply Corollary 1, which then

gives that almost every horseshoe fτ has an open dense set of points in its associated

basic set Λτ such that each of these points has precisely one fτ -preimage in Λτ . In con-

clusion, for the above choice of auxiliary functions γ and η, we have now shown that

Lebesgue-almost every translation fτ has a similar behavior as that of a homeomor-

phism, on its associated basic set Λτ . We summarize this result in the following:
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Corollary 3. Let ( fτ )τ denote the family of horseshoes with overlaps given in (10), and

assume that on [0,1] × I, we have |γ ′
x| = |η′

y| ≡ 1/m. Also, let Λτ :=⋂
n∈Z

fn
τ ([0,1]3) denote

the associated basic set of fτ . Then for Lebesgue-almost every f-admissible parameter

τ , there exists an open dense set Aτ in Λτ , such that every x ∈ Aτ has precisely one

fτ -preimage in Λτ . ��

Example 2. In [13], the first author gave an example of a family of nonlinear hyper-

bolic skew products for which the preimage counting function is not constant on their

associated basic sets. Let us first briefly recall the construction of this family. For

α ∈ (0,1), let I α1 , I α2 ⊂ I := [0,1] be two intervals such that I α1 ⊂ [ 1
2 − ε(α), 1

2 + ε(α)] and

I α2 ⊂ [1 − α − ε(α),1 − α + ε(α)], for some 0< ε(α) < α2 sufficiently small. Let g : I α1 ∪ I α2 →
I be a strictly increasing smooth function with the property that g(I α1 )= g(I α2 )= I . Also,

assume that there exists a large number β > 0 such that β2 > g′(x) > β, for each x ∈ I α1 ∪
I α2 . Then there exist intervals I α11, I α12 ⊂ I α1 and I α21, I α22 ⊂ I α2 such that g(I α11)= g(I α21)= I α1
and g(I α12)= g(I α22)= I α2 . For

Jα := I α11 ∪ I α12 ∪ I α21 ∪ I α22, and Jα∗ := {x ∈ Jα : gi(x) ∈ Jα for all i ≥ 0},

one can then define the skew-product fα : Jα∗ × I → Jα∗ × I by the formula

fα(x, y) := (g(x),hα(x, y)) where hα(x, y) :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ψ1,α(x)+ s1,αy, x ∈ I α11,

ψ2,α(x)+ s2,αy, x ∈ I α21,

ψ3,α(x)− s3,αy, x ∈ I α12,

s4,αy, x ∈ I α22,

(11)

where s1,α, . . . , s4,α ∈ ( 1
2 − ε0,

1
2 + ε0) denote some arbitrary fixed numbers close to 1

2 and

ψ1,α, ψ2,α, ψ3,α : I → R are C2-functions which are ε0-close (with respect to the C1-metric)

to the linear functions given by x 	→ x, x 	→ 1 − x and x 	→ 1, respectively. Let us also use

the following shorter notation:

hx,α(y) := hα(x, y) for any (x, y) for which this is well-defined.

By defining hn
z,α := hfn(z),α ◦ . . . ◦ hz,α for each n≥ 0, the basic set Λα of the above system is

given by

Λα =
⋃
x∈Jα∗

⋂
n≥0

⋃
z∈g−n(x)∩Jα∗

hn
z,α(I ).

 by guest on A
ugust 17, 2013

http://im
rn.oxfordjournals.org/

D
ow

nloaded from
 

http://imrn.oxfordjournals.org/


Upper Estimates for Stable Dimensions on Fractal Sets with Variable Numbers of Foldings 21

In [13], it was shown that for α small enough, the map fα is a hyperbolic endo-

morphism on Λα and that there exist two infinite sets Aα, Bα ⊂Λα, which are both not

dense in Λα, such that on Aα the preimage counting function Δ is constant equal to 1,

whereas for points in Bα we have that Δ is constant equal to 2. Since Δ is upper semi-

continuous on Λα, it follows that Aα is open in Λα and that Bα is closed in Λα.

We now want to obtain an estimate of the stable dimension δs(·) by using

Theorem 1. There exists a nonconstant continuous function ω such that 1 ≤ω(x)≤ 2 for

all x ∈Λα, and ω(x)= 1 for all x ∈ Aα. Hence, we have ω(x)≤Δ(x), x ∈Λα. The function

ω may be viewed as an “approximation” of the function χBα + 1. Then, an application of

Theorem 1 gives the following estimate:

δs(y)≤ tω for all y∈Λα

Similarly, as before consider an increasing sequence of nonconstant continuous func-

tions ωm such that ωm ≡ 1 on Aα, and 1 ≤ωm ≤ 2 onΛα. For each member of this sequence,

we can now argue as before. This leads to improvements of the upper bounds for δs(y).

Namely with tωm denoting the unique zero of the pressure function associated with ωm,

we have that the positive numbers tωm are decreasing when m → ∞, and

δs(y)≤ tωm for all y∈Λα, m ∈ N.

In particular, by applying Proposition 2, we also obtain that the stable upper box dimen-

sion βs is constant on Λα and bounded above by tωm , for each m ∈ N. �
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