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Abstract. The dynamics of endomorphisms (smooth non-invertible maps) presents many
differences from that of diffeomorphisms or that of expanding maps; most methods from
those cases do not work if the map has a basic set of saddle type with self-intersections.
In this paper we study the conditional measures of a certain class of equilibrium measures,
corresponding to a measurable partition subordinated to local stable manifolds. We show
that these conditional measures are geometric probabilities on the local stable manifolds,
thus answering in particular the questions related to the stable pointwise Hausdorff and
box dimensions. These stable conditional measures are shown to be absolutely continuous
if and only if the respective basic set is a non-invertible repeller. We find also invariant
measures of maximal stable dimension, on folded basic sets. Examples are given, too, for
such non-reversible systems.

1. Background and outline of the paper
In this paper we will study non-invertible smooth (say C 2) maps on a Riemannian
manifold M , called endomorphisms, which are uniformly hyperbolic on a basic set3. Here
by a basic set for an endomorphism f : M→ M , we understand a compact topologically
transitive set 3, which has a neighbourhood U such that 3=

⋂
n∈Z f n(U ).

Considering non-invertible transformations makes sense from the point of view of
applications, since the evolution of a non-reversible physical system is usually given by
a time-dependent differential equation dx(t)/dt = F(x(t)) whose solution, the flow ( f t )t ,
may not consist necessarily of diffeomorphisms. However, if we look at the ergodic
(qualitative) properties of the associated flow (equilibrium measures, Lyapunov exponents,
conditional measures associated to measurable partitions), we may replace it with a discrete
non-invertible dynamical system [5].

The theory of hyperbolic diffeomorphisms (Axiom A) has been studied by many authors
(see for example [4, 5, 7, 19] and the references therein); also, the theory of expanding
maps was studied extensively (see for instance [18]), and the fact that the local inverse
iterates are contracting on small balls was crucial in that case.

http://www.journals.cambridge.org


http://journals.cambridge.org Downloaded: 14 Sep 2011 IP address: 67.194.1.183

1500 E. Mihailescu

However, the theory of smooth non-invertible maps which have saddle basic sets is
significantly different from the two above-mentioned cases. Most methods of proof from
diffeomorphisms or expanding maps do not work here due to the complicated overlappings
and foldings that the endomorphism may have in the basic set 3. The unstable manifolds
depend in general on the choice of a sequence of consecutive preimages, not only on the
initial point (as in the case of diffeomorphisms). So, the unstable manifolds do not form
a foliation; instead, they may intersect each other both inside and outside 3. Moreover,
the local inverse iterates do not contract necessarily on small balls; instead, they will grow
exponentially (at least for some time) in the stable direction. Also, an arbitrary basic set 3
is not necessarily totally invariant for f , and there do not always exist Markov partitions
on 3. We mention also that endomorphisms on Lebesgue spaces behave differently than
invertible transformations even from the point of view of classifications in ergodic theory;
see [15].

We will work in the following with a hyperbolic endomorphism f on a basic set 3;
such a set is also called a folded basic set (or a basic set with self-intersections). By an
n-preimage of a point x we mean a point y such that f n(y)= x . By prehistory of x we
understand a sequence of consecutive preimages of x , belonging to 3, and denoted by
x̂ = (x, x−1, x−2, . . .), where f (x−n)= x−n+1, n > 0, with x0 = x . And, by an inverse
limit of ( f, 3) we mean the space of all such prehistories, denoted by 3̂. For more
about these aspects, see [11, 17]. By the definition of a basic set 3, we assume that f
is topologically transitive on 3 as an endomorphism, i.e. that there exists a point in 3
whose iterates are dense in 3.

Hyperbolicity is defined for endomorphisms (see [19]) similarly as for diffeomorphisms,
with the crucial difference that now the unstable spaces (and thus the local unstable
manifolds) depend on whole prehistories; so we have the stable tangent spaces E s

x , x ∈3,
the unstable tangent spaces Eu

x̂ , x̂ ∈ 3̂, the local stable manifolds W s
r (x), x ∈3 and the

local unstable manifolds W u
r (x̂), x̂ ∈ 3̂. As there may be (infinitely) many unstable

manifolds going through a point, we do not have here a well-defined holonomy map
between stable manifolds, by contrast to the diffeomorphism case. For more details on
endomorphisms, see [9, 11, 13, 19], etc.

Definition 1. Consider a smooth (say C 2) non-invertible map f which is hyperbolic on the
basic set3, such that the critical set of f does not intersect3. Define the stable potential of
f as8s(y) := log |D fs(y)|, y ∈3. By stable dimension (at a point x ∈3) we understand
the Hausdorff dimension δs(x) := HD(W s

r (x) ∩3). Denote also by C f the set of critical
points of f .

We will say that f is c-hyperbolic on 3 if f is hyperbolic on 3, C f ∩3= ∅ and f is
conformal on the local stable manifolds over 3.

The relations between thermodynamic formalism and the dynamics of diffeomorphisms
or expanding maps form a rich field (see for instance [1, 4, 5, 8, 18], etc). And, in [12–14],
we studied some aspects of the thermodynamic formalism for non-invertible smooth maps.

Examples of hyperbolic endomorphisms are numerous, for instance hyperbolic
solenoids and horseshoes with self-intersections [3], polynomial maps in higher dimension
hyperbolic on certain basic sets, skew products with overlaps in their fibers [14], hyperbolic
toral endomorphisms or perturbations of these, etc.
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In this non-invertible setting, a special importance is presented by constant-to-1
endomorphisms. For such endomorphisms, we study the family of conditional measures of
a certain equilibrium measure, a family associated to a measurable partition subordinated
to local stable manifolds.

If a topological condition is satisfied, namely if the number of preimages remaining
in 3 is constant along 3, we showed in [13] the following.

THEOREM. (Independence of stable dimension) If the endomorphism f is c-hyperbolic on
the basic set 3 (see Definition 1) and if the number of f -preimages of any point from 3,
remaining in 3, is constant and equal to d, then the stable dimension δs(x) is equal to the
unique zero t s

d of the pressure function t→ P(t8s
− log d), for any x ∈3. The common

value of the stable dimension along 3 will be denoted by δs .

In fact, if f is open on 3, we proved (see [13] and [12, Proposition 1]) the following
proposition.

PROPOSITION. [12, 13] Let us consider an endomorphism f : M→ M which has a basic
set 3, disjoint from the critical set of f . Assume that 3 is connected and f |3 :3→3 is
open. Then, the cardinality of the set f −1(x) ∩3 is constant, when x ranges in 3.

Hence, the openness of f on the folded basic set3 is very much related to the condition
that the number of preimages of a point, remaining in 3, is constant. Examples of
hyperbolic open endomorphisms on saddle sets are given at the end of the paper.

Definition 2. Let us consider an endomorphism f c-hyperbolic on the basic set 3, such
that the number of f -preimages of any point from3, remaining in3, is constant and equal
to d. Then, we call the equilibrium measure of δs

·8s the stable equilibrium measure of f
on 3, and denote it by µs .

We notice that, since the stable foliation is Lipschitz continuous for endomorphisms
(see [13]), the potential δs

·8s is Holder continuous; thus, it can be shown by lifting the
measure to the inverse limit 3̂ that there exists a unique equilibrium measure µs of δs

·8s

(we can apply the results for homeomorphisms from [7] on the inverse limit 3̂, in order to
get the uniqueness).

We will show in Theorem 1 that if the number of f -preimages in 3 is constant, then
the conditional measures of µs associated to a measurable partition subordinated to the
local stable manifolds are geometric probabilities of exponent δs . This will answer then
in Corollary 1 the question of the pointwise Hausdorff dimension and the pointwise box
dimension of the equilibrium measure µs on local stable manifolds (see for instance [1] for
definitions). In the constant-to-1 non-invertible case, we show in particular in Corollary 2
that these stable conditional measures are measures of maximal dimension (in the sense
of [2]) on the intersections of local stable manifolds with the folded basic set 3.

Our approach will be different both from the case of diffeomorphisms and from
that of expanding maps. In Proposition 1 (which is the main ingredient for the proof
of Theorem 1), we compare the equilibrium measure on various different components
of the preimage set of a small ‘cylinder’ around an unstable manifold. We will have to
carefully estimate the equilibrium measure µs on the different pieces of the iterates
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of Bowen balls, in order to get good estimates for the cylinders around local unstable
manifolds, B(W u

r (x̂), ε). This will be done by a process of disintegrating the measure
on the various components of the preimages of borelian sets, and then by successive
re-combinations. Thus, we will re-obtain the measure µs on an arbitrary open set, and then
will use the essential uniqueness of the family of conditional measures of µs ; for back-
ground on conditional measures associated to measurable partitions on Lebesgue spaces,
see [17].

In Corollary 3 we prove that the conditional measures ofµs on the local stable manifolds
over 3 are absolutely continuous if and only if the stable dimension is equal to the real
dimension of the stable tangent space dim E s

x , and we show that this is equivalent to 3
being a folded repeller.

We will also give at the end examples of hyperbolic constant-to-1 folded basic sets for
which Theorem 1 and its corollaries do apply. In particular, we provide examples of folded
repellers obtained for perturbation endomorphisms, which are not Anosov and for which
we prove the absolute continuity of the stable conditional measures on their (nonlinear)
stable manifolds.

2. Main proofs and applications

For our first result we assume only that f is a smooth endomorphism which is hyperbolic
on a basic set3. We will give a comparison between the values of an arbitrary equilibrium
measure µφ (corresponding to a Holder continuous potential φ on 3) on the different
pieces/components of the preimages of a borelian set; this will be useful when we will
estimate, later on, the measure µs on certain sets.

By a Bowen ball Bn(x, ε) we understand the set {y ∈3, d( f i y, f i x) < ε, i =
0, . . . , n}, for x ∈3 and n > 1. If φ is a continuous real function on3 and m is a positive
integer, we denote by Smφ(y) := φ(y)+ φ( f (y))+ · · · + φ( f m(y)) the consecutive sum
of φ on the n-orbit of y ∈3. And, by P(φ) we denote the topological pressure of the
potential φ with respect to the function f |3.

PROPOSITION 1. Let f be an endomorphism, hyperbolic on a basic set 3; consider also
a Holder continuous potential φ on 3 and let µφ be the unique equilibrium measure
of φ. Let us consider a small ε > 0, two disjoint Bowen balls Bk(y1, ε), Bm(y2, ε) and
a borelian set A ⊂ f k(Bk(y1, ε)) ∩ f m(Bm(y2, ε)), such that µφ(A) > 0; denote A1 :=

f −k A ∩ Bk(y1, ε), A2 := f −m A ∩ Bm(y2, ε) and assume that µφ(∂A1)= µφ(∂A2)= 0.
Then, there exists a positive constant Cε independent of k, m, y1, y2 such that

1
Cε
µφ(A2) ·

eSkφ(y1)

eSmφ(y2)
· P(φ)m−k

≤ µφ(A1)≤ Cεµφ(A2) ·
eSkφ(y1)

eSmφ(y2)
· P(φ)m−k .

Proof. Let us fix a Holder potential φ. We will denote the equilibrium measure µφ by µ
to simplify notation. We will work with f restricted to 3.

From construction, we have f k(A1)= f m(A2); this holds since f (3)=3, as the
definition of the basic set 3=

⋂
n∈Z f n(U ) given at the beginning of §1 tells us (see

also [7]).
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Assume for example that m ≥ k. Now, the equilibrium measure µ can be considered as
the limit of the sequence of measures (see [7])

µ̃n :=
1

P( f, φ, n)
·

∑
x∈Fix( f n)

eSnφ(x)δx ,

where P( f, φ, n) :=
∑

x∈Fix( f n) eSnφ(x), n ≥ 1.
So, we have

µ̃n(A1)=
1

P( f, φ, n)
·

∑
x∈Fix( f n)∩A1

eSnφ(x), n ≥ 1. (1)

Let us consider now a periodic point x ∈ Fix( f n) ∩ A1; by definition of A1, it follows
that f k(x) ∈ A, so there exists a point y ∈ A2 such that f m(y)= f k(x). However, the
point y does not have to be periodic.

Now, we will use the specification property [4, 7] on the hyperbolic compact locally
maximal set 3: if ε > 0 is fixed, then there exists a constant Mε > 0 such that for all
n >> Mε there exists a z ∈ Fix( f n+m−k) such that z ε-shadows the (n + m − k − Mε)-
orbit of y.

Let now V be an arbitrary neighbourhood of the set A2 such that V ⊂ Bm(y2, ε).
Consider two points x, x̃ ∈ Fix( f n) ∩ A1 and assume that the same periodic point z ∈
V ∩ Fix( f n+m−k) corresponds to both x and x̃ by the above procedure. This means
that the (n − k − Mε)-orbit of f m z ε-shadows the (n − k − Mε)-orbit of f k x and also
the (n − k − Mε)-orbit of f k x̃ . Hence, the (n − Mε − k)-orbit of f k x 2ε-shadows the
(n − Mε − k)-orbit of f k x̃ . But, recall that we chose x, x̃ ∈ A1 ⊂ Bk(y1, ε); hence,
x̃ ∈ Bn−Mε (x, 2ε).

Now, we can split the set Bn−Mε (x, 2ε) into at most Nε smaller Bowen balls of type
Bn(ζ, 2ε). In each of these (n, 2ε)-Bowen balls Bn(ζ, 2ε) we may have at most one fixed
point for f n . This holds since fixed points for f n are solutions to the equation f nξ = ξ

and, on tangent spaces, we have that D f n
− Id is a linear map without eigenvalues of

absolute value 1. Thus, if d( f iξ, f iζ ) < 2ε, i = 0, . . . , n and if ε is small enough, we
can apply the inverse function theorem at each step. Therefore, there exists only one fixed
point for f n in each Bowen ball Bn(ζ, 2ε). Hence, there exist at most Nε periodic points
from Fix( f n) ∩3 having the same periodic point z ∈ V attached to them by the above
procedure.

Let us notice also that, if x, x̃ have the same point z ∈ V ∩ Fix( f n+m−k) attached to
them, then, as before, x̃ ∈ Bn−Mε (x, 2ε). So, the distances between iterates are growing
exponentially in the unstable direction, and decrease exponentially in the stable direction.
Thus, we can use the Holder continuity of φ and a bounded distortion lemma to prove that

|Snφ(x)− Snφ(x̃)| ≤ C̃ε,

for some positive constant C̃ε depending on φ (but independent of n, x). This can
be used then in the estimate for µ̃n(A1), according to equation (1). We use the fact
that if z ∈ Bn+m−k−Mε (y, ε), then f m(z) ∈ Bn−Mε−k( f m y, ε); also recall that f k x =
f m y, so f m z ∈ Bn−Mε−k( f k x, ε). Then, from the Holder continuity of φ and the fact
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that x ∈ A1 ⊂ Bm(y1, ε), it follows again by a bounded distortion lemma that there exists
a constant C̃ε (denoted as before without loss of generality) satisfying

|Sn+m−kφ(z)− Snφ(x)| ≤ |Skφ(y1)− Smφ(y2)| + C̃ε, (2)

for n > n(ε, m).
But, from [7, Proposition 20.3.3] (which extends immediately to endomorphisms), we

have that there exists a positive constant cε such that for sufficiently large n,

1
cε

en P(φ)
≤ P( f, φ, n)≤ cεe

n P(φ),

where the expression P( f, φ, n) was defined immediately before equation (1). Hence, in
our case, if n > n(ε, m), we obtain

1
cε

e(n+m−k)P(φ)
≤ P( f, φ, n + m − k)≤ cεe

(n+m−k)P(φ)

and
1
cε

en P(φ)
≤ P( f, φ, n)≤ cεe

n P(φ). (3)

Recall also that there are at most Nε points x ∈ Fix( f n) which have the same attached
z ∈ V ∩ Fix( f n). Therefore, by using equations (1), (2) and (3), we can infer that there
exists a constant Cε > 0 such that for n large enough (n > n(ε, m)),

µ̃n(A1)≤ Cεµ̃n+m−k(V ) ·
eSkφ(y1)

eSmφ(y2)
· P(φ)m−k, (4)

where we recall that A1 ⊂ Bm(y1, ε), A2 ⊂ Bm(y2, ε). But, since ∂A1, ∂A2 have
µ-measure zero, we obtain

µ(A1)≤ Cεµ(V )
eSkφ(y1)

eSmφ(y2)
· P(φ)m−k .

But, V has been chosen arbitrarily as a neighbourhood of A2; hence,

µ(A1)≤ Cεµ(A2)
eSkφ(y1)

eSmφ(y2)
P(φ)m−k .

Similarly, we prove also the other inequality; hence, we are done. 2

Let us recall a few notions about measurable partitions (see [17]). Let ζ be a partition
of a Lebesgue space (X, B, µ) with B-measurable sets. Subsets of X that are unions of
elements of ζ are called ζ -sets. For an arbitrary point x ∈ X (modulo µ), we denote the
unique set which contains x by ζ(x). By a basis for ζ we understand a countable collection
{Bα, α ∈ A} of measurable ζ -sets so that for any two elements C, C ′ ∈ ζ , there exists some
α ∈ A with C ⊂ Bα, C ′ ∩ Bα = ∅ or vice versa, i.e. C ∩ Bα = ∅, C ′ ⊂ Bα . A partition ζ
is called measurable if it has a basis as above.

Now, we recall briefly the notion of a family of conditional measures associated to a
measurable partition ζ . Assume that we have an endomorphism f on a compact set3, and
consider a probability borelian measure µ on 3 which is f -invariant. If ζ is a measurable
partition of (3, B, µ), denote by (3/ζ, µζ ) the factor space of 3 relative to ζ . Then, we
can attach an essentially unique collection of conditional measures {µC }C∈ζ satisfying two
conditions (see [17]):
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(i) (C, µC ) is a Lebesgue space;
(ii) for any measurable set B ⊂3, the set B ∩ C is measurable in C for µζ -almost all

points C ∈3/ζ , the function C→ µC (B ∩ C) is measurable on 3/ζ and µ(B)=∫
3/ζ

µC (B ∩ C) dµζ (C).

Definition 3. If f is a hyperbolic map on a basic set 3 and if µ is an f -invariant borelian
measure on 3, then a measurable partition ζ of (3, B(3), µ) is said to be subordinated
to the local stable manifolds if for µ-almost everywhere x ∈3, we have ζ(x)⊂W s

loc(x),
and ζ(x) contains an open neighbourhood of x in W s

loc(x) (with respect to the topology
induced on the local stable manifold).

Let us fix an f -invariant borelian measure µ on 3. Since we work with a uniformly
hyperbolic endomorphism, we can construct a measurable partition ξ (with respect to µ)
subordinated to the local stable manifolds, in the following way: first we know that there is
a small r0 > 0 such that for each x ∈3 there exists a local stable manifold W s

r0
(x). Then,

it is possible to take a countable partition P of 3 (modulo µ) with open sets, each having
diameter less than r0 and such that the boundary of each set from P has µ-measure zero
(see for example [7]). Now, for every open set U ∈ P , and x ∈U ⊂3, we consider the
intersection between U and the unique local stable manifold going through x ; denote this
intersection by ξ(x). It is clear that ξ(x)= ξ(y) if and only if both x, y are in the same set
U ∈ P and they are on the same local stable manifold W s

r0
(z) for some z ∈3. Now, take the

collection ξ of all the borelian sets ξ(x), x ∈U,U ∈ P . We see easily that ξ is a partition
of 3 (modulo sets of µ-measure zero) and that ξ is measurable, since P was assumed
countable and, inside each member U ∈ P , we can separate any two local stable manifolds
with the help of a countable collection of ξ -sets (which are neighbourhoods of local stable
manifolds). Therefore, we have concluded the construction of the measurable partition ξ
which is subordinated to the local stable manifolds. Modulo a set of µ-measure zero, we
have thus a partition with pieces of local stable manifolds, ξ(x)⊂W s

r(y(x))(y(x)), x ∈3.
In fact, without loss of generality, we may assume that for each member A ∈ ξ there exists
some x(A) ∈3 and r(A) ∈ (0, r0) so that W s

r(A)/2(x(A)) ∩3⊂ A ⊂W s
r(A)(x(A)) ∩3.

Remark 1. From the construction above it follows that, outside a set of µ-measure zero,
the radius r(A) can be taken to vary continuously, i.e. there exists a constant χ > 0 such
that for each x in a set of full µ-measure in3, there exists a neighbourhood U (x) of x with
r(ξ(z))/r(ξ(z′))≤ χ, z, z′ ∈U (x).

Notation. In our uniformly hyperbolic setting, with the partition ξ constructed above, we
denote the conditional measure µA by µs

A, for W s
r(A)/2(x(A)) ∩3⊂ A ⊂W s

r(A)(x(A)) ∩
3, A ∈ ξ . We will also denote the set of centres {x(A), A ∈ ξ} by S. In particular, if
µ= µs , we denote the conditional measures by µs

s,A for A ∈ ξ , or by µs
s,x when ξ(x)= A

for µs-almost everywhere x ∈3. Also, we shall denote the probability measure induced
by µs on the factor space 3/ξ by (µs)ξ .

Now, if f is a d-to-1 c-hyperbolic endomorphism on the basic set3, we showed in [13]
that the stable dimension δs(x) at any point x ∈3 is independent of x , and is equal to the
unique zero of the pressure function t→ P(t8s

− log d). Thus, we can talk in this case
about the stable dimension of 3 and will denote it by δs .
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THEOREM 1. Let f be a smooth endomorphism on a Riemannian manifold M, and
assume that f is c-hyperbolic on a basic set of saddle type 3. Let us assume moreover
that f is d-to-1 on 3. Assume that 8s(y) := log |D fs(y)|, y ∈3, that δs is the stable
dimension of 3 and that µs is the equilibrium measure of the potential δs8s on 3. Then,
the conditional measures of µs associated to the partition ξ , namely µs

s,A, are geometric
probabilities, i.e. for (µs)ξ -almost all points πξ (A) of 3/ξ (corresponding to sets A ∈ ξ ),
there exists a positive constant CA such that

C−1
A ρδ

s
≤ µs

s,A(B(y, ρ))≤ CAρ
δs
, y ∈ A ∩3, 0< ρ <

r(A)

2
.

Proof. By using the partition ξ subordinated to local stable manifolds from above, we can
associate conditional measures of µs , denoted by µs

s,A, A ∈ ξ . We want to estimate the
measure µs

s,A of a small arbitrary ball B(y, ρ) centred at some y ∈ A, where W s
r(A)/2(x) ∩

3⊂ A ⊂W s
r(A)(x) ∩3, x = x(A).

Let us first consider an arbitrary set f n(Bn(z, ε)), where we recall that Bn(z, ε) denotes
a Bowen ball, and where ε > 0 is arbitrary but small. This set (i.e. f n(Bn(z, ε))) is
actually a neighbourhood of the local unstable manifold W u

ε ( f̂ nz) corresponding to some
prehistory ( f nz, f n−1z, . . . , z, . . .). We will estimate next the µs-measure of a cross
section of a set f n(Bn(z, ε)), i.e. an intersection of type

B(n, z; k, x; ε) := f n(Bn(z, ε)) ∩ Bk(x, ε),

for arbitrary z, x ∈3 and positive integers n, k .
Now, let us estimate the µs-measure of B(n, z; k, x, ε). Notice that B(n, z; k, x; ε) is

contained in f n(Bn+k(z, ε)). Without loss of generality, we can assume that z = x−n , i.e.
that z itself is the unique n-preimage of x inside Bn(z, ε); if not, then we can replace z by
a point x−n which is ε-shadowed by z up to order n + k, and thus the dynamical behaviour
of z up to order n + k will be the same as that of x−n .

Let us denote the positive quantity |D f n
s (z)| · ε by ρ. Since the endomorphism f

is conformal on local stable manifolds, the diameter of the intersection f n(Bn(z, ε)) ∩
W s

r ( f nz) is equal to 2ρ.
Now, recall that we assumed without loss of generality that f nz = x , and consider all

the finite prehistories of the point x , in 3. We will call then a ρ-maximal prehistory of x
any finite prehistory (x, x−1, . . . , x−p) so that |D f p−1

s (x−p+1)| · ε ≥ ρ but |D f p
s (x−p)| ·

ε < ρ. Clearly, given any prehistory x̂ = (x, x−1, . . .) of x , there exists some positive
integer n(x̂, ρ) such that (x, x−1, . . . , x−n(x̂,ρ)) is a ρ-maximal prehistory. Let us denote

N (x, ρ) := {n(x̂, ρ), x̂ prehistory of x from 3}.

We will consider now the various components of the p-preimages of B(n, z; k, x; ε),
when p ranges in N (x, ρ). We extend the stable diameter of B(n, z; k, x; ε) in
backward time until we reach a diameter of at most ε. As the maximum expansion in
backward time is realized on the stable manifolds (local inverse iterates contract all the
unstable directions), it follows that for any prehistory x̂ of x , there exists a component
of f −n(x̂,ρ)(B(n, z; k, x; ε)) inside the Bowen ball Bn(x̂,ρ)(x−n(x̂,ρ), ε); denote this
component by A(x̂, ρ). We see that all these components A(x̂, ρ) are mutually disjoint
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if ε << ε0, where ε0 is the local injectivity constant of f on 3 (recall that there are no
critical points in 3). Indeed, if the sets A(x̂, ρ) and A(x̂ ′, ρ) would intersect for some
prehistories x̂ = (x, x−1, . . .), x̂ ′ = (x, x ′

−1, . . .) of x then, since they are contained in
Bowen balls, their forward iterates would be 2ε-close. But, then we get a contradiction
since the prehistories x̂, x̂ ′ must contain different preimages x p, x − p′ at some level p,
and these different preimages must be at a distance of at least ε0 from each other. Hence,
either A(x̂, ρ)= A(x̂ ′, ρ) or A(x̂, ρ) ∩ A(x̂ ′, ρ)= ∅.

Now, we will use the f -invariance of the equilibrium measure µs in order to estimate
the µs-measure of the set B(n, z; k, x; ε). Recall that f nz = x and ε|D f n

s (z)| =: ρ. Then,
we have

µs(B(n, z; k, x; ε))=
∑

x̂ prehistory of x

µs(A(x̂, ρ)),

since we showed above that the sets A(x̂, ρ) either coincide or are disjoint.
Now, let us take two sets A(x̂, ρ), A(x̂ ′, ρ), one of them with n(x̂, ρ)= p and the other

with n(x̂ ′, ρ)= p′. We proved in [13] that for a d-to-1 c-hyperbolic endomorphism f on
the basic set 3, we have δs

= t s
d , where t s

d is the unique zero of the pressure function
t→ P(t8s

− log d). Therefore, we can use

P(δs8s)= log d. (5)

Then, from the definition of A(x̂, ε) and by using Proposition 1 (since by taking
n, z, k, x, ε appropriately, we can assume that the measure µs on the boundaries of
A(x̂, ρ), A(x̂ ′, ρ) is zero), we can compare the measure µs on two sets A(x̂, ρ), A(x̂ ′, ρ)
as follows:

1
Cε
µs(A(x̂

′, ρ))
|D f p

s (x−p)|
δs

|D f p′
s (x ′−p′)|

δs
· d p′−p

≤ µs(A(x̂, ρ))≤ Cεµs(A(x̂
′, ρ))

|D f p
s (x−p)|

δs

|D f p′
s (x ′−p′)|

δs
· d p′−p. (6)

In general, if for two variable quantities Q1, Q2, there exists a positive universal
constant c such that 1/cQ2 ≤ Q1 ≤ cQ2, we say that Q1, Q2 are comparable, and will
denote this by Q1 ≈ Q2; the constant c is called the comparability constant.

But, from the definition of n(x̂, ρ), n(x̂ ′, ρ) above (as being the length of the ρ-maximal
prehistory along x̂ , respectively, x̂ ′), and since n(x̂, ρ)= p, n(x̂ ′, ρ)= p′, we obtain that
(x, x−1, . . . , x−p) and (x ′, x ′

−1, . . . , x ′
−p′) are two ρ-maximal prehistories. So, there

exists a constant C > 0 independent of x̂, x̂ ′ (for instance take C = supy∈3(1/|D fs(y)|),
as we assumed that f has no critical points in 3), such that

1
C
|D f p′

s (x
′

−p′)| ≤ |D f p
s (x−p)| ≤ C |D f p′

s (x
′

−p′)|.

Therefore, from relation (6), we obtain

1
Cε
µs(A(x̂

′, ρ))d p′−p
≤ µs(A(x̂, ρ))≤ Cεµs(A(x̂

′, ρ))d p′−p, (7)
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where we used the same constant Cε as in equation (6), without loss of generality.
Hence, the proof will now be reduced to a combinatorial argument about the different
pieces/components of the preimages of various orders of B(n, z; k, x; ε).

However, we assumed that every point from 3 has exactly d f -preimages inside 3.
We use equation (7) in order to compare the µs-measures of the different pieces A(x̂, ρ),
which will then be added successively. Recall that one of these components A(x̂, ρ) is
precisely Bn+k(z, ε). The comparisons will always be made with respect to this component
Bn+k(z, ε). Let us order the integers from N (x, ρ) as

n1 > n2 > · · ·> nT .

We shall add first the measures µs(A(x̂, ρ)) over all the sets corresponding to x̂ with
n(x̂, ρ)= n1, then over those prehistories with n(x̂, ρ)= n2, etc. And, we will use that
any point from 3 has exactly dm m-preimages belonging to 3 for any m ≥ 1. Therefore,
by such successive addition and by using equation (7), we obtain

µs(Bn+k(z, ε)) · d
n
≤ µs(B(n, z; k, x; ε))

=

∑
x̂ prehistory of x

µs(A(x̂, ρ))≤ µs(Bn+k(z, ε)) · d
n,

with the positive constant Cε independent of n, k, z, x .
We use now [11, Theorem 1] which gave estimates for equilibrium measures on Bowen

balls, similar to those from the case of diffeomorphisms (see [7] for example); this was
done by lifting to an equilibrium measure on 3̂. Hence, from the last displayed formula
and equation (5), we obtain

1
Cε

|D f n+k
s (z)|δ

s

dk ≤ µs(B(n, z; k, x; ε))≤ Cε
|D f n+k

s (z)|δ
s

dk . (8)

Let us prove now that, if we vary z, x, k, n, then we can write any open (borelian) set
in 3 as a union of mutually disjoint sets (modulo µs), of type B(n, z; k, x; ε). Consider
sets of type B(n, z; k, x; ε)= f n(Bn(z, ε)) ∩ Bk(x, ε), with f n(z)= x , and such that the
stable side ε|D f n

s (z)| is comparable to the unstable side ε|D f k
u (x)|

−1, i.e. more precisely
such that

1
λu
|D f k

u (x)|
−1
≤ |D f n

s (z)| ≤ λu |D f k
u (x)|

−1, (9)

where λu := supy∈3 |D fu(y)|; such sets will be called round. Notice also that there
exists a sufficiently large constant M > 1, independent of n, z, k, x , such that, if rn(z) :=
|D f n

s (z)|/M , then we have B(x, rn(z))⊂ B(n, z; k, x; ε)⊂ B(x, M · rn(z)). We see now
from equation (9) and since C f ∩3= ∅ that if B(n, z; k, x; ε) is round, then there exists
a constant C1 > 0 independent of n, z, x, k such that

C−1
1 k ≤ n ≤ C1k. (10)

Now, consider some ` ∈ Z, for which there exists another round set B(n + `, z′; k′, x ′; ε)
with f n+`(z′)= x ′ = x and stable side ε|D f n+`

s (z′)| comparable with ε|D f n
s (z)|, with a

fixed comparability constant, namely

inf
y∈3

(|D fs(y)|
2) · |D f n

s (z)| ≤ |D f n+`
s (z′)| ≤ sup

y∈3
(|D fs(y)|

−2) · |D f n
s (z)|. (11)
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In fact, one sees from the uniform hyperbolicity of f , relation (9), (11) and C f ∩3= ∅

that |k − k′| depends only on D f on 3 and that |k − k′| is smaller than some universal
constant k0 > 0. Thus, by applying equations (8), (10) and (11), we obtain that there exists
a constant C2 > 1, independent of n, z, z′, x, k, k′, so that

C−1
2 · µs(B(n + `, z′; k′, x ′; ε)) ≤ µs(B(n, z; k, x; ε))

≤ C2 · µs(B(n + `, z′; k′, x ′; ε)). (12)

In other words, µs is a doubling measure on3. Now, by varying n, we see that each point x
from 3 is the centre of round sets B(n, z; k, x; ε) having arbitrarily small diameters.
Therefore, from equation (12), we can apply variants of the Vitali covering theorem (see
[6, Theorems 2.8.7 or 2.8.17]), for the family of round sets B(n, z; k, x; ε) which cover3
finely with respect to µs ; in these variants of the Vitali theorem, the covering sets are not
necessarily balls. Therefore, we conclude that we can cover 3, modulo µs , with a union
of mutually disjoint sets B(n, z; k, x; ε).

Now, let us study in more detail the conditions from the definition of conditional
measures.

From the construction of the measurable partition ξ , we have that W s
r(A)/2(x) ∩3⊂

A ⊂W s
r(A)(x) ∩3, x = x(A) ∈ S and the radii r(A) vary continuously with A. So, from

Remark 1, we can split an arbitrary set U ∈ P , modulo µs , into a disjoint union of
open sets V , each being a ξ -set, so there exists r = r(V ) > 0 such that for all A ∈ ξ
intersecting V , we have W s

r/2(x(A)) ∩3⊂ A ⊂W s
r (x(A)) ∩3. Hence, locally, on a

subset V ⊂U ∈ P , we can consider that ξ is, modulo a set of µs-measure zero, a foliation
with local stable manifolds W s

r (x) of the same size r = r(V ). The intersections of these
local stable manifolds with 3 are then identified with points in the factor space 3/ξ .

We will work for the rest of the proof on an open set V as above, i.e. where the sets
A ∈ ξ can be assumed to be of type W s

r (x), of the same size r = r(V ). Take also ε = r .
Now, from the definition of the factor space 3/ξ , the (µs)ξ -measure induced on

the quotient space 3/ξ is given by (µs)ξ (E)= µs(π
−1
ξ (E)), where πξ :3→3/ξ is

the canonical projection which collapses a set from ξ to a point. We notice that the
projection πξ (B(n, z; k, x; r)) in 3/ξ has (µs)ξ -measure equal to µs(Bk(x, r)), since
π−1
ξ (πξ (B(n, z; k, x; r)) is Bk(x, r). Now, since P(δs8s)= log d (from relation (5))

and by using again the estimates of equilibrium states on Bowen balls, we obtain as
in equation (8) that µs(Bk(x, r)) is comparable to |D f k

s (x)|
δs
/dk (with a comparability

constant c = c(V )). Hence, from this argument, we obtain that

(µs)ξ (Bk(x, r)/ξ) = (µs)ξ (πξ (B(n, z; k, x; r))= µs(π
−1
ξ (πξ (B(n, z; k, x; r)))

= µs(Bk(x, r))≈
|D f k

s (x)|
δs

dk , (13)

with the comparability constant CV . Now, by equation (8) and recalling that f nz = x , and
by taking ρ := |D f n

s (z)|r , we obtain

µs(B(n, z; k, x; r))≈
|D f k

s (x)|
δs

dk · ρδ
s
, (14)
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where the comparability constant can be taken again as CV (the size r > 0 is fixed for a
fixed set V ). So, from equations (13) and (14), we see immediately that

µs(B(n, z; k, x; r))

(µs)ξ (Bk(x, r)/ξ)
≈ ρδ

s
, (15)

where ρ = |D f n
s (z)|r . But, from the definition of conditional measures, we know that

µs(B(n, z; k, x; r))=
∫

Bk (x,r)/ξ
µs

s,A(A ∩ B(n, z; k, x; r)) d(µs)ξ (πξ (A)). (16)

Recall now that we showed above that any borelian set in 3 can be written, modulo
µs , as a countable union of disjoint sets of type B(n, z; k, x; r); and these sets form a
basis for the open sets in V . Also, if we vary n, the radius ρ = |D f n

s (z)| · r can be made
arbitrarily small. Now, we have the essential uniqueness of the system of conditional
measures associated to (µs, ξ) given in [17]. Consider some fixed arbitrary local unstable
manifold W u

r (ζ̂ ) which intersects any local stable manifold A ⊂ V in some unique point
y = yA, from the local product structure of the basic hyperbolic set 3; for instance, ζ̂ can
be taken as a continuation of the finite prehistory ( f nz, . . . , z), for the point z appearing
in equation (16). Now, from equation (15), together with a Lebesgue type derivation
theorem (see [10]) applied in formula (16) to the function yA→ µs

s,A(B(yA, ρ)), yA ∈

3 ∩W u
r (ζ̂ ), yA :=3 ∩W u

r (ζ̂ ) ∩ A, we conclude that

µs
s,A(B(yA, ρ))≈ ρ

δs ,

for (µs)ξ -almost all points A in 3/ξ . But, our ρ := |D f n
s (z)|r becomes arbitrarily small

when n→∞; and, without loss of generality, by varying the unstable manifold W u
r (ζ̂ )

(i.e. by varying z, n), we can take the point y arbitrarily inside A, since A is supposed to
be the intersection of 3 with a local stable manifold. Thus, we obtain that µs

s,A satisfies a
geometric probability condition with a constant CV , i.e.

1
CV

ρδ
s
≤ µs

s,A(B(y, ρ))≤ CV ρ
δs
, y ∈ A, 0< ρ < r/2,

for (µs)ξ -almost all A ⊂ V, A ∈ ξ . The comparability factor CV is constant on V ; in
general, it can be taken locally constant on the complement in 3 of a set of µs-measure
zero. The proof of the theorem is thus finished. 2

Definition 4. Let f be a hyperbolic endomorphism on the folded basic set 3, µ a borelian
probability measure on 3 and ξ a measurable partition subordinated to local stable
manifolds. Then, the conditional measure µs

A corresponding to A ∈ ξ will be called the
stable conditional measure of µ on A. When µ= µs , we denote this stable conditional
measure by µs

s,A.

Remark 2. We notice from the proof of Theorem 1 that, in fact, the stable conditional
measures of µs do not depend on the measurable partition ξ constructed above,
subordinated to local stable manifolds. Therefore, there exists a set 3(µs) of full µs-
measure inside 3, such that for every x ∈3(µs) there exists some small r(x) > 0 so that
W s

r(x)(x) is contained in a set A from a measurable partition of type ξ (subordinated to
local stable manifolds); then one can construct the stable conditional measure µs

s,A. We
denote this conditional measure also by µs

s,x , x ∈3(µs).
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We recall now the notions of lower, respectively, upper pointwise dimension of a finite
borelian measure µ on a compact space 3 (see for example [1, 16]). For x ∈3, they are
defined by

dµ(x) := lim inf
ρ→0

log µ(B(x, ρ))
log ρ

and d̄µ(x) := lim sup
ρ→0

log µ(B(x, ρ))
log ρ

.

If the lower pointwise dimension at x coincides with the upper pointwise dimension at x ,
we denote the common value by dµ(x) and call it simply the pointwise dimension at x .

One can also define the Hausdorff dimension, lower box dimension and upper box
dimension of µ respectively by

HD(µ) := inf{HD(Z), µ(3\Z)= 0},

dimB(µ) := lim
δ→0

inf{dimB(Z), µ(3\Z)≤ δ},

dimB(µ) := lim
δ→0

inf{dimB(Z), µ(3\Z)≤ δ}.

Assume now in general that f is a hyperbolic endomorphism on 3 and µ a probability
measure on 3, and let ξ be a measurable partition subordinated to local stable manifolds
of f on 3. We define then the lower/upper stable pointwise dimension of µ at y, for µ-
almost everywhere y ∈3, as the lower/upper pointwise dimension of the stable conditional
measure µs

A at y, for y ∈ A, namely

ds
µ(y) := lim inf

ρ→0

log µs
A(B(y, ρ))

log ρ
and d̄s

µ(y) := lim sup
ρ→0

log µs
A(B(y, ρ))

log ρ
.

Similarly, we define the stable Hausdorff dimension of µ on A ∈ ξ , and the stable
lower/upper box dimension of µ on A, respectively, as the quantities

HDs(µ, A) := HD(µs
A), dims

B(µ, A) := dimB(µ
s
A),

dim
s
B(µ, A) := dimB(µ

s
A), A ∈ ξ.

When µ= µs , we denote HDs(µs, x) := HD(µs
s,x ), dims

B(µs, x) := dimB(µ
s
s,x ) and

dim
s
B(µs, x) := dimB(µ

s
s,x ), for x ∈3(µs).

Recall now the stable dimension δs from Definition 1 and the theorem of independence
of the stable dimension given afterwards.

COROLLARY 1. Let f be a c-hyperbolic, d-to-1 endomorphism on a basic set 3, and µs

be the equilibrium measure of the potential δs8s . Then, the stable pointwise dimension of
µs exists µs-almost everywhere on 3 and is equal to the stable dimension δs .

Also, the stable Hausdorff dimension of µs , stable lower box dimension of µs and stable
upper box dimension of µs are all equal to δs .

Proof. The proof follows from Theorem 1, since we proved that the stable conditional
measures of the equilibrium measure µs are geometric probabilities.

For the second part of the corollary, we use [1, Theorem 2.1.6]. Indeed, since the stable
conditional measures of µs are geometric probabilities of exponent δs , we conclude that
the stable Hausdorff and lower/upper dimensions coincide, and are all equal to the stable
dimension δs . 2
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Definition 5. We will say that a measure µ on 3 has maximal stable dimension on
A ∈ ξ, A ⊂W s

r(x)(x) if

HDs(µ, A)= sup{HDs(ν, A), ν is an f |3-invariant probability measure on 3}.

This definition is similar to that of the measure of maximal dimension; see [1, 2],
where measures of maximal dimension on hyperbolic sets of surface diffeomorphisms were
studied. Our setting/methods for the maximal stable dimension in the non-invertible case
are, however, different.

Now, since the stable Hausdorff dimension of any f -invariant probability measure ν
on 3 is bounded above by δs

:= HD(W s
r (x) ∩3), we see from Corollary 1 the following

Corollary 2.

COROLLARY 2. In the setting of Theorem 1, it follows that the stable equilibrium measure
µs of f is of maximal stable dimension on W s

r(x)(x) ∩3 among all f -invariant probability
measures on 3, for µs-almost everywhere x ∈3. And, µs maximizes in a variational
principle for stable dimension on 3, i.e.

δs
= HDs(µs, x)= sup{HDs(ν, x), ν is an

f |3-invariant probability measure on 3}, µs-a.e. x

We say now that the basic set 3 is a repeller (or folded repeller) if there exists a
neighbourhood U of 3 such that Ū ⊂ f (U ). And, that 3 is a local repeller if there are
local stable manifolds of f contained inside 3 (see [12] for more on these notions in the
case of endomorphisms).

COROLLARY 3. Consider an open c-hyperbolic endomorphism f on a connected basic
set 3. Then, we have that the stable conditional measures µs

s,x of µs are absolutely
continuous with respect to the induced Lebesgue measures on W s

r(x)(x), x ∈3(µs) if and
only if 3 is a non-invertible repeller.

Proof. If f is open on a connected 3, we saw in §1 that f is constant-to-1 on 3.
The first part of the proof follows from Theorem 1 and from [12, Theorem 1]. Indeed,

in [12] we showed that in the above setting, if none of the stable manifolds centred at x is
contained in 3, then δs is strictly less than the real dimension ds of the manifold W s

r(x)(x)
(the result in [12], given for the case when ds is 2, can be generalized easily to other
dimensions as long as the condition of conformality on stable manifolds is satisfied).
Thus, in order to have absolute continuity of the stable conditional measures, we must
have some local stable manifolds contained in 3, equivalent to3 being a local repeller (in
the terminology of [12]). But, we proved in [12, Proposition 1] that when f |3 :3→3 is
open, then 3 is a local repeller if and only if 3 is a repeller.

The converse is clearly true since, if 3 is a repeller, then the local stable manifolds are
contained inside 3, and thus the stable dimension δs is equal to the dimension ds of the
manifold W s

r(x)(x).
Hence, from Theorem 1, it follows that the stable conditional measures of µs are

geometric of exponent ds ; thus, they are absolutely continuous with respect to the
respective induced Lebesgue measures. 2
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Let us give at the end some examples of c-hyperbolic endomorphisms which are
constant-to-1 on basic sets, for which we will apply Theorem 1 and its corollaries.

Example 1. The first and simplest example is that of a product

f (z, w)= ( f1(z), f2(w)), (z, w) ∈ C2,

where f1 has a fixed attracting point p and f2 is expanding on a compact invariant set J .
Then, the basic set that we consider is 3 := {p} × J . For instance, take f (z, w)=
(z2
+ c, w2), c 6= 0, |c| small, on the basic set3= {pc} × S1, where pc denotes the unique

fixed attracting point of z→ z2
+ c. The stable dimension here is equal to zero and the

intersections of type W s
r (x) ∩3 are singletons.

Example 2. We can take a hyperbolic toral endomorphism f A on T2, where A is an integer-
valued matrix with one eigenvalue of absolute value strictly less than 1, and another
eigenvalue of absolute value strictly larger than 1. In this case we can take 3= T2, and
we have the stable dimension equal to 1. We see that f A is |det(A)|-to-1 on T2.

We may take also f A,ε a perturbation of f A on T2. Then, again, f A,ε is |det(A)|-to-1
on T2, and c-hyperbolic on T2. The stable dimension is equal to 1, but the stable potential
8s is not necessarily constant now. From Corollary 3, we see that the stable conditional
measures of the equilibrium measure µs are absolutely continuous.

Example 3. We construct now examples of folded repellers which are not necessarily
Anosov endomorphisms.

We remark first that if 3 is a repeller for an endomorphism f , with neighbourhood U
so that Ū ⊂ f (U ), then f −1(3) ∩U =3. Therefore, if 3 is in addition connected, it
follows easily that f is constant-to-1 on 3. Let us show now that constant-to-1 repellers
are stable under perturbations.

PROPOSITION 2. Let 3 be a connected repeller for an endomorphism f so that f is
hyperbolic on 3, and consider a perturbation fε which is C 1-close to f . Then, fε has
a connected repeller 3ε close to 3, and such that fε is hyperbolic on 3ε. Moreover, for
any x ∈3ε, the number of fε-preimages of x belonging to 3ε is the same as the number
of f -preimages in 3 of a point from 3.

Proof. Since 3 has a neighbourhood U so that Ū ⊂ f (U ), it follows that for fε close
enough to f , we will obtain Ū ⊂ fε(U ). If fε is C 1-close to f , then we can take the
set 3ε :=

⋂
n∈Z f n

ε (U ), and it is quite well known that fε is hyperbolic on 3ε (see for
example [19], etc).

We know that there exists a conjugating homeomorphism H : 3̂→ 3̂ε which
commutes with f̂ and f̂ε. The natural extension 3̂ is connected if and only if 3 is
connected. Hence, 3̂ε is connected and so 3ε is also connected. Moreover, since
Ū ⊂ fε(U ), we obtain that 3ε is a connected repeller for fε.

Now, assume that x ∈3 has d f -preimages in 3. Then, if C f ∩3= ∅ and if fε is
C 1-close enough to f , it follows that the local inverse branches of fε are close to the local
inverse branches of f near 3. Therefore, any point y ∈3ε has exactly d fε-preimages
in U , denoted by y1, . . . , yd . Any of these fε-preimages from U has also an fε-preimage
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in U since Ū ⊂ fε(U ), etc. Thus, yi ∈3ε =
⋂

n∈Z f n
ε (U ), i = 1, . . . , d; hence, any point

y ∈3ε has exactly d fε-preimages belonging to the repeller 3ε. 2

Let us now take the hyperbolic toral endomorphism f A from Example 2, and the product
f (z, w)= (zk, f A(w)), (z, w) ∈ P1C× T2, for some fixed k ≥ 2. And, consider a C 1-
perturbation fε of f on P1C× T2. Since f is c-hyperbolic on its connected repeller
3 := S1

× T2, it follows from Proposition 2 that the perturbation fε also has a connected
folded repeller 3ε, on which it is c-hyperbolic. Also, it follows from above that fε is
constant-to-1 on 3ε, namely, it is (k + |det(A)|)-to-1. The stable dimension δs( fε) of fε
on 3ε is equal to 1 in this case.

We can form the stable potential of fε, namely 8s( fε)(z, w) := log |D( fε)s |(z, w),
(z, w) ∈3ε, and the equilibrium measure µs( fε) of δs( fε) ·8s( fε), as in Theorem 1.
Since the basic set 3ε is a repeller, we obtain from Corollary 3 that the stable conditional
measures of µs( fε) are absolutely continuous on the local stable manifolds of fε (which
in general are nonlinear submanifolds).

One actual example can be constructed by the above procedure, if we consider first the
linear toral endomorphism f A(w)= (3w1 + 2w2, 2w1 + 2w2), w = (w1, w2) ∈ R2/Z2.
The associated matrix A has one eigenvalue of absolute value less than 1 and the other
eigenvalue larger than 1; hence, f A is hyperbolic on T2. And, as above, we can take the
product f (z, w)= (zk, f A(w)) for some k ≥ 2.

Then, we consider the perturbation endomorphism

fε(z, w) := (z
k, 3w1 + 2w2 + ε sin(2π(w1 + 5w2)), 2w1 + 2w2 + ε cos(2πw2)

+ ε sin2(π(w1 − 2w2))),

defined for z ∈ P1C, w ∈ T2. We see that fε is well defined as an endomorphism on
P1C× T2 and that it has a repeller 3ε close to S1

× T2, given by Proposition 2; namely,
there exists a neighbourhood U of S1

× T2 so that

3ε =
⋂
n∈Z

f n
ε (U ).

Then, fε is c-hyperbolic on 3ε (see Definition 1) and it is (k + 2)-to-1 on 3ε. The stable
potential 8s( fε) is not necessarily constant in this case.

We obtain as before that the stable conditional measures of µs( fε) are absolutely
continuous, and that the stable pointwise dimension of µs( fε) is essentially equal to 1,
on µs-almost all local stable manifolds over 3ε. 2
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