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Abstract

In the last 30 years, one of the most successfull developments in the study of smooth dynamical

systems has been the use of thermodynamical formalism for problems in fractal dimension and

ergodic theory.

Most of the research directions in this thesis are about smooth ergodic theory and thermody-

namic formalism, with applications to dimension theory in hyperbolic dynamics, conformal and

complex dynamics, and statistical properties of various types of measure-preserving systems.

This thesis presents my research achievements, after obtaining my PH.D in Mathematics at the

University of Michigan (USA) in May 1999, under the supervision of Prof. J.E Fornaess.

After finishing the PH.D, I held academic positions for various durations, at several prestigious

universities and institutes abroad; among these universities/institutes: Texas A&M Univ, USA,

1999-2001; Institut des Hautes Études Scientifiques, Paris, November-December 2013 and Aug-

Sept 2014; Univ. of Bremen, Germany, March-May 2012; Max Planck Institut, Bonn, May 2011;

Univ. of North Texas, February-March 2007; Instituto de Matematica Pura e Aplicada (IMPA),

Brazil, February 2008; Erwin Schrödinger Math Institute, Vienna, Austria, June 2008; Scuola

Normale Superiore, Pisa, Italy, May 2004; Univ. of North Texas, USA, 2002-2003, etc.

This thesis contains some of the results I published after my PH.D, in over 34 research papers,

most of them in well-known ISI journals, such as Math. Annalen (2013, 1999), International Math

Res Notices (2013), Ergodic Theory Dynam Syst (2011, 2011, 2002), Discrete and Cont Dynam

Syst (2012, 2008, 2006, 2001), Math Zeitschrift (2011), Bulletin London Math Soc (2010), Com-

mun Contemp Math (2004), J Stat Physics (2013, 2011, 2010), Mathematical Proceed Cambridge

(2010), Monatshefte Math (2012), Canadian J Math (2008), Proceed American Math Soc (2013,

2011), Nonlinear Analysis (2010), Houston J Math (2005), etc. Together with M. Urbanski (U.

North Texas), we also published a section of the book on ”Fractal Geometry and Dynamics in

Pure and Applied Mathematics”, from the American Mathematical Society series Contemporary

Mathematics. I also had invited articles in Discrete Cont. Dynam. Syst., Oberwolfach Reports,

Rév. Roum. Math. Pures Appl., and in Ann. Univ. Bucharest.

The summary of the chapters of the thesis is the following.

In Chapter 2 we will give some of the theory of hyperbolicity for endomorphisms. In the case of

non-invertible maps, the dynamical behaviour is very different than in the case of diffeomorphisms

and there appear new phenomena for which one has to create new methods. For endomorphisms,

the local unstable manifolds do not form a foliation, there may be uncountably many through a

point (see [72]), and they may intersect both inside and outside the fractal Λ.

We will explain some of the new examples of endomorphisms with strong non-invertible be-

haviour, and the consequences of hyperbolicity in their case. A family of such examples, which

present uncountably many unstable manifolds through certain points, and for which the stable di-

mension also behaves differently than in the diffeomorphism case, was given in [41]. In that paper we

found a Newhouse-type phenomenon for intersections of Cantor sets in fibers, which translates into
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a class of skew products which are far from being homeomorphism on the respective basic sets, but

also far from being constant-to-1. Our class of examples is significant since it gives endomorphisms

on actual fractals (non-Anosov), and involves a completely different technique to obtain examples

with many unstable manifolds through a given point, than the toral examples given by Przytycki in

[72]. We present also the case of holomorphic endomorphisms on P2C, and of complex disks given

by stable/unstable manifolds; a particular case is when the map is s-hyperbolic.

In Chapter 3, we will present several results about thermodynamical formalism and statistical

properties for invariant measures on folded fractals. In this theory, we employed frequently equilib-

rium (Gibbs) measures of Hölder continuous potentials, which were shown to have good properties

on iterates of Bowen balls. The Sinai-Ruelle-Bowen (or SRB) measures were introduced in the

ground-breaking works of Sinai, Ruelle and Bowen and in the case of hyperbolic attractors repre-

sent the physically observable measures that give the asymptotic distribution of forward trajectories

of Lebesgue-almost all points in some neighbourhood of the attractor. We introduced in [46] the

new notion of inverse SRB measures for non-invertible dynamics, and studied it in the framework

of equilibrium measures. Inverse SRB measures are not simply SRB measures for inverse function,

since in this case the functions are not invertible. Instead they give asymptotic distributions of

prehistories, and satisfy also a modified Pesin entropy formula.

We explain also some of our results about Jacobians of equilibrium measures, and about mixing

of any order and decay of correlations for equilibrium measures. We will explain also some results

which solve the problem of negative entropy production for measure-preserving endomorphisms on

Lebesgue spaces, and which are related to the work of Ruelle.

In Chapter 4 we will present some results related to applications of thermodynamic formalism

in dimension theory for non-invertible mappings.

We show that the problem of stable dimension is very different than in the diffeomorphism case,

and give perturbation examples with a strange dynamical behaviour, obtained in [60]. We also give

applications of a new notion of inverse pressure introduced by Mihailescu and Urbanski. Together

with Urbanski and Stratmann, we solved the difficult dimension problem (see related problems

of Verjovsky-Wu, Manning-McCluskey) for the stable intersections, in relation to the preimage

counting function ([57], from [52]). In these papers, careful combinatorial study, together with

smooth ergodic theory methods are employed in order to prove that if the stable dimension takes

its minimal, resp. maximal value as zero of the pressure, then the number of preimages remaining

in Λ is maximal, resp. minimal; the methods of proof are however completely different.

We then give applications of a notion of transversality for parametrized families of hyperbolic

skew products; our result is related to some papers of Peres, Simon, Solomyak, etc. We also give a

detailed description of the structure of the global unstable set in the holomorphic endomorphism,

pertaining to a problem of Fornaess and Sibony.
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In Chapter 5 we give several unexpected relations between ergodic theory of invariant measures

and dimension theory on folded fractals. We give results about the coding and mixing properties for

measure-preserving endomorphism. This problem is very subtle, and as Parry and Walters showed,

it is profoundly different than in the case of automorphisms.

In [37] we solved a problem of Dajani and Hawkins in the setting of hyperbolic endomorphisms

which are non-expanding on basic sets, showing the non-existence of generating Rokhlin partitions.

We found a surprising geometric flattening phenomenon in [43] that proves, in short, that if the

stable dimension at a point is zero, then the whole fractal is contained in a global unstable manifold

(if it is connected). Moreover answering some questions of Parry, Bruin and Hawkins, etc., we

showed that there exists a connection between 1-sided Bernoullicity and expanding property on Λ.

We also showed that the stable conditional measures of certain equilibrium measures are ge-

ometric measures, and proved in [42] that these conditional measures maximize in a Variational

Principle for the stable dimension; this answers a similar problem to one solved by Barreira in the

diffeomorphism case.

Then we give results about the pointwise dimensions of equilibrium measures in the case of holo-

morphic endomorphisms on complex projective spaces, from a paper by Fornaess and Mihailescu,

[21]. We also obtained a result parallel to a result by Briend and Duval about the Green measure,

and proved that the measure of maximal entropy for the restriction to a terminal set, is in fact a

wedge product of two positive closed currents. This shows that the measure of maximal entropy on

a basic saddle set (which is singular with respect to Green measure), has a geometric description.

In Chapter 6 we give several results about dimension theory for iterated function systems (IFS).

In general, IFS were studied under separation conditions, such as the Open Set Condition (Hutchin-

son, Falconer, Moran, etc). However if the Open Set Condition does not hold, then the dimension

theory is much harder and there are few results in the literature.

In [56], Mihailescu and Urbanski attacked this problem using thermodynamic formalism and a

so-called preimage counting function, together with an analysis of the equilibrium measures on limit

sets of finite IFS with overlaps. We also proved that if the dimension of the limit set is minimal

possible as zero of the corresponding pressure function, then the system is as far from Open Set

Condition as possible. This analysis was later extended to the case of IFS with countably many

generators, when new phenomena intervene, like the fact that the limit set is no longer compact,

the conditions at the boundary at infinity, etc.

We then give in [51] a construction of a family of non-stationary infinitely generated Moran

fractals, which are determined by asymptotic frequencies. For these fractals, we applied a form of

thermodynamic formalism. We applied this construction in order to relate the dimension theory for

these non-stationary Moran fractals, to the ergodic properties of f -expansions. In particular these

relations are found for digits in m-expansions, β-expansions, Bolyai-Rényi expansions, continued

fraction expansions, etc.
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Rezumat

In ultimii 30 ani, una dintre cele mai importante directii in studiul sistemelor dinamice difer-

entiabile, a fost utilizarea formalismului termodinamic in probleme de dimensiuni fractale si teorie

ergodica.

Majoritatea directiilor de cercetare din aceasta teza trateaza teorie ergodica diferentiabila si for-

malism termodinamic cu aplicatii la teoria dimensiunii in dinamica hiperbolica, dinamica conforma

si complexa si proprietati statistice ale diferitelor tipuri de endomorfisme care invariaza masura.

Teza prezinta realizarile mele stiintifice dupa obtinerea doctoratului in matematica la University

of Michigan, SUA in 1999, avand drept conducator de doctorat pe Prof. John Erik Fornaess.

Dupa terminarea doctoratului, am obtinut prin concurs posturi academice, la mai multe uni-

versitati si institute prestigioase din strainatate: Texas A&M Univ, USA, 1999-2001; Institut des

Hautes Études Scientifiques, Paris, November-December 2013 and Aug-Sept 2014; Univ. of Bre-

men, Germany, March-May 2012; Max Planck Institut, Bonn, May 2011; Univ. of North Texas,

February-March 2007; Instituto de Matematica Pura e Aplicada (IMPA), Brazil, February 2008;

Erwin Schrödinger Math Institute, Vienna, Austria, June 2008; Scuola Normale Superiore, Pisa,

Italy, May 2004; Univ. of North Texas, USA, 2002-2003, etc.

Teza contine multe dintre rezultatele publicate dupa doctorat, in peste 34 articole stiintifice,

majoritatea in reviste ISI de prestigiu, precum Math. Annalen (2013, 1999), International Math

Res Notices (2013), Ergodic Theory Dynam Syst (2011, 2011, 2002), Discrete and Cont Dynam

Syst (2012, 2008, 2006, 2001), Math Zeitschrift (2011), Bulletin London Math Soc (2010), Commun

Contemp Math (2004), J Stat Physics (2013, 2011, 2010), Mathematical Proceed Cambridge (2010),

Monatshefte Math (2012), Canadian J Math (2008), Proceed American Math Soc (2013, 2011),

Nonlinear Analysis (2010), Houston J Math (2005), etc. Impreuna cu M. Urbanski (U. North

Texas), am publicat deasemenea o sectiune a cartii ”Fractal Geometry and Dynamics in Pure and

Applied Mathematics”, din seria American Mathematical Society, Contemporary Mathematics.

Am avut deasemenea articole invitate in Discrete Cont. Dynam. Syst., Oberwolfach Reports, Rév.

Roum. Math. Pures Appl., and in Ann. Univ. Bucharest.

Iata mai jos sumarul capitolelor aceste teze de abilitare.

In Capitolul 2, vom prezenta unele notiuni de teoria hiperbolicitatii pentru endomorfisme. In

cazul aplicatiilor ne-inversabile, comportamentul dinamic este foarte diferit decat in cazul difeomor-

fismelor si apar fenomene noi pentru care trebuie create noi metode. Pentru endomorfisme, vari-

etatile locale instabile nu formeaza o laminare, pot exista nenumarabil de multe varietati printr-un

punct (cf. [72]), si ele se pot intersecta atat in multimea Λ, cat si in afara ei.

Vom explica unele dintre exemplele de endomorfisme cu un comportament puternic ne-inversabil,

si consecintele hiperbolicitatii in cazul lor. O familie de astfel de exemple, care prezinta nenumarabil

de multe varietatie instabile prin puncte ale fractalului invariant, si pentru care dimensiunea stabila

se comporta deasemenea diferit decat in cazul difeomorfismelor, a fost data in [41]. In acel articol

am gasit un nou fenomen de tip Newhouse pentru intersectiile de multimi Cantor in fibre, care
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se traduce intr-o clasa de produse-skew care sunt departe de homeomorfisme pe multimile bazice

respective, cat si departe de a fi constante-la-1. Clasa noastra de exemple este seminificativa,

deoarece da endomorfisme pe fractali si nu endomorfisme Anosov, si deci implica tehnici noi de

a obtine exemple cu nenumarabil de multe varietati instabile printr-un punct, decat exemplele

torale date de Przytycki in [72]. Vom prezenta deasemenea cazul endomorfismelor olomorfe pe P2C,

si al discurilor complexe date de varietatile locale stabile/instabile; un caz particular este cel al

aplicatiilor s-hiperbolice.

In Capitolul 3, vom prezenta rezultate despre formalismul termodinamic si proprietatile statistice

pentru masuri invariante pe fractali cu suprapuneri.

In aceasta teorie, am utilizat frecvent masurile de echilibru (Gibbs) ale potentialilor Hölder

continui, despre care s-a aratat ca au proprietati bune pe iteratele bilelor Bowen. Masurile Sinai-

Ruelle-Bowen (SRB) au fost introduse in lucrarile fundamentale ale lui Sinai, Ruelle si Bowen, si in

cazul atractorilor hiperbolici reprezinta masurile observabile fizic, care dau distributia asimptotica

a traiectoriilor pentru Lebesgue-aproape toate punctele dintr-o vecinatate a atractorului.

Am introdus in [46] a notiune noua de masura SRB inversa pentru sisteme dinamice ne-inversabile,

pe care am studiat-o ca o masura de echilibru. Masurile SRB inverse nu sunt masuri SRB ale functi-

ilor inverse, deoarece in acest caz functiile nu sunt inversabile. In loc, aceste masuri dau distributia

asimptotica a preistoriilor, si satisfac deasemenea o fomula Pesin modificata.

Explicam deasemenea unele dintre rezultatele noastre despre Jacobieni ai masurilor de echilibru,

si despre mixing-ul de orice ordin si despre descresterea exponentiala a corelatiilor pentru masuri de

echilibru. Vom prezenta deasemenea unele rezultate care rezolva problema productiei de entropie

negativa pentru endomorfisme de spatii Lebesgue, si care sunt legate de cercetarile lui Ruelle.

In capitolul 4 vom prezenta unele rezultate legate de aplicatiile formalismului termodinamic in

teoria dimensiunii pentru aplicatiile ne-inversabile.

Aratam ca problema dimensiunii stabile este foarte diferita de cea din cazul difeomorfismelor, si

dam unele exemple de perturbatii care au un comportament dinamic neasteptat, exemple obtinute in

[60]. Vom da deasemenea aplicatii ale uneir noi notiuni de presiune inversa, introdusa de Mihailescu

si Urbanski. Impreuna cu Urbanski si Stratmann, am rezolvat dificila problema a dimensiunii

(raspunzand unor intrebari ale lui Verjovsky-Wu, Manning-McCluskey, etc.), pentru dimesiunea

stabila, in relatie cu functia de numarare a preimaginilor ([57], [52]). In aceste articole, am aplicat

metode de combinatorica si de teorie ergodica diferentiabila, pentru a arata ca daca dimesiunea

stabila atinge valoarea minima, resp. maxima, ca si zero al presiunii, atunci numarul de preimagini

care raman in Λ este maxim, resp. minim; metodele de demonstratie insa difera profund.

Vom da apoi aplicatii ale unei notiuni de transversalitate pentru familii parametrizate de produse

skew hiperbolice; rezultatele noastre sunt legate de unele articole ale lui Peres, Simon, Solomyak.

Vom prezenta si o descriere detaliata a structurii multimii globale instabile in cazul olomorf, ceea

ce raspunde unei probleme a lui Fornaess si Sibony.
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In capitolul 5, vom da mai multe legaturi neasteptate intre teoria ergodica a masurilor invariante

si teoria dimensiunii pe fractali cu suprapuneri. Vom include rezultate despre codarea si mixing-ul

pentru endomorfisme care pastreaza masura. Aceasta problema este foarte subtila, si cum Parry si

Walters au aratat, este profund diferita de cea in cazul automorfismelor.

In [37] am rezolvat o problema a lui Dajani si Hawkins, in cadrul endomorfismelor hiperbolice

care nu sunt expanding pe multimi bazice, aratand non-existenta partitiilor Rokhlin generatoare.

Am gasit un fenomen de aplatizare geometrica surprinzator, in [43] care demonstreaza ca, daca

dimensiunea stabila este zero intr-un punct, atunci intregul fractal este continut intr-o varietate

instabila (daca este conex).

In plus, raspunzand unor intrebari ale lui Parry, Bruin, Hawkins, etc., am aratat ca exista o

legatura intre Bernoullicitatea unilaterala si proprietatea de expansiune pe Λ.

Am aratat deasemenea ca masurile conditionale stabile ale anumitor masuri de echilibru, sunt

masuri geometrice, si am demonstrat ca ca aceste masuri conditionale maximizeaza intr-un Principiu

Variational pentru dimensiunea stabila; aceasta raspunde unei intrebari simuilare celei rezolvate de

Barreira in cazul difeomorfismelor.

Apoi vom da rezultate despre dimensiunea punctuala a masurilor de echilibru in cazul endomor-

fismelor olomorfe pe spatii complexe proiective, obtinute de Fornaess si E. Mihailescu in [21]. Am

obtionut deasemenea un rezultat paralel cu cel al lui Briend si Duval asyupra masurii Green, dar in

cazul nostru foarte diferit, asupra masuri de entropie maximala a restrictiei la o multuime bazica de

tip saddle. Aceasta masura am aratat ca este produsul wedge a doi curenti pozitivi inchisi. Aceasta

arata ca masura de entropie maximala pe o multime de tip saddle are o descriere geometrica.

In Capitolul 6, vom da rezultate despre teoria dimensiunii pentru sisteme iterative de functii

(IFS). In general, IFS au fost studiate sub conditii de separare, de exp. Conditia Multimii Deschise

(OSC) de catre Hutchinson, Falconer, etc.

In [56], Mihailescu si Urbanski au atacat aceasta problema folosind formalismul termodinamic si

o functie de numarare a preimaginilor, impreuna cu o analiza a masurilor de echilibru pe multimile

limita ale IFS finite cu suprapuneri. Am aratat deasemenea ca daca dimensiunea multimii limita

este minimala ca si zero al functiei de presiune corespunzatoare, atunci sistemul este cat de departe

posibil de a avea Conditia Multimii Deschise. Aceasta analiza a fost extinsa mai tarziu la cazul IFS

cu o multime numarabila de generatori, atunci cabnd apar noi fenomene, de exp. multimea limita

nu mai este neaparat compacta, apar unele conditii la frontiera de la infinit, etc.

Am dat apoi in [51] constructia unei familii de fractali Moran non-stationari infinit generati,

care sunt determinati de frecventele asimptotice. Pentru acesti fractali am aplicat o forma de

formalism termodinamic. Am aplicat apoi aceasta constructie cu scopul de a lega teoria dimensiunii

pentru acesti fractali Moran non-stationari, de proprietatile ergodice ale dezvoltarilor in f -serii. In

particular am gasit aceste relatii pentru comportamentul numerelor care apar in dezvoltarile in

m-serie, in dezvoltarile β, Bolyai-Rényi, fractiile continue, etc.
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1 Introduction and overview of the thesis.

This thesis starts with an introduction to dynamical systems and smooth ergodic theory and es-

pecially to thermodynamic formalism. Thermodynamic formalism and dynamics are subjects of

high current interest, as can be seen from the Fields medal that have been awarded recently in

these fields (Smirnov, Yoccoz, McMullen, Lindenstrauss, etc.) Hyperbolicity has proved to be an

important tool in dealing with long time behaviour of dynamical systems since the pioneering works

of Smale ([91], Bowen [5], Ruelle [84], Sinai [90], etc.

I obtained my PH.D at University of Michigan, whose mathematics department is constantly

ranked among the 10 best in the USA. My PH.D was under the supervision of Prof. John Erik

Fornaess, one of the top mathematicians in the world, and one of the founders of higher dimensional

complex dynamics.

After the PH.D, I worked or collaborated with several well-known foreign mathematicians, among

them: M. Urbański (Univ. North Texas, USA), J.E Fornaess (Univ.Michigan, USA), B. Stratmann

(Univ. of Bremen, Germany), M. Abate (Univ. Pisa, Italy), F. Przytycki (IMPAN, Poland), M.

Denker (Göttingen Univ., Germany), M. Roychowdhury (Univ.Texas Pan-American, USA), etc.

After my visiting professorships at Texas A&M Univ. and at Univ. North Texas, USA, I decided

to return to Bucharest (at IMAR). Hopefully, the Romanian academic system will improve and it

will be possible to develop an active scientific life here too, including for example funds for research

visits by and to foreign collaborators, stable predictable research grants, less bureaucracy, organizing

of conferences in Romania and abroad, etc.

After the PH.D, I held academic positions at several prestigious universities and institutes

abroad, Institut des Hautes Études Scientifiques, Paris, November-December 2013 and Aug-Sept.

2014; Texas A&M Univ, USA, 1999-2001; Univ. of North Texas, USA, 2002-2003; Univ. of

Bremen, Germany, March-May 2012; Univ. of North Texas, February-March 2007; Max Planck

Institut, Bonn, May 2011; Instituto de Matematica Pura e Aplicada (IMPA), Brazil, February

2008; Erwin Schrödinger Math Institute, Vienna, Austria, June 2008; Scuola Normale Superiore,

Pisa, Italy, May 2004, etc.

I have written, alone or in collaboration, over 34 papers, most of them in well-known ISI journals

such as Math. Annalen (2013, 1999), International Math Res. Notices (2013), Ergodic Th. and

Dynam. Syst. (2011, 2011, 2002), Math. Zeitschrift (2011), Discrete and Cont. Dyn. Syst (2012,

2012, 2008, 2006, 2001), J. Statistical Physics (2013, 2011, 2010), Bull. London Math. Soc. (2010),

Monatsh. Math (2012), Canadian J Math. (2008), Commun. Contemp. Math. (2004), etc., which

are detailed in the attached CV.

Also, I have been director of a 4-person research grant PCE-Idei from CNCSIS Romania in the

period 2009-2011, and a member in other grants. Also I participated in an NSF grant (director

M. Urbanski) at Univ. North Texas, USA. I have been invited speaker at many high-level interna-

tional conferences and seminars, among them Luminy, Oberwolfach, Bremen, Bedlewo, New York,

Denton, Rio de Janeiro, Göttingen, Warsaw, Centro de Giorgi-Pisa, College Station, IHP-Paris,
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Bloomington, Ann Arbor, Orsay, Sydney, Alba Iulia, San Antonio, Washington DC, Seattle, etc. In

2007, I received the Simion Stoilow research prize of the Romanian Academy. Most of the results I

obtained in the above mentioned papers are presented in this thesis.

Even since the papers and books of Eckmann-Ruelle [18], Ruelle [82], Przytycki [72], etc. it

has been observed that the dynamics of hyperbolic endomorphisms is very different from that of

diffeomorphisms and that many interesting new phenomena are generated by the non-invertibility

and the non-existence of an inverse. As a matter of fact, it was shown that certain physical systems

behave non-invertibly (for instance [18], [11], etc.)

In Chapter 2 we will review the definition of hyperbolicity for non-invertible systems, and will

give several examples of non-invertible dynamics. Among these are the non-invertible horseshoes

of Bothe [4], or those studied by Simon [88], etc. Then we shall give a class of examples found

originally in [41], of hyperbolic skew products with overlaps in their fibers, which show a very

strong non-invertible character also from the point of view of the stable dimension; these examples

are however not constant-to-1 on their respective saddle basic sets.

Another large class of non-invertible maps is given by holomorphic endomorphisms on the com-

plex projective space P2C. Such examples were studied by Fornaess and Sibony [22], [23], etc. The

behaviour of these maps on saddle sets is subtle and the methods intertwine ergodic theory, the

theory of positive closed currents, and pointwise dimensions for invariant measures (as in [22], [23],

[21], [48], etc.)

In Chapter 3 we will study some notions from the thermodynamic formalism, such as topological

pressure, measure-theoretic and topological entropy. And also notions that take into considerations

all the inverse branches of the map, such as the inverse entropy introduced by Mihailescu and

Urbanski in [61]. A very important notion is that of equilibrium measures or Gibbs state), see [5],

[27], [96], etc. A particular case of equilibrium measure is the measure of maximal entropy for a

dynamical system.

Also, for hyperbolic attractors one is interested from a physical point of view, in the Sinai-Ruelle-

Bowen measures (or SRB measures). These are measures that can be ”seen”, in the sen se that they

give the asymptotic distribution of orbits for Lebesgue-almost all points in some neighbourhood of

the hyperbolic attractor. In [46] E. Mihailescu introduced also a notion of inverse SRB measure for

a saddle type non-invertible repellor. This notion is subtle, since the repellor Λ is not invertible,

thus the map does not necessarily have an inverse on Λ and we cannot simply consider the SRB

measure for the inverse. This inverse SRB measure was shown to be in fact an equilibrium measure

and it satisfies a modified inverse Pesin entropy formula.

Then we study various statistical properties of equilibrium measures of Hölder potentials on

folded fractals, such as exponential decay of correlations, mixing of any order, exactness, and

1-sided or 2-sided Bernoullicity. The notion of entropy production for probability measures was

introduced in mathematics by Ruelle (see [80], [79]); it generalizes and makes precise some notions

from statistical physics. In [53], Mihailescu and Urbanski studied entropy production for equilibrium
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measures on folded fractals, especially for inverse SRB measures on folded repellors and showed that

the entropy production is negative in many instances.

In Chapter 4 we will use thermodynamic formalism to dimension estimates for hyperbolic en-

domorphisms, especially towards estimating the Hausdorff and the upper box dimension, of the

sections through the fractal Λ, with local stable and unstable manifolds. We showed for instance

in [47] that the behaviour of stable sections is completely different than that of unstable sections,

in the case of non-invertible systems. The estimates will be done with zeros of various pressure

functions.

Another method used to do estimates, will be with zeros of the inverse pressure functions; this

method is designed especially for the stable dimension in the endomorphism case. In the paper

[57], Mihailescu and Urbanski found significant relations between stable dimension and preimage

counting function; this integer-valued function d(x), is given by the number of f -preimages of x

which still remain in the saddle basic set Λ, and in general d(·) is not continuous. In particular we

showed that if there exists a point in Λ where the stable dimension is minimal, then at every point

in Λ the stable dimension is minimal and the function f is constant-to-1 on Λ.

Also another class of results was obtained in [59], where we studied the transversality condition

for parametrized families of hyperbolic non-invertible skew products. For families with transversality

condition we proved that for Lebesgue-almost all parameters, we have Bowen-type formulas for the

stable dimension, and we also gave several classes of examples, namely coming from iterated function

systems and from higher dimensional complex dynamics.

In Chapter 5 we shall review several results of the author, as well as other authors, concern-

ing the relationship between geometric properties of folded fractal sets, and ergodic properties of

certain invariant measures. We shall investigate for instance the family of conditional measures,

associated to the equilibrium measure of a stable potential and to a partition supported on local

stable manifolds. In [42] we showed that these conditional measures are geometric, in the sense that

they behave on small balls of radius r comparable to rδ, for any r > 0 (for certain fixed δ).

Also in [43] we proved that in certain cases, if the stable dimension is zero at some point, then f

is expanding on the saddle basic set Λ. Moreover we showed in [43] a surprising geometric flattening

phenomenon, in the sense that if the stable dimension is zero at some point of Λ, then Λ is contained

in a finite union of unstable manifolds.

Moreover answering some questions of Parry, Bruin and Hawkins, etc., we showed that there

exists a connection between 1-sided Bernoullicity and expanding property on Λ, namely if the

measure of maximal entropy is 1-sided Bernoulli, then f is expanding on Λ; we also proved that

certain equilibrium measures cannot be 1-sided Bernoulli, and also studied mixing of any order for

equilibrium measures (see [43], [37], etc.)

Then we will consider the problem of the pointwise dimension for equilibrium measures on folded

saddle fractals for holomorphic endomorphisms f : P2 → P2. This problem was solved by Fornaess

and Mihailescu in [21]. For hyperbolic measures for diffeormorphisms this problem was solved by

Barreira, Pesin and Schmeling in [2]. However the problem for endomorphisms is very different,
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and the various foldings of the basic set Λ usually produce new phenomena. Thus new methods

and ideas must be devised to deal with this non-invertible case.

In the same paper [21], Fornaess and Mihailescu also showed that the measure of maximal entropy

on Λ can be written as a wedge product of two positive closed currents, thus giving a geometric

interpretation for the measure of maximal entropy of the restriction to Λ. This measure of maximal

entropy is singular with respect to the Green measure νG which was shown by Briend-Duval [8] to

be the measure of maximal entropy of f on the whole space P2.

In Chapter 6 we will investigate an important class of fractals sets, namely limit sets of finite or

infinite conformal iterated function systems. First we will present results obtained by Mihailescu

and Urbanski in [56], about the relations between the dimension of the limit set Λ of a finite

conformal iterated function system with overlaps, and the preimage counting function.

These results open up a new type of approach towards estimating the Hausdorff and other

types of dimension (lower/upper box dimension, etc.), for the limit set of IFS with overlaps. So

far, transversality conditions were used for parametrized families of IFS; under these transversality

conditions, Lebesgue almost all members of the family behave like IFS which satisfy the Open Set

Condition, which allows Bowen type formulas for the dimension (for eg. Solomyak, [92]).

By contrast, we consider a fixed system of contractions, and we use the preimage counting

function in [56], in order to find good estimates for the dimension. In general the preimage counting

function d(·) is discontinuous on the fractal limit set Λ. However, in the case when d(·) is constant we

find also exact formula for the dimension of Λ. Moreover we show that, if the Hausdorff dimension

of Λ is equal to the minimal possible zero of the pressure function, corresponding to the maximal

number D of preimages, then the number of preimages in Λ of any point of Λ is D.

Then in [55], Mihailescu and Urbanski studied the problem of the dimension of the limit set

of an infinite conformal iterated function system with overlaps. Our paper is the first one in this

new direction, as far as we know. The infinite case is very different from the finite case, and many

new phenomena appear (for eg. [36]). First of all the limit set Λ is not compact anymore, also the

infimum of the contraction rates could be zero. In the infinite case, the boundary at infinity S(∞)

plays an important role.

Then we will remind the notion of f -expansion for real numbers; and examples of expansions

like the m-ary expansion with m ≥ 2 integer, the β-expansion, the Lüroth expansion, the continued

fraction expansion, etc.

We will give some interesting connections found in [51], between classes of fractal sets constructed

by a modified Moran method, and the behaviour of the digits of numbers in f -expansions, for certain

functions f . In this way we obtain information about the size of the sets of real numbers with certain

conditions on their digit expansions.
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2 Smooth dynamical systems. Examples of non-invertible dynamics.

2.1 Hyperbolicity for smooth endomorphisms

Let us consider in the sequel a smooth (suppose C2) Riemannian manifold M , and a smooth (C2)

map f : M → M . We want to study the iterates of f and the invariant objects (sets, measures,

etc.) with respect to this iteration. We will say that a transformation f : Λ → Λ is topologically

transitive on a compact f -invariant set Λ if for any open sets (relatively to the induced topology)

U, V in Λ there exists n ≥ 0 such that U ∩ fn(V ) 6= ∅.

Definition 2.1.1. By basic set for a smooth endomorphism f : M → M , we mean, as in [27],

a compact f -invariant topologically transitive set Λ, such that there exists a neighbourhood U of Λ

with Λ = ∩
n∈Z

fn(U).

Then, given a compact set Λ we have a useful construction, namely that of the natural extension

(or inverse limit),

Λ̂ := {x̂ = (x, x−1, x−2, . . .), f(x−i) = x−i+1, x−i ∈ Λ, i ≥ 1}

The infinite sequences of consecutive preimages of type x̂ are called prehistories of x, for x ∈ Λ.

On the inverse limit Λ̂, we have a metris space structure, given by the canonical metric d(x̂, ŷ) =∑
i≥0

d(x−i,y−i)
2i

, x̂, ŷ ∈ Λ̂.

Let us define also the shift homeomorphism

f̂ : Λ̂→ Λ̂, f̂(x̂) = (f(x), x, x−1, . . .)

Thus even if f itself is not invertible on Λ, we lift it to a homeomorphism f̂ on the inverse limit Λ̂.

Denote also by π : Λ̂→ Λ the canonical projection on the first coordinate.

Hyperbolicity for endomorphisms is defined similarly as for diffeomorphisms, however there

is an important difference from the diffeomorphism case, namely the unstable spaces/unstable

manifolds depend now on whole prehistories; see Ruelle [82], Przytycki [72], [47], etc. We have

thus a continous splitting of the tangent bundle over Λ̂, TΛ̂M := {(x̂, v), v ∈ TxM, x̂ ∈ Λ̂}, into

contracting and expanding directions that depend on the whole backward history, i.e

Tx̂M = Es
x ⊕ Eu

x̂ , x̂ ∈ Λ̂,

with Dfx(E
s
x) ⊂ Es

f(x), Dfx(E
u
x̂) ⊂ Eu

f̂ x̂
, and Df is uniformly contracting on Es

x and expanding on

Eu
x̂ . The space Es

x is called the stable tangent space at x, and Eu
x̂ is called the unstable tangent space

corresponding to the prehistory x̂, for all x̂ ∈ Λ̂.

Then for some r > 0, one can define the stable, and unstable local manifolds respectively as

W s
r (x) := {y ∈M,d(f ix, f iy) < r, i ≥ 0} andW u

r (x̂) := {y ∈M, y has a prehistory ŷ,with d(y−i, x−i) <

r, i ≥ 0}, x̂ ∈ Λ̂ (see [72], [82]).
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In the case of a smooth endomorphism f which is uniformly hyperbolic on the basic set Λ, we shall

denote by Φs(x) := log |Dfs(x)|, x ∈ Λ the stable potential of f , and by Φu(x̂) := − log |Dfu(x̂)|, x̂ ∈
Λ̂ the unstable potential, where again we denoted by Dfs(x), Dfu(x̂), the restrictions of Df to the

stable space Es
x, respectively to unstable space Eu

x̂ , x̂ ∈ Λ̂. Also denote by:

δs(x) := HD(W s
r (x) ∩ Λ), and by δu(x̂) := HD(W u

r (x̂) ∩ Λ),

the stable dimension at a point x ∈ Λ, respectively the unstable dimension at x̂ ∈ Λ̂ (see also

[47], [45]).

In the hyperbolic endomorphism case notice that the local unstable manifolds do not form a

foliation (like in the diffeomorphism setting), but instead they can intersect inside and outside of the

fractal set Λ. Another difficulty is also that in general we do not have Markov partitions on basic

sets, like in the diffeomorphism case. Hence the problem of coding the system symbolically (for

example using Bernoulli shifts) is much harder for endomorphisms, or even impossible. In addition,

we may also have sudden drops in the fractal dimensions, caused by self-intersections in the basic

set; the stable dimensions do not depend continuously on parameters (unlike for diffeomorphisms);

see [60] for a discussion and examples of polynomial maps which become homeomorphisms when

restricted to some invariant sets. Hence several subtle methods must be devised to overcome all

these problems in the non-invertible situation.

2.2 Examples of non-invertible systems

We will give now several examples of endomorphisms f on basic sets Λ, and in some cases we shall

also discuss their behaviour. In [18] Eckmann and Ruelle studied relations between attractors, SRB

measures, dimension, Lyapunov exponents and entropy, and gave also interesting applications or

relations to statistical physics (chaotic dynamics, turbulence theory, etc.). In the same paper [18],

there appears a non-injective example in the plane, due to Ushiki et al., in which the computer

picture of the attractor displays folded drapes, and hence non-invertible behaviour.

In [20], Falconer constructed a family of piecewise linear maps, which were proved to be homeo-

morphisms on their respective basic sets for Lebesgue-almost all parameters; thus in that case, one

can write the Hausdorff dimension of the attractor as the solution of a Bowen equation. This kind

of behaviour appears in general when there is a transversality type condition present for the

respective parametrized family (as in [70], [93], or [59]).

In [59], Mihailescu and Urbanski gave actually examples of families of skew products having

iterated function systems in the base, and also several examples of families of skew products from

higher dimensional complex dynamics; these families satisfy the transversality condition. For these

examples we proved that it is possible to find the stable dimension (i.e the Hausdorff dimension of

the intersection between the basic set Λ and the local stable manifolds), as the zero of the pressure

of a certain stable potential on the inverse limit Λ̂. Let us recall these examples of skew products

below:
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Fix an expanding repeller X ⊂ Rp for some smooth map g, a bounded set V ⊂ Rq, let also d ≥ 1

and an open set W ⊂ Rd. Consider a family Φ = {φλx : V̄ → V }(x,λ)∈W×X of maps from C1+γ(V̄ )

satisfying the following conditions: (af) the absolute values of the derivatives of the contractions

φλx are uniformly bounded away from 0 and 1. (bf) The map (λ, x) → φλx ∈ C1+γ(V̄ ) defined on

W ×X is continuous. (cf) (Transversality Condition)

∀(x ∈ X)∀(λ0 ∈ W )∃(δ(x, λ0) > 0)∃(C1 > 0)∀(x̂, ŷ ∈ p−1
0 (x))∀(r > 0)

x1 6= y1 ld({λ ∈ B(λ0, δ(x, λ0)) : ||πλ(x̂)− πλ(ŷ)|| ≤ r}) ≤ C1r
q,

where ld denotes the d-dimensional Lebesgue measure on Rd and πλ : X̂ → V̄ is the canonical

projection induced by the skew-product Fλ : U × V̄ : Rp × V̄ given by the formula

Fλ(x, y) = (f(x), φλx(y)).

Any such family Φ is said to be transversal and the canonically induced family Φ̄ = {Fλ}λ∈W is

also called transversal.

The basic set here is Λ := ∪
x∈X

∞
∩
n=0

∪
z∈f−nx

hnz (V̄ ), where hnz := hfn−1z ◦ . . . ◦ hz, n ≥ 1, z ∈ X.

We studied then the conditional measures of equilibrium states induced on fibers and their relation

to the stable dimension of fibers. We employed a transversality type condition in order to show

that for Lebesgue almost all parameters, the stable dimension of the fibers is given by the zero of

a Bowen type equation on Λ̂. Several examples where these results can be applied were given in

[59], among which some iterated function systems and examples from higher dimensional complex

dynamics.

In [72] Przytycki studied a class of Anosov endomorphisms and gave examples of perturbations of

hyperbolic toral endomorphisms such that, through any given point x ∈ Tm there pass uncountably

many local unstable manifolds, which correspond to the different prehistories of x.

Another type of non-invertible dynamics is given by the family of hyperbolic horseshoes with

overlaps, introduced by Bothe in [4]. Bothe proved in fact that the set of parameters for which the

associated maps have such non-invertible horseshoes with overlaps, has non-empty interior.

Other examples of non-invertible behaviour were studied by Solomyak in [93], namely certain

self-similar sets for families of iterated function systems with overlaps.

Also, in [56] Mihailescu and Urbanski investigated finite conformal iterated function systems

with overlaps. These systems are notoriously difficult to study due to the lack of control on the

foldings. So far in other papers such systems were studied only as part of a family of iterated

function systems, and then by applying certain transversality type conditions which reduce almost

all systems to IFS with open set condition. However in [56] we employed sophisticated combinatorial

techniques and thermodynamic formlaism on inverse limits, in order to obtain relations between

the preimage counting function and the dimension of the fractal limit sets.
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We considered a finite system of conformal injective contraction maps φi, i ∈ I defined on a

bounded set V in Rd. Denote this system by S. Then, according to well-known general results (for

eg. [26]) there exists a unique compact fractal set Λ with the invariance property

Λ = ∪
i∈I
φi(Λ),

which can be obtained as the union of all intersections of iterates of maps φi:

Λ = ∪
ω∈I∞

∩
n≥0

φω|n(V ),

where I∞ is the space of all sequences indexed by positive integers, with elements in I, and for such

a sequence ω, we denote by ω|n = (ω1, . . . , ωn), and where φω|n = φ1 ◦ . . . ◦ φn, for all n ≥ 1.

We obtained in [56] that if the dimension of the limit set Λ of such a system is minimal, then

every point in the limit set Λ has exactly the same number of preimages in Λ, which is maximal.

This opens thus a whole new research direction about IFS with overlaps.

Moreover in [55] we studied the case of infinite conformal iterated function systems with overlaps.

This case is significantly different from the finite case, although here too the preimage counting

function plays an important role. However by contrast, the limit set of the system is not compact

anymore, and the imfimum of the contraction rates of the functions in the system can be zero. We

showed also that the boundary at infinity is important now.

Another large class of endomorphisms consists of holomorphic maps in one dimension or in sev-

eral dimensions. The one-dimensional case (rational maps) has been studied more, and employed

the first applications of thermodynamic formalism in order to calculate the Hausdorff dimension of

Julia sets of rational hyperbolic maps (starting with Bowen [6], Ruelle [83]). In the higher dimen-

sional case, we may have saddle type basic sets obtained as components of the non-wandering set,

for Axiom A holomorphic maps on the projective space Pk, k ≥ 2; see [22]. As in the diffeomorphism

case (for example Henon maps), the set K− is very important; in the diffeomorphism case K− is

the set of points having bounded backward iterates, but in the holomorphic endomorphism case on

Pk, the set K− is the complement of the set of points that have all of their preimages converging

towards the support of the Green measure. Thus in a sense, K− is the set of points with bounded

backward iterates. In fact it can be shown in the s-hyperbolic endomorphism case, that K− is the

global unstable set W u(Ŝ1) union with the (finite) set of periodic attracting (see Fornaess-Sibony,

[22]).

In [48] we proved that for s-hyperbolic holomorphic endomorphisms on Pk, the set K− has

empty interior. Then in [45] we studied in greater detail the Hausdorff dimension of K−, and the

Hausdorff and upper box dimensions of the stable intersections, with the help of the inverse pressure

(see also [61], [58]). Many differences appear in this case when compared to the case of holomorphic

automorphisms on Stein manifolds ([50]).
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In [94], Tsujii studied a class of dynamical systems generated by maps T : S1 × R → S1 ×
R, T (x, y) = (`x, λy+g(x)), where ` ≥ 2 is an integer, 0 < λ < 1 and g is a C2-function on S1. Then

T is an Anosov endomorphism, which has thus a unique SRB measure µ. Let D ⊂ (0, 1)×C2(S1,R)

be the set of pairs (λ, f) for which the SRB measure of the corresponding endomorphism T is

absolutely continuous with respect to Lebesgue measure on S1×R; also let D◦ the interior of D with

respect to the product topology. In [94] Tsujii showed that there exist examples of endomorphisms

as above, for which the SRB measure is totally singular. However he proved that ”most” maps T

have the following properties:

Theorem 2.2.1. ([94]) Let `−1 < λ < 1. There exists a finite collection of C∞ functions φi : S1 →
R, i = 1, . . . ,m s.t for any C2 function g ∈ C2(S1,R), the subset of Rm

{(t1, . . . , tm) ∈ Rm, (λ, g(x) +
m∑
i=1

tiφi(x)) /∈ D◦}

is a null set with respect to the Lebesgue measure on Rm. Consequently D contains an open and

dense subset of (1
`
, 1)× C2(S1,R).

2.3 Strong non-invertible hyperbolic behaviour

In the paper [41], we considered the dynamics of a family of hyperbolic skew products with overlaps

in fibers fα, which were shown to behave far from homeomorphisms and also far from being constant-

to-1 maps. For these skew product maps, we showed that different prehistories of the same point

may have different unstable tangent spaces associated to them, and we estimated also the angle

between such unstable directions. Therefore the associated local unstable manifolds actually depend

on whole prehistories, too. In order to present this class, let us fix first a small α ∈ (0, 1); then

take the subintervals Iα1 , I
α
2 ⊂ I = [0, 1] so that Iα1 is contained in [1

2
− ε(α), 1

2
+ ε(α)] and Iα2

is contained in [1 − α − ε(α), 1 − α + ε(α)], for some small ε(α) < α2. Consider also a strictly

increasing smooth map g : Iα1 ∪ Iα2 → I such that g(Iα1 ) = g(Iα2 ) = I; assume there exists a

large β >> 1 such that β2 > g′(x) > β >> 1, x ∈ Iα1 ∪ Iα2 . Thus there exist subintervals

Iα11, I
α
12 ⊂ Iα1 , I

α
21, I

α
22 ⊂ Iα2 such that g(Iα11) = g(Iα21) = Iα1 and g(Iα12) = g(Iα22) = Iα2 . Then let

Jα := Iα11 ∪ Iα12 ∪ Iα21 ∪ Iα22 and Jα∗ := {x ∈ Jα, gi(x) ∈ Jα, i ≥ 0}. Now define the skew-product

endomorphism fα : Jα∗ × I → Jα∗ × I,

fα(x, y) = (g(x), hα(x, y)), with hα(x, y) =


ψ1,α(x) + s1,αy, x ∈ Iα11

ψ2,α(x) + s2,αy, x ∈ Iα21

ψ3,α(x)− s3,αy, x ∈ Iα12

s4,αy, x ∈ Iα22,

(1)

where for some small ε0, we take s1,α, s2,α, s3,α, s4,α to be positive numbers, ε0-close to 1
2
, 1

2
, 1

2
, 1

2

respectively; and ψ1,α(·), ψ2,α(·), ψ3,α(·) are smooth (say C2) functions on I which are ε0-close in the
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C1-metric, to the affine functions x → x, x → 1 − x and x → 1, respectively. By |g1 − g2|C1 let us

denote the distance in the C1(I)-metric between two smooth functions on I, g1 and g2. Denote also

the function hα(x, ·) : I → I by hx,α(·), for x ∈ Jα∗ . Now we shall define the fractal set

Λ(α) := ∪
x∈Jα∗

∩
n≥0

∪
y∈g−nx∩Jα∗

hny,α(I), (2)

where hny,α := hfn−1y,α ◦ . . . ◦ hy,α, n ≥ 0. For x ∈ Jα∗ let also: Λx(α) := ∩
n≥0

∪
y∈g−nx∩Jα∗

hny,α(I), the

fiber (or slice) of the fractal Λ(α) over x. Then we obtain the following:

Theorem 2.3.1. ([41]) There exists a function ϑ(α) > 0 defined for all positive small enough

numbers α, with ϑ(α) →
α→0

0, such that if fα is the map defined in (1) whose parameters satisfy:

max

{
|ψ1,α(x)− x|C1 , |ψ2,α(x)− 1 + x|C1 , |ψ3,α(x)− 1|C1 , |si,α −

1

2
|, i = 1, . . . , 4

}
< ϑ(α) (3)

then we obtain:

a) For x ∈ Jα∗ ∩ Iα1 , there exists a Cantor set Fx(α) ⊂ Λx(α), s. t every point of Fx(α) has two

different fα-preimages in Λ(α). And if x ∈ Jα∗ ∩ Iα2 , then there exists a Cantor set Fx(α) ⊂ Λx(α)

s. t every point of Fx(α) has two different f 2
α-preimages in Λ(α).

b) fα is hyperbolic on Λ(α).

c) If ẑ, ẑ′ ∈ Λ̂(α) are two different prehistories of an arbitrary point z ∈ Λ(α), then Eu
ẑ 6= Eu

ẑ′.

Also we studied in [41] the unstable and the stable dimensions associated to the class of maps

above on their respective invariant sets:

Theorem 2.3.2 ([41]). For a small fixed α > 0, let the function f : Λ → Λ defined in (1). Then

the unstable dimension δu(ẑ) = tu,∀ẑ ∈ Λ̂, where tu is the unique zero of the pressure function

t → Pf̂ |Λ̂
(tΦu), and where Φu(ŷ) := − log |Dfu(ŷ)|, ŷ ∈ Λ̂. Consequently if g′(x) > β(α) >> 1 on

J∗, we have

δu(ẑ) <
log 2

log β(α)
2

, ẑ ∈ Λ̂

For the stable dimension function, we do not have exact formulas, but we can estimate it using

the thickness of intersections of Cantor sets (see [64], [65] for background), in the fibers. Moreover

this will show that the class of examples given above, is far from being a homeomorphism on

its respective basic set, and also far from being constant-to-1 (in these two cases we have exact

Bowen-type formulas for the stable dimension). The following two results were proved in [41].

Theorem 2.3.3 ([41]). Let a sufficiently small α > 0 and a function f defined as in (1), and

assume that the parameters of f satisfy condition (3).

a) Then the stable dimension δs(z) ≤ t−s < 1, for any point z ∈ Λ.

b) If η(·) is a continuous function on Λ such that d(z) ≤ η(z), z ∈ Λ, it follows that δs(z) ≥
tη, z ∈ Λ, where tη is the unique zero of the function t→ P (tΦs − log η).
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Corollary 2.3.1 ([41]). Let a small α > 0 and a function f defined as in (1), s. t the parameters

si, ψj, i = 1, . . . , 4, j = 1, . . . , 3 of f satisfy (3). Write Λ as the union V1 ∪ V2, where V1 is defined

as the set of points having only one f -preimage inside Λ and V2 is the set of points having exactly

two f -preimages in Λ.

a) Then δs(z) ∈ ( log 2

log(2+ 1
∆(α)

)
, 1), z ∈ Λ. So if α tends to 0, then the stable dimension at an

arbitrary point of Λ may be made as close as we want to 1, but always strictly smaller than 1.

b) V1 is an open uncountable set in Λ, and V2 is a closed set in Λ.

c) Assume moreover that in the definition (1) of f , the contraction factors si, i = 1, . . . , 4 are

all equal to 1
2
. Then V2 is uncountable as well.

The above Corollary says thus that this family behaves, from the point of view of the stable

dimension, very differently than a homeomorphism on Λα, and also from a 2-to-1 map on Λα, hence

the preimage counting function is highly oscillating on the respective basic set.

2.4 Saddle sets for holomorphic maps on projective spaces

A particular case of endomorphisms is given by holomorphic maps on complex projective spaces

PkC, k ≥ 2. In order to fix ideas, we shall assume that k = 2 and we study endomorphisms

f : P2 → P2. Any holomorphic endomorphism f on P2 can be written as

f([z0 : z1 : z2]) = [P0(z0, z1, z2) : P1(z0, z1, z2) : P2(z0, z1, z2)], [z0 : z1 : z2] ∈ P2,

where P0, P1, P2 are homogeneous polynomials of the same degree d ≥ 2, in z0, z1, z2. In this case,

the notion of basic set given before makes sense, and now if Λ is a basic set of saddle type, i.e f

is hyperbolic with both contracting and expanding directions over Λ, we have that the local stable

and unstable manifolds are complex disks.

A useful notion will be that of s-hyperbolic map, due to Fornaess and Sibony [22]. First we will

give a general dynamical definition:

Definition 2.4.1. Let a smooth (C2) map f : M →M . Then the nonwandering set of f is the set

Ω(f) := {x ∈M,∀Ua neighbourhood of x,∃n ≥ 1, s.tfn(U) ∩ U 6= ∅}

As can be seen from the definition, the important dynamical behaviour of f happens on Ω(f).

If M is compact (for example in the case when M = P2), the non-wandering set is compact. Then,

like in the case of any other compact subset, we can form the inverse limit Ω̂(f).

Returning now to the case of a holomorphic endomorphism f on P2, if f is hyperbolic on

Ω = Ω(f), then we can write Ω as S0 ∪ S1 ∪ S2, where Si is the set of non-wandering points with

unstable index i ∈ {0, 1, 2}.
Let us take now ω the Kähler form on P2; then Fornaess and Sibony showed that (fn)∗ω/dn

converge as currents to a positive closed currenty T whose support is equal to the Julia set J(f) of
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f , defined as the complement of the set F (f) of points x such that the iterates of f form a normal

family on some neighbourhood of x; the set F (f) is called the Fatou set of f .

Also one can define a measure µ = T ∧ T , which satisfies f ∗µ = d2µ and which is a measure

of maximal entropy log d2 (we will come back to this later on). Then Fornaess and Sibony defined

s-hyperbolic maps in [22] as holomorphic endomorphisms of P2 which are hyperbolic on Ω(f), their

periodic points are dense in Ω (i.e f has Axiom A), and satisfy f−1(S2) = S2, there exists an analytic

variety C such that C∩S1 = ∅ and there exists a neighbourhood U of S1 such that f−1(S1)∩U = S1.

Let us define also the set K− which is the analogue of the set of points with bounded backward

iterates from the Hénon map case.

Definition 2.4.2. Consider the map f : P2 → P2 which is holomorphic, and let U− := {z ∈
P2, d(f−n(z), supp µ)→ 0, uniformly in a neighbourhood of z} and let K− := P2 \ U−.

Theorem 2.4.1 ([22]). If the holomorphic endomorphism f on P2 is s-hyperbolic, then:

i) K− = W u(Ŝ1) ∪ S0

ii) S2 = suppµ

iii) the unstable set of S2 is open with locally pluripolar complement.

In [48] we proved that there is a dichotomy between the dynamical behaviour of endomorphisms

which are obtained by perturbations of Hénon maps, and s-hyperbolic maps. This difference was

observed in the structure of the interior of the set K−.

Theorem 2.4.2 ([48]). For a perturbation fε(z, w) = (z2 +aw, z+ εw2) of a hyperbolic Hénon map

g(z, w) = (z2 +aw, z) we have that intK− contains the union of the repelling basins of finitely many

repelling points.

However for s-hyperbolic maps we have a completely different type of interior of the set K−:

Theorem 2.4.3 ([48]). If f is a s-hyperbolic holomorphic endomorphism on P2, then intK− = ∅.

There exist examples of Axiom A holomorphic endomorphisms (see [48]):

1) Consider f([z : w : t]) = [P (z, t) : Q(w, t) : td], where P,Q are polynomials in one vari-

able having degree d, and hyperbolic on their Julia sets JP , JQ. The expanding part of the non-

wandering set is S2 = JP × JQ. The basic sets of S1 are in t = 1, JP × {periodic sinks of Q} and

{periodic sinks of P} × JQ, respectively in t = 0, the Julia set of [P (z, 0) : Q(w, 0) : 0]. It is clear

that f satisfies Axiom A.

2) Consider the map Φ : P1 × P1 → P2 defined by Φ([z0 : w0], [z1 : w1]) = [z0z1 : w0w1 :

z0w1 + w0z1]. This gives a 2-to-1 cover of P2. Now let f0 a rational map in one variable, having

degree d; assume that f0 is hyperbolic on its Julia set J0. Then there exists a holomorphic map of

degree d, f : P2 → P2 such that Φ(f0, f0) = f ◦Φ, and cf is hyperbolic too. Then S2(f) = Φ(J0, J0)

and the basic sets of S1 are Φ(sink× J0).

3) Solenoids are important in differentiable dynamics (see for eg. [27]). We can construct also a

solenoid in P2 as a perturbation, namely: f([z : w : t]) = [z2 : wt/10 + zt/2 + εw2 : t2]. Then it can

be shown that f is s-hyperbolic.
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3 Thermodynamic formalism and statistical properties of measures on

folded fractals.

3.1 Entropy and topological pressure

Two of the most important notions in dynamical systems are those of entropy (topological, measure-

theoretical) and topological pressure. Topological entropy is actually obtained as the pressure of

the zero potential. These notions make connections with a functional analytic approach towards

dynamical systems, and they have also important applications in dimension theory for invariant

fractals (see for instance [6], [33], [71], [83], [99], etc.)

Let us first define the topological entropy. Consider a continuous map f : X → X on a compact

metric space (X, d). By Bowen ball we will understand the set of points that remain within ε-

distance of the iterates of a given point, up to an order. More precisely, a Bowen ball (see [5], [27],

[96], etc.) is a set of type:

Bn(x, ε) := {y ∈ X, d(f ix, f iy) < ε, i = 0, . . . n− 1}, (4)

for n ∈ N, x ∈ X, ε > 0. The Bowen balls are in fact balls in the distance dn(x, y) := sup{d(f ix, f iy), 0 ≤
i ≤ n− 1}, x, y ∈ X.

We will use now these Bowen balls in order to cover the space X as well as possible. We say

that a set E ⊂ X is (n, ε)-spanning if X = ∪
x∈E

Bn(x, ε). And the set F is called (n, ε)-separated if

dn(x, y) > ε for all points x, y ∈ F . We will denote by Sp(X,n, ε) the minimal number of (n, ε)-

Bowen balls needed to cover X, thus the minimal cardinality of an (n, ε)-spanning set for X, and by

Sep(X,n, ε) the maximal cardinality of an (n, ε)-separated set in X. We do not write also f in the

above notations, when things are clear from context. The following definition is then well-known:

Definition 3.1.1. Let us define the topological entropy of f by htop(f) = lim
ε→0

lim sup
n→∞

1
n

logSp(X,n, ε).

It can be shown that if f is expansive then there exists an ε0 > 0 such that htop(f) =

lim sup
n→∞

1
n

logSp(X,n, ε0) (for instance [96]).

The topological entropy gives a measure of the complexity of the behaviour of the iterates of f

in the long run. The smaller the entropy, the more predictible is the system. For instance if f is

contracting on X, then Bowen balls are determined only by the first iterate, and so the topological

entropy of f is equal to 0.

Definition 3.1.2. Let (X, d) a compact metric space and f : X → X a continuous map. Then a

probability measure µ on X is said to be f -invariant if µ(f−1(A)) = µ(A), for any Borel set A.

We will denote the space of all probability measures which are f -invariant, by M(X, f).
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The definition of measure-theoretic entropy is more complicated and long, and we reffer to any

classical text on ergodic theory/dynamical systems for this, for instance [27], [96], etc. Enough to

say that for each f -invariant probability measure µ on X, there exists a number hµ(f) ≥ 0 which

describes the complexity of the behaviour of the trajectories of f modulo µ.

We will say that f is expansive if there exists a postive constant ε0 such that if x, y ∈ X and

there exist prehistories x̂, ŷ ∈ X̂ with d(x−i, y−i) < ε, i ≥ 0 and d(f ix, f i) < ε, i ≥ 0, then x = y.

Theorem 3.1.1 ([96]). If the map f : X → X is expansive, then the entropy map is upper semi-

continuous, i.e if µ ∈ M(X, f) and ε > 0, then there exists a neighbourhood U of µ in M(X, f)

such that ν ∈ U implies that hν(f) < hµ(f) + ε.

We shall now define the topological pressure. Consider again a continuous map f : X → X on a

compact metric space (X, d), and let also a continuous function φ : X → R (usually φ is chosen to

be Hölder continuous). We shall also denote by

Snφ(x) := φ(x) + φ(f(x)) + . . .+ φ(fn−1(x)),

the n-th consecutive sum of φ on x, for any integer n ≥ 1 and any x ∈ X.

Consider now the quantities

Psp(f, φ) := lim
ε→0

lim sup
n→∞

1

n
log inf{

∑
x∈E

eSnφ(x), E an (n, ε)− spanning set for X}

Psep(f, φ) := lim
ε→0

lim sup
n→∞

1

n
log sup{

∑
x∈E

eSnφ(x), E an (n, ε)− separated set for X}

Then it can be shown (for eg. [27], [96]) that Psp(f, φ) = Psep(f, φ).

Definition 3.1.3. The common value of Psep(f, φ) and Psp(f, φ) is called the topological pressure

of the potential φ with respect to f ; it is denoted by P (f, φ).

From the definition above, it can be seen that P (f, 0) = htop(f).

Like with topological entropy, it can be shown that, if f is expansive, then there exists a constant

δ0 > 0 such that the topological pressure P (f, φ) can be calculated only on (n, δ0)-spanning sets

(with n→∞), i.e only when ε = δ0, without having to take ε→ 0 (see [96]).

Let us give now several properties of the pressure functional, which will be used in the sequel.

We denote the space of continuous real-valued functions on X by C(X,R). The following Theorem

can be proved.

Theorem 3.1.2 ([96]). Consider a continuous endomorphism on a compact metric space f : X → X

and φ, ψ ∈ C(X,R), and ε > 0. Then we have the following properties of topological pressure:

1) P (f, 0) = htop(f)

2) if φ ≤ ψ on X, then P (f, φ) ≤ P (f, ψ). Thus htop(f) + inf φ ≤ P (f, φ) ≤ htop(f) + supφ

3) P (f, ·) is either finitely valued or consgtantly ∞
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4) |P (f, φ)− P (f, ψ)| ≤ ||φ− ψ||
5) if htop(f) <∞, then P (f, ·) is convex

6) P (f, φ+ c) = P (f, φ) + c, for any constant c

7) P (f, φ+ ψ ◦ f − ψ) = P (f, φ)

8) P (f, φ+ ψ) ≤ P (f, φ) + P (f, ψ)

9) P (f, cφ) ≤ cP (f, φ) for any constant c ≥ 1, and P (f, cφ) ≥ cP (f, φ) for any constant c ≤ 1

10) |P (f, φ)| ≤ P (f, |φ|).

Now, the properties of the pressure as a function of the transformation f are given in the next:

Theorem 3.1.3 ([96]). Let f : X → X be a continuous map on a compact metric space X, and a

potential φ ∈ C(X,R). Then,

1) for any m ≥ 1, we have P (fm, Smφ) = mP (f, φ).

2) if f is a homeomorphism, then P (f−1, φ) = P (f, φ).

3) if Y is a closed subset of X and f(Y ) ⊂ Y , then P (f |Y , φ|Y ) ≤ P (f, φ).

4) if fi : Xi → Xi is a continuous map on a compact metric space (Xi, di) for i = 1, 2, and if

Φ : X1 → X2 is a surjective continuous map with Φ ◦ f1 = f2 ◦ Φ, then P (f2, φ) ≤ P (f1, φ ◦ Φ), for

all φ ∈ C(X2,R). In particular this can be applied when Φ is a homeomorphism, thus pressure is a

conjugacy invariant.

5) Pressure behaves additively towards products of transformations on compact spaces, i.e if

fi : Xi → Xi, i = 1, 2 are continuous transformations, and if φi ∈ C(Xi,R), i = 1, 2, then P (f1 ×
f2, φ1 × φ2) = P (f1, φ1) + P (f2, φ2).

3.2 Variational Principle and equilibrium measures

The Variational Principle was proved first for certain transformations by Ruelle and then for all

transformations by Walters. It makes an important connection between pressure (and topological

pressure), and measure-theoretic entropy. It corresponds also to certain phenomena in statistical

physics ([84]).

Theorem 3.2.1 ([96]). The Variational Principle for Topological Pressure

Let a continuous map f : X → X on a compact metric space X, and a potential φ ∈ C(X,R).

Then

P (f, φ) = sup{hµ(f) +

∫
φdµ, µ ∈M(X, f)}

Since it is a very important notion, that will be used in the sequel, let us give now the definition

of ergodic measures (see [34], [27], [96], etc.) We will say that the f -invariant measure µ is ergodic

if the only borelian sets A for which f−1(A) = A are the ones with µ(A) = 1 or µ(A) = 0. We

denote the ergodic f -invariant probability measures on X by E(X, f).
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The following Corollary says that we can take in the supremum of the Variational Principle only

ergodic measures, and that the only part that matters in calculating pressure is the non-wandering

set. It can be proved using the decomposition of invariant measures in ergodic measures ([96]).

Corollary 3.2.1 ([96]). Let f : X → X be a continuous map on a compact metric space X, and

let φ ∈ C(X,R). Then

a) P (f, φ) = sup{hµ +
∫
φdµ, µ ∈ E(X, f)}

b) P (f, φ) = P (f |Ω(f), φ|Ω(f))

We give now the definition of equilibrium measures (or Gibbs states) which are important in

ergodic theory and statistical physics, and have also applications in dimension theory of dynamical

systems.

Definition 3.2.1. Let the continuous map f : X → X on the compact metric space X, and

φ ∈ C(X,R). Then an f -invariant probability measure µ is called an equilibrium measure of φ if

P (f, φ) = hµ(f) +
∫
φdµ. The set of equilibrium measures of φ is denoted by Mφ(X, f).

For certain potentials φ and certain maps f , the set of equilibrium measures of φ may be empty.

The following Theorem gives some properties of equilibrium measures.

Theorem 3.2.2 ([96]). Consider a continuous transformation f : X → X on a compact metric

space, and let φ ∈ C(X,R). Then

a) Mφ(X, f) is convex.

b) if htop(f) < ∞, then the extreme points of Mφ(X, f) are precisely the ergodic members of

Mφ(X, f).

c) if htop(f) <∞ and Mφ(X, f) 6= ∅, then Mφ(X, f) contains an ergodic measure.

d) if the entropy map is upper semicontinuous then Mφ(X, f) is compact and non-empty. In

particular, if f is expansive on X, then every φ ∈ C(X,R) has at least an equilibrium measure.

e) if φ, ψ ∈ C(X,R), and if there exists a constant c such that φ−ψ− c belongs to the closure of

the set {χ ◦ f − χ, χ ∈ C(X,R)}, then φ and ψ have exactly the same set of equilibrium measures

with respect to f .

By using tangent functionals, one can show that there is a dense set of potentials φ which have

unique equilibrium measures.

Corollary 3.2.2 ([96]). Consider the continuous transformation f : X → X on a compact metric

space X and assume that the entropy map of f is upper semicontinous onM(X, f) (this happens for

instance if f is expansive on X). Then there exists a dense set in C(X,R) such that each potential φ

in this set has a unique equilibrium measure, i.e such that each Mφ(X, f) has exactly one member.

We will see now that the existence and uniqueness of equilibrium measures is guaranteed for

hyperbolic maps f and Hölder continuous potentials φ. For this one needs the notion of specification

property (see [5], [27]).
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Theorem 3.2.3 ([5], [27]). (Bowen) Let (X, d) be a compact metric space and f : X → X be an

expansive homeomorphism with the specification property, and φ be a Hölder continuous potential

on X. Then there exists exactly one equilibrium measure µφ of φ. It is mixing and we have

µφ = lim
n→∞

1∑
x∈Fix(fn)

eSnφ(x)

∑
x∈Fix(fn)

eSnφ(x)δx (5)

This Theorem can be extended to hyperbolic endomorphisms as follows:

Theorem 3.2.4 ([47]). Consider a smooth map f on a Riemannian manifold M and Λ be a basic

set so that f is hyperbolic on Λ. Let also a Hölder continuous potential φ on Λ. Then there exists

a unique equilibrium measure µφ of φ on Λ, it is mixing and satisfies (5). Also for any ε > 0 there

exist positive constants Aε, Bε such that for every x ∈ X and any n ≥ 1, we have

Aεe
Snφ(x)−nP (f,φ) ≤ µφ(Bn(x, ε)) ≤ Bεe

Snφ(x)−nP (f,φ) (6)

The proof of this Theorem requires to lift the measures to the inverse limit Λ̂ and to compare

with Bowen balls in Λ̂, and also using the fact that hyperbolicity implies specification property (see

[27]).

By using Livschitz Theorem ([27]) and the properties from the hyperbolic non-invertible case[47],

we can prove also the following result that characterizes the set of potyentials which have a common

equilibrium measure:

Theorem 3.2.5. Consider a basic set Λ for the smooth endomorphism f and assume that f is

hyperbolic on Λ (as an endomorphism). Let also φ, ψ be Hölder continous potentials on Λ such that

the equilibrium measures µφ and µψ coincide. Then there exists aconstant c and a Hölder continuous

function χ on Λ such that ψ(x) = φ(x) + c+ χ(f(x))− χ(x), x ∈ Λ.

From the properties of the set Mφ(X, f) above, it follows also that the converse of the last

Theorem is true, which thus gives a complete characterization of the Hölder potentials that have a

fixed equilibrium measure.

3.3 SRB and inverse SRB measures for endomorphisms

We will study now a special class of invariant measures on fractal attractors, which is important

since it is physically observable, as it gives the asymptotic behaviour of trajectories of Lebesgue-

almost all points in a neighborhood of the attractor. For hyperbolic attractors for diffeomorphisms,

these inv ariant measures were first studied by Sinai, Ruelle and Bowen, and are thus called Sinai-

Ruelle-Bowen measures (or SRB measures).

The SRB measures for Axiom A endomorphisms (smooth non-invertible maps), have been stud-

ied in [74]. In [32], Liu established a Pesin entropy formula in the case of an absolutely continuous
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invariant measure for an endomorphism. Also in [75], Qian and Zhu studied a notion of SRB mea-

sures in the non-uniform setting of invariant measures for smooth endomorphisms. They showed

that a Pesin type entropy formula holds (see also the entropy formula for diffeomorphisms estab-

lished earlier by Ledrappier and Young in [31]):

Theorem 3.3.1 (Pesin’s entropy formula for endomorphisms, [75]). Let f : M → M be a C2

endomorphism having an f -invariant probability borelian measure µ, so that log |detDf | ∈ L1(M,µ).

Then the entropy formula

hµ(f) =

∫
M

∑
λi>0

λi(x)mi(x)dµ(x)

holds if and only if µ has the SRB property, i.e for every measurable partition η of the natural

extension M̂ subordinate to the unstable manifolds of (f, µ), we have that, for µ̂-a. e x̂ ∈ M̂ ,

π(µ̂ηx̂) << mx̂; here mx̂ is the Lebesgue measure induced on the local unstable manifold W u
r(x̂)(x̂),

λi are the Lyapunov exponents of the measure µ and mi their respective multiplicities.

Ruelle studied in [81] (see also [34]), the distribution of the preimages of points, for expanding

maps; the main method was the use of Perron-Frobenius operators, and also the fact that the diam-

eters of the images of small balls by branches of inverse iterates, decrease exponentially. However

in our case of non-invertible non-expanding maps, this useful property does no longer hold.

In a series of papers, namely [38], [43], [46] we initiated a study of an analogue of the SRB measure

for endomorphisms, but this time involving the various consecutive preimages of points. As noticed

before, due to the non-invertibility of f , we cannot apply the case of the forward iterates, and the

problem is difficult and subtle. New methods were developed, involving estimates of the equilibrium

measures on pieces of neighbourhoods of unstable manifolds (corresponding to various prehistories),

inverse pressure, non-Bernoullicity of some measures, combinatorial arguments, estimates of the lifts

of measures on certain borelian sets from the natural extension, consideration of families of certain

appropriate conditional measures, etc. A priori there may exist preimages of points from Λ which

do not remain in Λ, as Λ is a fractal set, not necessarily totally invariant. First let us specify what

we understand by repellor for an endomorphism:

Definition 3.3.1. Let f be a smooth (say C2) endomorphism on a Riemannian manifold M and let

Λ be a basic set for f . We say that Λ is a repellor for f if the critical set of f does not intersect

Λ and if there exists a neighbourhood U of Λ such that Ū ⊂ f(U).

We can prove the following result for the number of preimages remaining in the repellor:

Proposition 3.3.1. In the setting of Definition 3.3.1, if Λ is a repellor for f , then f−1Λ∩U = Λ.

If moreover Λ is assumed to be connected, the number of f -preimages that a point has in Λ is

constant.

Proof. Consider a point x ∈ Λ, and y be an f -preimage of x from U . Then fny ∈ Λ, n ≥ 1. From

Definition 3.3.1, since Λ is assumed to be a repellor, the point y has a preimage y−1 in U ; then y−1
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has a preimage y−2 from U , and so on. Thus y has a full prehistory belonging to U and also its

forward orbit belongs to U , hence y ∈ Λ since Λ is a basic set. So f−1Λ ∩ U = Λ.

We prove now the second part of the statement. Let a point x ∈ Λ and assume that it has d

f -preimages in Λ, denoted x1, . . . , xd. Consider also another point y ∈ Λ close to x. If y is close

enough to x and since Cf ∩ Λ = ∅, it follows that y also has exactly d f -preimages in U , denoted

by y1, . . . , yd. Since from the first part we know that f−1Λ∩U = Λ, we obtain then y1, . . . , yd ∈ Λ.

In conclusion the number of f -preimages in Λ of a point is locally constant. If Λ is assumed to be

connected, then the number of preimages belonging to Λ of any point from Λ, must be constant.

The importance of the fact that all points in Λ have a constant number of preimages remaining

in Λ, is given by the following Theorem, proved in [46]:

Theorem 3.3.2. ([46]) Consider Λ to be a connected hyperbolic repellor for the smooth endomor-

phism f : M → M ; let us assume that the constant number of f -preimages belonging to Λ of any

point from Λ is equal to d. Then P (Φs − log d) = 0.

Then, using this we proved in [46] that in the case of a hyperbolic repellor which is not necessarily

expanding, the distribution of consecutive preimages of Lebesgue almost all points in a neighborhood

of the repellor is given by an inverse SRB measure; the important role of the inverse SRB measure

is shown to be played here by the equilibrium measure of the stable potential. The methods of

proof are however different from the diffeomorphism case, and involve a careful study of the types

of behaviours of consecutive sums along various prehistories.

Theorem 3.3.3. ([46]) Let Λ be a connected hyperbolic repellor for a smooth endomorphism f :

M →M . There exists a neighbourhood V of Λ, V ⊂ U such that if we denote by

µzn :=
1

n

∑
y∈f−nz∩U

1

d(f(y)) · . . . · d(fn(y))

n∑
i=1

δf iy, z ∈ V

where d(y) is the number of f -preimages belonging to U of a point y ∈ V , then for any continuous

function g ∈ C(U,R) we have ∫
V

|µzn(g)− µs(g)|dm(z) →
n→∞

0,

where µs is the equilibrium measure of the stable potential Φs(x) := log |det(Dfs(x))|, x ∈ Λ.

Proof. We assume that U is the neighbourhood of Λ from Definition 3.3.1, i. e such that Ū ⊂ f(U).

As we proved in Proposition 3.3.1, if Λ is a connected hyperbolic repellor, then any point from Λ

has exactly d f -preimages belonging to Λ for some positive integer d. Moreover as was shown in

the beginning of the proof of Theorem 3.3.2, there exists a neighbourhood V of Λ such that any

point from V has dn n-preimages in U , for n ≥ 1.

If Λ is a hyperbolic repellor we have that all local stable manifolds must be contained in Λ.

Indeed, otherwise there may exist small local stable manifolds which are not entirely contained in
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Λ. Let W s
r (x), x ∈ Λ one such stable manifold, with a point y ∈ W s

r (x) \Λ; in this case since y ∈ U
(for small r) and since Ū ⊂ f(U), it follows that y has a full prehistory ŷ in U , and from the fact

that Λ is a basic set, we obtain that y ∈ W u
r (ξ̂) for some ξ̂ ∈ Λ̂. But then y = W s

r (x) ∩W u
r (ξ̂),

hence y ∈ Λ from the local product structure of Λ (since Λ is a basic set, see for example [27]);

this gives a contradiction to our assumption. Hence there exists a small r > 0 such that all stable

manifolds of size r are contained in Λ.

We shall denote by C(U) the space of real continuous functions on U . Let us fix now a Holder

continuous function g ∈ C(U). We will apply the L1 Birkhoff Ergodic Theorem ([34]) on Λ̂ for

the homeomorphism f̂−1, in order to obtain an estimate for the measure of the set of prehistories

which are badly behaved. Similarly as in [27] or [?] we know that the stable distribution is Holder

continuous, hence the stable potential on Λ̂ is Holder too. This means that there exists a unique

equilibrium measure for this potential on Λ̂; so from the bijection between M(f) and M(f̂) it

follows that there exists a unique equilibrium measure for Φs on Λ denoted by µs. This measure is

ergodic and we can apply the L1 Birkhoff Ergodic Theorem to the function g ◦ π on Λ̂:

|| 1
n

(g(x) + g ◦ π(f̂−1(x̂)) + . . . g ◦ π(f̂−n+1(x̂))−
∫

Λ

g ◦ πdµ̂s||L1(Λ̂,µ̂s)
→
n→∞

0 (7)

We make now the general observation that if f : Λ → Λ is a continuous map on a compact

metric space Λ, µ is an f -invariant borelian probability measure on Λ and µ̂ is the unique f̂ -

invariant probability measure on Λ̂ with π∗(µ̂) = µ, then for an arbitrary closed set F̂ ⊂ Λ̂, we have

that

µ̂(F̂ ) = lim
n
µ({x−n,∃x̂ = (x, . . . , x−n, . . .) ∈ F̂}) (8)

Let us prove (8): first denote F̂n := f̂−nF̂ , n ≥ 1; next notice that µ̂(F̂n) = µ̂(F̂ ) since µ̂

is f̂ -invariant. Let also Ĝn := π−1(π(F̂n)), n ≥ 1. We have F̂ ⊂ f̂n(Ĝn), n ≥ 0. Let now a

prehistory ẑ ∈ ∩
n≥0

f̂nĜn; then if ẑ = (z, z−1, . . . , z−n, . . .), we obtain that z−n ∈ πF̂n,∀n ≥ 0, hence

ẑ ∈ F̂ since F̂ is assumed closed. Thus we obtain F̂ = ∩
n≥0

f̂n(Ĝn). Now the above intersection is

decreasing, since f̂n+1Ĝn+1 ⊂ f̂nĜn, n ≥ 0. Since the above intersection is decreasing, we get that

µ̂(F̂ ) = lim
n
µ̂(f̂nĜn) = lim

n
µ̂(Ĝn) = lim

n
µ̂(π−1(π(F̂n))) = lim

n
µ(π(F̂n)) = lim

n
µ(π ◦ f̂−nF̂ ), since µ̂

is f̂ -invariant. Therefore we obtain (8).

For a positive integer n, a continuous real function g defined on the neighbourhood U of Λ, and

a point y so that y, f(y), . . . , fn−1(y) are all in U , let us denote by

Σn(g, y) :=
g(y) + . . .+ g(fn−1y)

n
−
∫
gdµs, n ≥ 1, y ∈ Λ

Now from the convergence in L1(Λ̂, µ̂s) norm established in (7), it follows the convergence in µ̂s-

measure; i.e if we consider for a small η > 0 and an integer n > 1 the closed set:

F̂n(η) = {x̂ = (x, x−1, x−2, . . .) ∈ Λ̂, |Σn(g, x−n)| ≥ η},
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then we have the convergence

µ̂s(F̂n(η)) →
n→∞

0,∀η > 0. (9)

Thus from (9), (8) and the f -invariance of µs, we obtain that for any small η > 0, χ > 0 there exists

an integer N(η, χ) ≥ 1 so that:

µs(x−n′ ∈ Λ ∩ f−n′+n(x−n), |Σn(g, x−n)| ≥ η) = µs(x−n ∈ Λ, |Σn(g, x−n)| ≥ η) < χ, (10)

for n′ > n > N(η, χ).

Let us consider now some small ε > 0. Recall that for n ≥ 1 and y ∈ Λ, the Bowen ball

Bn(y, ε) := {z ∈M,d(f iy, f iz) < ε, i = 0, . . . , n− 1}. We shall prove that if y ∈ Λ and z ∈ Bn(y, ε)

for n large enough, then the behaviour of Σn(g, z) is similar to that of Σn(g, y). More precisely,

assume that η > 0 and that y ∈ Λ satisfies |Σn(g, y)| ≥ η. Then we will show that there exists

N(η) ≥ 1 so that

|Σn(g, z)| ≥ η

2
, ∀z ∈ Bn(y, ε), n > N(η) (11)

Since g was assumed Holder, let us assume that it has a Holder exponent equal to α, i.e

|g(x)− g(y)| ≤ C · d(x, y)α,∀x, y ∈ U,

where d(x, y) is the Riemannian distance (from M) between x and y and C > 0 is a constant.

The idea now is that, if z ∈ Bn(y, ε), then for some time the iterates of z follow the iterates of y

close to stable manifolds, and afterwards they follow the iterates of y closer and closer to unstable

manifolds. We have in both cases an exponential growth of distances between iterates, and thus we

can use the Holder continuity of g on U .

If z ∈ Bn(y, ε), y ∈ Λ then we either have z ∈ W s
ε (y) ⊂ Λ or there exists a positive distance

between z and the local stable manifold W s
ε (y). In the first case there exists some λs ∈ (0, 1) such

that d(f iz, f iy) < λisε, i = 0, . . . , n − 1. This implies that, in the case when z ∈ W s
ε (y), for some

N0 ≥ 1 we have:

|g(fN0y) + . . .+ g(fn−1y)− g(fN0z)− . . .− g(fn−1z)| ≤ λαN0
s · C0, (12)

for some constant C0 > 0 independent of n. If z ∈ Bn(y, ε) but z is not necessarily on W s
ε (y), then

the iterates of z will approach exponentially some local unstable manifolds at the corresponding

iterates of y and their ”projections” on these unstable manifolds increases exponentially, up to a

maximum value less than ε (reached at level n). More precisely there exists some N0, N1 ≥ 1

and some λ ∈ (λs, 1) such that d(f iz, f iy) ≤ λi, i = N0, . . . , N1 − 1; notice that N0, N1, λ are

independent of y, z, n. Now if the iterate fN1z becomes much closer to W u
ε (fN1y) than to W s

ε (fN1y),

it follows that all the higher order iterates will approach asymptotically the local unstable manifolds

and d(f jy, f jz) increases exponentially. We assume that N1 has been taken such that for some

λu ∈ ( 1
infΛ |Dfu|

, 1), we have d(f jz, f jy) ≤ λu · d(f j+1z, f j+1y), j = N1, . . . , n − 2. So the maximum

such distance is d(fn−1y, fn−1z) and we know that d(fn−1y, fn−1z) < ε since z ∈ Bn(y, ε). Hence

d(f jz, f jy) ≤ ελn−j−1
u , j = N1, . . . , n− 1
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Let us take now some N2 ≥ 1 such that n −N2 > N1; N2 will be determined later. Thus from

the Holder continuity of g on U we obtain (for some positive constant C) that:

|g(fN0z) + . . .+ g(fN1−1z) + g(fN1z) + . . .+ g(fn−N2z) + . . .+ g(fn−1z)

− g(fN0y)− . . . g(fN1−1y)− g(fN1y)− . . .− g(fn−N2y)− . . .− g(fn−1y)| ≤
≤ C(λαN0 + λαN2

u ) + 2N2||g||
(13)

Thus from (12) and (13) we obtain that, if z ∈ Bn(y, ε) then:

|Σn(g, y)− Σn(g, z)| ≤ 1

n

[
2N0||g||+ C(λαN0 + λαN2

u ) + 2N2||g||
]

(14)

From above, N0, N2 do not depend on n, y, z. Therefore we can choose some large N(η) so that

1

n
(2N0||g||+ C(λαN0 + λαN2

u ) + 2N2||g||) < η/2, for n > N(η)

This means that the relation from (11) holds. Let us denote now by:

In(g, x) :=
1

dn

∑
y∈f−n(x)∩U

|Σn(g, y)|, (15)

for a continuous real function g : U → R, and x ∈ V . Recall that V is the neighbourhood of Λ,

Λ ⊂ V ⊂ U , constructed in the proof of Theorem 3.3.3 so that every point x ∈ V has dn n-preimages

in U for n ≥ 1. For a fixed Holder continuous function g and a small η > 0, we will work with

n > N(η), where N(η) was found above. From (14) and the discussion afterwards, we know that

|Σn(g, z)− Σn(g, y)| ≤ η/2 if z ∈ Bn(y, ε) and y ∈ Λ.

Let us consider now an (n, ε)-separated set with maximal cardinality in Λ, denoted by Fn(ε). It

follows that any point y ∈ V belongs to dn tubular neighbourhoods, i.e fn(Bn(yi, 3ε)), yi ∈ Fn(ε)

for 1 ≤ i ≤ dn. Let us denote as before Vn(y1, . . . , ydn) := ∩
1≤i≤dn

fnBn(yi, 3ε). Thus in the integral∫
V
In(g, x)dm(x), we can decompose V into the smaller pieces Vn(y1, . . . , ydn), for different choices

of y1, . . . , ydn ∈ Fn(ε).

We can use now relation (14) in order to replace in
∫
V
In(g, x)dm(x), the term |Σn(g, y)| with

|Σn(g, ζ)|, where x ∈ V is arbitrary, y ∈ f−nx ∩ U and y ∈ Bn(ζ, 3ε) for some ζ ∈ Fn(ε). Indeed

let us fix some arbitrary small η > 0. Then we prove similarly as in (14) that if n > N(η), then

|Σn(g, y)| ≤ |Σn(g, ζ)| + η/2, if y ∈ Bn(ζ, 3ε) and ζ ∈ Fn(ε) (N(η) can be assumed to be the same

as in (14) without loss of generality).

So up to a small error of η/2 we can replace each of the terms |Σn(g, y)| with the corresponding

|Σn(g, ζ)|. This implies that in the integral
∫
V
In(g, x)dm(x), on each piece of type Vn(y1, . . . , ydn)

in fn(Bn(yj, 3ε)) for yj ∈ Fn(ε), we integrate in fact |Σn(g, yj)|, modulo an error of η/2. Then we
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will obtain that∫
V

In(g, x)dm(x) ≤ 1

dn

∑
z1,...,zdn∈Fn(ε)

∫
Vn(z1,...,zdn )

n∑
i=1

|Σn(g, zi)|dm+
η

2
·m(V )

≤ 1

dn

∑
z∈Fn(ε)

|Σn(g, z)| ·
∑

z∈{z1,...,zdn}

m(Vn(z1, . . . , zdn)) +m(V )η/2

≤ 1

dn

∑
z∈Fn(ε)

|Σn(g, z)| ·m(fnBn(z, 3ε)) +m(V )η/2

So what we did is, we replaced |Σn(g, y)| with |Σn(g, z)| for all y ∈ f−nx∩U , where y ∈ Bn(z, 3ε), z ∈
Fn(ε), then we integrated the respective sums of |Σn(g, z)|, z ∈ Fn(ε) on small pieces of tubular

overlap Vn(z1, . . . , zdn); lastly, we kept |Σn(g, z)| fixed for an arbitrary z ∈ Fn(ε) and added the

measures of all intersections of fnBn(z, 3ε) with other tubular sets of type fnBn(w, 3ε), w ∈ Fn(ε).

Thus by adding the measures of these overlaps, we recover m(fnBn(z, 3ε)). In conclusion we obtain:∫
V

In(g, x)dm(x) ≤ C ·
∑

y∈Fn(ε)

|Σn(g, y)| · m(fn(Bn(y, 3ε))

dn
+
η

2
·m(V ) (16)

But now recall that m(fn(Bn(y, 3ε))) is comparable to eSnΦs(y), independently of n, y ∈ Λ. And

from Theorem 3.3.2 we know that P (Φs) = log d. Hence from [46] it follows that, if µs denotes the

unique equilibrium measure of Φs, then µs(Bn(y, ε/2)) is comparable to eSnΦs(y)

dn
, independently of

n, y. Therefore combining with (16) we obtain that there exists a constant C1 > 0 s.t:

∫
V

In(g, x)dm(x) ≤ C1

 ∑
y∈Fn(ε)

|Σn(g, y)|µs(Bn(y, ε/2)) + η

 , (17)

for n > N(η). We will split now the points of Fn(ε) in two disjoint subsets denoted by G1(n, ε) and

G2(n, ε), defined as follows:

G1(n, ε) := {y ∈ Fn(ε), |Σn(g, y)| < η} and G2(n, ε) := {z ∈ Fn(ε), |Σn(g, z)| ≥ η}

Recall that the Bowen balls Bn(y, ε/2), y ∈ Fn(ε) are mutually disjointed since Fn(ε) is (n, ε)-

separated. Also if y ∈ G2(n, ε) and z ∈ Bn(y, ε/2), we have |Σn(g, z)| ≥ η/2 (from (11)); hence

Bn(y, ε/2) ∩ Λ ⊂ {z ∈ Λ, |Σn(g, z)| ≥ η/2}. Consequently for a constant Cε > 0,∑
y∈Fn(ε)

|Σn(g, y)|µs(Bn(y, ε/2)) =
∑

y∈G1(n,ε)

|Σn(g, y)|µs(Bn(y, ε/2)) +
∑

y∈G2(n,ε)

|Σn(g, y)|µs(Bn(y, ε/2)) ≤

≤ η
∑

y∈G1(n,ε)

µs(Bn(y, ε/2)) + 2||g||µs(z ∈ Λ, |Σn(g, z)| ≥ η

2
) · Cε

But since the balls Bn(y, ε/2), y ∈ Fn(ε) are mutually disjoint, we have
∑

y∈G1(n,ε)

µs(Bn(y, ε/2)) ≤

1. Also µs(z ∈ Λ, |Σn(g, z)| ≥ η/2) < χ for n > N(η/2, χ), as follows from (10). Thus by using (31)

32



we obtain for n > sup{N(η), N(η, χ)}∫
V

In(g, x)dm(x) ≤ C1(η + η + Cε · 2||g||χ) = 2C1(η + χ · Cε||g||)

Since η, χ > 0 were taken arbitrarily, and by recalling the formula for In(g, x) from (15) and the

definition of µzn, we obtain that: ∫
V

|µzn(g)− µs(g)|dm(z) →
n→∞

0

Since Holder continuous functions g are dense in the uniform norm on C(U), we obtain the conclusion

of the Theorem for all g ∈ C(U).

Corollary 3.3.1 ([46]). In the same setting as in Theorem 3.3.3, it follows that there exists a

borelian set A ⊂ V with m(V \ A) = 0 and a subsequence (nk)k, such that for any point z ∈ A, we

have the following weak convergence of measures on U

µznk →k→∞µs

Moreover we proved in [46] that a property like the one satisfied by usual SRB measures in

regard to their conditional measures on unstable manifolds, is verified now by the inverse SRB

measure, but on local stable manifolds:

Theorem 3.3.4. ([46]) Let Λ be a connected hyperbolic repellor for a smooth endomorphism f :

M → M on a Riemannian manifold M ; assume that f is d-to-1 on Λ. Then there exists a unique

f -invariant probability measure µ− on Λ satisfying an inverse Pesin entropy formula:

hµ−(f) = log d−
∫

Λ

∑
i,λi(x)<0

λi(x)mi(x)dµ−(x)

In addition the measure µ− has absolutely continuous conditional measures on local stable manifolds.

Connected hyperbolic repellors are very useful as examples since they preserve at perturbation

the property of having a constant number of preimages of any point, remaining in the repellor

(Proposition 3.3.1 above). Also, their hyperbolicity and connectedness are preserved by perturba-

tions. Therefore one can construct examples like the one below, from [46]:

Example. Let us take F : PC1 × T2 → PC1 × T2 given by:

F ([z0 : z1], (x, y)) = ([z2
0 : z2

1 ], fA(x, y)), where fA is the toral endomorphism induced by the

matrix A =

(
2 1

2 2

)
. Then F has a connected hyperbolic repellor Λ := S1 × T2. Consider the

following perturbation of F , Fε : PC1 × T2 → PC1 × T2 given by:

Fε([z0 : z1], (x, y)) =
(
[z2

0 + εz2
1 · e2πi(2x+y) : z2

1 ], (2x+ y + εsin(2π(x+ y)), 2x+ 2y + εcos2(4πx))
)
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Then Fε is well defined as a smooth endomorphism on PC1×T2 and it is a C1 perturbation of F . It

follows from the discussion above that Fε has a connected hyperbolic repellor Λε (on which Fε has

both stable as well as unstable directions), and that Λε is close to Λ. However Λε is different from

Λ, and it has a complicated structure with self-intersections; its projection on the second coordinate

is T2. On Λε we can apply Theorem 3.3.3 to get a physical measure µ−ε for the local inverse iterates

of Fε. This physical measure µ−ε is the equilibrium measure of the non-constant stable potential

Φs
ε([z0 : z1], (x, y)) := log |det(DFε)s([z0 : z1], (x, y))|, for ([z0 : z1], (x, y)) ∈ Λε

�

3.4 Statistical properties of equilibrium measures on folded fractals

The asymptotic distribution of preimages for expanding maps is given by equilibrium measures

(see [81]). However, if the basic set Λ is of saddle type, the problem is very different and needs

new methods for the proof. We lack the fact that the local inverse iterates act as contractions on

small balls; in fact they are dilations in the stable directions in backward time, and this is changing

completely the situation and the ideas of proof. In [38] we solved the above problem of the weighted

preimage distribution with a Holder continuous weight φ, along a general hyperbolic basic set (i. e

not necessarily a repellor, and not necessarily for an expanding map):

Theorem 3.4.1. ([38]) Let f : M →M be a smooth (say C2) map on a Riemannian manifold M ,

which is hyperbolic and finite-to-one on a basic set Λ so that Cf ∩Λ = ∅. Assume that φ is a Holder

continuous potential on Λ and that µφ is the equilibrium measure of φ on Λ. Then∫
Λ

| < 1

n

∑
y∈f−nx∩Λ

eSnφ(y)∑
z∈f−nx∩Λ

eSnφ(z)
·
n−1∑
i=0

δf iy − µφ, g > |dµφ(x) →
n→∞

0,∀g ∈ C(Λ,R)

The proof of this Theorem is difficult and is based on a careful study of the measure µφ of various

pieces of Bowen balls, and of iterates of Bowen balls; one has to estimate the measure of the set of

n-preimages y−n behaving badly, i.e on which the consecutive averages φ(y)+...+φ(y−n)
n

oscillate more

than some ε from their median value
∫
φdµφ. As a Corollary, we obtained in [38] the following

result giving the weak convergence of the above atomic measures along the same subsequence, for

all points in a set of full µφ-measure, in the case of a basic set of saddle type Λ and a smooth

non-invertible map f :

Corollary 3.4.1. ([38]) In the same setting as in Theorem 3.4.1, for any Holder potential φ, it

follows that there exists a subset E ⊂ Λ, with µφ(E) = 1 and an infinite subsequence (nk)k such

that for any z ∈ E we have the weak convergence of measures

µznk →k→∞µφ
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Corollary 3.4.2. ([38]) Assume that f : M → M is an Anosov endomorphism without critical

points on a Riemannian manifold. Let also φ a Holder continuous potential on M and µφ the

equilibrium measure of φ. Then∫
M

| < 1

n

∑
y∈f−nx

eSnφ(y)∑
z∈f−nx

eSnφ(z)
·
n−1∑
i=0

δf iy − µφ, g > |dµφ(x) →
n→∞

0,∀g ∈ C(Λ,R)

In particular, if µ0 is the measure of maximal entropy, it follows that for µ0-almost all points x ∈ Λ,

1
n

∑
y∈f−nx

n−1∑
i=0

δfiy

Card(f−nx)
→
n→∞

µ0

By applying some results from [32] and [75] we obtain sufficient conditions when the usual SRB

measure is equal to our inverse SRB measure (see [46], [38]):

Corollary 3.4.3. Let f : M → M be an Anosov endomorphism, φ : Λ → R a Holder potential

and assume that the equilibrium measure µφ is absolutely continuous with respect to the Lebesgue

measure on M . Then the measure µφ with this property is unique, it is an SRB measure and it also

satisfies an inverse SRB condition in the sense that there exists a set E of full Lebesgue measure in

M and a sequence (nk)k such that µznk→k µφ, z ∈ E.

One can give examples of Anosov endomorphisms so that each point has a constant number of

preimages; take for instance the hyperbolic toral endomorphism fA : Tm → Tm,m ≥ 2, given by an

integer-valued matrix A whose eigenvalues λi all have absolute values different from 1. Each point

of Tm has exactly |detA| preimages in Tm. Then for any Hölder continuous potential φ on Tm, one

can apply the Corollary 5.1.5 in order to obtain the weighted distribution of all n-preimages

on Tm, asymptotically converging to the equilibrium measure µφ, when n → ∞. In particular, if

φ ≡ 0, we obtain the distribution of the atomic measures supported on preimages of order smaller

than n, towards the measure of maximal entropy (i. e towards the Lebesgue measure on Tm).

We notice also that Corollary 5.1.5 applies for Anosov endomorphisms on infranilmanifolds (see

for example [34] for definitions). Moreover, Theorem 3.4.1 applies also to basic sets of saddle type

which are not necessarily Anosov, like the examples from [59].

Two statistical properties of interest are the exponential decay of correlations and mixing of any

order. We studied these properties for equilibrium measures of Hölder potentials on hyperbolic

folded basic sets in [37]. First let us remind some definitions, from [5], [10], [77], [78], [96], etc.

Definition 3.4.1. Given a transformation f : M → M we say that an f -invariant probability µ

has Exponential Decay of Correlations on Hölder potentials, if there is some λ ∈ (0, 1) such

that for every integer n ≥ 1,

|
∫
φ · ψ ◦ fndµ−

∫
φdµ ·

∫
ψdµ| ≤ C(φ, ψ)λn,

for any Hölder functions φ, ψ ∈ C(M,R), where C(φ, ψ) depends only on the potentials φ, ψ.
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Now for a Lebesgue space (X,B(X), µ) and an endomorphism f : X → X preserving the

probability measure µ, we say that (X, f,B(X), µ) is an exact endomorphism ([77], [78], [34]) if

∩
n≥0

f−nB(X) = N ,

where N is the σ-algebra containing only sets of µ-measure 0 or 1. Rokhlin [78], proved that

(X, f,B(X), µ) is exact if and only if for any measurable set of positive measure A ⊂ X, we have

lim
n→∞

µ(fnA) = 1.

Definition 3.4.2. Consider m-tuples of positive integers ∆ = (k1, . . . , km) and denote by `(∆) :=

inf |ki − kj|, 1 ≤ i < j ≤ m. We say that the Lebesgue space (X, f,B(X), µ) is mixing of

order m, if for any arbitrary measurable sets A1, . . . , Am and for any sequences of m-tuples

∆1 = (k1
1, . . . , k

1
m),∆2 = (k2

1, . . . , k
2
m), . . ., with lim

n→∞
`(∆n) =∞, we have

lim
n→∞

µ(
m
∩
i=1

f−k
n
i Ai) =

m

Π
i=1

µ(Ai)

If m = 2 we obtain the usual notion of mixing measure. An exact endomorphism is mixing of

any order, as shown in [78]; however the converse is not true. For equilibrium measures on folded

hyperbolic fractals we proved that:

Theorem 3.4.2 ([37]). Let f be a smooth endomorphism on M , which is hyperbolic on the basic

set Λ, and let φ be a Hölder continuous potential on Λ with its equilibrium measure µφ. Then:

a) the measure-preserving system (Λ, f |Λ, µφ) is mixing of any order.

b) the probability measure µφ has Exponential Decay of Correlations on Hölder potentials.

Proof. a) The map f is uniformly hyperbolic on Λ, so as in [27], pg. 272 we obtain that f has local

product structure on Λ, and thus f̂ has local product structure on Λ̂ with local stable sets (defined

for some δ > 0 small enough):

V −x̂ := {ŷ ∈ Λ̂, d(f̂nŷ, f̂nx̂) < δ, n ≥ 0},

and local unstable sets

V +
x̂ := {ŷ ∈ Λ̂, d(f̂−nŷ, f̂−nx̂) < δ, n ≥ 0}, x̂ ∈ Λ̂

Thus (Λ̂, f̂) has a Smale space structure, as defined in [84]. Now since the potential φ on Λ is

Hölder continuous and as π : Λ̂ → Λ is Lipschitz continuous, it follows that φ̂ := φ ◦ π : Λ̂ → R is

Hölder continuous; hence, to the equilibrium measure µφ of φ it corresponds the unique equilibrium

measure µφ̂ of φ̂ on Λ̂ s.t µφ = π∗µφ̂. We have then Pf (φ) = Pf̂ (φ̂) and hµφ(f) = hµφ̂(f̂). Also∫
Λ
φdµφ =

∫
Λ̂
φ ◦ πdµφ̂.

Now we assumed that f is topologically mixing on Λ (or if f |Λ is topologically transitive, then

we can partition Λ into subsets on which some iterates of f are topologically mixing); this implies

easily that f̂ is topologically mixing on Λ̂. Then from [84] Corollary 7.10 d) we have that (Λ̂, f̂ , µφ̂)
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is isomorphic to a Bernoulli automorphism. Hence as Bernoulli automorphisms are Kolmogorov (by

[34], pg. 161), it follows that (Λ̂, f̂ , µφ̂) is mixing of any order. Therefore (Λ, f |Λ, µφ) is mixing of

any order (see [78]).

b) We have Exponential Decay of Correlations on Hölder potentials, for the inverse limit trans-

formation (Λ̂, f̂ , µ̂φ) since, from a) this is a Bernoulli automorphism (see [5], [10]).

Then due to the bijective correspondence between f -invariant probabilities on Λ and f̂ -invariant

probabilities on Λ̂, and from the invariance of measure-theoretic entropies, we obtain also the

exponential decay of correlations on Hölder potentials for the endomorphism on Lebesgue spaces

(Λ, f |Λ, µφ).

3.5 Jacobians and asymptotic degrees with respect to equilibrium measures.

In the case when an endomorphism is not constant-to-one on a basic set Λ, there appears the

question what do we understand by ”degree” of the map on Λ. It turns out that in general one

cannot define a good substitute for the degree, unless one considers it in the framework of invariant

measures. Thus, it is better to define a notion of degree with respect to an invariant (especially

equilibrium) measure. Also we know that usually the behaviour of a map on Λ is basically the same

with that of its iterates; however it is better in general to consider iterates of higher and higher

order, so that the trajectories become more uniformly spread within the set Λ (on average). In [54]

we investigated the problems associated to such an asymptotic degree with respect to equilibrium

measures, and also its relations to the Jacobians of such measures.

The Jacobian of an invariant measure µ with respect to an endomorphism f of a Lebesgue space

X (see Parry, [67]) describes locally the ratio between µ(f(A)) and µ(A), given that an arbitrary

point in X may have several f -preimages and that, by invariance µ(f(A)) = µ(f−1(f(A))). Let

f : M → M be a continuous endomorphism on the manifold M and µ an f -invariant probability

on M ; assume also that f is at most countable-to-one. Then as shown by Rohlin ([77], [67]), there

exists a measurable partition ξ = (A0, A1, . . .) so that f is injective on each Ai, and the push-

forward measure ((f |Ai)−1)∗µ is absolutely continuous on Ai with respect to µ. The respective

Radon-Nykodim derivative, will be called the Jacobian of µ with respect to f :

Jf (µ)(x) =
dµ ◦ (f |Ai)

dµ
(x), µ− a.e on Ai, i ≥ 0

Notice that from the f -invariance of µ, we have Jf (µ)(x) ≥ 1, µ− a.e x ∈M .

We proved the following result about the Jacobians of equilibrium measures, with respect to

iterates of endomorphisms:

Proposition 3.5.1 ([54]). Let f be a C2 hyperbolic endomorphism, restricted to a folded basic

set Λ, which has no critical points in Λ; let also φ a Hölder continuous potential on Λ and let
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µφ the unique equilibrium measure of φ on Λ. Then there exists a comparability constant C > 0

independent of m,x s.t for µφ − a.e x ∈ Λ the Jacobian of µφ with respect to fm satisfies:

C−1 ·

∑
ζ∈f−m(fm(x))∩Λ

eSmφ(ζ)

eSmφ(x)
≤ Jfm(µφ)(x) ≤ C ·

∑
ζ∈f−m(fm(x))∩Λ

eSmφ(ζ)

eSmφ(x)
, (18)

Recall now (see [73]) that in the expanding case we have the following formula for pressure:

Theorem (Relation between preimage sets and pressure in the expanding case, [73]). Let f : X →
X a topologically transitive open distance expanding map, then for every Hölder continuous potential

φ : X → R and every x ∈ X we have the equality

lim
n→∞

1

n
log

∑
y∈f−n(x)

eSnφ(y) = P (φ)

However for folded basic sets of saddle type this is no longer true, as we showed in [54]. First let

us give a definition that will be used also in the next subsection; it gives the average entropy coming

from the folding of the fractal under the endomorphism (for example if the map is a homeomorphism

when restricted to Λ, then the folding entropy is equal to 0). For the next definition, see for instance

[80], [79] or [32].

Definition 3.5.1. Let f : M → M be an endomorphism and µ an f -invariant probability on M ,

then the folding entropy Ff (µ) of µ is the conditional entropy: Ff (µ) := Hµ(ε|f−1ε), where ε is

the partition into single points.

Theorem 3.5.1 (Relation between preimage sets and pressure in the saddle case, [54]). Consider

an endomorphism f which is hyperbolic on a saddle basic set Λ. Then for an arbitrary Hölder

continuous potential φ on Λ and for its associated equilibrium measure µφ, we have that for µφ-a.e

x ∈ Λ,

lim
n→∞

1

n
log

∑
y∈f−n(x)

eSnφ(y) = P (φ) + Ff (µφ)− hµφ

Proof. From the properties of the Jacobian of µφ we know that it satisfies the Chain Rule, i.e

Jf◦g(µφ)(x) = Jf (µφ)(g(x)) · Jg(µφ)(x) for µφ-a.e x ∈ Λ. Hence µφ-a.e,

log Jfm(µφ)(x) = log Jf (µφ)(x) + . . .+ log Jf (µφ)(fm−1(x))

This means that we can apply Birkhoff Ergodic Theorem and obtain that

log Jfm(µφ)

m
→

m→∞

∫
Λ

log Jf (µφ)dµφ = Ff (µφ)

Apply now Proposition 3.5.1 to get µφ-a.e the convergence

log
∑

y∈f−m(fmx)

eSmφ(y) − log eSmφ(x)

m
→

m→∞
Ff (µφ) (19)
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However from the Birkhoff Ergodic Theorem, Smφ(x)
m
→
∫
φdµφ for µφ-a.e x ∈ Λ. Hence from (19)

and from the fact that P (φ) =
∫
φdµφ + hµφ , we obtain:

log
∑

y∈f−m(fmx)

eSmφ(y)

m
→

m→∞
Ff (µφ) + P (φ)− hµφ

We will give now a formula for the folding entropy of the equilibrium measure µφ in terms of

an ”asymptotic logarithmic degree” with respect to µφ. This will take into account at step n

the n-preimages of points which behave well (are generic) with respect to µφ. To this end, for an

f -invariant probability (borelian) measure µ on Λ let us define, for any small τ > 0, n > 0 integer

and x ∈ Λ the set

Gn(x, µ, τ) := {y ∈ f−n(fnx) ∩ Λ, s.t |Snφ(y)

n
−
∫
φdµ| < τ}, (20)

Definition 3.5.2. In the above setting, denote by dn(x, µ, τ) := CardGn(x, µ, τ), x ∈ Λ, n > 0, τ >

0. The function dn(·, µ, τ) is measurable, nonnegative and finite on Λ.

We can now give the relation between the asymptotic degree and the folding entropy, proved in

[54]:

Theorem 3.5.2 (Asymptotic logarithmic degree in terms of the folding entropy for µφ, [54]). Let

f : M → M be a C2 endomorphism and Λ a basic set for f so that f is hyperbolic on Λ and does

not have critical points in Λ. Let also φ a Hölder continuous potential on Λ and µφ the equilibrium

measure associated to φ. Then we have the following formula:

Ff (µφ) = lim
τ→0

lim
n→∞

1

n

∫
Λ

log dn(x, µφ, τ) dµφ(x)

Therefore Theorem 3.5.2 allows us to define the asymptotic logarithmic degree of f |Λ (with

respect to the measure of maximal entropy µ0) by:

al(f,Λ) := lim
n

1

n

∫
Λ

log dn(x)dµ0(x) (21)

The asymptotic degree of f |Λ is then defined as the number d∞(f,Λ) := eal(f,Λ).

As a matter of fact, for the examples in Section 2.3, we can even compute the asymptotic degree

as being 2, even though the map itself is not constant-to-1 on Λα.

Corollary 3.5.1 ([54]). For the above endomorphism fα and its hyperbolic basic set Λα we have

that fα is not constant-to-one on Λα, and that the asymptotic degree satisfies:

d∞(fα,Λα) = 2
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3.6 Entropy production for invariant measures on folded fractals.

An important notion in statistical physics is that of entropy production of a stationary state (see for

instance [80], [79], etc.) Ruelle refined the notion from physics and defined a mathematical concept

given in the next:

Definition 3.6.1. Let f : M →M be a smooth endomorphism and µ be an f -invariant probability

on M , then the entropy production of µ is defined by:

ef (µ) := Ff (µ)−
∫

log |detDf(x)|dµ(x),

where Ff (µ) is the folding entropy of µ.

Usually for physical purposes, it is useful to know whether a certain stationary state has posi-

tive, zero or negative entropy production, as these three cases correspond to different phenomena.

Entropy production can be defined also for diffeomorphisms, but in that case without the folding

entropy term.

Ruelle proved in [80] that a weak limit of a sum of iterates of µ has non-negative entropy

production. The case when the entropy production is equal to zero is also related to the case when

the measure is physically observable, namely when it is absolutely continuous with respect to the

Lebesgue measure.

In [53] we studied the entropy production for the case of hyperbolic non-expanding endomor-

phisms, and for equilibrium measures for them, especially the case of inverse SRB measures (defined

in Section 3.3). In the same paper we gave also examples of endomorphisms for which the entropy

productions of the respective inverse SRB measures are negative.

In [53] we gave conditions for Anosov endomorphisms to have inverse SRB measures of negative

entropy production, and also showed that a relatively large class of endomorphisms falls in this

category. This can apply in particular to hyperbolic toral endomorphisms and their perturbations.

We gave the statement however in ore generality, for hyperbolic non-expanding repellers.

Proposition 3.6.1 ([53]). Let f be a C2 endomorphism on a connected Riemannian manifold M

and let Λ be a hyperbolic saddle-type repeller for f such that f is d-to-1 on Λ, and f has no critical

points in Λ. Consider an arbitrary small C2 perturbation g of f and let µ−g be the inverse SRB

measure of g on the respective hyperbolic repeller Λg. Then:

a) eg(µ
−
g ) ≤ 0 and Fg(µ

−
g ) = log d.

b) If f is an Anosov endomorphism on M , then there exists a neighbourhood V of f in C2(M,M)

and a set W ⊂ V such that W is open and dense in the C2 topology in V and s.t for any g ∈ W we

have eg(µ
−
g ) < 0.

We gave also concrete examples of hyperbolic repellers for which the respective inverse SRB

measures have negative entropy productions. In a) below, we give an example of Anosov endomor-

phism (hyperbolic toral endomorphism), and in b) an example of a non-Anosov endomorphism (a
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perturbation of a saddle basic set), both of which have negative entropy production of their inverse

SRb measures.

Corollary 3.6.1 ([53]). a) Let the hyperbolic toral endomorphism on T2 given by f(x, y) = (2x+

2y, 2x+ 3y) (mod 1) and its smooth perturbation

g(x, y) = (2x+ 2y + εsin2πy, 2x+ 3y + 2εsin2πy) (mod 1)

Then the inverse SRB measure of g has negative entropy production; moreover the SRB measure of

g has positive entropy production, i.e

eg(µ
−
g ) < 0 and eg(µ

+
g ) > 0

b) Let now f : PC1 × T2 → PC1 × T2 given by fg([z0 : z1], (x, y)) = ([zk0 : zk1 ], g(x, y)), where

k ≥ 2 is fixed, and g is a C2 perturbation of a hyperbolic toral endomorphism fA : T2 → T2 without

critical points. Then fg has a connected hyperbolic repeller Λ := S1×T2 in P1C×T2. Consider the

smooth perturbation of fg, fε,g : PC1 × T2 → PC1 × T2,

fε,g([z0 : z1], (x, y)) :=
(
[zk0 + εzk1 · e2πi(2x+y) : z2

1 ], g(x, y)
)

It follows from [46], that fε,g has a connected saddle type repeller Λε,g := ∩
n≤0

fnε,g(V ), for a neigh-

bourhood V of Λ, and Λε,g is close to Λ; also fε,g has an inverse SRB measure µ−ε,g on Λε,g.

Then, the entropy production of the inverse SRB measure µ−ε,g on Λε,g is negative, i.e

efε,g(µ
−
ε,g) < 0

Proof. We shall give here only the proof of b). From its construction, Λε,g is a connected repeller,

hence it follows from Propositions 1 and 3 of [46] that the number of fε,g-preimages in Λε,g of a

point from Λε,g, is constant. Then we apply [46] to show that

hµ−ε,g(fε,g) = Ffε,g(µ
−
ε,g)−

∑
λi(µ

−
ε,g)<0

λi(µ
−
ε,g),

where the Lyapunov exponents are repeated according to multiplicities. So we see that efε,g(µ
−
ε,g) ≤

0. However we cannot have efε,g(µ
−
ε,g) = 0 since otherwise it would follow that the inverse SRB

measure µ−ε,g satisfies the equality in the (usual) Pesin formula. Then from a Volume Lemma (see

[74]), this would imply that Λε,g is an attractor. However the basic set Λε,g is a hyperbolic repeller

close to Λ, so it cannot have a neighbourhood U with fε,g(U) ⊂ U ; hence the fractal Λε,g is not an

attractor. Thus for any C2 perturbation g of fA, the entropy production of the inverse SRB measure

of the associated endomorphism fε,g is negative, i.e efε,g(µ
−
ε,g) < 0.
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4 Applications to dimension theory in hyperbolic dynamics on folded

fractals.

4.1 Stable dimension and unstable dimension for hyperbolic endomorphisms

Thermodynamic formalism can be employed in order to obtain estimates for the Hausdorff (and

upper box) dimension of various fractals obtained by iterative procedures. This was observed first

in the papers by Bowen [6], and Ruelle [83]. Since then, thermodynamic formalism has proven to

be a very useful tool and framework for difficult questions about dimension estimates (for instance

[71], [1], [33], [73], [90], [89], [95], [98], [41], [45], [58], [57], [60], [59], etc.)

In the paper [83], Ruelle gave a formula for the Hausdorff dimension of the Julia set of a hyper-

bolic rational map f in one complex variable, as the zero of the pressure function t→ P (−t log |Df |).
For hyperbolic diffeomorphisms on surfaces, Manning and McCluskey [33] showed that the Haus-

dorff dimension of the intersections between local stable manifolds and a hyperbolic basic set Λ is

constant, and given as the zero of the pressure function t → P (t log |Dfs|), and similarly for the

dimension of the intersections between local unstable manifolds and Λ. This result has been found

also in the case of Hénon automorphisms on C2 in [95].

However the situation for non-invertible hyperbolic maps is different and there appear new phe-

nomena, due to the existence of several unstable manifolds going through the same point in Λ.

We studied such phenomena and estimates in a series of papers, and showed that for the stable

dimension (i.e the dimension of intersections between local stable manifolds and Λ), we do not

have the same formulas as in the diffeomorphism case. As a matter of fact we proved that there

exist strong connections between the preimage counting function on Λ and the stable dimension.

This opens a new research direction, namely to investigate the thermodynamic formalism on folded

fractals; we showed also that stable dimension is related to ergodic properties of equilibrium mea-

sures on Λ. Moreover we proved in [43] a surprising geometric phenomenon, showing that if the

stable dimension is for example zero at some point in Λ, then Λ must be contained in a union of

finitely many unstable manifolds and the measure of maximal entropy is 1-sided Bernoulli on it.

The thermodynamic formalism and dimension estimates on folded fractals is related and answers

to some questions of Ruelle, Simon, Solomyak, Fornaess, etc.

First let us fix some notation: consider f a smooth (say C2) endomorphism on a manifold M

and Λ is a basic set for f , and assume that local stable manifolds and local unstable manifolds of

size r > 0 do exist over Λ, for some small number r > 0. Let us denote throughout this thesis, by

δs(x) := HD(W s
r (x) ∩ Λ), x ∈ Λ,

the stable dimension at x, where HD(A) represents the Hausdorff dimension of a set A. And by

δu(x̂) := HD(W u
r (x̂) ∩ Λ, x̂ ∈ Λ̂,
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the unstable dimension corresponding to the prehistory x̂ ∈ Λ̂. Also let us introduce the stable

potential as the function

Φs(x) := log |Dfs(x)|, x ∈ Λ,

where Dfs(x) := Df |Esx , x ∈ Λ. The unstable potential will be defined on the inverse limit Λ̂ as

Φu(x̂) := − log |Dfu(x̂)|, x̂ ∈ Λ̂,

where Dfu(x̂) = Df |Eux̂ , x̂ ∈ Λ̂. We recall that in the non-invertible case, there may pass many (even

uncountably many) local unstable manifolds through a point of Λ, and that unstable manifolds do

not form a foliation; in fact they may intersect each other both inside and outside Λ.

Now we will present the situation for the unstable dimension; we showed in [47] that the unstable

dimension is constant on Λ̂, and that is given by a Bowen type equation for the unstable potential

on Λ̂. However as we will see later, no such formula is true in general for the stable dimension.

Theorem 4.1.1 ([47]). Let as above a smooth map f : M →M , which is hyperbolic on a basic set

Λ and conformal on local unstable manifolds over Λ. Then the unstable dimension δu(x̂) is equal to

the unique zero tu of the pressure function t→ Pf̂ (tφ
u). In particular, the unstable dimension does

not depend on x̂.

We start now to look into the problem of estimates for the stable dimension; in this case we do

not usually have a Bowen type formula, due to the complicated intersections between local unstable

manifolds and the existence of many unstable manifolds corresponding to the same point.

Theorem 4.1.2 ([60]). Assume f is a smooth endomorphism as above, which is hyperbolic on a

basic set Λ, and conformal on local unstable manifolds. Suppose that also that there are no critical

points in Λ i.e Cf ∩Λ = ∅, and that f |Λ : Λ→ Λ has the property that each point x ∈ Λ has at least

d′ preimages in Λ, d′ ≤ d. Then δs(x) ≤ tsd′, where tsd′ is the unique zero of the pressure function

t→ P (t log |Dfs| − log d′)

This estimate is independent of the point x ∈ Λ.

Proof. First of all, let us consider the function t → P (t log |Df |Esy | − log d′), which is well defined

as Cf ∩ Λ = ∅. Notice also that P (t log |Df |Esy | − log d′) = P (t log |Df |Esy |) − log d′. It is strictly

decreasing and at t = 0 takes the value h(f |Λ) − log d′ ≥ 0 and for t very large, it takes negative

values. Hence it has exactly one zero denoted by tsd′ , and tsd′ ≥ 0. Denote now W := W s
δ (x)∩Λ and

by Ŵ its lift inside Λ̂, i.e Ŵ := π−1(W ), where π(x̂) = x0 is the canonical projection from Λ̂ to Λ.

We know that f̂ : Λ̂→ Λ̂ is a homeomorphism on the compact metric space Λ̂.

Also P (φ) = P (φ ◦ π), for any continuous real function φ on Λ, i.e the topological pressure does

not change by lifting the function to Λ̂.

Let Ê be an (n + 1, δ′)-separated set of maximal cardinality inside f̂−n(Ŵ ) with δ′ << δ to be

determined in the course of the proof.
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Since tsd′ is the unique zero of the pressure function, it follows that if we consider an arbitrary

t > tsd′ , then there exists β < 0 such that

P (t log |Df |Esy | − log d′) < β < 0.

Thus if n is large enough,
1

n+ 1
log
∑
ẑ∈Ê

eSn+1Φ(ẑ) < β < 0,

where Φ(ŷ) := t log |Df |Esy | − log d′. Hence,∑
ẑ∈Ê

|Dfn|Esz |
t < e(n+1)β · (d′)n.

But Ê has been taken as a separated set of maximal cardinality, hence it is also (n+1, δ′) - spanning

for the compact set f̂−n(Ŵ ) in the metric d(̂·, ·̂) from Λ̂. Thus the Bowen balls Bn+1(ẑ, δ′) := {ŵ ∈
Λ̂, d(f̂kẑ, f̂kŵ) < δ′, k = 0, .., n}, ẑ ∈ Ê, cover the entire set f̂−n(Ŵ ). From above, it follows that

{f̂n(Bn+1(ẑ, δ′))}ẑ∈Ê cover the set Ŵ , and for brevity, we will denote this collection of sets by

{B̂j}j∈J , where Ê = (ẑj)j∈J , J finite.

Consider now an arbitrary point y from W and ŷ, ŷ′ two prehistories of y in Λ which are different

as n-prehistories, i.e there exists 0 < i ≤ n such that y−i 6= y′−i.

Can there be two such prehistories both in the same set B̂j? Assume i ≥ 0 is the largest integer

for which y−i = y′−i. Denote by l0 the constant of injectivity of f near Λ, i.e, if z or z′ belong to Λ

and f(z) = f(z′) with z 6= z′, then d(z, z′) > l0 ( here we use again that the critical set of f does

not intersect Λ ). Then for the prehistories ŷ, ŷ′ as above, d(f̂−i−1(ŷ), f̂−i−1(ŷ′)) > l0 > 2δ′, if δ′ is

small enough. Thus f̂−n(ŷ) and f̂−n(ŷ′) cannot be in the same Bowen ball Bn+1(ξ̂, δ′), ξ̂ ∈ Ê. So

ŷ, ŷ′ cannot be in the same set B̂j, since f̂ is a homeomorphism.

We take now the projections of B̂j onto W , Bj := π(B̂j)∩W . Let dj denote the diameter of Bj

and for all j ∈ J take B̃j := B(xj, dj), where xj is an arbitrary point in Bj. In general, by MB(x, r)

we shall denote the ball B(x,Mr). From above, it can be seen that the multiplicity of the cover

{B̃j}j of W , is at least d′n, if 0 < δ′ < l0
6

. This holds because every point y from W has at least

d′n different n-prehistories in Λ and since every such n-prehistory of y is contained in a different set

B̂j.

We want now to extract a subcover of W of multiplicity bounded by some universal constant

C, coming from the following version of the Besicovitch Theorem :

Theorem (Guzman). For each integer n ≥ 1, there exists a positive integer b(n), depending only

on n, with the following property:

Assume that A is an arbitrary bounded set of Rn. Moreover suppose that we have some positive

constant M , some function r : A→ (0,∞) and a system of sets {H(x)}x∈A, satisfying the following

two conditions:
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(a) for every x ∈ A, B̄(x, r(x)) ⊂ H(x) ⊂ B̄(x,Mr(x)); (where B̄(y, s) represents in general the

closed Euclidian ball of radius s centered at a point y);

(b) for each x ∈ A and each z ∈ H(x), the set H(x) contains the convex hull of the set {z} ∪
B̄(x, r(x)).

Then out of {H(x)}x∈A, we can extract a countable subcover of A of multiplicity bounded by

b(n). So one can select from among {H(x)}x∈A a sequence {Hk}k such that:

(i) A is covered by {Hk}k;

(ii) no point of Rn is in more than b(n) sets Hk.

Notice that if the sets H(x) are convex, then condition (b) of the theorem above is immediately

satisfied. Based on this theorem, we will prove the following covering theorem which will be useful

in our context.

Theorem (Covering Theorem). Let A be a bounded set of Rn. Assume that A is covered by a family

of balls {B(xi, ri)}i∈I centered at some points of A, where ri > 0, for all i ∈ I. Then there exists a

cover of A with balls {B(xj, 2rj)}j∈J , where J ⊂ I and the multiplicity of this cover is bounded by

the universal constant b(n).

For each x ∈ A, choose one ball B(xi, ri) containing x. Set H(x) := B(xi, 2ri) and denote by

r(x) the radius ri. Obviously the sets {H(x)}x∈A will cover A. They are also convex. For every

x ∈ A, we have that B(x, r(x)) ⊂ H(x) ⊂ B(x, 3r(x)). Thus the assumptions of the previous

theorem are satisfied and the proof is finished.

Coming back to the proof of Theorem 4.1.2, we apply the above Covering Theorem for B̃j,

j ∈ J . Hence, we obtain a subcover 2B̃k, where k belongs to a subset K ⊂ J and such that the

multiplicity of this subcover is bounded above by a universal constant C > 0 coming from the above

Covering Theorem. But the multiplicity of the cover 2B̃j, j ∈ J is larger than or equal to d′n, if

δ < l0/6. Hence if n is large enough, the remaining sets {B̃j}j∈J\K , still cover W and we can extract

again, out of them, a subcover of W of multiplicity bounded by C. Repeating the procedure and

applying the Covering Theorem at each step, one can find at least C−1d′n such subcovers, each with

multiplicity bounded by C. But then, there exists a cover {2B̃s}s∈L of W , L ⊂ J , corresponding to

a subset F̂ of Ê for which : ∑
ẑ∈F̂

|Df |Esz |
t ≤ enβ · d′n · C(d′)−n = C · enβ (22)

We make now the connection between the diam2B̃s and |Dfn|Esz | using the bounded distortion

property. First observe that in general, Bj = π(f̂nBn+1(ŷ, δ)) = fn(π(Bn+1(ŷ, δ))). Also, if ξ̂ ∈
Bn+1(ŷ, δ), then d(f̂kξ̂, f̂kŷ) < δ, for 0 ≤ k ≤ n, hence d(fkξ, fky) < δ. This implies that ξ ∈ W s

δ (y).
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Hence, we can apply the property of bounded distortion on stable manifolds to conclude that, for

a positive constant A,

diam2B̃j ≤ A · |Dfn|Esxj |.

Applying now inequality ( 22), and remembering that β < 0, we get that there exists a positive

constant C ′ such that ∑
s∈L

(diam2B̃s)
t ≤ C ′ enβ ≤ C ′.

In conclusion, since t has been chosen arbitrarily larger than tsd′ , we obtain HD(W ) ≤ tsd′ . The proof

of the last consequence of the statement is then straightforward if one uses the properties of the

topological pressure from [96] and the fact that P (φ+c) = P (φ)+c, for any continuous real function

φ and any constant c. Indeed, 0 = P (tsd′ log |Df |Esy | − log d′) ≤ P (tsd′ log sup
y∈Λ
|Df |Esy | − log d′) =

tsd′ log sup
y∈Λ
|Df |Esy | − log d′+h(f |Λ) (since tsd′ log sup

y∈Λ
|Df |Esy | is in fact a constant, and P (0) = h(f |Λ)

). Thus,

tsd′ log sup
y∈Λ
|Df |Esy | ≥ log d′ − h(f |Λ)

But log sup
y∈Λ
|Df |Esy | < 0, so we obtain the required inequality,

HD(W ) ≤ tsd′ ≤
h(f |Λ)− log d′

| log sup
y∈Λ
|Df |Esy ||

Then in [58], by employing some combinatorial techniques and concatenations of prehistories,

we proved that the stable dimension is in fact independent of the point in the case when f is

constant-to-1 over Λ, and equal to the zero of a pressure function. This case happens for instance

for s-hyperbolic maps ([22], [48]), as they are open when restricted to a minimal saddle basic set.

Theorem 4.1.3 ([58]). Consider as above a smooth map f and a basic set of saddle type Λ which

does not intersect the critical set Cf , and such that f is conformal on local stable manifolds over Λ.

Assume also that f |Λ : Λ → Λ is open, in particular any point x ∈ Λ has the same number d′ of

f -preimages in Λ. Then for any x ∈ Λ, we obtain that δs(x) = tsd′, where tsd′ is the unique zero of

the pressure function t→ P (tΦs − log d′).

As examples we study a large class of maps obtained as perturbations of (z2 + c, w2) (0 6= |c|
small) and identify a set of elements of this class which are injective on their respective basic sets.

Theorem 4.1.4 ([60]). Given the map fε(z, w) = (z2 +aεz+bεw+c+dεzw+eεw2, w2), there exist

small positive constants c(a, b, d, e) and ε(a, b, c, d, e) such that, for b 6= 0, 0 6= |c| < c(a, b, d, e) and

0 < ε < ε(a, b, c, d, e) we have that fε is injective on its basic set Λε close to {p0(c)} × S1 (where

p0(c) is the attracting fixed point for z2 + c).
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Proof. The existence of the basic set Λε for the perturbations fε follows from the Stability Theorem

for Endomorphisms ([72]). Assume fε(z, w) = fε(z
′, w′) for points (z, w), (z′, w′) ∈ Λε, then

z2 + aεz + bεw + c+ dεzw + eεw2 = z′2 + aεz′ + bεw′ + c+ dεz′w′ + eεw′2

⇒ (z2 − z′2) + ε[a(z − z′) + b(w − w′) + d(zw − z′w′) + e(w2 − w′2)] = 0.

Assume now that w 6= w′. Then w′ = −w since w2 = w′2

⇒ (z − z′)(z + z′ + εa) + ε[2bw + dw(z + z′)] = 0.

⇒ (z − z′)(z + z′ + εa) = −ε[2bw + dw(z + z′)]. (23)

Denote by p0(c) the fixed attracting point for z → z2 + c, 0 6= |c| small, and consider α :=

sup
(z,w)∈Λε

|z − p0(c)|; let (z0, w0) be a point where this supremum is attained on Λε. Hence α =

|z0 − p0(c)|, and p2
0(c) + c = p0(c). Now there exists (z, w) ∈ Λε such that

fε(z, w) = (z0, w0)⇒ z0 = z2 + aεz + bεw + c+ dεzw + eεw2

⇒ z0 − p0(c) = z2 − p2
0(c) + aεz + bεw + dεzw + eεw2

= (z − p0(c))2 + 2zp0(c)− 2p2
0(c) + aεz + bεw + dεzw + eεw2 ⇒

α ≤ α2 + 2|p0(c)|α +Kε,

with K, a positive constant depending on the parameters of the map. This last inequality implies

α2 + α(2|p0(c)| − 1) +Kε ≥ 0, and since α� 1 (since Λε is close to {p0(c)} × S1) we obtain, with

some constant K ′ > 0,

0 ≤ α ≤ 2Kε

1− 2|p0(c)|+
√

(1− 2|p0(c)|)2 − 4Kε
≤ K ′ · ε (24)

Notice that |z−z′| = |z−p0(c)+p0(c)−z′| ≤ |z−p0(c)|+|z′−p0(c)| ≤ 2α, for z, z′ first coordinates

of some points from Λε. Then, by taking absolute values in ( 23) and using that |z − z′| ≤ 2α, one

obtains:

2α(3|p0(c)|+ ε|a|) > ε|2bw + dw(z + z′)|, (25)

for ε < ε(a, b, c, d, e), since z, z′ are both ε-close to p0(c).

But for (z, w) ∈ Λε, we know |w| = 1, and |z+ z′| is ε-close to 2|p0(c)| . Thus if b 6= 0, and |c| is
small enough in comparison to |b|, then |p0(c)| becomes so small that |2bw + dw(z + z′)| > |b| > 0.

Hence from ( 24) and ( 25), we get 2K ′ε(3|p0(c)|+ε|a|) ≥ ε|b| > 0, which gives a contradiction if

|c| < c(a, b, d, e) for some convenient positive number c(a, b, d, e) << 1. (indeed, if |c| is small with

respect to |b|, then |p0(c)| is also small with respect to |b|, and we can take ε small, accordingly).

Hence, we proved that w′ = w. Then, from fε(z, w) = fε(z
′, w′) it follows that z2 − z′2 =

−ε[a(z − z′) + dw(z − z′)]. If z 6= z′, we would then get z + z′ = −ε(a + dw). But z, z′ are both
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ε -close to p0(c) 6= 0, so if we choose ε < ε(a, b, c, d, e) appropiately, then |z + z′| > |p0(c)| > 0.

However if |a + dw| 6= 0, we can take ε small enough such that ε|a + dw| < |p0(c)|, which gives a

contradiction. In case |a+ dw| = 0, then we get a contradiction again since p0(c) 6= 0.

Therefore we showed that z = z′, w = w′, and consequently fε|Λε : Λε → Λε is an injective map.

4.2 Inverse pressure and applications to dimension estimates

In order to study the dynamics of non-invertible systems, it is sometimes necessary to employ a

different type of pressure, which takes into consideration all the possible backward trajectories of

points, not only the forward ones. This kind of pressure encapsulates the behaviour of the preimages

sets for iterates. It was introduced by Mihailescu and Urbanski in [61], and studied in [45] and [58].

In [45] we proved for instance that inverse pressure helps prove that the stable dimension over a

basic set Λ is strictly less than the dimension of the stable tangent space, unless the fractal Λ is

a repellor. This related then also to a problem of Fornaess-Sibony in higher dimensional complex

dynamics on P2, showing that the Hausdorff dimension of the set K− is strictly less than 4.

Let us recall the definition and properties of inverse pressure, which will be used later. We will

be in the following setting:

Consider X a compact metric space, f : X → X is a continuous surjective map on X, and

Y ⊆ X is a subset of X. As f is surjective, for any point y of X, and any positive integer

m, there exists y−m ∈ X such that fm(y−m) = y. By prehistory of length m (or m-prehistory,

or branch of length m) of y, we will understand a collection of consecutive preimages of y, C =

(y, y−1, ..., y−m), where f(y−i) = y−i+1, i = 1, ..,m, y0 = y. Given a prehistory C, we denote by

n(C) its length. Fix also a small number ε > 0, and denote by Cm the set of all m-prehistories

of points from X. Then for such an m-prehistory C, let X(C, ε) be the set of points ε-shadowed

by C (in backward time) defined by: X(C, ε) := {z ∈ B(y0, ε) : ∃z−1 ∈ f−1(z)s.t. d(z−1, y−1) <

ε, ..,∃z−m ∈ f−1(z−m+1)s.t. d(z−m, y−m) < ε}. Given the m-prehistory C = (y, y−1, ..., y−m) and

a real continuous function φ on X, we will define the consecutive sum of φ on C, S−mφ(C) =

φ(y) + φ(y−1) + ...+ φ(y−m). We may also use the usual notation S−mφ(y−m) instead of S−mφ(C).

Now we define the inverse pressure P− by a procedure similar to that used in the case of

Hausdorff outer measure. Let φ be an arbitrary continuous function, φ ∈ C(X,R); let also λ a

real number and N a positive integer. Let C∗ := ∪
m≥0
Cm. Then, a subset Γ ⊂ C∗, ε-covers X if

X = ∪
C∈Γ

X(C, ε). Define the following expression

M−
f (λ, φ,Y,N, ε) := inf{

∑
C∈Γ

exp(−λn(C) + S−n(C)φ(C)), n(C) ≥ N,∀C ∈ Γ,

and Γ ⊂ C∗ s.t Y ⊂ ∪
C∈Γ

X(C, ε)}
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When the integer N increases, the set of collections Γ ε-covering X gets smaller, so the infimum

increases in the previous expression. Hence lim
N→∞

M−
f (λ, φ, Y,N, ε) exists and will be denoted by

M−
f (λ, φ, Y, ε). Now, let P−f (φ, Y, ε) := inf{λ : M−

f (λ, φ, Y, ε) = 0}. Consider two positive numbers

ε1 < ε2 and compare P−f (φ, Y, ε1) and P−f (φ, Y, ε2). Given any prehistory C, we have X(C, ε1) ⊂
X(C, ε2), so if Γ ⊂ C∗ ε1-covers Y , then Γ also ε2-covers Y . Thus there are more candidates Γ

in the expression of M−
f (λ, φ, Y,N, ε2) than in the expression of M−

f (λ, φ, Y,N, ε1). So for any N ,

M−
f (λ, φ, Y,N, ε2) ≤ M−

f (λ, φ, Y,N, ε1). Hence 0 ≤ M−
f (λ, φ, Y, ε2) ≤ M−

f (λ, φ, Y, ε1), and then

from definition, P−f (φ, Y, ε2) ≤ P−f (φ, Y, ε1). Thus, when ε decreases to 0, P−f (φ, Y, ε) increases, so

the limit lim
ε→0

P−f (φ, Y, ε) does exist, and is denoted by P−f (φ, Y ).

P−f (φ, Y ) is called the inverse pressure (or inverse upper pressure) of φ on Y . P−f (φ, Y, ε) is

called the ε-inverse pressure of φ on Y . This notion has been introduced in [61]. When the map f

is clear from the context, we may drop the index f from the notations.

Also denote by P−f (φ), P−f (φ, ε),M−
f (λ, φ,N, ε), etc, the respective quantities P−f (φ,X), P−f (φ,X, ε),

M−
f (λ, φ,X,N, ε), etc., respectively. The following proposition provides some properties of P−.

Proposition 4.2.1 ([61]). Let f : X → X be a continuous surjective map on the compact metric

space X, ε a positive number and φ ∈ C(X,R). Then:

i) If Y1 ⊂ Y2 ⊂ X, then P−f (φ, Y1) ≤ P−f (φ, Y2) and P−f (φ, Y1, ε) ≤ P−f (φ, Y2, ε).

ii) If Y = ∪
j∈J

Yj is a finite or countable union of subsets of X, then P−f (φ, Y, ε) = sup
j∈J

P−f (φ, Yj, ε)

and P−f (φ, Y ) = sup
j∈J

P−f (φ, Yj).

iii) If f is a homeomorphism on X, then P−f (φ) = Pf (φ), where Pf (φ) denotes the usual (for-

ward) topological pressure of φ with respect to the map f .

iv) P−f (φ, Y ) is invariant to topological conjugacy, i.e if f : X → X, g : X ′ → X ′ are continuous

surjective maps and Ψ : X → X ′ is a homeomorphism such that Ψ ◦ f = g ◦ Ψ, then P−f (φ, Y ) =

P−g (φ ◦Ψ−1,Ψ(Y )), for any subset Y ⊂ X.

Now, when f is surjective we proved that the limits P− and P̃− coincide.

Theorem 4.2.1. If f : X → X is surjective, then P−(φ) = P̃−(φ), for any continuous function

φ ∈ C(X,R).

In [58] we proved that the stable dimension can be bounded above always by the zero of the

inverse pressure of the stable potential. This estimate is useful when the number of preimages that

remain in Λ is not constant over Λ.

Theorem 4.2.2 ([58]). Let a smooth endomorphism f , which is hyperbolic and conformal on local

stable manifolds over a basic set Λ of saddle type, and such that the critical set of f does not

intersect Λ. Then δs(x) ≤ ts−, for any x ∈ Λ, where ts− is the unique zero of the inverse pressure

function t→ P−(tΦs).
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Proposition 4.2.2 ([61]). In the above setting, let Λ be a basic set of saddle type, on which f is

hyperbolic and conformal on local stable manifolds. If there exists a point x ∈ Λ such that δs(x) 6= 0,

then it follows that Λ cannot be a finite graph (hence in particular Λ cannot be a Jordan curve).

In the case of diffeomorphisms, a basic set Λ is called a repellor if there exists an open set

U , Λ ⊂ U such that Ū ⊂ f(U). However for non-invertible maps this condition alone, does not

guarantee that local stable manifolds are contained inside Λ, due to the complicated structure of

foldings, which may take a point from outside Λ, into a point from Λ. Besides being a repellor, one

would need another condition like the openness of the map f |Λ. In [45] we introduced thus a new

notion of local repellor, which is similar to that of repellor, but refers to the non-invertible case.

Definition 4.2.1. In the above setting, if the endomorphism f is hyperbolic on a basic set Λ, we

say that Λ is alocal repellor if there exist local stable manifolds of f contained in Λ.

We get that Λ is not a local repellor if it is not a repellor and if f is preimage-transitive on Λ,

i.e if any point y ∈ Λ has the set of all its preimages {z ∈ Λ,∃n ≥ 0, fn(z) = y} dense in Λ. Other

cases when this happens is if f |Λ is open, or if f is s-hyperbolic on Λ (see [45]).

The inverse pressure can now be used in order to prove that the stable dimension on a fractal

set Λ which is not a local repellor, is strictly less than 2 (in case the local stable manifolds have

real dimension 2). Recall that P−ε is the inverse pressure with sets of diameter less or equal than

ε. Denote by tsε the unique zero of the pressure function t → P−ε (tΦs), where as before Φs(x) =

log |Dfs(x), x ∈ Λ.

Theorem 4.2.3 ([45]). Consider a smooth endomorphism f : M →M on a Riemannian manifold

of real dimension 4, which is hyperbolic on a basic set Λ, conformal on the local stable manifolds,

which are assumed to have of real dimension 2, and such that the critical set C(f) does not intersect

Λ. Assume also that Λ is not a local repellor. Then there exists a small ε > 0 such that for any

point x ∈ Λ we have

δs(x) ≤ ts(ε) < 2

Proof. We will denote by W := W s
r (x) ∩ Λ, for a fixed but arbitrary point x ∈ Λ, and by ms the

Lebesgue measure on a generic local stable manifold.

We know from [45] that δs(x) ≤ ts(ε), ε > 0 small, where ts(ε) is the unique zero of the function

t→ P−(tφs, ε), with φs(y) := log |Dfs(y)|, y ∈ Λ. Consider a fixed ε > 0 small enough (in particular

ε < ε0).

It remains to show that P−(2φs, ε) < 0, which will imply that ts(ε) < 2. In order to do this,

recall that P−(2φs, ε) can be computed using P−n (2φs, ε). But from the Laminated Distortion

Lemma, there exists a constant χ > 0 such that, if ω ∈ M(C, ε), C = (y, y−1, ..., y−n) ∈ Cn(Λ), and

(ω, ω−1, ..., ω−n) is the corresponding prehistory of ω which is ε-shadowed by C, then 1
χ
|Dfns (y−n)| ≤

|Dfns (ω−n)| ≤ χ|Dfns (y−n)|. Thus P−n (2φs, ε) = ω(ε)·inf{
∑
C∈Γ

ms(M(C, ε)),Γ ⊂ Cn,Γε−covering Λ},
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with ω(ε) some positive function of ε and ms(M(C, ε)) := ms(W
s(y, ε) ∩M(C, ε)). Then,

P−(2φs, ε) = lim
n→∞

logP−n (2φs, ε)

n

We want now to find some υ ∈ (0, 1) and a positive integer N = N(υ), such that for n > N , we

have P−n+N(2φs, ε) ≤ υ · P−n (2φs, ε).

For this, let an arbitrarily small ε′ > 0 and find n ≥ 1 and a collection Γ ⊂ Cn such that

P−(2φs, ε) ≤ ε′ +
log(

∑
C∈Γ

ms(M(C,ε))

n
, where C = (y, y−1, ..., y−n) ∈ Γ. Since Λ is not a local repellor,

there are no local stable manifolds of f contained in Λ, hence there exists a positive integerN = N(ε)

such that for any z ∈ Λ, we can cover the set Λ∩W s
ε (z) with sets of the form M(C ′, ε), C ′ ∈ Γz ⊂ CN

such that ∑
C′∈Γz

ms(M(C ′, ε) ∩W s
ε (z)) ≤ υ ·ms(W

s
ε (z)),

for some υ ∈ (0, 1). The collection Γz depends on z, but N is independent of z. Let now Γ ⊂ Cn(Λ)

found above, which ε-covers Λ. For each prehistory C = (y, y−1, ..., y−n) ∈ Γ we can cover the set

Λ ∩W s
ε (y−n) with sets of the form M(C ′, ε), where C ′ ∈ Γ(C) ⊂ CN , for N found above; this cover

Γ(C) is in fact the family Γy−n , and hence satisfies:∑
C′∈Γ(C)

ms(M(C ′, ε) ∩W s
ε (y−n)) ≤ υ ·ms(W

s
ε (y−n)) (26)

Consider now a positive integer n and a prehistory C ∈ Cn(Λ), C = (y, y−1, ..., y−n) like above;

assume also that f−n∗ is the local inverse iterate of f , which takes y into y−n; then f−n∗ (M(C, ε) ∩
W s
ε (y)) ⊂ W s

ε (y−n). We observe that the points in M(C, ε)∩W s
ε (y) are taken by f−n∗ into W s

ε (y−n),

while the points outside W s
ε (y) will be taken into points which are (λ′)n-close to W s

ε (y−n), for some

λ′ ∈ (0, 1) (λ′ does not depend on n, y, C). Recall also that we cover each set W s
ε (y−n) ∩ Λ for

C = (y, y−1, ..., y−n) ∈ Γ, with sets of the form M(C ′, ε), C ′ ∈ Γ(C), where Γ(C) ⊂ CN . Thus

from the above discussion, it follows that if n is large enough in comparison to N , i.e if n > n(N),

then ∪
C′∈Γ(C)

M(C ′, ε) is an open neighbourhood of W s
ε (y−n) ∩ Λ, thus it contains the local inverse

iterate f−n∗ (M(C, ε)). So we obtain a cover of Λ with sets of type M(CC ′, 2ε), C ∈ Γ, C ′ ∈ Γ(C),

where Γ ⊂ Cn(Λ), Γ(C) ⊂ CN(Λ), and n > n(N); CC ′ represents the prehistory obtained by

concatenation of C and then C ′ ([61] for more details on the concatenation procedure). The new

collection obtained from these concatenations CC ′ is called Γ′, and Γ′ ∈ Cn+N(Λ). Then after

multiplying by |Dfs(y−n)|n in both sides of (26), we obtain from the fact that f is conformal on

stable manifolds that: ∑
C′∈Γ(C)

ms(M(CC ′, ε)) ≤ υ ·ms(M(C, ε))

So there exist integers N ≥ 1 and n(N) ≥ 1 such that for all n > n(N) we have:

P−n+N(2φs, ε) ≤ υ · P−n (2φs, ε)
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But then P−n+kN ≤ υk · P−n (2φs, ε), k ≥ 1, therefore logP−n+kN(2φs, ε) ≤ k log υ + logP−n (2φs, ε),

hence P−(2φs, ε) ≤ log υ
N

< 0,. The last inequality follows since υ ∈ (0, 1). Therefore we obtained

ts(ε) < 2, ε > 0 small.

Thus the stable dimension is strictly less than 2, unless whole stable manifolds are contained

inside Λ. The advantage of the condition of not being a local repellor is that it is stable under

perturbations.

Theorem 4.2.4 ([45]). Assume that f is a smooth endomorphism which is hyperbolic on a basic

set Λ such that Λ is not a local repellor. Then for any smooth perturbation g close (in C2 topology)

to f , it follows that the corresponding basic set Λg is not a local repellor for g either.

This Theorem allows then to obtain large classes of maps and sets which are not local repellor,

by perturbing some known examples, like basic sets for product maps, or skew products, etc.

By using Theorem 4.2.3, we showed in [45] that, also the stable upper box dimension (see [19],

[35], [73], etc for definitions of upper box dimension) is strictly less than 2, in the case when Λ is

not a local repellor.

Theorem 4.2.5 ([45]). Assume we are in the same settings as in Theorem 4.2.3, that the dimension

of stable tangent spaces over a basic set Λ is 2, and that Λ is not a local repellor. Then there exists

small ε > 0 such that for any point x ∈ Λ we have dimB(W s
r (x) ∩ Λ) ≤ ts(ε) < 2.

4.3 Relations between stable dimension and the preimage counting function

As we saw above, in the case of non-invertible dynamics, there is in general no formula for the

stable dimension, instead it depends on the number of preimages that points in the basic set Λ have

in Λ (some of the preimages may be outside Λ). We studied this problem in [57] where we gave a

lower bound for the stable dimension in terms of a continuous function ω that bounds above the

upper semi-continuous preimage counting function d(·). This result has interesting consequences,

namely if the stable dimension takes it minimal possible value at some poingt, then the function is

constant-to-1 on Λ and the stable dimension is constant over Λ.

Definition 4.3.1. Let a smooth endomorphism f , and a basic set Λ for f , which contains no critical

points of f . Then the preimage counting function over Λ is defined by:

d(x) := Card{f−1(x) ∩ Λ}, x ∈ Λ

Definition 4.3.2. Let a smooth endomorphism f defined on a Riemannian manifold M , and Λ a

basic set for f . Then we say that f is c-hyperbolic on Λ if f is hyperbolic on Λ, conformal on local

stable manifolds of points in Λ and the critical set Cf does not intersect Λ.
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Theorem 4.3.1 ([57]). Assume f is a smooth endomorphism which is c-hyperbolic on a basic set

Λ, and that there exists a continuous function ω on Λ such that for any point z ∈ Λ, we have

d(z) ≤ ω(z). Then δs(x) ≥ tsω for any x ∈ Λ, where tsω is the unique zero of the pressure function

t→ P (tΦs − logω).

Proof. Let us fix a point x ∈ Λ and denote by W := W s
r (x) ∩ Λ. Let also ε > 0. We assume first

that the function ω is locally constant (but not constant) over Λ, and then treat the general case

at the end. From the transitivity property of f on Λ, it follows that there exists m = m(ε) such

that any local unstable manifold of type W u
ε (ŷ) intersects the set f−m(W ) ∩ Λ, for all ŷ ∈ Λ̂. As f

is locally bi-Lipschitz near Λ (f being c-hyperbolic), we obtain that HD(W ) = HD(f−mW ∩ Λ).

Take an arbitrary number t > δs(x); then there exists a covering {Ui}i∈I of f−mW ∩ Λ so that∑
i∈I

(diamUi)
t <

1

2
(27)

Now consider i ∈ I and suppose that diamUi > 0. We can assume in fact that Ui is contained in

a local stable manifold. Let us introduce a type of tubular unstable set used in [61] for the inverse

pressure: for a finite prehistory C = (x, x−1, . . . , x−n) of x in Λ, define

Λ(C, ε) := {y ∈ U, there exists a prehistory of y, (y, y−1, . . . , y−n), s.t d(y−j, x−j) < ε, j = 0, . . . , n}

By stable diameter of Λ(C, ε) we will understand the diameter of the intersection Λ(C, ε)∩W s
r (x).

For a point y ∈ Ui, consider a prehistory C of y in Λ of length n such that if C = (y, . . . , y−n),

then n is the largest integer such that ε|Dfns (y−n)| > diamUi. We will call such a prehistory C a

maximal prehistory relative to Ui and its length will be denoted also by n(C). Obviously we cannot

have just any length for such a maximal prehistory, so let us denote by ni1, . . . , niqi all the different

lengths of Ui-maximal prehistories. From construction it is clear that Ui ⊂ Λ(C, ε) for C as above.

Now let us denote the set of Ui-maximal prehistories by Ci and let us assume that Fi is a

minimal set of points of type y−n(C) for C ∈ Ci, such that for any C ∈ Ci, there exists z ∈ Fi with

y−n(C) ∈ Bn(C)(z, ε) (where in general Bm(z, ε) denotes the Bowen ball, i.e the set of points whose

orbits are within ε distance of the orbit of z up to order m).

Denote the corresponding set of prehistories from Ci ending with the points of Fi, by C∗i . Hence

C∗i ⊂ Ci, i ∈ I. If z ∈ Fi, we will denote also by n(z) the length of the corresponding prehistory

C ∈ C∗i having z as final preimage. Without loss of generality we may assume that the preimage

counting function itself is locally constant, this giving in fact the worst case scenario. Since d(·)
takes only finitely many values on Λ, we denote them by d1, . . . , dp.

Denote by Vj := {z ∈ Λ, d(z) = dj}, j = 1, . . . , p; thus these sets are closed and mutually

disjointed and assume that d(Vj, Vk) > ε0 > 0, j 6= k, for some positive constant ε0. Also, since the

critical set of f does not intersect Λ, different f -preimages of any arbitrary point x ∈ Λ are at a

positive distance apart; without loss of generality, we can assume that this distance is also larger

than ε0.
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Let us take now a point ξ ∈ V1, hence ξ has d1 f -preimages denoted by ξ1, . . . , ξd1 . These are

simple preimages due to the fact that Cf ∩ Λ = ∅. Assume that there exists a sequence of points y

from Λ which converges towards ξ, and let y1, . . . , yd1 be the d1 preimages of y. Assume also that

d({y1, . . . , yd1}, {ξ1, . . . , ξd1}) > α > 0, for all points y in this sequence. Then the points y1, . . . , yd1

accumulate (eventually for a subsequence) to some points y∗1, . . . , y
∗
d1

which are preimages of ξ. But

due to the condition on the distances between the sets of preimages, it follows that there exists at

least a point y∗j which is not in the set {ξ1, . . . , ξd1}. This implies then that ξ has more than d1

preimages in Λ, hence contradiction.

So each point ξ ∈ Λ has a neighbourhood V (ξ) such that any point y ∈ V (ξ) has d1 preimages

in Λ close to the preimages ξ1, . . . , ξd1 of ξ. Now, if for any η > 0, η << ε0 there exists a point

y(η) ∈ Λ such that there exists a point z(η) ∈ B(y(η), η) with the preimages of z(η) in Λ far from

the preimages of y(η) in Λ, then we can take a subsequence of y(η) converging towards a point w ∈ Λ

which has the property that in any neighbourhood there are points z(η) with preimages far from

the preimages of w, hence a contradiction with the fact proved earlier. So there exists a positive ε1

such that if d(y, z) < ε1, then the preimages of y in Λ are close (i.e closer than d(y, z) · sup
Λ
|Dfs|−1)

to the preimages of z in Λ. In this we used implicitly the fact that the preimages of any point from

Λ have multiplicity 1, since Cf ∩ Λ = ∅.
In particular, for C ∈ Ci, C = (y, . . . , y−n(C)), and z ∈ Bn(C)(y−n(C), ε) we have that fk(z) has

the same number of f -preimages in Λ as fk(y−n(C)) and moreover, these preimages are close to the

f -preimages of fk(y−n(C)), for k = 0, . . . , n(C) (namely ε sup
Λ
|Dfs|−1-close).

Consider now the set of points of the form y−n(C) for some C ∈ Ci a Ui-maximal prehistory;

from the definition we know that Fi is minimal and for any C ∈ Ci there is a prehistory C∗ =

(fn(C)z, . . . , z) ∈ C∗i such that n(C) = n(C∗) and y−n(C) ∈ Bn(C)(z, ε).

The prehistories in C∗i may have different lengths. But if for example z ∈ Fi and f(z) ∈ Vj then

there exists dj − 1 other points in f−1(f(z)) ∩ Λ and these points will generate other prehistories

from C∗i . Due to the above considerations we can assume without loss of generality that the set Fi
is given by prehistories of a single point y ∈ Ui. Also we may assume that these points y ∈ Ui do

not belong to other sets Uj, j 6= i.

Let us arrange now the lengths of prehistories from C∗i as ni,qi > ni,qi−1 > . . . > ni,1.

Then denote by Fi,ni,qi the set of points z ∈ Fi which correspond to prehistories in C∗i of length

ni,qi . Denote also the cardinality of Fi,ni,qi by Ni,ni,qi
.

Then let us take the set Fi,ni,qi−1 as the union of f(Fi,ni,qi ) and the set of points z ∈ Fi which

correspond to prehistories of length ni,qi − 1. The cardinality of Fi,ni,qi−1 is denoted by Ni,ni,qi−1.

We do this until reaching Ni,0 which is equal to 1, since these are considered as prehistories of a

single point y from Ui. Define now:

Ni,ni,qi
(j1, . . . , jni,qi ) := Card{z ∈ Fi,ni,qi , f(z) ∈ Vj1 , . . . , fni,qi (z) ∈ Vjni,qi }

and similarlyNi,ni,qi−1(j1, . . . , jni,qi−1) := Card{ζ ∈ Fi,ni,qi−1, f(ζ) ∈ Vj1 , . . . , fni,qi−1(z) ∈ Vjni,qi−1},
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etc. Then from the above construction we have that

Ni,ni,qi
(1, j2, . . . , jni,qi )

d1

+ . . .+
Ni,ni,qi

(p, j2, . . . , jni,qi )

dp
≤ Ni,ni,qi−1(j2, . . . , jni,qi ) (28)

Next we obtain

Ni,ni,qi−1(1, j3, . . . , jni,qi )

d1

+ . . .+
Ni,ni,qi−1(p, j3, . . . , jni,qi )

dp
≤ Ni,ni,qi−2(j3, . . . , jni,qi ), (29)

and we can combine this inequality with (5.4.1). By induction we obtain then that for all i ∈ I,

Σi :=
∑
z∈Fi

1

d
m1(z)
1 · . . . · dmp(z)

p

≤ 1, (30)

where for each z ∈ Fi, m1(z) represents the number of times that the orbit z, f(z), . . . , fn(z)z

hits V1, . . ., and mp(z) := number of times that the above orbit hits Vp. We assumed that the points

y chosen inside Ui do not belong to other Uj, j 6= i, and that the points of Fi are preimages (of

different orders) of y ∈ Ui.
Let us assume also that N is the largest integer ni,j, 1 ≤ j ≤ qi, i ∈ I; since I is finite, it follows

that N <∞. We know from construction of Fi that any preimage of type y−n(C) for C a maximal

prehistory associated to Ui belongs to a Bowen ball of type Bn(C)(z, ε), for some z ∈ Fi. Any local

unstable manifold of size ε is contained in the union ∪
C∈C∗i

Λ(C, ε), and we want to extend these

prehistories as to obtain in the end a common (or close) length for all of them. More precisely we

will extend these prehistories until we reach a length between n and n+N , for a large integer n.

The idea is the following: let z ∈ Fi corresponding to a prehistory C ∈ C∗i of length n(C);

then z itself is covered by ∪
j∈I
∪

C∈C∗j
Λ(C, ε), hence there exists j ∈ I and a prehistory D ∈ C∗j

such that z ∈ Λ(D, ε). We will concatenate now the prehistories C and D and will obtain

Λ(CD, ε) := {y,∃(y, . . . , y−n(C))prehistory of y ε − shadowing C, and y−n(C) ∈ Λ(D, ε)}; so we

follow the prehistories of preimages until we reach a length between n and n+N for some large n.

To this end, consider the set Sn of all the multiples (s, j1, . . . , js, p1, . . . , ps) such that s ∈
N∗, j1, . . . , js ∈ I, 1 ≤ pk ≤ qjk , k = 1, . . . , s and n ≤ nj1,p1 + . . .+ njs,ps < n+N .

For such an element of Sn, we start with a prehistory C1 = (ζ, . . . , ζ−nj1,p1 ), ζ ∈ Uj1 , then we

assume ζ−nj1,p1 ∈ Λ(C2, ε) with C2 a prehistory of length nj2,p2 of a point in Uj2 , etc. This procedure

will give in the end a final preimage ζ−nj1,p1−...−njs,ps ∈ Λ and we denote by Fn the set of all such

final points obtained by the above procedure.

Since for any Fi, i ∈ I we covered all the possible preimages y−n(C) corresponding to maximal

Ui-prehistories C in Λ from Ci, it follows that Fn is (n, ε)-spanning for Λ.

For 1 ≤ k ≤ qi, denote by Ñik(m1, . . . ,mp) the number of elements ξ of Fi such that n(ξ) = ni,k
and so that in the ni,k-forward orbit of ξ there are exactly m1 iterates belonging to V1, . . . ,mp

iterates belonging to Vp. By taking the product of inequalities from (30) for j1, . . . , js we obtain
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∑
1≤p1≤qj1 ,1≤ps≤qjs

∑
m1+...+mp=nj1,p1

Ñj1p1(m1, . . . ,mp)

dm1
1 . . . d

mp
p

· . . . ·
∑

l1+...+lp=njs,ps

Ñjsps(l1, . . . , lp)

dl11 . . . d
lp
p

≤ 1 (31)

So, if Pn(tΦs− log d(·)) := inf{
∑
z∈F

exp(Sn(tΦs− log d(·))(z), F (n, ε)− spanning for Λ} and since

Fn is (n, ε)-spanning, we obtain:

Pn(tΦs − log d(·)) ≤
∑
z∈Fn

exp(Sn(tΦs − log d(·))(z) ≤

≤
∑

(s,j1,...,js,p1,...,ps)∈Sn

∑
m1+...+mp=nj1,p1

Ñj1p1(m1, . . . ,mp)

dm1
1 . . . d

mp
p

. . .
∑

l1+...+lp=njs,ps

Ñjsps(ls, . . . , lp)

dl11 . . . d
lp
p

·

· (diamUj1)t . . . (diamUjs)
t ≤

∑
s,j1,...,js

(diamUj1)t . . . (diamUjs)
t,

(32)

after using (31). Therefore, by using (4.5.1)

Pn(tΦs − log d(·)) ≤
∑
s

∑
j1,...,js

(diamUj1)t . . . (diamUjs)
t =

∑
s

(
∑
j∈I

(diamUj)
t)s ≤

∑
s

(
1

2
)s < 2 (33)

But P (tΦs − log d(·)) = lim
ε→0

lim sup
n→∞

1
n

logPn(tΦs − log d(·)). This implies that t ≥ td(·), where

td(·) is the unique zero of the pressure function t→ P (tΦs− log d(·)). If we have that the preimage

counting function d(·) is only smaller or equal than ω(·) at any point x ∈ Λ, it follows that t ≥ tω
in the same way. But t was taken arbitrarily larger than HD(W s

r (x) ∩ Λ), so we obtain

HD(W s
r (x) ∩ Λ) ≥ tω,∀x ∈ Λ

We now want to extend the proof above to the case when ω is an arbitrary continuous function

on Λ. We consider as before the set of Ui-maximal prehistories Ci and an associated minimal set Fi
of final preimages given by these prehistories.

Using the fact that the preimage counting function d(·) is upper semicontinuous on Λ we find

again that for each point z ∈ Λ there exists a neighbourhood of z such that each point y in this

neighbourhood has at most d(z) preimages and they are close to some of the preimages of z (however

the point y may have strictly less than d(z) preimages in Λ).

Again we will have that Ni0 = 1 since in the minimal set Fi we can take only preimages of

a point y ∈ Ui where ω(·) is largest on Ui. If not, then we can complete the prehistories of y

with prehistories of other points but the total number will be the same as if we were considering

prehistories of a single point from Ui. From the continuity of ω on Λ there exists a positive function

ρ(ε) defined for small ε > 0, with the following property:

if y, z ∈ Λ, and d(y, z) < ε, then |ω(y)− ω(z)| ≤ ρ(ε) (34)
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Since ω is continuous it follows that ρ(ε)→ 0 when ε→ 0, and we can assume that ρ has been

taken such that it is an increasing function.

Now we notice that, if y ∈ Bn(z, ε), then for any 0 ≤ j ≤ n, d(f jy) ≤ ω(f jz) + ρ(ε), since by

assumption d(f jy) ≤ ω(f jy). Thus the number of preimages of f jy, d(f jy) may differ from d(f jz)

by at most 1, but still d(f jy) is less or equal than ω(f jz) + ρ(ε), where ρ(ε) →
ε→0

0.

We take as before the set Fn of final preimages of type y−nj1,p1−...njs,ps , over all sequences

(s, j1, . . . , js, p1, . . . , ps) such that j1, . . . , js ∈ I and 1 ≤ p1 ≤ qj1 , 1 ≤ ps ≤ qjs with n ≤
nj1,p1 + . . .+ njs,ps < n+N . This set of sequences is denoted again by Sn as before.

Now as we mentioned, the preimage counting function is smaller or equal than ω and ω varies

with at most ρ(ε) on a ball of radius ε, thus we can apply this at every iterate (up to order n) for

points in a Bowen ball Bn(z, ε). We have then the analogues of inequalities (30) and (31), namely:

Σi :=
∑
z∈Fi

1

(ω(fz) + ρ(ε)) . . . (ω(fn(C)z) + ρ(ε))
≤ 1, (35)

where we assumed that C = (fn(C)(z), . . . , z) is the prehistory from C∗i whose final preimage is z, for

z ∈ Fi. We will denote the length n(C) associated to the above C, by n(z). Since ω is continuous

on Λ, it takes finitely many positive integer values, denoted by d1, . . . , dp arranged as d1 < . . . < dp.

And similarly, by taking the product of the inequalities (35) for j1, . . . , js we shall obtain:∑
1≤p1≤qj1 ,1≤ps≤qjs

∑
z∈Fj1 ,n(z)=nj1,p1

1

(ω(fz) + ρ(ε)) . . . (ω(fn(z)z) + ρ(ε)
· . . .

·
∑

z∈Fjs ,n(z)=njs,ps

1

(ω(fz) + ρ(ε)) . . . (ω(fn(z)z) + ρ(ε))
≤ 1

(36)

Then since by construction the set Fn is (n, ε)-spanning for Λ with respect to f (since we cover

all final preimages with Fi), we can finish the proof by using (36) in the same way as before. So

we obtain that t ≥ t(ε) for ε > 0 small, with t(ε) being the unique zero of the pressure function

t→ Pε(tΦ
s− log(ω+ρ(ε))), where in general Pε(g) := lim sup

n

1
n

log inf{
∑
z∈F

exp(Sn(g)(z)), F (n, ε)−

spanning inΛ} for g continuous on Λ.

Let us take now some T arbitrarily larger than t and η > 0 small; then T > t ≥ t(η). But if

0 < ε < η, we get that ρ(ε) ≤ ρ(η), so tΦs − log(ω + ρ(ε)) ≥ TΦs − log(ω + ρ(η)). Now since

t ≥ t(ε) for all ε small, it follows that 0 ≥ Pε(tΦ
s− log(ω+ ρ(ε))) ≥ Pε(TΦs− log(ω+ ρ(η))) for all

ε > 0 small enough. But recalling the definition of the topological pressure P (g) = lim
ε→0

Pε(g), for

all g continuous, we obtain that

P (TΦs − log(ω + ρ(η))) ≤ 0 (37)

Now let tω be the unique zero of the pressure function t→ P (tΦs − logω). From the continuity

of the pressure with respect to the potential, it follows that tω is the limit of the zeros of the

pressure functions t → P (tΦs − log(ω + ρ(η))) when η converges to 0. Hence from (37), T ≥ tω.

57



Therefore since T was chosen arbitrarily larger than t which in turn was chosen arbitrarily larger

than HD(W s
r (x) ∩ Λ), we obtain the conclusion, HD(W s

r (x) ∩ Λ) ≥ tω.

Then in [52] Mihailescu and Stratmann found an upper estimate for the stable dimension on

a folded hyperbolic fractal, using lower continuous bound for the preimage counting function; the

proof in this case is very different from the lower estimate above. We denoted here the preimage

counting function by ∆(x) = Card(f−1(x) ∩ Λ), x ∈ Λ.

Theorem 4.3.2 ([52]). Consider a C2-endomorphism f on the Riemannian manifold M , so that

f is c-hyperbolic on a basic set Λ of f , and there exists a continuous function ω : Λ → R with

∆(x) ≥ ω(x), for all x ∈ Λ. It then follows that

δs(x) ≤ tω,

where tω refers to the unique zero of the pressure function t 7→ P (tΦs − logω) associated to the

potential function tΦs − logω.

Proof. We will first consider the case when ω is locally constant and has only two different positive

integer values on Λ, namely d1 on the set V1 and d2 on the set V2. We then have that V1 ∪ V2 = Λ

and that V1 and V2 are two disjoint compact subsets of Λ. Thus there exists some small ε0 > 0

such that the distance d(V1, V2) between V1 and V2 is greater than ε0. For x ∈ Λ and n ∈ N, let

Bn(x, ε) := {y ∈ Λ : d(f i(y), f i(x)) < ε, 0 ≤ i ≤ n − 1} the n-Bowen ball centred at x, of radius

ε > 0. For 0 < ε < ε0 we have that if y ∈ Bn(x, ε) then f i(y) and f i(x) both belong to either

V1 or V2, for each 0 ≤ i ≤ n − 1. Recall that Φs(x) := log |Dfs(x)|, x ∈ Λ. Now let t > tω fixed.

By definition of tω, there exists β > 0 such that P (tΦs − logω) < −β. So if ε > 0 is sufficiently

small, there exists a constant C > 0 such that for each n ∈ N large enough, there exists a minimal

(n, ε)-spanning set En for Λ such that∑
z∈En

(diam Un(z))t · 1

∆(f(z) · . . . ·∆(fn(z))
< C e−βn < 1, (38)

where we have set Un(z) := fn(Bn(z, ε)) ∩ W s
r (x) ∩ Λ. Here we used that the set Un(z) is the

intersection of an unstable tubular neighbourhood with the fixed stable manifold W s
r (x). Also, that

|Dfns (z)| is uniformly comparable to diam Un(z), which follows from the fact that f is conformal

on local stable manifolds.

Let us denote W := W s
r (x)∩Λ. We wish to show that dimH(W ) ≤ t, for each t > tω. The main

idea is to extract succesively suitable covers of W out of the large set of covers which are given by

taking n-preimages, such that at each step some different sum will be minimised. We say that a

point y is a k-preimage of x if fk(y) = x. Each such n-preimage will be included in a Bowen ball

of type Bn(z, ε), for some z ∈ En. This procedure is delicate, since at each step the number of

preimages of points belonging to Λ varies. The idea is to consider the k iterates of n-preimages,
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then to subdivide Λ into various different parts and finally, to find suitable covers of these parts

which minimise certain sums at the k-th level.

First, since Λ is covered by the set of Bowen balls {Bn(z, ε) : z ∈ En}, it follows that {Un(z) : z ∈
En} covers W . However, this cover is far too rich and we will have to extract a suitable subcover.

Indeed, by using a well known theorem by Besicovitch (see for e.g. [35]), there exists a subcover

{5Un(z) : z ∈ G(0)} of W such that {Un(z) : z ∈ G(0)} consists of pairwise disjoint sets. (Note

that, since f is conformal on local stable manifolds, we can assume that the sets Un(z) are in fact

balls, and we denote the radii of these by r(n, z); also, we write 5Un(z) to denote the ball of radius

5r(n, z) centred at the centre of Un(z)). The next step is to ”inflate” this cover, that is, to enlarge

it to a ”richer” cover of W . For this, we consider an (n − 1)-preimage of w in Λ which we denote

by w(n− 1), for each point w ∈ W . Let us assume that w(n− 1) ∈ V1 and hence, that w(n− 1) has

at least d1 1-preimages in Λ. Now, since En is (n, ε)-spanning, for each point ξ ∈ Λ, there exists at

least one point y ∈ En such that ξ ∈ Bn(y, ε). However, we cannot have two 1-preimages of some

w(n − 1) belonging to different Bowen balls Bn(y, ε) and Bn(y′, ε) such that y and y′ are both in

G(0). This is an immediate consequence of the fact that {Un(z) : z ∈ G(0)} consists of pairwise

disjoint sets.

Therefore, by way of successive eliminations, we can find d1 pairwise disjoint families, denoted

by F(1, d1; 1), . . . ,F(1, d1; d1), such that {5Un(z) : z ∈ F(1, d2; i)} is a cover of the set {w ∈ W :

w(n − 1) ∈ V1}, for each 1 ≤ i ≤ d1. Obviously, for w(n − 1) ∈ V2 we can proceed in a similar

way, which then gives rise to d2 mutually disjoint families F(1, d2; 1), . . . ,F(1, d2; d2) for which we

have that {5Un(z) : z ∈ F(1, d2; j)} is a cover of {w ∈ W : w(n − 1) ∈ V2}, for each 1 ≤ j ≤ d2.

Note that, since d(V1, V2) > 0, we have that F(1, d1; i) ∩ F(1, d2; j) = ∅, for all i and j, and that

by construction we have that the so obtained disjoint families are all contained in En. Next, define

F(1) :=
2
∪
i=1

∪
1≤j≤di

F(1, di, j), and let G(1, dk) be given, for k ∈ {1, 2}, by

∑
z∈G(1,dk)

(diamUn(z))t

∆(f 2(z)) . . .∆(fn(z))
= min

 ∑
z∈F(1,dk;i)

(diamUn(z))t

∆(f 2(z)) . . .∆(fn(z))
: i ∈ {1, ..., dk}

 .

For G(1) := G(1, d1) ∪ G(1, d2), we then obtain, by adding the sums over G(1, d1) and G(1, d2),∑
z∈G(1)

(diamUn(z))t

∆(f 2(z)) . . .∆(fn(z))
≤
∑
z∈F(1)

(diamUn(z))t

∆(f(z)) . . .∆(fn(z))
. (39)

Note that here we have used the trivial fact that for each x ∈ Λ we have that
∑

y∈Λ,f(y)=x 1/∆(x) = 1.

Also, note that the sum over the family G(1) on the left hand side of the inequality in (39) is smaller

than the sum over the larger family F(1) on the right hand side. However, and this is the crucial

point, the summands on the right hand side have one more factor in their denominator than the

summands on the left hand side.

Now, we shall enlarge the family F(1) as follows. Recall that for each w ∈ W we have fixed

an (n − 1)-preimage w(n − 1) ∈ Λ. We now define w(n − 2) := f(w(n − 1)) and consider not
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only w(n − 1) but also the other 1-preimages of w(n − 2) in Λ. Subsequently, we will then take

the 1-preimages of these 1-preimages of w(n− 2) and obtain new covers of W . Indeed similarly as

before, if w(n− 2) ∈ V1 then we can construct, by succesive eliminations, pairwise disjoint families

F(2, d1; 1), ...,F(2, d1; d1) by selecting the 1-preimages of the i-th preimage of w(n−2), for each 1 ≤
i ≤ d1. In fact one of these families is F(1). As in the first step, the sets {5Un(z) : z ∈ F(2, d1; i)}
cover {w ∈ W : w(n − 2) ∈ V1}, for each i. Let us remark that the procedure of successive

elimination works, since if we take for instance the family F(2, d1; 1), then for an arbitrary w ∈ W
we cannot have two 1-preimages y and y′ of w(n − 2) and 1-preimages ξ of y and ξ′ of y′ such

that ξ and ξ′ are both contained in either Bn(z, ε) or Bn(z′, ε), for some z, z′ ∈ F(2, d1; 1). Indeed,

since f 2(Bn(z, ε)) ∩ f 2(Bn(z′, ε)) 6= ∅, in this situation it would follow that Un(z) ∩ Un(z′) 6= ∅ and

hence we would have a contradiction. This implies that there exist d1 disjoint families F(2, d1; i)

corresponding to the d1 1-preimages of w(n− 2) ∈ V1.

Continuing the above procedure, assume we have constructed a family F(k) ⊂ En and a sub-

family G(k), so that the sets (Un(z))z∈G(k) 5-cover W and∑
z∈G(k)

(diamUn(z))t

∆(fk+1(z)) . . .∆(fn(z))
≤
∑
z∈F(k)

(diamUn(z))t

∆(f(z)) . . .∆(fn(z))
.

For each w ∈ W , we then take the k-th iterate of w(n − 1) and denote it by w(n − k − 1); this

is an (n − k − 1)-preimage of w in Λ. Now, if w(n − k − 1) ∈ V1 then it has d1 1-preimages in

Λ and to each of these we can apply the same procedure from step k. In this way we obtain by

succesive eliminations d1 mutually disjoint families F(k + 1, d1; i), 1 ≤ i ≤ d1 and inside each of

these a subfamily G(k + 1, d1; i) such that∑
z∈G(k+1,d1;i)

(diamUn(z))t

∆(fk+1(z)) . . .∆(fn(z))
≤

∑
z∈F(k+1,d1;i)

(diamUn(z))t

∆(f(z)) . . .∆(fn(z))
.

The succesive elimination procedure works since we cannot have two differerent 1-preimages y and

y′ of w(n−k−1) having (n−k)-preimages ξ ∈ Λ and ξ′ ∈ Λ respectively, such that ξ ∈ Bn(z, ε), ξ′ ∈
Bn(z′, ε), for some z, z′ ∈ F(k + 1, d1; i). Indeed, it would then follow that the family {Un(z) : z ∈
F(k+1, d1; i)} does not consist of pairwise disjoint sets, which clearly is a contradiction. Moreover,

since V1 ∩ V2 = ∅, we must have F(k + 1, d1; i) ∩ F(k + 1, d2; j) = ∅. Hence, there is no repetition

of elements, when we consider the union F(k + 1) := ∪
1≤j≤d1

F(k + 1, d1; j) ∪ ∪
1≤j≤d2

F(k + 1, d2; j).

Now among the collections G(k+ 1, d1; i), for 1 ≤ i ≤ d1, let us consider the one which gives rise

to the least sum
∑

z∈G(k+1,d1;i)
(diamUn(z))t

∆(fk+2(z))...∆(fn(z))
. Denote this minimizing collection by G(k + 1, d1).

Similarly, we obtain the collection G(k + 1, d2). We now have that∑
z∈G(k+1,d1)

(diamUn(z))t

∆(fk+2(z)) . . .∆(fn(z))
≤

∑
z∈ ∪

1≤i≤d1
G(k+1,d1;i)

(diamUn(z))t

∆(fk+1(z)) . . .∆(fn(z))

≤
∑

z∈ ∪
1≤i≤d1

F(k+1,d1;i)

(diamUn(z))t

∆(f(z)) . . .∆(fn(z))
.

(40)
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Of course, we can proceed similarly for G(k + 1, d2). With G(k + 1) := G(k + 1, d1) ∪ G(k + 1, d2),

it follows from above that∑
z∈G(k+1)

(diamUn(z))t

∆(fk+2(z)) . . .∆(fn(z))
≤

∑
z∈ ∪

1≤i≤d1
F(k+1)

(diamUn(z))t

∆(f(z)) . . .∆(fn(z))
.

We obtain thus, by finite induction, a union F(n) of families in En, as well as one particular

family G(n) such that {5Un(z) : z ∈ G(n)} covers the set W and has the property that∑
z∈G(n)

(diamUn(z))t ≤
∑

z∈F(n)

(diamUn(z))t

∆(f(z)) . . .∆(fn(z))
.

By combining this with (38) at the start of the proof, this shows that
∑

z∈G(n)

(diamUn(z))t < 1. Since

{5Un(z) : z ∈ G(n)} is a covering of the set W = W s
r (x) ∩ Λ, we can now conclude that

δs(x) ≤ t < tω.

When ω is a general continuous function on Λ with ω(x) ≤ ∆(x), for all x ∈ Λ, we proceed as

follows: notice first that, by the continuity of ω, we have that there exists an increasing, positive

function ρ on (0,∞) such that ρ(ε) decreases to zero for ε converging to zero with positive values,

and such that if d(y, z) ≤ ε, then |ω(y)− ω(z)| ≤ ρ(ε). Since if y ∈ Bn(z, ε) then f i(y) ∈ B(f iz, ε),

the latter implies that if y ∈ Bn(z, ε) then |ω(f i(y))− ω(f i(z))| ≤ ρ(ε). Hence, since ∆(x) ≥ ω(x)

for all x ∈ Λ, it follows that for each 0 ≤ i ≤ n− 1 we have

∆(f i(y)) ≥ ω(f i(y)) ≥ ω(f i(z))− ρ(ε).

Now in order to proceed, let us define the ε-pressure function Pε, for some arbitrary potential

function ψ, by

Pε(ψ) := lim inf
n→∞

1

n
log inf

{∑
x∈E

exp

(
n−1∑
k=0

ψ(fk(x))

)
: E is a (n, ε)-spanning set for Λ

}

and let tε denote the unique zero of Pε(tΦ
s − log(ω − ρ(ε))). Then let t > tε be fixed and note

that the above proof goes through in the same way if in the sums appearing there, we replace

the function ∆ by the function ω − ρ(ε). This follows since for all 0 ≤ i ≤ n − 1 we have that

∆(f iy) ≥ ω(f i(y)) ≥ ω(f i(z))− ρ(ε), for each y ∈ Bn(z, ε) and for some arbitrary fixed element z

contained in some minimal (n, ε)-spanning set En for Λ. In this way, the above inductive procedure

produces a family F(n) ⊂ En and also a family G(n), such that {5Un(z) : z ∈ G(n)} covers the set

W and so that∑
z∈G(n)

(diamUn(z))t ≤
∑

z∈F(n)

(diamUn(z))t

(ω(f(z))− ρ(ε)) . . . (ω(fn(z))− ρ(ε))
< 1.
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Now, for η > 0 sufficiently small and 0 < ε < η, let τε,η refer to the unique zero of the pressure

function Pε(tΦ
s− log(ω− ρ(η))) and let τη denote the unique zero of the pressure function P (tΦs−

log(ω− ρ(η))). Since lim
ε→0

Pε(ψ) = P (ψ) for each continuous function ψ, it follows that limε→0 τε,η =

τη. On the other hand, for every 0 < ε < η we have that ρ(ε) < ρ(η) and therefore, tΦs − log(ω −
ρ(ε)) ≤ tΦs − log(ω − ρ(η)). Thus τε ≤ τε,η. Now, consider some arbitrary fixed t > τη. For ε > 0

sufficiently small, we have t > τε,η ≥ τε. Hence, from above we have that for every t in this range and

for n large enough, there exists a cover {5Un(z) : z ∈ G(n)} of W such that
∑

z∈G(n)

(diamUn(z))t < 1.

This shows that t ≥ dimH(W ) and therefore, since t > τη was chosen to be arbitrary, it follows that

τη ≥ dimH(W ). Now, from the continuity of the pressure function, we obtain limη→0 τη = tω, which

gives dimH(W ) ≤ tω.

As before, note that for an endomorphism f in higher dimension, a hyperbolic basic set is not

necessarily totally invariant.

In [52], we considered the situation in which δs attains a maximal value and show that in this

case, δs must be constant on Λ and that the preimage counting function ∆(·) is equal to its least

value d on an open dense subset.

Proposition 4.3.1 ([52]). Assume we are in the same setting as in Theorem 4.3.2, that the minimal

value of ∆ on Λ is equal to d and that there exists a point x ∈ Λ at which δs is equal to the unique

zero td of the pressure function t 7→ P (tΦs − log d). Then ∆ is equal to d on an open dense set of

Λ, and δs(y) is equal to td, for all y ∈ Λ.

This proposition can be applied in particular in the case in which d is equal to 1, and where

there is no overlap. In this case the stable dimension is equal to the similarity dimension, and

the proposition then guarantees that there exists an open dense set of points in Λ at which f has

precisely one preimage in Λ. Thus, in this case the map behaves almost like a homeomorphism

when restricted to Λ. This situation is relatively parallel to a result of Schief [86], although the

setting and proofs are completely different.

Corollary 4.3.1 ([52]). Let f : M → M be a C2-endomorphism which is c-hyperbolic on a basic

set Λ of f and for which there exists a point x ∈ Λ, such that δs(x) is equal to the unique zero t1
of the pressure function t 7→ P (tΦs). Then there exists an open dense set of points in Λ at which f

has precisely one preimage in Λ. Moreover, we have that δs(y) = t1, for all y ∈ Λ.

Also, in [52] we applied Corollary 4.3.1 to a class of translations of horseshoes with overlaps,

previously studied by Simon and Solomyak in [89].

Moreover in [52], we considered the stable upper box dimension βs(x) which is the upper box-

counting dimension dimB(W s
r (x) ∩ Λ) of the intersection W s

r (x) ∩ Λ, for each x ∈ Λ. We showed

that this function is constant throughout Λ and that in the situation in which ∆ is bounded from

below, similarly as in Theorem 4.3.2, one derives an upper bound for its value.
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Proposition 4.3.2 ([52]). Consider f : M → M a C2-endomorphism which is c-hyperbolic on a

basic set Λ of f . Then the following statements are true:

(a) If there exists a continuous function ω : Λ→ R such that ∆(x) ≥ ω(x), for all x ∈ Λ, then we

have, with tω given as in Theorem 4.3.2,

βs(y) ≤ tω, for all y ∈ Λ.

(b) The function βs is constant on Λ.

In particular the above results can be applied for hyperbolic basic sets of saddle type for holo-

morphic maps f : P2C→ P2C.

In [20] (see also [92] and [70]) Falconer studied self-affine fractals with overlaps obtained from

finitely many linear contractions Ti(x) = λix, i = 1, ..., ` in R satisfying 0 < |λi| < 1 and∑
1≤i≤` |λi| < 1. He showed that the Hausdorff dimension of the invariant set of the family of trans-

lated contractions {Ti+ai, : 1 ≤ i ≤ `} is equal to s, for Lebesgue almost all (a1, . . . , a`) ∈ R×...×R,

where s represents the similarity dimension defined as the solution of
∑

1≤i≤` |λi|s = 1. However, the

result fails if the condition
∑

1≤i≤` |λi| < 1 is not satisfied, as observed by Edgar, who based his argu-

ment on a result by Przytycki and Urbański. Indeed, if T1 = T2 =

(
1/2 0

0 λ

)
and if |λ| > 1

2
, then

for Lebesgue almost every a = (a1, a2) ∈ R2 the attractor Λ(a) of the system {T1 +a1, T2 +a2} stays

to be the same; and moreover if 1/λ is a Pisot number (that is, an algebraic integer such that the

absolute value of all its algebraic conjugates is less than 1), then dimH(Λ(a)) < 2− (log(1/λ))/ log 2

(see e.g. [92]). This shows that fractals originating from overlapping constructions can have Haus-

dorff dimension strictly less than their similarity dimension.

In [86], Schief investigated self-similar fractal sets K and showed that, if for the similarity

dimension σ of K one has that the σ-dimensional Hausdorff measure Hσ(K) is positive, then K

satisfies the strong open set condition (so the system is similar to a homeomorphism on K). However

the setting and the ideas of our proofs differ significantly from the approach in [86]. In addition,

the assumptions in Proposition 4.3.1 are much weaker than the ones in [86]: in order to obtain the

”almost injectivity” on Λ, we only require that the stable dimension δs(x) is equal to the zero t1 of

the pressure function t→ P (tΦs), for some x ∈ Λ; we do not require that Ht1(W s
r (x) ∩ Λ) > 0. In

our case t1 is the analogue of the similarity dimension in the stable direction, in the sense that it

represents the dimension which one would obtain if the system would be invertible. Thus, if there

exists a point x ∈ Λ, with Ht1(W s
r (x)∩Λ) > 0, then the stable dimension is everywhere equal to t1

and there exists an open dense set of points in Λ with precisely one preimage remaining in Λ.

Recall also that in [57], Mihailescu and Urbański studied c-hyperbolic maps on Λ for which ∆

is bounded from above by a continuous map η on Λ. The proof for the upper estimate above, is

very different from the proof for lower estimates from [57]. Nevertheless, we can combine these two

estimates to obtain that, if the preimage counting function ∆ is locally constant on Λ, then the

stable dimension is equal to t∆ on the fractal Λ.
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4.4 Transversality conditions for families of skew products with overlaps in fibers.

A particular class of endomorphisms with interesting behaviour is given by skew products with

overlaps in fibers, which are hyperbolic on their respective limit sets.

A technique, introduced in a different setting by Peres, Solomyak, Simon, etc. (see [70], [89], [92],

[93], and references therein) is that of using transversality conditions for families of parametrized

dynamical systems. If the family satisfies certain transversality conditions with respect to its param-

eters, then it is possible to derive information about dimension, for Lebesgue-almost all parameters.

In [59], Mihailescu and Urbanski studied a family of parametrized skew products which are

hyperbolic on their respective fractal limit sets, and proved a Bowen type formula for the stable

dimension for Lebesgue-almost all parameters. Moreover we gave in that paper several concrete ex-

amples, some having iterated function systems in their base, others coming from higher dimensional

complex dynamics.

In general, a continuous self-map f : X → X of a compact metric space (X, ρ) is called open

distance expanding, if f is open, Lipschitz continuous, and there are constants η > 0, γ > 1 and an

integer k ≥ 1, such that ρ(fk(x), fk(z)) ≥ γρ(x, z) whenever ρ(x, z) ≤ η. One can see that changing

the metric ρ in a bi-Lipschitz manner, we may assume without loss of generality that k = 1.

Let now U be a bounded open subset of a Euclidean space Rp, with p ≥ 1. A map g : U → Rp

is called an expanding repeller if and only if the following conditions are satisfied:

i) g : U → Rp is a C1+γ endomorphism.

ii) X = ∩∞n=0g
−n(U) is a compact g-invariant (g(X) = X) subset of U . The map g : X → X is

transitive.

iii) The map g : X → X is infinitesimally expanding, i.e. there exists k ≥ 1 such that for all

x ∈ X and for all v ∈ Rp, we have ||Dxg
k(v)|| ≥ 2||v||.

Clearly, g : X → X is an open distance (with respect to the Euclidean metric) expanding map.

Let us now take f : X → X an open distance expanding map and suppose it is topologically

transitive. Let V be a bounded convex open subset of Rq, q ≥ 1.

Definition 4.4.1 ([59]). Suppose that for all x ∈ X there exists a C1+γ conformal endomorphism

φx : V → V conformally extendable to a neighborhood of V with the following properties.

(a) κ := sup{|(φx)′(y)| : (x, y) ∈ X × V } < 1.

(b) κ[[a := inf{|(φx)′(y)| : (x, y) ∈ X × V } > 0.

If the conditions (a) and (b) are satisfied, then the map F : U × V → Rp × V , defined by

F (x, y) = (f(x), φx(y))
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is called a hyperbolic fiberwise conformal skew-product if it is Lipschitz continuous (with

respect to the sum metric on X×Rq) and the map (x, y) 7→ (f(x), φ′x(y)) is also Lipschitz continuous;

denote the common Lipschitz constant by LF .

Let us consider the fractal limit set

Λ = ∪x∈X ∩∞n=0 ∪z∈f−n(x)φ
n
z (V ),

where φnz = φFn−1(z)◦φfn−1(z)◦. . .◦φz : V → V and F n(x, y) = (fn(x), φnx(y)); Λ is called the basic set

of the endomorphism F . Obviously F (Λ) ⊂ Λ and F (Yx) ⊂ Yf(x), where Yx = ∩∞n=0∪z∈f−n(x)φ
n
z (V ).

Let f̂ : X̂ → X̂ be the natural extension (inverse limit) of the endomorphism f : X → X. For

every n ≥ 0 let pn : X̂ → X be the projection onto nth coordinate of X̂. Consider

Λ̂ = ∪x∈Xp−1
0 (x)× Yx

and define the map F̂ : Λ̂→ Λ̂ by the formula

F̂ (x̂, y) = (f̂(x̂), φx1(y)).

Notice the map F̂ : Λ̂ → Λ̂ is a homeomorphism and the mapping ((xn, yn)∞0 ) 7→ ((xn, y0)∞0 ) is a

homeomorphism from Λ̂, the Rokhlin’s natural extension of fΛ, to Λ̂ which establishes a canonical

topological conjugacy between the map F̂ : Λ̂ → Λ̂ and the map F̂ : Λ̂ → Λ̂. Note that for

every x̂ ∈ X̂, {φnxn(V )}∞n=0 is descending (as φn+1
xn+1

= φnxn ◦ φxn+1) sequence of compact sets whose

diameters, by condition (e) converge to 0. Hence, the intersection

∩∞n=0φ
n
xn(V )

is a singleton, and denote its only element by π(x̂). So, we have a map π : X̂ → V . For every x ∈ X,

we have: π(p−1
0 (x)) = Yx.. Endow X̂ with a metric ρ̂ defined as follows. ρ̂(x̂, ẑ) =

∑∞
n=0 κ

nρ(xn, zn)..

The map π : X̂ → V is Lipschitz continuous.

For every continuous potential g : X̂ → R let P (g) = P (f̂ , g) be the topological pressure of

g with respect to the dynamical system f̂ : X̂ → X̂. For the topological pressure and its basic

properties see for ex. [5]. Now consider the potential ζ = ζF : X̂ → R given by the formula

ζ(x̂) = log φ′x0
(π(x̂))|

This potential is Hölder continuous. Notice that the function t 7→ P (f̂ , tζ) is convex, Lipschitz

continuous, strictly decreasing, and limt→−∞ P (f̂ , tζ) = +∞ and limt→+∞ P (f̂ , tζ) = −∞. So there

exists exactly one t ∈ R, denoted by h, such that P (f̂ , hζ) = 0. Since P (f̂ , 0ζ) = htop(f̂) > 0, we

see that h > 0. The number h is called Bowen’s stable zero of the basic set Λ.

Now, endow the space C1+γ(V ) of all C1+γ differentiable endomorphisms from V into V with

the norm || · ||γ given by the formula

||φ||γ = ||φ||∞ + ||φ′||∞ + vγ(φ
′),
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where

vγ(φ
′) = inf{L > 0 : |φ′(y)− φ′(x)| ≤ L|y − x|γfor all x, y ∈ V }.

Obviously C1+γ(V ) endowed with this norm becomes a Banach space; and denote the metric induced

by the norm || · ||γ by ργ.

Definition 4.4.2. In the above setting, fix d ≥ 1 and an open set W ⊂ Rd and consider a family

Φ = {φλx : V → V }(λ,x)∈W×X of maps from C1+γ(V ), satisfying the following conditions.

(af) Conditions (a) and (b) with the same constants κ, κ ∈ (0, 1).

(bf) The map (λ, x) 7→ φλx ∈ C1+γ(V ) defined on W ×X is continuous.

(cf) (Transversality Condition)

∀(x ∈ X),∀(λ0 ∈ W )∃(δ(x, λ0) > 0)∃(C1 > 0)∀(x̂, ŷ ∈ p−1
0 (x)) ∀(r > 0)

x1 6= y1 ⇒ ld({λ ∈ B(λ0, δ(x, λ0)) : ||πλ(x̂)− πλ(ŷ)|| ≤ r}) ≤ C1r
q,

where ld denotes the d-dimensional Lebesgue measure on Rd and πλ : X̂ → V is the canonical

projection induced by the skew-product Fλ : U × V : Rp × V , given by the formula

Fλ(x, y) = (f(x), φλx(y)).

Any such family Φ is said to be transversal and the canonically induced family Φ = {Fλ}λ∈W is

also called transversal.

For all λ, λ′ ∈ W define

||Fλ||γ = sup{||φλx||γ : x ∈ X} and ργ(Fλ, Fλ′) = sup{ργ(φλx, φλ
′

x ) : x ∈ X}.

Condition (bf) can be now rephrased as:

(b’f) The function λ 7→ Fλ, λ ∈ W , is continuous.

Lemma 4.4.1 ([59]). Suppose that Φ = {Fλ}λ∈W is a transversal family of hyperbolic fiberwise

conformal skew-products. Then for all x ∈ X we have

(a)

∀(λ0 ∈ W )∀(ε > 0)∃(δ > 0)

HD(Yλ,x) ≥ min{hλ0 , q} − ε

for ld-a.e. λ ∈ B(λ0, δ) and

(b) If hλ0 > q, then there exists δ > 0 such that

lq(Yλ,x) > 0

for ld-a.e. λ ∈ B(λ0, δ).
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Theorem 4.4.1 ([59]). Consider Φ = {Fλ}λ∈W to be a transversal family of hyperbolic fiberwise

conformal skew-product endomorphisms. Then the function λ 7→ hλ is continuous on W , and for

all x ∈ X there exists a Borel set Wx ⊂ W such that ld(W \Wx) = 0 and

(a)

HD(Yλ,x) = min{hλ, q} for all λ ∈ Wx.

(b)

ld({λ ∈ W : hλ > q and ld(Yλ,x) > 0}) = ld({λ ∈ W : hλ > q}).

Another way to guarantee the existence of a universal set W ′ as in the corollary above, is to

strenghten the transversality condition (cf) as follows:

(c’f) (Uniform Transversality Condition) There exists C2 > 0 such that for all x ∈ X, ∀x̂, ŷ ∈
p−1

0 (x), x1 6= y1, and ∀r > 0, we have

ld(λ ∈ W : ||πλ(x̂)− πλ(ŷ)|| ≤ r) ≤ C2r
q.

All that has to be done then, is to replace Rx(λ) in formula (??) by supx∈X Rx(λ). We thus get

the following. For a uniformly transversal family we have the following:

Theorem 4.4.2 ([59]). Consider Φ = {Fλ}λ∈W to be a uniformly transversal family of hyperbolic

fiberwise conformal skew-products. Then the function λ 7→ hλ is continuous on W and there exists

a measurable set W ′ ⊂ W such that ld(W \W ′) = 0 and

HD(Yλ,x) = min{hλ, q}

for all λ ∈ W ′ and all x ∈ X.

In [59] we gave also several classes of parametrized examples, satisfying transversality or uniform

transversality conditions; so for them we can apply the above theorems to obntain the dimension

of stable fibers a.e.

In order to do this, consider f : X → X a topologically exact open distance expanding map, for

which there exist closed mutually disjoint sets X1, X2, . . . , Xd such that X = ∪di=1Xi, f(Xi) = X for

all i = 1, 2, . . . , d and f |Xi is injective for all i = 1, 2, . . . , d. The model that we have in mind is that

of an expanding map f : I1∪. . .∪Id → [0, 1] where I1, . . . , Id are closed mutually disjoint subintervals

of [0, 1], f(Ij) = [0, 1],∀j, and f |Ij is injective. Then we will take as the compact space X, the set

I∗ = {x ∈ I1 ∪ . . . ∪ Id, fm(x) ∈ I1 ∪ . . . ∪ Id,∀m ≥ 0}. So, in this case, Xi = I∗ ∩ Ii, i = 1, . . . , d.

Returning to the general case of the dynamical system f : X → X as above, consider λ =

(λ1, . . . , λd) ∈ Bd(0, η) ⊂ Rd, for some small enough η > 0, and fix Lipschitz continuous functions

φ1, . . . , φd : X × [0, 1] × Bd(0, η) → (0, 1). So φ1, . . . , φd are functions of (x, y, λ) ∈ X∗ := X ×
[0, 1] × Bd(0, η). Let us assume also that φ1(x, ·, ·), . . . , φd(x, ·, ·) are C2 differentiable functions of

(y, λ), with derivatives in (y, λ) depending Lipschitz continuously on (x, y, λ), and that there exist
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constants α, α′ > 0 with 0 < α′ < | ∂
∂y
φi| < 1

4
on X∗, for all i = 1, . . . , d and | ∂

∂λj
φi| < α on X∗, for

all i, j = 1, . . . , d. If φi ≤ β on X∗, for i = 1, . . . , d, then we assume also that η + β < 1. Define

now the parametrized maps Fλ : X × [0, 1]→ X × (0, 1) by the formula

Fλ(x, y) = (f(x), λi + φi(x, y, λ)),

if x ∈ Xi, i = 1, . . . , d. From the way we defined the functions φ1, . . . , φd, one can see that Fλ is

well defined and it is a hyperbolic fiberwise conformal skew product endomorphism. In this case,

φλx(y) = λi + φi(x, y, λ), for x ∈ Xi, i = 1, . . . , d. We see that 0 < α′ < |(φλx)′| < 1
4
, x ∈ X,λ ∈

Bd(0, η), so condition (af) from the definition of a transversal family is satisfied automatically. For

this family, the set of parameters is W = Bd(0, η) ⊂ Rd.

Theorem 4.4.3 ([59]). The family {Fλ}λ∈Bd(0,η) is uniformly transversal, and therefore, the asser-

tions of Theorem 4.4.2 hold.

Corollary 4.4.1 ([59]). If f : I1 ∪ . . . ∪ Id → [0, 1] and X = I∗ satisfy the assumptions of Theo-

rem 4.4.3, and if there exist constants a, b with 0 < a < b < 1
4

such that a ≤ | ∂
∂y
φi(x, y, λ)| ≤ b for

all (x, y, λ) ∈ X × [0, 1] × Bd(0, η) and i = 1, . . . , d, then there exists a measurable set W ′ ⊂ W ,

with ld(W \W ′) = 0, such that for all x ∈ X,λ ∈ W ′ we have:

min

{
1,

log d

| log a|

}
≤ HD(Yλ,x) ≤ min

{
1,

log d

| log b|

}
In particular, one obtains:

(a) HD(Yλ,x) > 0, x ∈ X,λ ∈ W ′.

(b) if |a| ≥ 1
d
, then HD(Yλ,x) = 1, for all x ∈ X,λ ∈ W ′.

In [59] we gave also two other types of examples from higher dimensional complex dynamics,

which satisfy the uniform transversality condition, and hence Theorem 4.4.2 can be applied to them.

The first such example is the family

Fλ(z, w) = (f(z), h(z) +
1

2
w + λz)

Here we assume that (z, w) ∈ U ×V ⊂ C×C, the set U = ∆(0, 2) is the disk of center 0 and radius

2 in C, the set V ⊂ C is open, bounded and convex; assume also that the function f(z) is close

enough to a map of the form z → z2 + c, with |c| small, and that X = J(f), is the Julia set of

f (hence f can be considered expanding on X). Consider also h to be a complex valued Lipschitz

continuous map defined in a neighbourhood of X; then since |h| is bounded on X, we can take the

bounded sets V and W ⊂ C in such a way that the map Fλ : U × V → C× V is well defined for all

λ ∈ W ; for example one can take W = ∆(0, 1), V = ∆(0,M), where M > 2(sup
X
|h|+ 2).

Theorem 4.4.4 ([59]). The parametrized family {Fλ}λ∈W defined above, satisfies the Uniform

Transversality condition.
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Proof. We have πλ(ẑ) = limn→∞ φ
λ
z1
◦ φλz2 ◦ . . . ◦ φ

λ
zn(ζ), where φλz (w) := h(z) + 1

2
w + λz. Therefore,

φλz1 ◦ φ
λ
z2

(ζ) = h(z1) +
1

2
(h(z2) +

1

2
ζ + λz2) + λz1 = h(z1) +

1

2
h(z2) + λz1 +

1

2
λz2 +

1

4
ζ.

Then, by induction we obtain that

πλ(ẑ) = [h(z1) +
1

2
h(z2) +

1

4
h(z3) + . . .] + λ(z1 +

1

2
z2 +

1

4
z3 + . . .).

Define also

A(ẑ) := h(z1) +
1

2
h(z2) +

1

4
h(z3) + . . . , and B(ẑ) = z1 +

1

2
z2 +

1

4
z3 + . . . .

Consider now two prehistories ẑ, ẑ′ ∈ p−1
0 (z), with z1 6= z′1. Let g(λ) := πλ(ẑ) − πλ(ẑ′) = A(ẑ) +

λB(ẑ)−A(ẑ′)−λB(ẑ′). Since f is close to the map z → z2 + c, we have J(f) close to the circle S1,

if c is small enough, and also it follows that z′1 is close to −z1; thus z′2 ≈ iz2 or z′2 ≈ −iz2. Hence

|z′2−z2| ≈
√

2. Hence |z′2−z2 + 1
2
(z′3−z3)+ . . . | ≤

√
2.2+ 1

2
(2.1+ 1

2
2.2+ . . .) ≤

√
2.2+2.2, where we

assumed f to be so close to z2 + c, and |c| to be so small that |z′2 − z2| <
√

2.2 and X ⊂ ∆(0, 1.1).

Thus

|B(ẑ)−B(ẑ′)| ≥ 1.9− 1

2
(
√

2.2 + 2.2) > 0.2,

if ẑ, ẑ′ ∈ X̂, z = z′, z1 6= z′1. Therefore if |g(λ)| = |A(ẑ)− A(ẑ′) + λ(B(ẑ)−B(ẑ′))| < r, then∣∣∣∣λ+
A(ẑ)− A(ẑ′)

B(ẑ)−B(ẑ′)

∣∣∣∣ < r

|B(ẑ)−B(ẑ′)|
<

r

0.2

whenever z = z′ and z1 6= z′1. This implies that λ ∈ B(A(ẑ)−A(ẑ′)
B(ẑ)−B(ẑ′)

, r
0.2

). Hence

l2({λ : |g(λ)| < r}) ≤ 25πr2

for all r > 0. Hence the Uniform Transversality Condition is satisfied for this family.

Another example from complex dynamics is presented below. Consider f(z) = z2+c, for |c| small

enough; f has a Julia set denoted by X, which is close to the unit circle; then f is expanding on X.

Assume also that h is a complex valued Lipschitz continuous function defined on a neighbourhood

of X, that 0.4 < |h(z)| < 0.6, for z ∈ X, and that |h(z) + h(z′)| > 3
2

for z2 = −z′2 − 2c, z ∈ X, and

|c| small. Let then λ to be a complex parameter with |λ| < 1
6
, and consider the parametrized family

Fλ(z, w) = (f(z), h(z) +
1

5
w2 + λz2)

Theorem 4.4.5 ([59]). In the above setting, for any λ from W := {λ ∈ C, |λ| < 1
6
} and z ∈ X,

the map Fλ(z, ·) defined above, invariates the domain V := {w ∈ C, 1
30
< |w| < 1}, and {Fλ}λ∈W

satisfies the Uniform Transversality condition.
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Also, another example of a complex parametrized family with Uniform Transversality) given in

[59], is the following

Fλ(z, w) = (z2, z2 + λ1z + λ2zw
2),

with W = {λ = (λ1, λ2) ∈ C2, |λ1| < 1
50
, 1

10
< |λ2| < 1

8
}, V := {w ∈ C, 1

2
< |w| < 1.5}. We proved

that Fλ(z, ·) : V → V is well defined for z ∈ S1, λ ∈ W , and ∃ κ, κ ∈ (0, 1) such that κ ≤ |(φλz )′| ≤ κ

on V . For this example it can be proved similarly that {Fλ}λ∈W is a parametrized family with

Uniform Transversality.

Thus the conclusions of Theorem 4.4.2 apply to the above examples and for Lebesgue almost all

parameters λ, the Hausdorff dimension of all fibers (which represents the stable dimension in our

case), can be given as solution of Bowen type equations on X̂.

4.5 Global unstable sets in the non-invertible conformal saddle case.

Global unstable sets for hyperbolic basic sets of endomorphisms present a very complicated struc-

ture, due to the fact that there may exist many (even uncountably many) local unstable manifolds

through most points of the basic set, and that these unstable manifolds may intersect each other

both inside and outside the fractal set. By contrast to diffeomorphisms, for non-invertible maps the

unstable manifolds do not form a foliation. Thus we cannot simply employ a procedure of writing

the fractal as a product locally.

The global unstable sets are important in understanding the long time behaviour of a dynamical

system. For instance for s-hyperbolic holomorphic endomorphisms on the complex projective space

P2, the set K− (the analogue of the set of points with bounded backward iterates from the Hénon

automorphisms case) is equal to W u(Ŝ1) ∪ S0, where Si is the set of points with unstable index

i of the non-wandering set (see Fornaess-Sibony, [22]). We answered a question of Fornaess and

Sibony in [48] showing that the interior of K− is empty, and in [45] we proved that in certain

cases, the Hausdorff dimension of K− is even strictly less than 4. Thus we proved that there

exists a clear dichotomy between the dynamical behaviour of perturbations of Hénon maps (which

may have basins of repelling periodic points in their respective sets K−), and that of s-hyperbolic

holomorphic endomorphisms.

We recall the definition of c-hyperbolic map given in 4.3.2. A particular case of a c-hyperbolic

map on a basic set Λ is a holomorphic endomorphism which is hyperbolic on some basic set. In

order to prove some of the results in [45] we employed the inverse pressure, a Laminated Distortion

Theorem and thermodynamic formalism on the natural extension. In the next Theorem, an impor-

tant role was played by Theorem 4.2.3. We showed in [45] also that an s-hyperbolic holomorphic

map on P2, cannot have saddle sets which are local repellors (due basically to the Kontinuitätsatz).

Theorem 4.5.1 ([45]). Let M be a compact Riemannian manifold of real dimension 4, and f :

M →M be a smooth c-hyperbolic map on a basic set of saddle type Λ, which is not a local repellor.
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Assume also that the following condition on derivatives is satisfied:

sup
ξ̂∈Λ̂

|Dfu(ξ̂)| · |Dfs(ξ)| < 1 (41)

Then HD(W u(Λ̂)) < 4. The same conclusion holds if f : P2 → P2 is a holomorphic map which is

s-hyperbolic on a basic set of saddle type Λ and satisfies (41).

Proof. Assume that HD(W u(Λ̂)) = 4 and we want to obtain a contradiction. If HD(W u(Λ̂)) = 4,

then Hσ(W u(Λ̂)) = ∞,∀σ < 4. We can find then a subset of W u(Λ̂) with Hausdorff dimension 4,

and if it is not close enough to Λ, then we can take backward iterates until we get a set ∆̃0 close to

Λ (for example so close that f can be approximated well with Df , and moreover |Dfs| > 0); the

condition HD(∆̃0) = 4 is preserved by taking backward iterates.

Then we construct inductively a sequence of Borel sets ∆̃n such that d(∆̃n,Λ)→ 0 when n→∞,

and f(∆̃n+1) = ∆̃n, n ≥ 1. Let also δ0 > 0 be a small number so that we can apply the Mean Value

Inequality for f on balls of diameter δ0.

We shall estimate Hσ
∞(∆̃n+1). Without loss of generality we can assume that ∆̃n+1 is covered

with sets Ei, i ∈ I, which are cubes with side equal to ri, i ∈ I. ThenHσ
∞(∆̃n+1) = inf{

∑
i∈I
rσi , ∆̃n+1 ⊂

∪
i
Ei}. If there exists some i with ri > δ0, then Hσ

∞(∆̃n+1) ≥ δσ0 .

We notice also that, if (Ei)i∈I cover ∆̃n+1, then (fEi)i∈I will cover ∆̃n. Now, fEi will have

its side in the stable direction of length (|Dfs(ξi)| + η(n))ri, and the ”unstable side” of length

(|Dfu(ξ̂′i)| + η(n))ri, where η(n) > 0 is a small positive number which converges towards 0 when

n → ∞, and where ξi, ξ
′
i ∈ Ei and ξ̂′i is an arbitrary prehistory of ξ′i. So, f(Ei) is approximately

a box with a smaller side (|Dfs(ξi)| + η(n))ri, and a larger side (|Dfu(ξ̂′i)| + η(n))ri. Assume also

that n is large enough such that |Dfs(ξi)|+ η(n) < |Dfu(ξ̂′i)|+ η(n), i ∈ I. Then the set f(Ei) can

be covered with m2
i cubes with side (|Dfs(ξi)|+ η(n)) · ri, where mi is a positive integer satisfying

mi(|Dfs(ξi)|+ η(n)) · ri ≥ (|Dfu(ξ̂′i)|+ η(n)) · ri ≥ (mi − 1)(|Dfs(ξi)|+ η(n)) · ri, i ∈ I. Thus,

Hσ
∞(∆̃n) ≤

∑
i∈I

m2
i ·(|Dfs(ξi)|+η(n))σ ·rσi ≤

∑
i∈I

rσi (1+
|Dfu(ξ̂′i)|+ η(n)

|Dfs(ξi)|+ η(n)
)2 ·(|Dfs(ξi)|+η(n))σ (42)

But we can consider a finite iterate of f instead of f ; assume this iterate is fp for some p large enough.

The basic set Λ remains the same, the stable/unstable local manifolds remain the same as before.

But for p large, we will have 1 + |D(fp)u(x)|
|D(fp)s(x)| < 2 |D(fp)u(x)|

|D(fp)s(x)| , x ∈ Λ. Now recall that d(ξi, ξ
′
i) < 3ri, i ∈ I.

Hence there is a small δ1 ∈ (0, δ0) such that if ri < δ1, i ∈ I, and n is sufficiently, then (41) implies:

(|Dfs(ξi)|+ η(n))σ(1 +
|Dfu(ξ̂′i)|+ η(n)

|Dfs(ξi)|+ η(n)
)2 < 22,

for σ close to 4, i.e σ ∈ (σ0, 4); also σ0 independent of n. Thus for σ close to 4, we will obtain

Hσ
∞(∆̃n) ≤

∑
i∈I

rσi ,
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in case ri < δ1, i ∈ I. So in this case (i.e if ri < δ1, i ∈ I), we got Hσ
∞(∆̃n) ≤ Hσ

∞(∆̃n+1). Therefore

in general Hσ
∞(∆̃n) ≥ min{δσ1 ,Hσ

∞(∆̃0)}, n ≥ 1, σ ∈ (σ0, 4). This means that there exists some

number β0 > 0 such that Hσ
∞(∆̃n) > β0 > 0, for n ≥ 1 and σ ∈ (σ0, 4).

Since Hσ(∆̃n) = ∞, n ≥ 1, we can apply Frostman Lemma, to get that for each n ≥ 1, there

exists a Radon measure µn on ∆̃n with µn(∆̃n) ≥ c · Hσ
∞(∆̃n) > c · β0 > β′0 > 0, (where c, β0, β

′
0 are

constants which do not depend on n). We also have that µn(B(y, r)) ≤ rσ, y ∈ M, r > 0, n ≥ 1.

The measure µn is compactly supported inside the Borel set ∆̃n.

But, since d(∆̃n,Λ) → 0, as n → ∞, we see that there exists R > 1 large enough such that for

each n, ∆̃n ⊂ B(y0, R), for some y0 ∈ Λ. Hence µn(∆̃n) ≤ R4, n ≥ 1, so by a classical theorem

in functional analysis, there exists a convergent subsequence of (µn)n. For brevity, we will denote

this convergent subsequence also by (µn)n, and denote its limit by µ. We see also that, due to the

fact that d(supp µn,Λ) → 0 when n → ∞, it follows that supp µ ⊂ Λ. But, since Λ ⊂ B(y0, R),

it follows that µ(Λ) ≤ R4 < ∞; on the other hand, µ(B(y0, R)) ≥ lim
n
µn(B(y0, R)) > β′0 > 0, so

0 < µ < ∞. Notice also that for all y ∈ M and all r > 0, the properties of the limit µ (Theorem

1.24 of [35]), imply that µ(B(y, r)) ≤ lim
n
µn(B(y, r)) ≤ rσ. In conclusion, µ is a Radon measure

supported inside Λ, with 0 < µ < ∞ and such that µ(B(y, r)) ≤ rσ, y ∈ M, r > 0. Frostman’s

Lemma implies then that Hσ(Λ) > 0, for σ ∈ (σ0, 4).

But recall that we showed in Section 2 that δs(x) = HD(W s
r (x) ∩ Λ) ≤ ts(ε) < 2, for all x ∈ Λ.

Since Λ can be laminated locally with intersections of type W s
r (x)∩Λ, we conclude that there exists

σ1 ≤ 2 + ts(ε) < 4 with Hσ(Λ) = 0,∀σ ∈ (σ1, 4). This leads then to a contradiction with the

previous conclusion, and hence HD(W u(Λ̂)) < 4.

Then we can use the Hölder estimates from [49] in order to prove a Theorem about the Hausdorff

dimension of W u(Λ̂) by employing also the number of preimages of points in Λ. This condition can

be verified on a number of examples.

Theorem 4.5.2 ([45]). Let M be a compact Riemannian manifold of real dimension 4, and f :

M →M be a smooth c-hyperbolic map on a basic set of saddle type Λ, which is not a local repellor.

Let us denote by χs := infΛ |Dfs|, λs := supΛ |Dfs| and sup
x̂∈Λ̂

|Dfs(x)| · |(Df |Eu(x̂))
−1| =: τ . Suppose

that every point from Λ has at most d f -preimages and at least d′ f -preimages in Λ. If the condition:

2 inf{1, − log τ

| logχs|
} − log d

| logχs|
≥ htop(f |Λ)− log d′

| log λs|

is satisfied, then HD(W u(Λ̂)∩∆) < 2 for any disk ∆ transversal to the unstable directions. Moreover

we obtain HD(W u(Λ̂)) < 4.

Let us discuss some aspects from higher dimensional complex dynamics related to the dimension

of global unstable sets. For Hénon automorphisms on C2,

g(z, w) = (w, p(w)− az),
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with p a monic polynomial of degree d ≥ 2 and a 6= 0, Bedford and Smillie ([3]) proved that

K−(g) = W u(K(g)), where K−(g) = {x ∈ C2, (g−n(x))n is bounded in C2} and K(g) := {x ∈
C2, (g±n(x))n is bounded in C2}. They proved that, if g is hyperbolic on its Julia set, it follows

that for |a| ≤ 1 the interior of W u(K(g)) is empty, and if |a| > 1, then Int(W u(K(g))) =
m
∪
i=1

B(pi),

where B(pi) are repelling basins for some repelling periodic points p1, . . . , pm. This shows that the

set K− has non-empty ingterior, in fact contains repelling basins of periodic repelling points.

Let us look now at the case of holomorphic endomorphisms f : P2C → P2C. Such maps are of

the form [P0 : P1 : P2], where P0, P1, P2 are homogeneous polynomials in coordinates z0, z1, z2, all

three having the same degree d ≥ 2. For holomorphic endomorphisms f : P2C → P2C, Fornaess

and Sibony defined a measure µf obtained as the wedge product of the Green current T with itself,

µf = T ∧ T . This measure was proved by Briend and Duval to be the unique measure of maximal

entropy in [8], namely its entropy is equal to log d2.

Also Fornaess and Sibony defined the set U−f := {z ∈ P2,∃U0 neighbourhood of z, f−n(y) →
suppµf ,∀y ∈ U0} and its complementary K−f = P2 \ U−f ; the sets U−f , K

−
f are also denoted by

U−, K− when no confusion can arise. For s-hyperbolic maps Fornaess and Sibony showed in [22]

that K− = W u(Ŝ1) ∪ S0, where S1 is the saddle part of the non-wandering set of f , and S0 is the

finite set of periodic attracting points. Thus the dimension of K− is the same as the dimension

of the global unstable set of S1. The question asked by Fornaess and Sibony was to obtain more

properties of the set K−, and whether the properties of Hénon diffeomorphisms hold here too.

However for s-hyperbolic holomorphic endomorphisms of P2C, we showed that this cannot be

the case. In fact in [48] we showed that the interior of K− is empty, by using methods from several

complex variables. Then in [45], [49], we estimated the Hausdorff dimension of K− (Theorems 4.5.1

and 4.5.2). We showed that in many instances the dimension of K− is strictly less than 4, this

depending on whether the map’s contractions on stable manifolds are stronger than the dilations

on unstable manifolds.
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5 Geometric dynamics and relations to ergodic theory in chaotic sys-

tems.

5.1 Mixing, coding and asymptotic distribution of preimages for measure-preserving

endomorphisms.

Measure-preserving endomorphisms have a very different behaviour than automorphic systems.

This has been observed for instance by Parry and Walters, who showed in [68] that measurable

endomorphisms of Lebesgue spaces behave very differently than automorphisms.

Theorem 5.1.1 ([68]). There exist non-isomorphic exact endomorphisms S, T of a Lebesgue space

(X,B, µ) so that S2 = T 2 (hence S, T have the same entropy w.r.t µ), S−nB = T−nB, n ≥ 0 and s.t

the Jacobians of S and T w.r.t µ are equal.

Let us recall that for automorphisms, Ornstein proved in a famous result that two invertible

Bernoulli shifts on Lebesgue spaces are isomorphic if and only if they have the same measure

theoretic entropy (see eg. [34]). However as Parry and Walters showed in [68], for measure-

preserving endomorphisms of Lebesgue spaces, f : (X,B, µ) → (X,B, µ), the entropy alone hµ(f)

does not determine the conjugacy class.

The most chaotic (in a sense) endomorphism, is a 1-sided Bernoulli shift, whose definition we

will give next.

Denote by Σ+
d := {1, . . . , d}Z+

the space of sequences ω of 1, . . . , d, indexed by the nonnegative

integers. On Σ+
d we consider the shift map σd : Σ+

d → Σ+
d ; also for a probability vector p =

(p1, . . . , pd) we define the σd-invariant product measure νp, with the initial probabilities νp({ω, ω0 =

i}) = pi, i = 1, . . . , d. The triple (Σ+
d , σd, νp) is called a (model) 1-sided Bernoulli shift. By extension

we call 1-sided Bernoulli shift any triple (X, f, µ), with µ f -invariant, which is measure-theoretically

isomorphic to (Σ+
d , σd, νp), for some d ≥ 1 and p = (p1, . . . , pd) a probabilistic vector.

There are quite a lot of papers dedicated to establishing whether certain measure-preserving en-

domorphisms on Lebesgue spaces, are 1-sided Bernoulli (see for instance [9] and references therein).

The problem of coding for endomorphisms of Lebesgue spaces (in particular for 1-sided Bernoulli

shifts) is subtle and there are no exhaustive classifications.

In [9], Bruin and Hawkins gave several criteria for maps to be 1-sided Bernoulli; in fact for

interval/circle maps, there exist rigidity type results for 1-sided Bernoulli maps:

Theorem 5.1.2 ([9]). Let T : I → I be a piecewise C2 n-to-1 interval map preserving a probability

measure µ equivalent to Lebesgue measure m s.t the Radon-Nikodym derivative g = dµ
dm

is continuous

and bounded away from 0. Then T is 1-sided Bernoulli on (I,B, µ) if and only if T is C1-conjugate

to a map S : I → I whose graph consists of n linear pieces with slopes + 1
pi

s.t hµ(T ) = −
n∑
i=1

pi log pi.
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Corollary 5.1.1 ([9]). Let T : S1 → S1 be an expanding C2 degree n ≥ 2 circle map with T (0) = 0;

then T is 1-sided Bernoulli if and only if it is C1-conjugate to z → zn.

Also in [9] there were obtained several examples of non-Bernoulli n-to-1 maps.

In [43] we proved the following 1-sided Bernoullicity result, this time for expanding maps on

general basic sets:

Theorem 5.1.3 ([43]). Consider Λ to be a hyperbolic basic set for a smooth endomorphism f , such

that f |Λ is d-to-1, td = 0 and f |Λ is expanding. Then (Λ, f, µ0) is 1-sided Bernoulli, where µ0 is

the unique measure of maximal entropy.

In fact for a system endowed with an equilibrium measure of a Hölder continuous potential, we

can say more:

Theorem 5.1.4 ([37]). a) Let f be a smooth endomorphism on a Riemannian manifold M such

that f is hyperbolic on the basic set Λ and the critical set Cf does not intersect Λ. Then if the

system (Λ, f, µ0) given by the measure of maximal entropy µ0 is 1-sided Bernoulli, it follows that f

is expanding on Λ.

b) Assume f is an expanding endomorphism on Λ. If µφ is the equilibrium measure of the Hölder

potential φ and if (Λ, f, µφ) is 1-sided Bernoulli, then µφ = µ0, where µ0 is the unique measure of

maximal entropy for f on Λ.

Proof. a) We consider in this proof the restriction of f to Λ, f |Λ : Λ→ Λ. For ε > 0 small enough,

µ0(Bn(x, ε)) ≈ 1

enhtop(f)
, n > 0, x ∈ Λ,

and the comparability constants do not depend on n, x.

Assume that (Λ, f, µ0) is isomorphic to (Σ+
d , σd, νp) for a certain probability vector p = (p1, . . . , pd).

Hence since the measure-theoretic entropy is preserved by isomorphisms (see [68]), it follows that

hµ0(f) = htop(f) = hνp(σd) ≤ log d (43)

Also we know that the index with respect to an invariant measure, is preserved by isomorphisms

(see [68], [96]), thus f is at least d-to-1 on Λ µ0-a.e. Consider now a Rokhlin partition of (Λ, f, µ0)

with the sets A1, . . . , Ad (see for example [67]); we have that f |Ai : Ai → Λ is bijective (modulo µ0)

for any i = 1, . . . , d. Denote G := {x ∈ Λ, |f−1(x)∩Λ| ≥ d}. From above, we know that µ0(G) = 1.

Let now G1 := f(G ∩ A1) ∩ . . . ∩ f(G ∩ Ad); this can be viewed also as the set of points x having

at least d preimages in Λ, and such that each of its preimages has at least d preimages in turn.

Notice also that, since µ0 ◦ f is absolutely continuous with respect to µ0 (see [67]), we obtain

µ0(f(G ∩ Ai)) = µ0(f(Ai)) = 1, i = 1, . . . , d. Therefore µ0(G1) = 1. In general define inductively

Gj := f(Gj−1 ∩ A1) ∩ . . . ∩ f(Gj−1 ∩ Ad), j ≥ 2
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Thus all points in Gj have at least dj+1 f j+1-preimages in Λ, and by induction and a similar

argument as above, we have µ0(Gj) = 1, j ≥ 1. Also it is clear that Gj ⊂ Gj−1, j ≥ 1 (mod µ0),

where G0 := G.

But for any given x ∈ Λ, the set f−n(x) ∩ Λ is an (n, ε)-separated set for ε > 0 small enough,

since Cf ∩ Λ = ∅; so if x ∈ Gn, then there exist at least dn fn-preimages of x in Λ for n > 2. This

implies that

htop(f |Λ) ≥ log d

This implies that hνp(σd) = hµ0(f) = log d, hence νp is the measure of maximal entropy on

Σ+
d . Therefore the probability vector p is equal to (1

d
, . . . , 1

d
). Hence Jνp(σd) = d, νp − a.e But the

Jacobians are preserved by measure-theoretic isomorphisms, hence

Jµ0(f) = d, µ0 − a.e, and Jµ0(fn) = dn, n > 0, µ0 − a.e

So from the properties of Jacobians from [67], we obtain that

µ0(fn(Bn(x, ε))) =

∫
Bn(x,ε)

Jµ0(fn)dµ0 = dn · µ0(Bn(x, ε)) ≈ dn

enhtop(f)
= 1,

where the comparability constants do not depend on n, x.

Thus for r > 0 sufficiently small, the intersection W s
r (x) ∩ Λ is equal to {x}, for x ∈ Λ. Hence

f can be considered to be expanding on Λ since on Λ there are no points y close to x and forward-

asymptotic to x, for any x ∈ Λ.

b) Since f is assumed expanding on Λ now, we have from [81] or [34] that the equilibrium

measure µφ is the weak limit of the sequence of measures

µxn :=
∑

y∈f−n(x)∩Λ

δy · eSnφ(y)

enP (φ)
, n > 1,

i.e µxn →
n→∞

µφ for any x ∈ Λ. This implies then, that the Jacobian of µφ in the expanding case is

Jµφ(f)(x) = e−φ(x)+P (φ), (44)

for µφ-almost all x ∈ Λ. However, the probability vector p = (p1, . . . , pd) gives the 1-sided Bernoulli

measure νp on Σ+
d , and we have the invariance of the Jacobians by the measure theoretic isomor-

phism. So Jµφ(f) = Jνp(σd) and Jµφ(f) must take the values 1
p1
, . . . 1

pd
respectively, on the sets of

a measurable partition of Λ. But we showed in (44) that Jµφ(f) is in fact equal µφ-a. e with the

continuous function e−φ+P (φ). Since µφ gives positive measure to open sets we obtain then that

all the values p1, . . . , pd must be equal, i.e p1 = . . . = pd = 1
d
. Also it follows that the continuous

function φ must be constant a.e. Hence µφ = µ0, where µ0 is the measure of maximal entropy.

From the above Theorem we can obtain immediately the following:
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Corollary 5.1.2 ([37]). Let fA be a hyperbolic endomorphism of the torus Tm (m ≥ 2), given by

the integer valued matrix A. Assume that A has both eigenvalues of absolute value larger than 1 and

eigenvalues of absolute value strictly less than 1. Then the measure-preserving system (Tm, fA,m)

is not 1-sided Bernoulli, where m is the Lebesgue (Haar) measure.

In [37] we studied also other equilibrium measures µφ, in the case of hyperbolic toral endomor-

phisms (in which case the number of preimages is constant throughout the torus).

Theorem 5.1.5 ([37]). Consider a hyperbolic non-expanding toral endomorphism fA : Tm → Tm

associated to the integer valued matrix A. Assume |det(A)| = 2, let α 6= (0, . . . , 0) be a fixed point

of fA, and let φ be a periodic Holder continuous function of period α on Tm. Then (Tm, fA, µφ) is

not isomorphic to (Σ+
2 , σ2, νp), for p = (p1, p2), p1 6= 1

2
.

An important notion related to the coding problem for endomorphisms on Lebesgue spaces

is also that of Rokhlin partition. Let ε be the point partition on the Lebesgue space (X, f, µ),

where µ is an f -invariant probability measure defined on the σ-algebra B on X. We denote by

P1 = {E1, . . . , Em−1} a partition of X into measurable subsets so that f |Ei is a bijection a.e

between Ei and X, i = 0, . . . ,m− 1. Such a partition exists and it is called a Rokhlin partition

(see [78], [67], [14]). Clearly such a partition is not uniquely defined.

Now, given a Rokhlin partition P1, we will define the measurable partition

P :=
∨
i≥1

T−iP1

The measurable partition P1 is called a 1-sided generator for (X, f, µ) if the smallest sub-σ-

algebra of B(Λ) containing P and complete with respect to µ, is equal modulo µ to the borelian

σ-algebra B(Λ). In this case we will say also that P1 is a generating partition. One of the questions

related to coding, is the existence of generating Rokhlin partitions.

Corollary 5.1.3 ([37]). a) Let an endomorphism f hyperbolic and non-expanding on a basic set Λ.

Then there exists no generating Rokhlin partition P1 of (Λ, f, µ0) s.t Jµ0 is piecewise constant a.e

on the sets of P1 (where µ0 is the measure of maximal entropy).

Also if f is expanding on Λ but µφ 6= µ0, then there is no generating Rokhlin partition P1 of

(Λ, f, µφ) s.t Jµφ(f) piecewise constant a.e on the sets of P1.

b) A hyperbolic non-expanding toral endomorphism fA : Tm → Tm,m ≥ 2, does not have

generating Rokhlin partitions with respect to the Lebesgue measure.

Let us now turn our attention towards mixing properties of equilibrium measures on folded

fractals. We prove mixing of any order (see [78] for definition) and Exponential Decay of Correlations

(see [5], [10] for definitions) in general, for the triple (Λ, f, µφ).

Theorem 5.1.6 ([37]). Let f be a smooth endomorphism on M , hyperbolic on a basic set Λ and

let φ be a Holder continuous potential defined on Λ; let µφ be the unique equilibrium measure of φ.

Then:
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a) the measure-preserving system (Λ, f, µφ) is mixing of any order.

b) the measure µφ has Exponential Decay of Correlations on Hölder observables.

Another problem is that of the asymptotic distribution of preimages on saddle basic sets, with

respect to equilibrium measures. In the expanding case this asymptotic distribution of preimages

follows from [81], by employing the Ruelle-Perron-Frobenius operator. However, if the basic set Λ

is of saddle type, the problem is very different and needs new methods of proof. In this saddle

case, the local inverse iterates act as dilations in the stable directions in backward time, which is

changing completely the situation. In [38] we solved the above problem of the weighted preimage

distribution with a Holder continuous weight φ, along a general hyperbolic saddle basic set (i. e

not necessarily a repellor, and not necessarily for an expanding map):

Theorem 5.1.7 ([38]). Let f : M →M be a smooth (say C2) map on a Riemannian manifold M ,

which is hyperbolic and finite-to-one on a basic set Λ so that Cf ∩Λ = ∅. Consider also φ a Hölder

continuous potential on Λ and µφ to be the equilibrium measure of φ on Λ. Then∫
Λ

| < 1

n

∑
y∈f−nx∩Λ

eSnφ(y)∑
z∈f−nx∩Λ

eSnφ(z)
·
n−1∑
i=0

δf iy − µφ, g > |dµφ(x) →
n→∞

0,∀g ∈ C(Λ,R)

The proof of this Theorem was based on a careful study of the measure µφ of various pieces

of Bowen balls, and of iterates of Bowen balls. As a Corollary, we obtained in [38] the following

result giving the weak convergence of the above discrete measures along the same subsequence, for

all points in a set of full µφ-measure, in the case of a basic set of saddle type Λ and of a smooth

non-invertible map f :

Corollary 5.1.4 ([38]). In the same setting as in Theorem 5.1.7, for any Hölder potential φ, it

follows that there exists a subset E ⊂ Λ, with µφ(E) = 1 and an infinite subsequence (nk)k such

that for any z ∈ E we have the weak convergence of measures

µznk →k→∞µφ

In particular, for Anosov endomorphisms we obtain the following result about the asymptotic

distribution of preimages with respect to equilibrium measures of Hölder potentials:

Corollary 5.1.5 ([38]). Let f : M → M be an Anosov endomorphism without critical points, and

φ be a Hölder continuous potential on M , with µφ being its equilibrium measure of φ. Then∫
M

| < 1

n

∑
y∈f−nx

eSnφ(y)∑
z∈f−nx

eSnφ(z)
·
n−1∑
i=0

δf iy − µφ, g > |dµφ(x) →
n→∞

0,∀g ∈ C(Λ,R)

In particular, if µ0 is the measure of maximal entropy, it follows that for µ0-almost all points x ∈ Λ,

1
n

∑
y∈f−nx

n−1∑
i=0

δfiy

Card(f−nx)
→
n→∞

µ0
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5.2 Relations between 1-sided Bernoullicity and stable dimension.

In [43] and [37] we found relations between two apparently distant notions, namely the 1-sided

Bernoullicity of certain equilibrium measures on folded fractals, and the stable dimension function.

More precisely, we showed that 1-sided Bernoullicity represents a strong restriction on the ergodic

theory of a non-invertible system, and also that the stable dimension (which is defined locally) is

related to the global geometry of the invariant set.

In [43] we proved a geometric flattening phenomenon related to the stable dimension, namely if

the stable dimension is zero at some point of a saddle basic fractal Λ, then Λ must be contained in

a union of manifolds; hence the stable dimension influences strongly the geometry of the fractal.

Theorem 5.2.1 ([43]). Let f : M →M be a smooth endomorphism which is hyperbolic on a basic

set Λ with Cf ∩Λ = ∅, and such that f is conformal on local stable manifolds. Assume also that d is

the maximum possible value of d(·) on Λ, and that there exists a point x ∈ Λ where δs(x) = td = 0.

Then it follows that d(·) ≡ d on Λ and there exist a finite number of unstable manifolds whose

union contains Λ. In particular if Λ is connected, then there exists an invariant unstable manifold

containing Λ, and f |Λ is expanding.

Proof. If d is the maximum value taken by the preimage counting function d(·) on Λ, and if δs(x) =

td, then we showed in [57] that d(y) = d,∀y ∈ Λ. Thus δs(y) = td, y ∈ Λ, from [58]. By definition

of td, we have

P (tdΦ
s − log d) = 0 (45)

In the endomorphism case we obtain similarly as in the diffeomorphism case (see [5], [27]),

estimates for the equilibrium measures on Bowen balls. If φ is a Hölder continuous potential on Λ,

we denote the unique equilibrium measure for φ, by µφ. This follows from the bijection between

f -invariant probabilities on Λ, and f̂ -invariant probabilities on Λ̂ ([84]); µ is an equilibrium measure

for φ on Λ if and only if its unique f̂ -invariant lifting to Λ̂ is an equilibrium measure for φ ◦ π. We

denote by Bn(y, ε) := {z ∈ Λ, d(f iz, f iy) < ε, i = 0, . . . , n − 1} the (n, ε)-Bowen ball centered at

y. Then given a Holder potential φ on Λ, one can show, similarly as for diffeomorphisms ([5], [90])

and by working in Λ̂, that there exist constants Aε, Bε > 0 so that, for any y ∈ Λ, n > 0, we have:

Aεe
Sn(φ−nP (φ) ≤ µφ(Bn(y, ε)) ≤ Bεe

Sn(φ)−nP (φ))

Thus from (45) and since td = 0, we obtain :

Aε
dn
≤ µ0(Bn(y, ε)) ≤ Bε

dn
, (46)

where µ0 is the measure of maximal entropy for f |Λ.

For two quantities which depend on y ∈ Λ, n > 0 we will say that they are comparable if their

quotient is bounded above and below by two positive numbers, independently on y, n; this is for

example the case in (46 for the quantities µ0(Bn(x, ε)) and 1
dn

).
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Now we prove that the cardinality of W s
r (x) ∩ Λ is finite. Indeed, let us assume that there are

at least N different points inside W s
r (x) ∩ Λ and denote their set by F := {y1, . . . , yN}. Let us

take also a fixed, small ε > 0. There exists n = n(N) sufficiently large so that any set of type

fn(Bn(z, ε))∩W s
r (x) is disjoint from any set of type fn(Bn(w, ε))∩W s

r (x) if z, w are n-preimages in

Λ of yi, yj respectively, and i 6= j, 1 ≤ i, j,≤ N . But now the inclination of local unstable manifolds

with respect to W s
r (x) is bounded below by some positive constant, since they are transversal to

W s
r (x) and depend uniformly on prehistories from the compact space Λ̂. This implies that given a

point y ∈ F and an n-preimage z ∈ Λ of y, we have that the union ∪
ξ∈F,ξ 6=y

∪
w∈f−nξ∩Λ

fn(Bn(w, ε))

does not contain the entire set fn(Bn(z, ε)). This implies that, in the difference set

Bn(z, ε) \
[
∪

ξ∈F,ξ 6=y
∪

w∈f−nξ∩Λ
Bn(w, ε)

]
,

there must exist at least M(N, ε) mutually disjoint Bowen balls of type Bn+k(N,ε)(ζ, ε/l(N, ε)),

where k(N, ε), l(N, ε) are positive integers. We also recall that, since Cf ∩ Λ = ∅, there exists a

positive constant ε0 such that d(z, w) > ε0 if f(z) = f(w) and z 6= w, z, w ∈ Λ. Thus if w, z are

different n-preimages of the same point from Λ, then Bn(z, 4ε)∩Bn(w, 4ε) = ∅ if ε is small enough.

By applying the estimates from (46) we obtain that there exists a positive constant Dε, such that

1 ≥ µs( ∪
y∈F

∪
y−n∈f−ny∩Λ

Bn(y−n, ε)) ≥ Dε ·
∑

y∈F,z∈f−ny∩Λ

µs(Bn(z, ε)) ≥ DεAεNd
n · 1

dn

So the number of points in W s
r (x) ∩ Λ must be finite and bounded above by N(ε), for any x ∈ Λ.

We recall however that any hyperbolic basic set has local product structure, thus the intersection

between any local stable manifold W s
r (x) and any local unstable manifold W u

r (ŷ), x ∈ Λ, ŷ ∈ Λ̂ must

belong to Λ, for any r > 0 small. Hence Λ must be contained in the union of at most finitely many

unstable manifolds, each of type W u(x̂, T ) :=
T
∪
i=0

f i(W u
r (x̂)) for some T > 0.

From the finiteness of W s
r (x)∩Λ, it follows that there exists a small ρ > 0 such that W s

ρ (x)∩Λ =

{x}, x ∈ Λ. Also notice that Λ does not have isolated points, since it was assumed to be uncountable

and topologically transitive.

Let us assume now that Λ is connected and contained in the union of the local unstable manifolds

W u
1 ∪ . . .W u

N . Let us consider for example the intersection between W u
1 and W u

2 . If there would

exist a point y ∈ Λ ∩W u
1 \W u

2 , close to W u
1 ∩W u

2 , then W s
ρ (y) ∩W u

2 would be in Λ from the local

product structure (since we work only near points from Λ, the above intersection is actually an

intersection between W s
ρ (y) and W u

r (ζ̂) for some ζ̂ ∈ Λ̂). But this is a contradiction since we saw that

W s
ρ (y)∩Λ = {y}. So Λ must be contained in intersections of two or more manifoldsW u

i , i = 1, . . . , N .

Now if there would exist only two such manifolds W u
1 and W u

2 , and if Λ ⊂ W u
1 ∩W u

2 , we are done,

since it follows that Λ ⊂ W u
1 . If not, since we assumed that Λ is connected, there would exist at

least another W u
3 and Λ12 := W u

1 ∩W u
2 would intersect Λ23 := W u

2 ∩W u
3 in a point y. But then,

again from the non-existence of isolated points in Λ, there must exist some point z ∈ Λ23 as close

as we want to y. Since z ∈ Λ and f is hyperbolic on Λ, we can construct the local stable manifold
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W s
ρ (z); as z is very close to y ∈ W u

1 , we will have that W s
ρ (z) intersects W u

1 in a point ξ ∈ Λ. But

then we obtain a contradiction since W s
ρ (z) ∩ Λ would contain more than one point.

The other cases of intersections between the unstable manifolds W u
i are treated similarly. Thus

if Λ is connected, it must be contained in only one unstable manifold W u, more precisely in the

union of finitely many iterations of one local unstable manifold. In particular it follows that f |Λ is

an expanding map in this case.

In the sequel we will use the important notions of Jacobian of an invariant measure introduced

by Parry in [67], and that of index of a countable-to-one endomorphism of Lebesgue spaces (see [68]).

In short, the Jacobian of the f -invariant probability measure µ on the Lebesgue space (X, f, µ)

is the Radon-Nikodym derivative of µ ◦ f with respect to µ. If (X, f, µ) is a measure-preserving

system (with some σ-algebra B), and if ε is the point partition, one can form the fiber partition

ξ = f−1ε which is a measurable partition if f is countable-to-1 on (X,µ); let also π : X → X/ξ be

the canonical projection. This partition induces a factor space (X/ξ, g, ν), where an arbitrary point

z of X/ξ is a fiber f−1(x), x ∈ X, g(z) := π(x), z ∈ X/ξ and ν(E) := µ(π−1(E)), E measurable

in X/ξ. Now from the Rokhlin theory of measurable partitions (see [77], [67], etc.), ξ induces a

family of conditional measures on the fibers of f , {µz}z∈X/ξ such that µ(A) =
∫
X/ξ

µz(A ∩ z)dν(z),

for A measurable in X. This family of conditional measures is unique modulo ν. Notice that µz is

a probability measure on the (at most countable) fiber z = f−1x; its support supp µz is a subset of

f−1x. Then the index of (X, f, µ) is the measurable function

indµ(f)(x) := card(supp µz), z = f−1x, for µ− a.e x ∈ X

We look now at the opposite case from the one at the beginning of this section, namely when the

stable dimension is positive at some point. We prove that an endomorphism with positive stable

dimension at a point, cannot be 1-sided Bernoulli, if endowed with a certain equilibrium measure.

Theorem 5.2.2. Let f be a smooth endomorphism, which is hyperbolic on a basic set Λ, such that

Λ ∩ Cf = ∅ and f is conformal on stable manifolds. Assume that there exists a point x ∈ Λ with

δs(x) > 0, and denote by µs the equilibrium measure of the potential δs(x) ·Φs(·). Then the measure

preserving system (Λ, f, µs) cannot be 1-sided Bernoulli.

Proof. We assumed that δs(x) > 0. As δs(x) · Φs is a Holder continuous potential on Λ, it follows

that it has a unique equilibrium measure µs. From the definition of equilibrium measures:

P (δs(x)Φs) = hµs + δs(x) ·
∫

Λ

Φs(y)dµs(y) (47)

Assume now that (Λ, f, µs) is isomorphic to the 1-sided Bernoulli shift (Σ+
d , σ, ρp), where ρp

is the probability measure induced on Σ+
d by the probability vector p. In our case, if (Λ, f, µs) is
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isomorphic to (Σ+
d , σ, ρp), then the index indf,µs is equal to d µs-almost everywhere. From definition

we know that d = indf,µs(y) ≤ Card(f−1(y) ∩ Λ), for µs-almost all y ∈ Λ. Now any non-empty

open set must contain Bowen balls; so by using the estimates for the µs-measure of Bowen balls,

we obtain that the µs-measure of any open non-empty set is strictly positive. Thus recalling the

notion of preimage counting function from before, we obtain that:

d(y) ≥ d, for y in a dense set in Λ (48)

This implies that

δs(y) ≤ td, y ∈ Λ

by a result from [58]; here again td is the unique zero of the pressure function t → P (tΦs − log d).

Indeed in [58], when covering Λ with Bowen balls, one can take the centers of all these balls to

be in the respective dense subset; this implies the last displayed inequality for any point y ∈ Λ.

Therefore we have that P (δs(x)Φs − log d) ≥ 0; but since µs is the equilibrium measure of the

potential δs(x)Φs we obtain: hµs + δs(x) ·
∫

Λ
Φs(y)dµs(y) ≥ log d. Recalling however that δs(x) > 0

and that Φs < 0 on the compact set Λ, we have:

hµs ≥ log d− δs(x) ·
∫

Λ

Φs(y)dµs(y) > log d (49)

But since we assumed the existence of an isomorphism between (Λ, f, µs) and (Σ+
d , σ, ρp), we should

have hµs = hρp ; hence from (49), it follows that hρp > log d. However by using the Variational

Principle for entropy we obtain hρp ≤ htop(σ) = log d. This gives a contradiction. Therefore the

measure preserving system (Λ, f, µs) cannot be 1-sided Bernoulli.

Moreover, in [43] we proved a Classification Theorem for the dynamical/ergodic behaviour of a

class of perturbation maps, on their respective basic sets.

Theorem 5.2.3 ([43]). For some small |c|, c ∈ C\{0}, let us consider the polynomial map f(z, w) =

(z2 + c, w2), (z, w) ∈ C2. Let also a polynomial fε which is a smooth perturbation of f and let Λε

be the corresponding basic set of fε close to the set Λ := {pc} × S1 (where pc is the fixed attracting

point of z → z2 + c). Then we may have exactly one of the following possibilities:

a) There exists a point x ∈ Λε where δs(x) = 0. Then there exists a manifold W such that

Λε ⊂ W , fε|Λε is expanding and fε|Λε is 2-to-1. In this case the stable dimension is 0 at any point

from Λε, and the measure preserving system (Λε, fε, µ0,ε) is 1-sided Bernoulli (where µ0,ε is the

unique measure of maximal entropy for fε|Λε).

b) There exists a point x ∈ Λε with 0 < δs(x) < 2. Then the stable dimension is positive at any

point of Λε, and the measure preserving system (Λε, fε, µs,ε) cannot be 1-sided Bernoulli, where µs,ε
is the equilibrium measure of the potential δs(x)Φs

ε. We have two subcases:

b1) fε|Λε is a homeomorphism, and in this case the measure preserving system (Λε, fε, µφ) is

2-sided Bernoulli for any Holder continuous potential φ, where µφ is the equilibrium measure of φ.
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b2) there exist both points with only one fε-preimage in Λε, as well as points with two fε-

preimages in Λε; the set of points with one fε-preimage in Λε has non-empty interior.

Now, we want to see what are the consequences of an arbitrary equilibrium measure on a folded

fractal, being 1-sided Bernoulli.

For an f -invariant probability measure µ on Λ, let λ1(x) < . . . < λS(x)(x) < 0 be the negative

Lyapunov exponents of µ with respect to f , which are defined for µ-a.e x ∈ Λ; let also the i-th

partial stable manifold W s
i (x) := {y ∈ M, lim sup

n→∞

1
n

log d(fnx, fny) ≤ λi(x)}, 1 ≤ i ≤ S(x). It is

clear that the (usual) stable manifold of x, namely W s(x) is actually W s
S(x)(x). We also denote for

r > 0 small, by W s
i,r the i-th partial stable manifold of radius r. In our case since we work with

uniformly hyperbolic maps, r can be chosen independent of x.

One can find a measurable partition ξ of Λ, subordinate to the partial stable manifolds W s
i

(see for instance [1], [31], [32]) and can define the i-th pointwise stable dimension of µ, or the

dimension of µ on W s
i -manifolds, as

δsi (µ, x, ξ) := lim inf
r→0

log µξx(B
i(x, r))

log r
,

where {µξx}x is the system of conditional measures of µ associated to the partition ξ and Bi(x, r)

is the ball of radius r centered at x inside W s
i . It can be shown that δsi (µ, x, ξ) does not depend

on ξ and it is constant along orbits. Moreover we have δsi (µ, x, ξ) = lim sup
r→0

log µξx(Bi(x,r))
log r

. So if

µ is ergodic, then the pointwise i-th stable dimension of µ, denoted by δsi (µ), is defined by

δsi (µ) = δsi (µ, x, ξ), µ-a.a x ∈ Λ, and 1 ≤ i ≤ S(x) = S.

We show now that if the triple (Λ, f, µφ) is coded by a 1-sided Bernoulli shift, then f must

be expanding on Λ from a certain measure-theoretical point of view. This is in contrast with the

hyperbolic diffeomorphism case, where all equilibrium measures of Holder potentials can be coded

with 2-sided Bernoulli shifts.

In general for a measurable partition ξ of Λ denote by ξ(x) the unique (modulo µ) set of ξ which

contains x. For a measurable partition ξ subordinated to the stable manifolds W s
S, we can define

the stable dimension of µ on ξ(x) as:

HDs(µ, x) := HD(µξx) = inf{HD(Z), Z ⊂ ξ(x), µξx(Z) = 1}, µ− a.e x ∈ Λ

Theorem 5.2.4 ([43]). Let f be a smooth hyperbolic endomorphism on a connected basic set Λ; let

also φ be a Holder continuous potential on Λ and µφ the unique equilibrium measure of φ. Then,

if the measure-preserving system (Λ, f, µφ) is 1-sided Bernoulli, it follows that either f is distance-

expanding on Λ, or the stable dimension of µφ is zero, i.e HDs(µφ, x) = 0 for µφ-a.e x ∈ Λ.

Proof. Let us assume that (Λ, f, µφ) is 1-sided Bernoulli, i.e isomorphic to (Σ+
d , σd, νp) for some

d > 1 and probability vector p. Now the equilibrium measure of a Hölder potential µφ is supported

everywhere, since the µφ-measure of any ball is positive, from its estimates on Bowen balls. Thus,
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as the index function is preserved by isomorphisms (see [68]) and since any point from Λ has finitely

many preimages, it follows that the fiber f−1(x) must contain d points for µφ-almost all x ∈ Λ. Also

since we have an isomorphism with a 1-sided Bernoulli shift, it follows from [67] that the Jacobian

Jµφ(f) of µφ, must be equal a.e with the Jacobian of the product measure νp.

Consider now a measurable partition ξ of Λ subordinated to the local stable manifolds W s;

by ξ(x) we shall denote the set of ξ that contains x. We recall that W s
S,r = W s

r notationally.

Since f is uniformly hyperbolic on Λ and thus the local stable/unstable manifolds have a fixed

positive radius, it follows that we may take the partition ξ to be with borelian subsets of the

stable manifolds which contain a smaller stable set of fixed radius, i. e there exist r0, r1 > 0 s.t

W s
r1

(x) ⊂ ξ(x) ⊂ W s
r0

(x), µφ-a.a x ∈ Λ. To this measurable partition ξ, we can associate (uniquely)

a family of conditional measures of µφ; a generic element of this family is denoted by µξφ,x and it is

a probability measure on the subset ξ(x) of ξ (containing the point x).

We want to show now that for µφ-almost all points x ∈ Λ we have that the conditional measure

µξφ,x gives positive measure to any non-empty open subset in the local stable manifold ξ(x). First

we notice that if A is the intersection of a Bowen ball Bm(y, ε) with a neighbourhood of the local

unstable manifold W u
ε (ζ̂), ζ̂ ∈ Λ̂, then the measure µξφ induced on the factor space Λ/ξ has the

property that: µξφ(A/ξ) = µφ(Bm(y, ε)). But from the definition of conditional measures,

µφ(A) =

∫
A/ξ

µξφ,x(A ∩ ξ(x))dµξφ(ξ(x)),

where ξ(x) are the leaves of the measurable partition ξ which intersect A (in the factor space Λ/ξ

these leaves are identified with points). But µφ(A) > 0, since A is an open set in Λ (thus contains

some Bowen ball); also µξφ(A/ξ) = µφ(Bm(y, ε) > 0. Thus from the essential uniqueness of the

conditional measures, and since the sets of type A as above form a basis for open sets, we obtain that

for µξφ-almost all partition leaves ξ(x) ∈ Λ, µξφ,x(V ) > 0, for V a neighbourhood of z and z ∈ ξ(x).

This implies that suppµξφ,x = ξ(x)∩Λ, µφ−a.e. In this case the Lyapunov exponents are all constant

a.e and will be denoted simply by λi. Denote also by

γ1 := δs1(µφ), γ2 := δs2(µφ)− δs1(µφ), . . . , γS := δsS(µφ)− γS−1

Recall now the notion of folding entropy Fµ(f) of an arbitrary f -invariant probability measure µ

(see [80]), which is defined as the conditional entropy Fµ(f) := Hµ(ε|f−1ε), where ε is the partition

of M into single points. We can consider thus the folding entropy Fµφ(f) of an equilibrium measure

µφ. From [80], [67] it follows that the folding entropy Fµφ(f) is equal to the integral of the logarithm

of the Jacobian of µφ, i. e Fµφ(f) =
∫

Λ
log Jµφ(f)dµφ. We have also that:

hµφ(f) = Fµφ(f)−
∑

1≤i≤S

λiγi(µφ), (50)

Since (Λ, f, µφ) is isomorphic to (Σ+
m, σm, νp) and since the Jacobian is preserved by isomorphisms

of Lebesgue spaces (see [67]), it follows that

Fµφ(f) =

∫
Λ

log Jµφ(f)dµφ =

∫
Σ+
m

log Jνp(σm)dνp = hνp(σm) = hµφ(f)
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Thus from (50) we obtain
∑

1≤i≤S
λiγi(µφ) = 0. But since we have a uniformly hyperbolic system,

either f is distance-expanding on Λ (i. e it does not have stable directions), or λi < 0, 1 ≤ i ≤ S

and γi(µφ) = δsi (µφ) = 0, 1 ≤ i ≤ S. Thus for a measurable partition ξ subordinated to the stable

manifolds W s = W s
S,

δsS = lim sup
r→0

log µξφ,x(B(y, r))

log r
= 0, for µφ − a.e x, and µξφ,x − a.e y ∈ ξ(x)

So there exists a set E ⊂ Λ with µφ(E) = 1 so that for any small β > 0, there exists r(y, β) >

0, y ∈ E such that

µξφ,x(B(y, r)) > rβ, 0 < r < r(y, β), y ∈ E ∩ ξ(x), (51)

for µφ-a.e x ∈ Λ. From the definition of conditional measures (see [77], [67]), we deduce that if

µφ(E) = 1 then for almost all x, µξφ,x(E ∩ ξ(x)) = 1. So for almost all leaves ξ(x) of ξ, µξφ,x-almost

all points y ∈ ξ(x) satisfy (51). Now, using the Vitali Covering Theorem, we can cover a set

E ′ ⊂ E ∩ ξ(x) having µξφ,x(E
′) = 1, with mutually disjoint balls B(y, ρ(y)) where ρ(y) < r(y, β).

Thus we obtain a cover with a family of mutually disjoint balls B(y, ρ(y)), y ∈ F ⊂ E ∩ ξ(x) and

1 ≥
∑
y∈F

µξφ,x(B(y, ρ(y))) ≥
∑
y∈F

ρ(y)β

Hence HD(E ′) ≤ β for µφ-almost all x ∈ Λ. But β > 0 is arbitrarily small; hence recalling also

that µξφ,x(E ∩ ξ(x)) = µξφ,x(E
′) = 1 we obtain HDs(µφ, x) = 0, µφ − a.e x ∈ Λ.

5.3 Conditional measures of Gibbs states on local stable manifolds.

Given a hyperbolic structure for an endomorphism over a basic set Λ, it is natural to form a measur-

able partition subordinated to the foliation by local stable manifolds. Then, given an equilibrium

measure for a Hölder potential over Λ, one can associate a family of conditional measures for this

measurable partition by the method of Rokhlin ([77], [67], etc.)

In [42] we solved completely the problem of conditional measures for equilibrium measures in

the case of c-hyperbolic maps (for instance holomorphic endomorphisms on P2, and proved that

the equilibrium measure of a certain stable potential maximizes in the Variational Principle for the

stable dimension, thus we can obtain the stable dimension as the pointwise stable dimension of

this measure.Thus we obtain a relation between the purely metric stable dimension, and notion of

thermodynamic formalism, like equilibrium measures.

In order to do this, we studied in [42] the measure of iterates of Bowen balls, which are actually

unstable tubular neighbourhoods. This requires to compare the measures of various pieces coming

from different local inverse iterates.
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Proposition 5.3.1 ([42]). Let f be a smooth endomorphism, which is hyperbolic on a basic set Λ.

Consider also a Holder continuous potential φ on Λ and µφ be the unique equilibrium measure of φ.

Let a small ε > 0, two disjoint Bowen balls Bk(y1, ε), Bm(y2, ε) and a borelian set A ⊂ fk(Bk(y1, ε))∩
fm(Bm(y2, ε)), s.t µφ(A) > 0; denote by A1 := f−kA∩Bk(y1, ε), A2 := f−mA∩Bm(y2, ε) and assume

that µφ(∂A1) = µφ(∂A2) = 0. Then there exists a positive constant Cε independent of k,m, y1, y2

such that

1

Cε
µφ(A2) · e

Skφ(y1)

eSmφ(y2)
· P (φ)m−k ≤ µφ(A1) ≤ Cεµφ(A2) · e

Skφ(y1)

eSmφ(y2)
· P (φ)m−k

Proof. First we will fix a Hölder potential φ, and denote the uniquely determined equilibrium

measure µφ of φ, by µ. We will consider the restriction f |Λ. From construction we have fk(A1) =

fm(A2). Assume for example that m ≥ k. Now if P (f, φ, n) :=
∑

x∈Fix(fn)

eSnφ(x), n ≥ 1, then the

equilibrium measure µ can be considered as the limit of the sequence of measures (see [27]),

µ̃n :=
1

P (f, φ, n)
·
∑

x∈Fix(fn)

eSnφ(x)δx,

Hence

µ̃n(A1) =
1

P (f, φ, n)
·

∑
x∈Fix(fn)∩A1

eSnφ(x), n ≥ 1 (52)

Let us consider now a periodic point x ∈ Fix(fn)∩A1; by definition of A1, it follows that fk(x) ∈ A,

so there exists a point y ∈ A2 such that fm(y) = fk(x). However the point y does not have to be

periodic.

Now we will use the Specification Property ([5], [27]) on the hyperbolic compact locally maximal

set Λ: if ε > 0 is fixed, then there exists a constant Mε > 0 such that for all n >> Mε, there exists

a z ∈ Fix(fn+m−k) s.t z ε-shadows the (n+m− k −Mε)-orbit of y.

Let now V be an arbitrary neighbourhood of the set A2 s.t V ⊂ Bm(y2, ε). Consider two points

x, x̃ ∈ Fix(fn) ∩A1 and assume the same periodic point z ∈ V ∩ Fix(fn+m−k) corresponds to both

x and x̃ by the above procedure. This means that the (n − k −Mε)-orbit of fmz, ε-shadows the

(n − k −Mε)-orbit of fkx and also the (n − k −Mε)-orbit of fkx̃. Hence the (n −Mε − k)-orbit

of fkx, 2ε-shadows the (n−Mε − k)-orbit of fkx̃. But recall that we chose x, x̃ ∈ A1 ⊂ Bk(y1, ε),

hence x̃ ∈ Bn−Mε(x, 2ε).

But we can split the set Bn−Mε(x, 2ε) in at most Nε smaller Bowen ball of type Bn(ζ, 2ε). In

each of these (n, 2ε)-Bowen balls Bn(ζ, 2ε) we may have at most one fixed point for fn. This holds

since fixed points for fn are solutions to the equation fnξ = ξ and, on tangent spaces we have that

Dfn − Id is a linear map without eigenvalues of absolute value 1. Thus if d(f iξ, f iζ) < 2ε, i =

0, . . . , n and if ε is small enough, we can apply the Inverse Function Theorem at each step. Therefore

there exists only one fixed point for fn in each Bowen ball Bn(ζ, 2ε). Hence there exist at most Nε

periodic points from Fix(fn) ∩ Λ having the same periodic point z ∈ V attached to them by the

above procedure.
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Notice also that, if x, x̃ have the same point z ∈ V ∩ Fix(fn+m−k) attached to them, then

as before, x̃ ∈ Bn−Mε(x, 2ε). So the distances between iterates are growing exponentially in the

unstable direction, and decrease exponentially in the stable direction. Thus we can use the Holder

continuity of φ and a Bounded Distortion Lemma to prove that: |Snφ(x) − Snφ(x̃)| ≤ C̃ε, for

some positive constant C̃ε depending on φ (but independent of n, x). This can be used then in

the estimate for µ̃n(A1), according to (52). We use the fact that if z ∈ Bn+m−k−Mε(y, ε), then

fm(z) ∈ Bn−Mε−k(f
my, ε); also recall that fkx = fmy, so fmz ∈ Bn−Mε−k(f

kx, ε). Then from

the Holder continuity of φ and the fact that x ∈ A1 ⊂ Bm(y1, ε), it follows again by a Bounded

Distortion Lemma that there exists a constant C̃ε (denoted as before without loss of generality)

satisfying:

|Sn+m−kφ(z)− Snφ(x)| ≤ |Skφ(y1)− Smφ(y2)|+ C̃ε, (53)

for n > n(ε,m). But from Proposition 20.3.3 of [27] (which extends immediately to endomorphisms),

we have that there exists a positive constant cε such that for sufficiently large n:

1

cε
enP (φ) ≤ P (f, φ, n) ≤ cεe

nP (φ),

where the expression P (f, φ, n) was defined immediately before (52). Hence in our case, if n >

n(ε,m) we obtain:

1

cε
e(n+m−k)P (φ) ≤ P (f, φ, n+m− k) ≤ cεe

(n+m−k)P (φ), and
1

cε
enP (φ) ≤ P (f, φ, n) ≤ cεe

nP (φ) (54)

Recall also that there are at most Nε points x ∈ Fix(fn) which have the same attached z ∈
V ∩Fix(fn). Therefore, by using (52), (53) and (54) we can infer that there exists a constant Cε > 0

such that for n large enough (n > n(ε,m)),

µ̃n(A1) ≤ Cεµ̃n+m−k(V ) · e
Skφ(y1)

eSmφ(y2)
· P (φ)m−k, (55)

where recall that A1 ⊂ Bm(y1, ε), A2 ⊂ Bm(y2, ε). But since ∂A1, ∂A2 have µ-measure zero, we have

µ(A1) ≤ Cεµ(V ) e
Skφ(y1)

eSmφ(y2) · P (φ)m−k. But V is an arbitrary neighbourhood of A2, hence

µ(A1) ≤ Cεµ(A2)
eSkφ(y1)

eSmφ(y2)
P (φ)m−k

Similarly we prove also the other inequality, hence we are done.

Next, we want to see what are the ”induced” measures of equilibrium measures on local stable

manifolds. In the case of the Lebesgue measure the induicved measures on stable manifolds are clear,

but this is not the case for a general measure. Let us then recall a few notions about measurable

partitions (see [77]). Let ζ be a partition of a Lebesgue space (X,B, µ) with B-measurable sets.

Subsets of X that are unions of elements of ζ are called ζ-sets. For an arbitrary point x ∈ X
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(modulo µ), we denote the unique set which contains x, by ζ(x). By basis for ζ we understand a

countable collection {Bα, α ∈ A} of measurable ζ-sets so that for any two elements C,C ′ ∈ ζ, there

exists some α ∈ A with C ⊂ Bα, C
′ ∩ Bα = ∅ or viceversa, i.e C ∩ Bα = ∅, C ′ ⊂ Bα. A partition ζ

is called measurable if it has a basis as above.

Now recall the notion of family of conditional measures, associated to a measurable partition ζ.

Assume we have an endomorphism f on a compact set Λ, and let a probability borelian measure µ

on Λ which is f -invariant. If ζ is a measurable partition of (Λ,B, µ) denote by (Λ/ζ, µζ) the factor

space of Λ relative to ζ. Then we can attach an essentially unique collection of conditional measures

{µC}C∈ζ satisfying two conditions (see [77]):

i) (C, µC) is a Lebesgue space

ii) for any measurable set B ⊂ Λ, the set B ∩ C is measurable in C for µζ-almost all points

C ∈ Λ/ζ, the function C → µC(B ∩ C) is measurable on Λ/ζ and µ(B) =
∫

Λ/ζ
µC(B ∩ C)dµζ(C).

Definition 5.3.1. If f is a hyperbolic map on a basic set Λ and if µ is an f -invariant borelian

measure on Λ, then a measurable partition ζ of (Λ,B(Λ), µ) is said to be subordinated to the

local stable manifolds if for µ-a. e x ∈ Λ, we have ζ(x) ⊂ W s
loc(x), and ζ(x) contains an open

neighbourhood of x in W s
loc(x) (with respect to the topology induced on the local stable manifold).

Let us fix an f -invariant borelian measure µ on Λ. Since we work with a uniformly hyperbolic

endomorphism, we can construct a measurable partition ξ (w. r. t µ) subordinated to the local

stable manifolds foliation, in the following way: first, we know there is a small r0 > 0 s. t for each

x ∈ Λ there exists a local stable manifold W s
r0

(x). Then it is possible to take a countable partition

P of Λ (modulo µ) with open sets, each having diameter less than r0 and such that the boundary

of each set from P has µ-measure zero (see for example [27]). Now for every open set U ∈ P , and

x ∈ U ⊂ Λ, we consider the intersection between U and the unique local stable manifold going

through x; denote this intersection by ξ(x). It is clear that ξ(x) = ξ(y) if and only if both x, y are

in the same set U ∈ P and they are on the same local stable manifold W s
r0

(z) for some z ∈ Λ. Now

take the collection ξ of all the borelian sets ξ(x), x ∈ U,U ∈ P . We see easily that ξ is a partition

of Λ (modulo sets of µ-measure zero) and that ξ is measurable, since P was assumed countable

and, inside each member U ∈ P , we can separate any two local stable manifolds with the help of a

countable collection of ξ-sets (which are neighbourhoods of local stable manifolds).

Therefore we have concluded the construction of the measurable partition ξ which is subordi-

nated to the local stable manifolds. Modulo a set of µ-measure zero we have thus a partition with

pieces of local stable manifolds, ξ(x) ⊂ W s
r(y(x))(y(x)), x ∈ Λ. In fact without loss of generality, we

may assume that for each member A ∈ ξ, there exists some x(A) ∈ Λ and r(A) ∈ (0, r0) so that

W s
r(A)/2(x(A)) ∩ Λ ⊂ A ⊂ W s

r(A)(x(A)) ∩ Λ.

From the construction above it follows that, outside a set of µ-measure zero, the radius r(A)

can be taken to vary continuously, i.e there exists a constant χ > 0 s. t for each x in a set of full

µ-measure in Λ, there exists a neighbourhood U(x) of x with r(ξ(z))
r(ξ(z′))

≤ χ, z, z′ ∈ U(x).

Notation: Consider the measurable partition ξ constructed above, and denote the conditional
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measure µA by µsA, for W s
r(A)/2(x(A)) ∩ Λ ⊂ A ⊂ W s

r(A)(x(A)) ∩ Λ, A ∈ ξ. We will also denote the

set of centers {x(A), A ∈ ξ} by S. In particular, if µ = µs, we denote the conditional measures by

µss,A for A ∈ ξ, or by µss,x when ξ(x) = A for µs-a.e x ∈ Λ. Also we shall denote the probability

measure induced by µs on the factor space Λ/ξ by (µs)ξ. �

If f is a d-to-1 c-hyperbolic endomorphism on the basic set Λ, we showed in [58] that the stable

dimension δs(x) at any point x ∈ Λ is independent of x, and is equal to the unique zero of the

pressure function t→ P (tΦs − log d). Thus we can talk in this case about the stable dimension of

Λ and will denote it by δs. The following Theorem from [42] shows that, the conditional measures

of the equilibrium measure of a stable potential, and associated to the stable foliation, are in fact

geometric measures if f is d-to-1 over Λ.

Theorem 5.3.1 ([42]). Let f be a smooth endomorphism on a Riemannian manifold M , and assume

that f is c-hyperbolic on a basic set of saddle type Λ. Assume moreover that f is d-to-1 on Λ, and

denote Φs(y) := log |Dfs(y)|, y ∈ Λ. Denote also by δs the stable dimension of Λ, and by µs the

equilibrium measure of the potential δsΦs on Λ. Then the conditional measures of µs associated to

the partition ξ, namely µss,A, are geometric probabilities, i.e for (µs)ξ-almost all points πξ(A) of Λ/ξ

(corresponding to sets A ∈ ξ), there exists a positive constant CA such that

C−1
A ρδ

s ≤ µss,A(B(y, ρ)) ≤ CAρ
δs , y ∈ A ∩ Λ, 0 < ρ <

r(A)

2

Proof. By using the partition ξ subordinated to local stable manifolds from above, we can associate

conditional measures of µs, denoted by µss,A, A ∈ ξ. We want to estimate the measure µss,A of a small

arbitrary ball B(y, ρ) centered at some y ∈ A, where W s
r(A)/2(x)∩Λ ⊂ A ⊂ W s

r(A)(x)∩Λ, x = x(A).

Let us first consider an arbitrary set fn(Bn(z, ε)), where we remind thatBn(z, ε) denotes a Bowen

ball, and where ε > 0 is arbitrary but small. This set (i.e fn(Bn(z, ε))) is actually a neighbourhood

of the local unstable manifold W u
ε (f̂nz) corresponding to some prehistory (fnz, fn−1z, . . . , z, . . .).

We will estimate next the µs-measure of a cross-section of a set fn(Bn(z, ε)), i.e an intersection of

type

B(n, z; k, x; ε) := fn(Bn(z, ε)) ∩Bk(x, ε),

for arbitrary z, x ∈ Λ and positive integers n, k .

We shall now estimate the µs-measure of B(n, z; k, x, ε). Notice that B(n, z; k, x; ε) is contained

in fn(Bn+k(z, ε)). Without loss of generality we can assume that z = x−n, i.e that z itself is the

unique n-preimage of x inside Bn(z, ε); if not, then we can replace z by a point x−n which is ε-

shadowed by z up to order n+ k, and thus the dynamical behaviour of z up to order n+ k will be

the same as that of x−n.

Denote the positive quantity |Dfns (z)| · ε by ρ. Now, as f is conformal on local stable manifolds,

the diameter of the intersection fn(Bn(z, ε)) ∩W s
r (fnz) is equal to 2ρ.

Recall also that we assumed fnz = x, and consider all the finite prehistories of the point x, in

Λ. We will call then ρ-maximal prehistory of x any finite prehistory (x, x−1, . . . , x−p) so that:

|Df p−1
s (x−p+1)| · ε ≥ ρ but |Df ps (x−p)| · ε < ρ. Clearly, given any prehistory x̂ = (x, x−1, . . .) of x,
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there exists some positive integer n(x̂, ρ) such that (x, x−1, . . . , x−n(x̂,ρ)) is a ρ-maximal prehistory.

Let us denote by

N (x, ρ) := {n(x̂, ρ), x̂ prehistory of x from Λ}

We consider now the various components of the p-preimages of B(n, z; k, x; ε), when p ranges

in N (x, ρ). We extended the stable diameter of B(n, z; k, x; ε) in backward time until we reach a

diameter of at most ε. As the maximum expansion in backward time is realized on the stable mani-

folds (local inverse iterates contract all the unstable directions), it follows that for any prehistory x̂

of x, there exists a component of f−n(x̂,ρ)(B(n, z; k, x; ε)) inside the Bowen ball Bn(x̂,ρ)(x−n(x̂,ρ), ε);

denote this component by A(x̂, ρ). We see that all these components A(x̂, ρ) are mutually dis-

joint if ε << ε0, where ε0 is the local injectivity constant of f on Λ (recall that there are no

critical points in Λ). Indeed if the sets A(x̂, ρ) and A(x̂′, ρ) would intersect for some prehistories

x̂ = (x, x−1, . . .), x̂
′ = (x, x′−1, . . .) of x then, since they are contained in Bowen balls, their forward

iterates would be 2ε-close. But then we get a contradiction since the prehistories x̂, x̂′ must contain

different preimages xp, x − p′ at some level p, and these different preimages must be at a distance

of at least ε0 from each other. Hence either A(x̂, ρ) = A(x̂′, ρ), or A(x̂, ρ) ∩ A(x̂′, ρ) = ∅.
Now we will use the f -invariance of the equilibrium measure µs in order to estimate the µs-

measure of the set B(n, z; k, x; ε). Recall that fnz = x, and ε|Dfns (z)| =: ρ. Then we have

µs(B(n, z; k, x; ε) =
∑

x̂ prehistory of x

µs(A(x̂, ρ)),

since we showed above that the sets A(x̂, ρ) either coincide or are disjoint.

Consider two sets A(x̂, ρ), A(x̂′, ρ), one of them with n(x̂, ρ) = p and the other with n(x̂′, ρ) = p′.

We proved in [58] that for a d-to-1 c-hyperbolic endomorphism f on the basic set Λ, we have δs = tsd,

where tsd is the unique zero of the pressure function t→ P (tΦs − log d). Therefore we can use that

P (δsΦs) = log d (56)

Then from the definition of A(x̂, ε) and by using Proposition 5.3.1 (since by taking n, z, k, x, ε

appropriately, we can assume that the measure µs on the boundaries of A(x̂, ρ), A(x̂′, ρ) is zero), we

can compare the measure µs on two sets A(x̂, ρ), A(x̂′, ρ) as follows:

1

Cε
µs(A(x̂′, ρ))

|Df ps (x−p)|δ
s

|Dfp′s (x′−p′)|δ
s
· dp′−p ≤ µs(A(x̂, ρ)) ≤ Cεµs(A(x̂′, ρ))

|Df ps (x−p)|δ
s

|Df p′s (x′−p′)|δ
s
· dp′−p (57)

In general, if for two variable quantities Q1, Q2, there exists a positive universal constant c such

that 1
c
Q2 ≤ Q1 ≤ cQ2, we say that Q1, Q2 are comparable, and will denote this by Q1 ≈ Q2; the

constant c is called the comparability constant.

But from the definition of n(x̂, ρ), n(x̂′, ρ) above (as being the length of the ρ-maximal prehistory

along x̂, respectively x̂′), and since n(x̂, ρ) = p, n(x̂′, ρ) = p′, we obtain that (x, x−1, . . . , x−p) and

(x′, x′−1, . . . , x
′
−p′) are two ρ-maximal prehistories. So there exists a constant C > 0 independent of
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x̂, x̂′, (for instance take C = sup
y∈Λ

1
|Dfs(y)| , as we assumed that f has no critical points in Λ), such

that:
1

C
|Df p′s (x′−p′)| ≤ |Dfps (x−p)| ≤ C|Df p′s (x′−p′)|

Therefore, from relation (57) we obtain

1

Cε
µs(A(x̂′, ρ))dp

′−p ≤ µs(A(x̂, ρ)) ≤ Cεµs(A(x̂′, ρ))dp
′−p, (58)

where we used the same constant Cε as in (57), without loss of generality. Hence the proof will now

be reduced to a combinatorial argument about the different pieces/components, of the preimages

of various orders of B(n, z; k, x; ε).

However we assumed that every point from Λ has exactly d f -preimages inside Λ. We use

(58) in order to compare the µs-measures of the different pieces A(x̂, ρ), which will then be added

successively. Recall that one of these components A(x̂, ρ) is precisely Bn+k(z, ε). The comparisons

will always be made with respect to this component Bn+k(z, ε). Let us order the integers from

N (x, ρ) as: n1 > n2 > . . . > nT . We shall add first the measures µs(A(x̂, ρ)) over all the sets

corresponding to x̂ with n(x̂, ρ) = n1, then over those prehistories with n(x̂, ρ) = n2, etc. And will

use that any point from Λ has exactly dm m-preimages belonging to Λ for any m ≥ 1. Therefore

by such successive additions and by using (58) we obtain:

µs(Bn+k(z, ε)) · dn ≤ µs(B(n, z; k, x; ε)) =
∑

x̂ prehistory of x

µs(A(x̂, ρ)) ≤ µs(Bn+k(z, ε)) · dn,

with the positive constant Cε independent of n, k, z, x.

We use now Theorem 1 of [47] which gave estimates for equilibrium measures on Bowen balls,

similar to those from the case of diffeomorphisms (see [27] for example); this was done by lifting to

an equilibrium measure on Λ̂. Hence from the last displayed formula and (56), we obtain:

1

Cε

|Dfn+k
s (z)|δs

dk
≤ µs(B(n, z; k, x; ε)) ≤ Cε

|Dfn+k
s (z)|δs

dk
(59)

Let us prove now that, if we vary z, x, k, n, then we can write any open (borelian) set in Λ

as a union of mutually disjoint sets (modulo µs), of type B(n, z; k, x; ε). Consider sets of type

B(n, z; k, x; ε) = fn(Bn(z, ε)) ∩Bk(x, ε), with fn(z) = x and such that the stable side ε|Dfns (z)| is

comparable to the unstable side ε|Dfku (x)|−1, i.e more precisely such that:

1

λu
|Dfku (x)|−1 ≤ |Dfns (z)| ≤ λu|Dfku (x)|−1, (60)

where λu := sup
y∈Λ
|Dfu(y)|; such sets will be called round. Notice also that there exists a suffi-

ciently large constant M > 1, independent of n, z, k, x such that, if rn(z) := |Dfns (z)|
M

, then we have

B(x, rn(z)) ⊂ B(n, z; k, x; ε) ⊂ B(x,M · rn(z)). We see now from (60) and since Cf ∩ Λ = ∅ that:

if B(n, z; k, x; ε) is round, then there exists a constant C1 > 0 independent of n, z, x, k such that

C−1
1 k ≤ n ≤ C1k (61)
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Now let some ` ∈ Z, for which there exists another round set B(n + `, z′; k′, x′; ε) with fn+`(z′) =

x′ and stable side ε|Dfn+`
s (z′)| comparable with ε|Dfns (z)|, with a fixed comparability constant,

namely:

inf
y∈Λ

(|Dfs(y)|2) · |Dfns (z)| ≤ |Dfn+`
s (z′)| ≤ sup

y∈Λ
(|Dfs(y)|−2) · |Dfns (z)| (62)

In fact one sees from the uniform hiperbolicity of f , relation (62) and from Cf ∩ Λ = ∅, that: `

depends only on Df on Λ and that |`| is smaller than some universal constant `0. Thus by applying

(59), (61) and (62), we obtain that there exists a constant C2 > 1, independent of n, z, z′, x, x′, k, `,

so that

C−1
2 · µs(B(n+ `, z′; k′, x′; ε)) ≤ µs(B(n, z; k, x; ε)) ≤ C2 · µs(B(n+ `, z′; k′, x′; ε)) (63)

In other words, µs is a doubling measure on Λ. Now by varying n, we see that each point x from Λ

is the center of round sets B(n, z; k, x; ε) having arbitrarily small diameters. Therefore from (63),

we can apply variants of the Vitali Covering Theorem (see Theorems 2.8.7 or 2.8.17 of [?]), for the

family of round sets B(n, z; k, x; ε) which cover Λ finely with respect to µs; in these variants of the

Vitali Theorem, the covering sets are not necessarily balls. Therefore we conclude that we can cover

Λ, modulo µs, with a union of mutually disjoint sets B(n, z; k, x; ε).

Now, let us study in more detail the conditions from the definition of conditional measures.

From the construction of the measurable partition ξ we have that W s
r(A)/2(x) ∩ Λ ⊂ A ⊂

W s
r(A)(x) ∩ Λ, x = x(A) ∈ S and the radii r(A) vary continuously with A. So from Remark 1

we can split an arbitrary set U ∈ P , modulo µs, into a disjoint union of open sets V , each being

a ξ-set, so there exists r = r(V ) > 0 s.t for all A ∈ ξ intersecting V , we have W s
r/2(x(A)) ∩ Λ ⊂

A ⊂ W s
r (x(A)) ∩ Λ. Hence locally, on a subset V ⊂ U ∈ P , we can consider that ξ is, modulo

a set of µs-measure zero, a foliation with local stable manifolds W s
r (x) of the same size r = r(V ).

The intersections of these local stable manifolds with Λ are then identified with points in the factor

space Λ/ξ.

We will work for the rest of the proof on an open set V as above, i.e where the sets A ∈ ξ can

be assumed to be of type W s
r (x), of the same size r = r(V ). Take also ε = r.

Now, the (µs)ξ-measure induced on the quotient space Λ/ξ is given by (µs)ξ(E) = µs(π
−1
ξ (E)),

where πξ : Λ → Λ/ξ is the canonical projection which collapses a set from ξ to a point. We

notice that the projection πξ(B(n, z; k, x; r)) in Λ/ξ has (µs)ξ-measure equal to µs(Bk(x, r)), since

π−1
ξ (πξ(B(n, z; k, x; r)) is Bk(x, r). Now since P (δsΦs) = log d (from relation (56)) and by using

again the estimates of equilibrium states on Bowen balls, we obtain as in (59) that µs(Bk(x, r)) is

comparable to |Dfks (x)|δs

dk
(with a comparability constant c = c(V )). Hence from this argument we

obtain that

(µs)ξ(Bk(x, r)/ξ) =(µs)ξ(πξ(B(n, z; k, x; r)) = µs(π
−1
ξ (πξ(B(n, z; k, x; r))) =

= µs(Bk(x, r)) ≈
|Dfks (x)|δs

dk
,

(64)
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with the comparability constant CV . Now by (59) and recalling that fnz = x, and by taking

ρ := |Dfns (z)|r we obtain:

µs(B(n, z; k, x; r)) ≈ |Df
k
s (x)|δs

dk
· ρδs , (65)

where the comparability constant can be taken again CV (the size r > 0 is fixed for a set V fixed).

So from (64) and (65) we see immediately that

µs(B(n, z; k, x; r))

(µs)ξ(Bk(x, r)/ξ)
≈ ρδ

s

, (66)

where ρ = |Dfns (z)|r. But, from the definition of conditional measures we know that

µs(B(n, z; k, x; r)) =

∫
Bk(x,r)/ξ

µss,A(A ∩B(n, z; k, x; r))d(µs)ξ(πξ(A)) (67)

Recall now that we showed above that any borelian set in Λ can be written, modulo µs, as a

countable union of disjoint sets of type B(n, z; k, x; r); and these sets form a basis for the open

sets in V . Also if we vary n, the radius ρ = |Dfns (z)| · r can be made arbitrarily small. Now

we have the essential uniqueness of the system of conditional measures associated to (µs, ξ) given

in [77]. Consider some fixed arbitrary local unstable manifold W u
r (ζ̂) which intersects any local

stable manifold A ⊂ V in some unique point y = yA, from the local product structure of the basic

hyperbolic set Λ; for instance ζ̂ can be taken as a continuation of the finite prehistory (fnz, . . . , z),

for the point z appearing in (67). Now from (66), together with a Lebesgue type derivation theorem

(see [35]) applied in formula (67) to the function yA → µss,A(B(yA, ρ)), yA ∈ Λ ∩ W u
r (ζ̂), yA :=

Λ ∩W u
r (ζ̂) ∩ A, we conclude that

µss,A(B(yA, ρ)) ≈ ρδs ,

for (µs)ξ-almost all points A in Λ/ξ. But our ρ := |Dfns (z)|r becomes arbitrarily small when n→∞;

and without loss of generality, by varying the unstable manifold W u
r (ζ̂) (i.e by varying z, n), we

can take the point y arbitrarily inside A, since A is supposed to be the intersection of Λ with a

local stable manifold. Thus we obtain that µss,A satisfies a geometric probability condition with a

constant CV , i.e:
1

CV
ρδ

s ≤ µss,A(B(y, ρ)) ≤ CV ρ
δs , y ∈ A, 0 < ρ < r/2,

for (µs)ξ-almost all A ⊂ V,A ∈ ξ. The comparability factor CV is constant on V ; in general it can

be taken locally constant on the complement in Λ of a set of µs-measure zero. The proof of the

Theorem is thus finished.

Definition 5.3.2 ([42]). Let f be a hyperbolic endomorphism on the folded basic set Λ, µ a borelian

probability measure on Λ and ξ a measurable partition subordinated to local stable manifolds. Then

the conditional measure µsA corresponding to A ∈ ξ will be called the stable conditional measure of

µ on A. When µ = µs we denote this stable conditional measure by µss,A.
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From the proof of Theorem 5.3.1 it follows that, the stable conditional measures of µs do not

actually depend on the measurable partition ξ constructed above, subordinated to local stable

manifolds. So there exists a set Λ(µs) of full µs-measure inside Λ, such that for every x ∈ Λ(µs)

there exists some small r(x) > 0 so that W s
r(x)(x) is contained in a set A from a measurable partition

of type ξ (subordinated to local stable manifolds); then one can construct the stable conditional

measure µss,A. We denote this conditional measure also by µss,x, x ∈ Λ(µs).

Recall now the notions of lower, respectively upper pointwise dimension of a finite borelian

measure µ on a compact space Λ (see for example [1], [71]). For x ∈ Λ, they are defined by

dµ(x) := lim inf
ρ→0

log µ(B(x, ρ))

log ρ
, and d̄µ(x) := lim sup

ρ→0

log µ(B(x, ρ))

log ρ

If the lower pointwise dimension at x coincides with the upper pointwise dimension at x, we denote

the common value by dµ(x) and call it simply the pointwise dimension at x.

The Hausdorff dimension, lower box dimension and upper box dimension of µ are defined re-

spectively by:

HD(µ) := inf{HD(Z), µ(Λ \ Z) = 0}

dimB(µ) := lim
δ→0

inf{dimB(Z), µ(Λ \ Z) ≤ δ}

dimB(µ) := lim
δ→0

inf{dimB(Z), µ(Λ \ Z) ≤ δ}

Assume now that f is a hyperbolic endomorphism on Λ and µ a probability measure on Λ, and

let ξ be a measurable partition subordinated to local stable manifolds of f on Λ. We define then

the lower/upper stable pointwise dimension of µ at y, for µ-a.e y ∈ Λ, as the lower/upper pointwise

dimension of the stable conditional measure µsA at y, for y ∈ A, namely:

dsµ(y) := lim inf
ρ→0

log µsA(B(y, ρ))

log ρ
and d̄sµ(y) := lim sup

ρ→0

log µsA(B(y, ρ))

log ρ

Similarly we defined in [42] the stable Hausdorff dimension of µ on A ∈ ξ, and the stable

lower/upper box dimension of µ on A, respectively, as the quantities:

HDs(µ,A) := HD(µsA), dims
B(µ,A) := dimB(µsA), dim

s

B(µ,A) := dimB(µsA), A ∈ ξ

When µ = µs we denoteHDs(µs, x) := HD(µss,x), dims
B(µs, x) := dimB(µss,x), and dim

s

B(µs, x) :=

dimB(µss,x), for x ∈ Λ(µs).

Corollary 5.3.1 ([42]). Let f be a c-hyperbolic, d-to-1 endomorphism on a basic set Λ, and µs

be the equilibrium measure of the potential δsΦs. Then the stable pointwise dimension of µs exists

µs-almost everywhere on Λ and is equal to the stable dimension δs.

Also the stable Hausdorff dimension of µs, stable lower box dimension of µs and stable upper box

dimension of µs are all equal to δs.
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Definition 5.3.3 ([42]). We will say that a measure µ on Λ has maximal stable dimension on

A ∈ ξ, A ⊂ W s
r(x)(x) if:

HDs(µ,A) = sup{HDs(ν,A), ν is an f |Λ − invariant probability measure on Λ}

This definition is similar to that of measure of maximal dimension, see [1], where measures of

maximal dimension on hyperbolic sets of surface diffeomorphisms were studied. Our setting/methods

for the maximal stable dimension in the non-invertible case, are however different.

Now, since the stable Hausdorff dimension of any f -invariant probability measure ν on Λ is

bounded above by δs := HD(W s
r (x)∩Λ), we see from Corollary 5.3.1 that the conditional measures

studied above, satisfy the maximum in a Variational Principle for the stable dimension:

Corollary 5.3.2 ([42]). In the setting of Theorem 5.3.1 it follows that the stable equilibrium measure

µs of f , is of maximal stable dimension on W s
r(x)(x) ∩ Λ among all f -invariant probability

measures on Λ, for µs-a.e x ∈ Λ. And µs maximizes in a Variational Principle for stable dimension

on Λ, i.e:

δs = HDs(µs, x) = sup{HDs(ν, x), ν is an f |Λ − invariant probability measure on Λ}, µs − a.e x

As said before, a basic set Λ is called a repellor (or folded repellor), if there exists a neighbourhood

U of Λ such that Ū ⊂ f(U). And that Λ is a local repellor if there are local stable manifolds of f

contained inside Λ (see [45] for more on these notions in the case of endomorphisms). We proved

in [42] that a basic fractal Λ is a folded repellor if and only if its stable conditional measures µss,x
are absolutely continuous for almost all x.

Corollary 5.3.3 ([42]). Let an open c-hyperbolic endomorphism f on a connected basic set Λ. Then

we have that the stable conditional measures µss,x of µs, are absolutely continuous with respect to the

induced Lebesgue measures on W s
r(x)(x), x ∈ Λ(µs), if and only if Λ is a non-invertible repellor.

In [42] we gave also several classes of examples of folded non-Anosov repellors, and of hyperbolic

basic sets for which the above results apply.

5.4 Pointwise dimensions for equilibrium measures on saddle basic sets of holomorphic

endomorphisms on P2C.

The dynamics of holomorphic endomorphisms on complex projective space P2 can gather both

methods from smooth ergodic theory and thermodynamic formalism, and from higher dimensional

complex dynamics. It has also specific techniques and results, as well as examples. This has been

observed first in the papers [49], [45], [21], etc.

In [21], J. E Fornaess and E. Mihailescu studied the problem of pointwise dimension for an

important class of invariant measures, which are supported on basic sets of saddle type for holo-

morphic maps f : P2 → P2. In that paper, we also gave a formula for the equilibrium measure µφ
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of an arbitrary ball, for a Hölder continuosu potential φ. For terminal/minimal saddle sets we also

proved that an invariant measure ν, which was obtained as a wedge product of two positive closed

currents, is in fact the measure of maximal entropy of the restriction f |Λ.

Now recall some definitions of pointwise dimensions for probabilities (see for eg. [1], [71], etc.)

Definition 5.4.1. Given an arbitrary probability measure µ on a compact metric space X, one

can define the lower pointwise dimension and the upper pointwise dimension at x ∈ X

respectively by:

δµ(x) := lim inf
ρ→0

log µ(B(x, ρ))

log ρ
, and δ̄µ(x) := lim sup

ρ→0

log µ(B(x, ρ))

log ρ

In case they coincide, we call the common value δµ(x) the pointwise dimension of µ at x ∈ X.

Also one can define the Hausdorff dimension of µ by:

HD(µ) := inf{HD(Z), Z borelian set with µ(X \ Z) = 0}

In [98] Young proved that for a hyperbolic measure µ (i.e without zero Lyapunov exponents)

which is invariated by a smooth diffeomorphism f of a surface, we have µ-a.e the formula

δµ = hµ(
1

χu(µ)
− 1

χs(µ)
),

where χs(µ), χu(µ) are the negative, respectively positive Lyapunov exponents of µ (see for eg. [34],

[27], etc. for the definition of Lyapunov exponents).

In the case of analytic endomorphisms f on the Riemann sphere P1C, Manning proved that, if f

is hyperbolic on its Julia set J(f) and has no critical points in J(f), then for any ergodic f -invariant

probability measure µ on J(f) the Hausdorff dimension of µ is given by: HD(µ) = hµ
χ(µ)

, where

χ(µ) is the only Lyapunov exponent of µ. This formula was then extended by Mañe [34] to the case

of all rational maps (i.e not only hyperbolic) and of ergodic probabilities with positive Lyapunov

exponent (thus which are non-uniformly expanding).

Nevertheless, the situation for higher dimensional non-expanding case is very different, and

requires other methods than in the above mentioned cases. Notice also that the behaviour to

perturbation, of the preimage counting function in the higher dimensional case, is different.

The first result we will recall here, is about the formula for the equilibrium measure of an

arbitrary iterate of a Bowen ball; this will be applied later to formulas for the equilibrium measure

µφ of any arbitrary ball.

For arbitrary z ∈ Λ, n > 0, k > 0, define the iterate of a Bowen ball,

B(n, k, z, ε) := fn(Bn+k(z, ε)), (68)

When n and k vary, we can adjust the sides of B(n, k, z, ε) arbitrarily, and can make this iterate

have (almost) equal sides in the stable and unstable directions.
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Theorem 5.4.1 ([21]). Consider f : P2 → P2 a holomorphic map of degree d, and Λ a basic set such

that f is c-hyperbolic on Λ and such that the preimage counting function is constant and equal to d′

on Λ. Let also a Hölder continuous potential φ on Λ, which satisfies φ(x) + log d′ < P (φ),∀x ∈ Λ.

Then for any integers n, k, we have the formula:

µφ(B(n, k, z, ε)) ≈ eSn+kφ(z)

(d′)k

Moreover the pointwise dimension of µφ exists µφ-a.e, is denoted by δµφ, and we have µφ-a.e:

δµφ = HD(µφ) = hµφ(
1

χu(µφ)
− 1

χs(µφ)
) + log d′ · 1

χs(µφ)

Moreover, even when the preimage counting function d(·) is not constant on Λ, we still can

obtain bounds for the measure of iterates of Bowen balls, and hence estimates for the lower pointwise

dimension:

Corollary 5.4.1 ([21]). In the setting of Theorem 5.4.1 assume the preimage counting function

satisfies d(x) ≤ d′ for µφ-a.e x ∈ Λ and that φ(x) + log d′ < P (φ), ∀x ∈ Λ. Then for µφ-a.e x ∈ Λ,

δµφ(x) ≥ hµφ(
1

χu(µφ)
− 1

χs(µφ)
) + log d′ · 1

χs(µφ)

Theorem 5.4.1 was afterwards applied to equilibrium states of stable potentials of type tΦs on

folded fractals Λ, where Φs(x) := log |Dfs(x)|, x ∈ Λ; we obtained a result parallel to [2], but in the

case of non-invertible maps.

Corollary 5.4.2 ([21]). In the same setting as in Theorem 5.4.1, denote by µs the equilibrium

measure of δsΦs, where δs(x) := HD(W s
r (x) ∩ Λ) is assumed to be positive for some x ∈ Λ. Then

δs = δs(x) does not depend on x and for µs-a.e x ∈ Λ,

δµs(x) =
hµs

χu(µs)
+ δs

The above results can be applied to many examples of holomorphic maps on P2, which are

hyperbolic on saddle basic sets, for instance to perturbations of product maps or to perturbations

of maps obtained from Ueda’s method.

5.5 Relations between geometric positive currents and invariant measures on minimal

sets.

In [21] we studied also the measure of maximal entropy for the restriction f |Λ of a holomorphic

endomorphism f : P2 → P2 on a saddle basic set Λ. We considered the special case when Λ is

a minimal, or more general, a terminal basic set. Such minmal sets were considered also in [22]

where certain positive closed currents were constructed on them. We obtained in [21] a geometric

description of the measure of maximal entropy of f |Λ in terms of positive closed currents.
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First we recall some properties of the associated positive closed Green current T (see [23]

for more details). For a given holomorphic endomorphism f : P2 → P2, there exists a continuous

plurisubharmonic function G on C3\{0} called the Green function of f , satisfying G(F (z)) = d·G(z)

where F : C3 \ {0} → C3 \ {0} is the lift of f relative to the canonical projection π2 : C3 → P2.

Thus G ∈ P1, where P1 is the cone of plurisubharmonic functions u on C3 \ {0} satisfying the

homogeneity condition u(λz) = log |λ|+ u(z), λ ∈ C and z ∈ C3 \ {0}. Recall that

π∗2T = ddcG,

and that the Green measure µ = T ∧ T is mixing.

In [22] there were studied s-hyperbolic maps on P2 and minimal saddle basic sets, for the ordering

Λi � Λj if W u(Λ̂i) ∩W s(Λj) 6= ∅. A related notion introduced in [15] is that of a terminal set in

the case of a holomorphic map f on P2. Here f is not assumed to have Axiom A and the condition

refers only to Λ itself. A saddle set Λ is called terminal if for any x̂ ∈ Λ̂, the iterates of f restricted

to W u
loc(x̂) \ Λ form a normal family. Clearly, if f f is Axiom A and if Λ is minimal, then for any

x̂ ∈ Λ̂ the global unstable set W u(x̂) does not intersect any global stable set of any other basic set,

thus W u(Λ̂) \Λ is contained in the union of basins of attraction of attracting cycles; so in this case

minimal sets are also terminal.

Examples of minimal sets for holomorphic maps on P2 were given in [22], and examples of

terminal sets in [15].

In [22], Fornaess and Sibony constructed positive closed currents σ on minimal sets for s-

hyperbolic maps, by using iterated images of unstable disks (or equivalently of disks which are

transverse to local stable directions). If D is an unstable disk then

fn? ([D])

dn
→ σ ·

∫
D ∧ T

Using the positive closed (1, 1) current σ, they constructed thus an invariant measure ν on Λ as

ν = σ ∧ T

We remind now some properties of the transversal measures µ̂sx associated to a hyperbolic

structure on Λ; they are built as in [85] (see also [90]), but on the natural extension Λ̂. In our

endomorphism case, we employ a Markov partition on the inverse limit Λ̂ (see [84]). Moreover the

inverse limit Λ̂ has local product structure, as it is a Smale space (see [84]).

One obtains then a system of transversal measures µ̂sx on Ŵ s
loc(x), where Ŵ s

loc(x) and Ŵ u
loc(x̂)

are the lifts to Λ̂ of the local stable intersection W s
loc(x) ∩ Λ, respectively of the local unstable

intersection W u
loc(x̂) ∩ Λ. So Ŵ s

loc(x) := π−1(W s
loc(x) ∩ Λ) and Ŵ u

loc(x̂) := π−1(W u
loc(x̂) ∩ Λ), x̂ ∈ Λ̂.

Then the family of measures µ̂sx, satisfies the following properties:

i) if χsx,y : Ŵ s
r (x) → Ŵ s

r (y) is the holonomy map given by χsx,y(ξ̂) = Ŵ u
r (ξ̂) ∩ Ŵ s

r (y), then

µ̂sx(A) = µ̂sy(χ
s
x,y(A)) for any borelian set A.

ii) f̂?µ̂
s
x = ehtop(f |Λ)µ̂sf(x)|f̂(Ŵ s

r (x))
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iii) supp µ̂sx = Ŵ s(x).

In fact from [85] and [90] applied to our case on Λ̂, it follows that there exist also unstable

transversal measures, denoted by µ̂ux̂ on Ŵ u
r (x̂), x̂ ∈ Λ̂ with similar properties. Also, the measure of

maximal entropy on Λ̂ denoted by µ̂0, can be written as the product of transversal stable measures

µ̂sy with transversal unstable measures µ̂x̂ i.e

µ̂0(φ) =

∫
Ŵ s
r (x)

(

∫
Ŵu
r (ŷ)

φ dµ̂uŷ) dµ̂
s
x(ŷ), (69)

for any function φ defined on a neighbourhood of x̂ ∈ Λ̂.

Transversal measures associated to stable/unstable foliations are subject to a result by Bowen

and Marcus ([7]), which can be applied on the natural extension Λ̂.

Also, in [15] Diller and Jonsson introduced a positive current σu by using transversal measures

(see also the diffeomorphism case in [85], [90]); in a neighbourhood of x ∈ Λ,

< σu, χ >=

∫
Ŵ s
loc

(

∫
Wu
loc(ŷ)

χ)dµ̂sx(ŷ),

where µ̂sx are transversal measures on Ŵ s
loc(x) := π−1(W s

loc(x).

If Λ is terminal, then they defined an invariant probability measure on Λ,

νi = σu ∧ T

We used in [21] the notation νi in order to emphasize the way the current σu was constructed with

the help of the inverse limit.

In Theorem 5.5.1 we will prove that the measures ν, νi defined above are both equal to the

measure of maximal entropy of f |Λ if Λ is (topologically) mixing (which can be arranged by taking

some iterate).

We proved in [21] that the measure of maximal entropy of the restriction to Λ can be written as

a wedge product of two positive closed currents, which can be described geometrically. Our result

connects thus, the geometric properties of the fractal set Λ to the ergodic ones.

Theorem 5.5.1 ([21]). a) Let f : P2 → P2 be a holomorphic map of degree d and Λ be a terminal

mixing saddle set. Then νi is equal to the measure of maximal entropy µ0 on Λ.

b) Let f : P2 → P2 be an Axiom A holomorphic map of degree d, which is c-hyperbolic on the

mixing minimal saddle set Λ. Then νi = ν = µ0, where µ0 is the maximal entropy measure of f |Λ.

Proof. a) In [15], the measure νi was defined as the wedge product σu∧T , where the positive closed

current σu is constructed with the help of the stable transversal measures µ̂sx, x ∈ Λ. Recall also that

π|Ŵu
r (x̂) : Ŵ u

r (x̂)→ W u
r (x̂) is a bijection (see [47]), so any function φ on Ŵ u

r (x̂) determines uniquely

a function denoted again with φ on W u
r (x̂). Then from νi, we can form a system of measures on

the lifts of local unstable manifolds Ŵ u
r (x̂), x̂ ∈ Λ̂ in the following way:

ν̂ux̂ (φ) =

∫
Wu
r (x̂)

φT |Wu
r (x̂)
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We assumed that f is mixing on Λ; in fact (topological) mixing of f on Λ is equivalent to mixing

of f̂ on Λ̂. Define stable holonomy maps between lifts to Λ̂ of local unstable manifolds, namely

χux̂,ŷ : Ŵ u
r (x̂)→ Ŵ u

r (ŷ), χux̂,ŷ(ξ̂) := Ŵ u
r (ŷ) ∩ Ŵ s

r (ξ̂), ξ̂ ∈ Ŵ u
r (x̂)

We want to prove that the measures ν̂ux̂ are transversal and invariant with respect to stable

holonomy maps in the Smale space structure of Λ̂, in the sense of Bowen and Marcus ([7]). From

the way the local unstable manifolds were constructed as determined by prehistories, it follows that

there is a bijection between W u
r (x̂) ∩ Λ and its lift Ŵ u

r (x̂) (see also [47]). Given a borelian set

Â ⊂ Ŵ u
r (x̂), there exists a unique borelian set A ⊂ W u

r (x̂)∩Λ such that π is a bijection between Â

and A. From the definition of ν̂ux̂ , we know that

ν̂ux̂ (Â) =

∫
A∩Wu

r (x̂)∩Λ

ddcG|Wu
r (x̂)

Denote now the unstable intersection W u
r (x̂) ∩ Λ by Z(x̂) for x̂ ∈ Λ̂. Consider points x, y in a

subset of Λ belonging to an open set V ∈ P2 so there exists a holomorphic inverse s : V → C3 \ {0}
of π2. Then for r small we can identify Z(x̂), Z(ŷ) with their respective lifts to C3 \ {0} for any

prehistories x̂, ŷ ∈ Λ̂. Since there are no critical points of f in Λ and since we work on Λ, it follows

that Z(x̂) can be split into mutually disjoint subsets on which fn is injective, i.e Z(x̂) = ∪
i
Zi,n(x̂),

fn|Zi,n(x̂) : Zi,n(x̂)→ Zn
i (x̂) is bijective, and moreover Zn

i (x̂), i are mutually disjoint. It follows that

fn(Z(x̂)) = ∪iZn
i (x̂). Now if Z(x̂) is contained in V , then fn(Z(x̂)) may not be contained in V ;

but, if fn(Z(x̂)) is contained say in V1∪V2 where V1, V2 are open sets in P2 as above, with respective

local inverses s1, s2 of π2, and if V1 ∩ V2 6= ∅, then there exists a holomorphic function ρ on V1 ∩ V2

so that s1 = ρs2 on V1 ∩ V2. So

ddc(G ◦ s1) = ddc(G(ρs2)) = ddc log |ρ|+ ddc(G ◦ s2) = ddc(G ◦ s2)

This implies that working with ddcG on C3 \ {0} is the same as working on P2.

Now G ◦ F = d · G and fn : Zi,n(x̂) → Zn
i (x̂) is bijective hence

∫
Zni (x̂)

ddcG = dn
∫
Zi,n(x̂)

ddcG.

Thus by adding over all the indices i we obtain:∫
fn(Z(x̂))

ddcG = dn
∫
Z(x̂)

ddcG (70)

Now let x, y ∈ Λ closer than r/2 and iterate Z(x̂) and Z(ŷ) for some prehistories x̂, ŷ ∈ Λ̂. Con-

sider the subsets Zi,n(ŷ) such that fn : Zi,n(ŷ) → Zn
i (ŷ) is a bijection, Zn

i (ŷ), i are mutually

disjoint and fn(Z(ŷ) = ∪Zn
i (ŷ). If Zi,n(x̂), Zi,n(ŷ) has diameter small enough, then it follows that

Zn
i (x̂), Zn

i (ŷ) both have diameter bounded above by r and they are very close to each other, in fact

d(Zn
i (x̂), Zn

i (ŷ))→ 0 for each i, when n→∞. This follows as in the Laminated Distortion Lemma

(see [45]) since the distances between iterates of points on stable manifolds decrease exponentially,

and |Dfu| is Hölder continuous.
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Now if ψ is a smooth test function equal to 1 on a fixed neighbourhood of Zn
i we have

∫
Zni (x̂)

ddcG =∫
Zni (x̂)

ψddcG =
∫
Zni (x̂)

Gddcψ hence since ddcψ is continuous and Zn
i (x̂) and Zn

i (ŷ) are close, we ob-

tain similar to [22] that for n large enough

|
∫
fn(A)∩Zni (x̂)

ddcG−
∫
fn(χux̂,ŷ(A))∩Zni (ŷ)

ddcG| ≤ εm2(Zn
i (x̂)),

where m2 is the Lebesgue measure on P2. Now we add these inequalities over i and use the fact

proved in Proposition 5.3 of [22] that m2(fn(Z(x̂))) ≤ Cdn, n > 0. Hence by dividing with dn, using

(70), and letting n → ∞ we obtain
∫
A∩Z(x̂)

ddcG =
∫
χux̂,ŷ(A)∩Z(ŷ)

ddcG. We lift then to the natural

extension, keeping in mind that there exists a homeomorphism between Z(x̂) and Ŵ u
r (x̂). Hence

on Λ̂ we have:

ν̂ux̂ (Â) = ν̂ŷ(χ
u
x̂,ŷ(Â)), Â borelian set in Ŵ u

r (x̂)

This can be extended also to general borelian sets contained in global unstable sets Ŵ u(x̂) =

∪
n≥0

f̂n(Ŵ u
r (x̂)), x̂ ∈ Λ̂. Thus by a theorem of Bowen and Marcus (see the main result of [7]),

extended to the mixing homeomorphism f̂ on Λ̂, it follows that there exists a positive constant γ

such that ν̂ux̂ = γ · µ̂u0,x̂, for any x̂ ∈ Λ̂, where µ̂u0,x̂ are the transversal measures given by the measure

of maximal entropy µ̂0 on Λ̂ (as in [85], [90]); see also (69). In fact if µ0 is the unique measure of

maximal entropy on Λ and if µ̂0 is the unique measure of maximal entropy on Λ̂, then

µ0 = π∗µ̂0 and hµ0 = htop(f |Λ) = htop(f̂ |Λ̂) = hµ̂0

The measure νi is constructed with the transversal stable measures µ̂sx (which we denote also by

µ̂s0,x). Now from [84] we know that any f -invariant measure µ on Λ can be lifted uniquely to

an f̂ -invariant measure µ̂ on Λ̂ such that π∗µ̂ = µ. In our case we denote by ν̂i this unique lift

of νi to Λ̂. Since both ν̂i and µ̂0 are ergodic probabilities on Λ̂, it follows that γ = 1 and that

µ̂0 = ν̂i, hence µ0 = νi.

b) For this item, assume that f has Axiom A, that Λ is a minimal basic set, and that f is

c-hyperbolic on Λ. Then from Section 2 there exists a positive closed (1, 1) current σ supported

on the global unstable set W u(Λ̂) such that if D is a local disk transverse to the stable direction,

then fn∗ ([D])
dn
→ (

∫
[D] ∧ T )σ. Without loss of generality assume that the disk D is chosen such that∫

[D] ∧ T = 1; and also that T has no mass on the boundary ∂D of D.

We have from [22] that on a neighbourhood ∆ of a point x ∈ Λ there exists a measure λ on the

space of holomorphic maps from a local unstable disk ∆1 to a local stable disk ∆2 such that

σ =

∫
[W u

r (ŷ)] dλ(gŷ),

where W u
r (ŷ) are local unstable manifolds intersecting ∆, [W u

r (ŷ)] are the respective currents of

integration and gŷ : ∆1 → ∆2 is an arbitrary holomorphic map whose graph is W u
r (ŷ). Then

ν = σ ∧ T is supported only on Λ; hence we can define measures ν̂sx on Ŵ s
r (x) by

ν̂sx(Â) = λ({gŷ, ŷ ∈ Â}
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Hence from the definition of gŷ as a function whose graph is W u
r (ŷ), it follows that these measures

are invariant to the local holonomy map between Ŵ s
r (x) and Ŵ s

r (y) for x, y close. Also by covering

with small flow boxes it follows we can extend this property globally. Therefore from [7] we obtain

that ν̂sx = γ · µ̂s0,x, where the constant γ > 0 does not depend on x ∈ Λ. Now ν was defined as

integration of T on local unstable manifolds followed by integration with respect to transversal

measures; by using a) we obtain that ν̂ = µ̂0, and thus ν = µ0. Hence on minimal saddle basic sets

the measure ν is equal to νi, and both are equal to the measure of maximal entropy µ0 on Λ.

Now we can combine Theorem 5.4.1 on pointwise dimension from last subsection, with the above

result about the measure νi, to obtain the pointwise dimension of νi.

Corollary 5.5.1 ([21]). a) Let Λ be a mixing terminal saddle set for a holomorphic map f : P2 → P2

of degree d, s.t Λ does not intersect the critical set Cf of f . If each point in Λ has at most d′ f -

preimages in Λ and if d′ < d, then for µφ-a.e z,

δνi(z) ≥ log d · ( 1

χu(νi)
− 1

χs(νi)
) + log d′ · 1

χs(νi)

b) If Λ is a mixing terminal saddle set for a holomorphic map f on P2 of degree d, if Cf ∩Λ = ∅
and if the preimage counting function is constant equal to d′ on Λ for d′ ≤ d, then we have:

δνi = HD(νi) = log d · ( 1∫
log |Dfu|dνi

− 1∫
log |Dfs|dνi

) + log d′ · 1∫
log |Dfs|dνi

,

c) Let f : P2 → P2 be a holomorphic Axiom A map of degree d, which is c-hyperbolic on a

connected minimal saddle set Λ. Then the preimage counting function is constant on Λ, with value

denoted d′, and

δν = HD(ν) = log d · ( 1

χu(ν)
− 1

χs(ν)
) + log d′ · 1

χs(ν)

In the case of minimal c-hyperbolic sets of maps of degree 2, we can then determine all the

possible values of the pointwise dimension of ν. The preimage counting function is constant if Λ is

connected.

Corollary 5.5.2 ([21]). Let f be an Axiom A holomorphic map on P2 of degree 2, which is c-

hyperbolic on a connected minimal saddle set Λ and let ν be the measure of maximal entropy of f |Λ.

Then we have exactly one of the following two possibilities:

1) the preimage counting function of f is equal to 1 on Λ; then f |Λ is a homeomorphism and

δν = log 2 · ( 1∫
log |Dfu|dν

− 1∫
log |Dfs|dν

)

2) or, the preimage counting function of f is equal to 2 on Λ; then f |Λ is expanding and

δν = log 2 · 1∫
log |Dfu|dν
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6 Conformal iterated function systems, and applications.

6.1 Dimension estimates for attractors of finite iterated function systems with over-

laps.

Iterated function systems play a central role in fractal geometry (see for eg. [19], [26], etc.) and

many Cantor sets can be obtained as limit sets of iterated function systems (or IFS for short).

In general, a conformal iterated function system is given by an arbitrary finite set E called

in the sequel an alphabet, a bounded connected open set V ⊂ Rq, a compact set X ⊂ V and

a collection S = {φe : V → V}e∈E of C1+ε conformal injective maps from V to V such that

||φ′e|| = sup{|φ′e(x)| : x ∈ V } ≤ s < 1, and φe(X) ⊂ X, for all e ∈ E. Here, φ′e(x) : Rq → Rq is the

derivative of the map φe : V → V evaluated at the point x, it is a similarity map, and |φ′e(x)| is its

operator norm, or equivalently, its scaling factor.

The system S is said to satisfy the Open Set Condition if there exists an open non-empty set U

such that φi(U) ⊂ U and φi(U) ∩ φj(U) = ∅, ∀i, j ∈ E.

Let us denote now the space of sequences with values in E by E∞, and for a sequence ω =

(ω1, ω2, . . .) ∈ E∞ and an integer n ≥ 1, denote by ω|n = (ω1, . . . , ωn) the n-th truncation of ω.

Also for a finite sequence η = (η1, . . . , ηn), denote by φη = φη1 ◦ . . . ◦ φηn the succesive composition

of the above contractions. And let E∗ the space of all finite sequences with elements in E. We will

define now the limit set (or sometimes called attractor) of the iterated function system S:

Definition 6.1.1. For the iterated function system {φi}i∈E as above, define the limit set

JS :=
⋃

ω∈E∞

⋂
n≥1

φω|n(X)

It can be shown that JS is the unique compact set contained in X such that JS =
⋃
e∈E

φe(JS).

The theory of conformal iterated function systems satisfying the Open Set Condition is well

studied and understood (see for eg. [19], [26], [36], [86], etc.) In this case the Hausdorff dimension

of the limit set JS is given as the unique zero of the pressure function of the potential obtained

from the derivatives of φe, e ∈ E.

However, in the case of iterated function systems without Open Set Condition, little is known

about the dimension of the limit sets, and the methods and results are very different. This was the

object of our study in [56], namely IFS with arbitrary overlaps for which we do not assume any

kind of separation condition (in particular no Open Set Condition).

If the system S of contractions is fixed, we will denote the set JS also simply by J . In order to

present our results, let us define a function d : J → N by the following formula,

d(x) = #{e ∈ E : x ∈ φe(J)}.
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From this definition we get the following trivial, but useful formula, which is true for all x ∈ J ,∑
e∈E:x∈φe(J)

d−1(x) = 1 (71)

Let now κ : E∞ → [1,+∞) to be a Hölder continuous function and, for an arbitrary parameter

t ∈ R, consider the potentials ψκ,t : E∞ → R defined as follows:

ψκ,t(ω) = tψ(ω)− log κ(ω) = t log φ′ω1
(π(σ(ω)))| − log κ(ω), ω ∈ E∞

One can check easily that ψκ,t is Hölder continuous, by using the Hölder continuity of κ.

Let P (t) := P (ψκ,t) be the topological pressure of the potential ψκ,t with respect to the dynamical

system on the space of sequences, σ : E∞ → E∞. Since log |φ′ω1
(π(σ(ω)))| ≤ log s < 0, there exists

a unique hκ ∈ R such that P (ψκ,hκ) = 0. Let µ̂t be the unique shift-invariant Gibbs (equilibrium)

state of the Hölder continuous potential ψκ,t : E∞ → R, and let

µt = µ̂t ◦ π−1

It follows that µt(J) = 1. For every ω ∈ E∗, say ω ∈ En, define

[ω] = {τ ∈ E∞ : τ |n = ω},

and call this set, the (initial) cylinder generated by ω. From the fact that µt is a Gibbs measure,

we obtain that

µ̂t([ω|n]) ≈ e−P (t)n||φ′ω|n||
t · Πn−1

j=0κ
−1(π(σj(ω))). (72)

If A is an arbitrary Borel subset of J and F ⊂ E∗ is a family of mutually incomparable words such

that π−1(A) ⊂
⋃
ω∈F [ω], then

µt(A) ≤
∑
ω∈F

µ̂t([ω]). (73)

Then, Mihailescu and Urbański showed in [56] that the dimension of the limit set can be esti-

mated from below by the zero of a certain pressure function.

Theorem 6.1.1 ([56]). Let S = {φe}e∈E be a conformal iterated function system, and κ̂ : J →
[1,+∞) be a continuous function such that d(x) ≤ κ̂(x) for all x ∈ J . Then HD(J) ≥ hκ, where

κ = κ̂ ◦ π : E∞ → R.

The above result permits good lower estimates for the dimension, by using continuous functions

κ̂ as upper bounds for d(·). In general, we cannot write an exact formula, as the dimension is

strongly influenced by the oscillation in the number of ”preimages” that a point may have in the

limit set, i.e by the values of d(·) over J .

Moreover, in the same paper we studied an upper bound for the dimension of the limit set, which

is however not as flexible, given that we bound d(·) below only by a constant number.
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Theorem 6.1.2 ([56]). If S = {φe}e∈E is a conformal iterated function system and κ ≥ 1 is an

integer satisfying d(x) ≥ κ for all x ∈ J , then HD(J) ≤ hκ.

As a consequence of Theorem 6.1.1 and Theorem 6.1.2, we obtained in [56] the following Corol-

lary, which says that if the dimension is equal to the minimal value that it can take as the zero of

the pressure, i.e corresponding to the maximal value D of d(·), then d(·) must be constant on J and

equal to D. This shows that the relation between the dimension of the limit set, and the function

d(·), is reciprocal.

Corollary 6.1.1 ([56]). Assume that S = {φe}e∈E is a conformal iterated function system, and let

D := max{d(x) : x ∈ JS}. Then HD(JS) = hD if and only if d(x) = D for all x ∈ JS.

Proof. If d(x) = D for all x ∈ JS, then the equality HD(JS) = hD is a direct consequence of

Theorem 6.1.1 and Theorem 6.1.2.

We want now to prove the other way around; suppose then that h := HD(JS) = hD. By

contradiction, assume there exists z ∈ J such that d(z) ≤ D − 1. Since the alphabet E is finite,

there must exist an open neighborhood V of z such that d(x) ≤ D − 1 for all x ∈ V . Fix a non-

empty open set U ⊂ J such that U ⊂ V . There then exists a Lipschitz function κ̂ : J → [1,+∞)

such that κ̂(x) = D − 1 for all x ∈ U and κ̂(x) = D for all x ∈ J \ V . In particular, d(y) ≤ κ̂ for

all y ∈ J , and it therefore follows from Theorem 6.1.1 that hD = h ≥ hκ; recall that κ = κ̂ ◦ π. But

we also have

κ ≤ D on E∞, (74)

and thus hD ≤ hκ. Hence,

hκ = hD (75)

Let now µ̂D be the unique equilibrium state on the metric space E∞, of the potential hdψ − logD.

Since P (hDψ − logD) = 0, we have∫
E∞

(hDψ − logD)dµ̂D + hµ̂D(σ) = 0, (76)

where hµ̂D(σ) is the Kolmogorov-Sinai metric entropy of the dynamical system σ : E∞ → E∞ with

respect to the σ-invariant measure µ̂D. Due to the Variational Principle, we also have,∫
E∞

(hDψ − log κ)dµ̂D + hµ̂D(σ) =

∫
E∞

(hκψ − logD)dµ̂D + hµ̂D(σ) ≤ P (hκψ − log κ) = 0

But this combined with (76), imply that∫
E∞

(logD − log κ)dµ̂D ≤ 0. (77)

As the function logD − log κ is continuous and as the equilibrium state µ̂D is positive on non-

empty open subsets of E∞ (they must contain Bowen balls), it follows from (77) and (74) that

log κ = logD on E∞. So, κ̂ = D on J and this contradiction finishes the proof.
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The above methods present the advantage that are flexible for the large spectrum of overlaps

that the IFS may have; they also show that isolated points, where the function d(·) has different

values, do not really matter in the dimension of the limit set. We also have the liberty in chosing

better and better continuous upper bounds for d(·) in Theorem 6.1.1, depending on the set of points

with a certain number of ”preimages” in J .

6.2 Limit sets for infinite conformal iterated function systems with arbitrary overlaps.

Iterated function systems with countably many generators form a rich and deep chapter in the

geometric theory of fractals. Such infinite systems present many new features when compared to

finite systems, for example the limit set is not compact anymore, the dimension formula is different

in the Open Set Condition case, the boundary at infinity plays an important role, etc. (see for

instance [36], [62]).

In [55] we studied infinite IFS with arbitrary overlaps, and obtained estimates for the dimension

of the limit set. Some of the notations and techniques are similar to those in [57], but the differences

in results and phenomena are significant, due to the fact that the system is now countable.

Let us fix thus an integer q ≥ 1 and a real number s ∈ (0, 1), and let X a compact subset of

Rq such that X = IntX. As before we take V a bounded connected open subset of Rq such that

X ⊂ V . Also we fix an arbitrary coutable, either finite or infinte, set E called an alphabet. A

system S = {φe : V → V}e∈E , of C1+ε conformal injective maps is called an countable conformal

iterated function system if the following conditions are satisfied.

(a)

φe(X) ⊂ X

for all e ∈ E.

(b) There exists s ∈ (0, 1) such that

||φ′e|| = sup{|φ′e(x)| : x ∈ X} ≤ s < 1

for all e ∈ E. Here, φ′e(x) : Rq → Rq is the derivative of the map φe : V → V evaluated at

the point x, it is a similarity map, and |φ′e(x)| is its operator norm, or equivalently, its scaling

factor.

(c) (Refined Distortion Property) There are two constants L ≥ 1 and α > 0 such that∣∣||φ′e(y)| − |φ′e(x)|
∣∣ ≤ L‖(φ′e)−1‖−1‖y − x‖α

for all x, y ∈ V and all e ∈ E.

(d) If the alphabet E is infinite, then

lim
e→∞

diam(φe(X)) = 0.
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Moreover we assumed in [55], that the system S is irreducible, i.e

JS 6⊂ ∂X or equivalently JS ∩ Int(X) 6= ∅.

If, in addition, the system S satisfies the Open Set Condition (OSC), meaning that the interiors of

the sets φe(X), e ∈ E, are mutually disjoint, then there is a fairly complete account of the fractal

properties of its limit set ([36], [62], etc.)

However we did not assume any kind of such conditions, so we allow any overlaps of the sets

φa(X) and φb(X), where a, b ∈ E with a 6= b. Thus this theory of IFS with arbitrary overlaps is

profoundly different from the one of IFS with Open Set Condition. As before, let

E∗ =
∞⋃
n=0

En and E∞ = {(ωn)∞n=1 : ∀(n ≥ 1)ωn ∈ E}

We fix ω ∈ E∞ and notice that {φω|n(X)}∞n=1 is a descending sequence of compact sets such that

diam(φω|n(X)) ≤ D̃sndiam(X),

where the number D̃ ≥ 1 is due to the non-convexity of X. Thus,
⋂∞
n=1 φω|n(X) is a singleton, and

we denote it by π(ω). So we have defined a map π : E∞ → X, which is Lipschitz continuous.

The limit set (or the attractor) J = JS of the system S is defined to be the projection π(E∞).

It can be seen easily that JS satisfies the following self-conformality condition:

JS =
⋃
e∈E

φe(JS),

and, by induction, JS =
⋃
|ω|=n φω(JS), for all n ≥ 1.

Let σ : E∞ → E∞ be the (one sided) shift map on E∞. By the definition of JS we have that

JS =
⋃

ω∈E∞

∞⋂
n=1

φω|n(X).

However the order of the union and the intersection cannot be exchanged always, i.e. in general

it is not true that JS =
⋂∞
n=1

⋃
ω∈En φω(X). The former is contained in the latter, and equality

holds if, for example the families {φω(X) : ω ∈ En} are pointwise bounded for all n ≥ 1. This is

in particular the case if the system S satisfies the Open Set Condition. However in our case this

condition is not satisfied.

Let now ψ : E∞ → R be the function defined by the following formula,

ψ(ω) = log |φ′ω1
(π(σ(ω)))|, ω ∈ E∞.

We proved in [55] that the function ψ : E∞ → R is Hölder continuous. Now, for an arbitrary

ω ∈ E∗, say ω ∈ En, one can define the cylinder initiated by ω by:

[ω] = {τ ∈ E∞ : τ |n = ω}.
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Let also Fin(S) denote the set of all t ∈ R such that∑
e∈E

‖φ′ω‖t∞ < +∞.

We say then that the potential tψ is summable. And will denote θS := inf(Fin(S))..

Lemma 6.2.1 ([55]). If g : E∞ → R is Hölder continuous, then there exists a constant Cg > 0

such that ∣∣∣∣∣
n−1∑
j=0

g(σj(ω))−
n−1∑
j=0

g(σj(τ))

∣∣∣∣∣ ≤ Cg

for all n ≥ 1 and all ω, τ ∈ E∞ such that ω|n = τ |n.

As in the finite case, we defined in [55] a function d : J → N by the following formula,

d(x) = #{e ∈ E : x ∈ φe(J)},

which entails the formula ∑
e∈E:x∈φe(J)

1

d(x)
= 1

for all x ∈ J . Now let κ : E∞ → [1,+∞) be a (not necessarily bounded) Hölder continuous function

and, for an arbitrary parameter t ∈ R, consider the potentials ψκ,t : E∞ → R defined as follows:

ψκ,t(ω) = tψ(ω)− log κ(ω) = t log |φ′ω1
(π(σ(ω)))| − log κ(ω),

for all ω ∈ E∞. One can check easily that ψκ,t is Hölder continuous. Since the function log κ is

non-negative, the set

Finκ(S) = {t ∈ R :
∑
i∈E

exp(sup(ψκ,t|[i])) <∞},

that is the set of those parameters t ∈ R for which the potential ψκ,t is summable, contains Fin(S).

For any t ≥ 0, let P (ψκ,t) be the topological pressure, of the potential ψκ,t with respect to the

dynamical system σ : E∞ → E∞; namely:

P (ψκ,t) := lim
n→∞

1

n
log

∑
ω∈En

exp

(
sup

(
n−1∑
j=0

ψκ,t|σj [ω]

))
.

Since log |φ′ω1
(π(σ(ω)))| ≤ log s < 0, it is straightforward to check that the function Finκ(S) 3 t →

P(ψκ,t) ∈ R is convex, continuous, strictly decreasing, and limt→+∞ P (ψκ,t) = −∞. We denoted

P (ψκ,t) simply by P (t). If it will be needed to be more specific, we will write also PS(t) or PE(t)

for P (t). Define now

hκ := inf{t ≥ 0 : P (ψκ,t) ≤ 0}.

Like with the pressure, we write hκ(S) or hκ(E) if we want to be more specific. If there exists t ≥ 0

such that P (ψκ,t) = 0, then such a t is unique and is equal to hκ.
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If t ∈ Finκ(S), then there exists a unique shift-invariant Gibbs (equilibrium) state µ̂t of the

Hölder continuous potential ψκ,t : E∞ → R, which is uniquely characterized by the (Gibbs) property

that

µ̂t([ω|n]) ≈ e−P (t)n||φ′ω|n||
tΠn−1

j=0

1

κ(π(σj(ω)))
(78)

for every ω ∈ E∞ and every n ≥ 1. Let

µt = µ̂t ◦ π−1. (79)

Clearly, µt(J) = 1. If A is an arbitrary Borel subset of J and F ⊂ E∗ is a family of mutually

incomparable words, meaning that none is extension of another, such that π−1(A) ⊂
⋃
ω∈F [ω], then

µt(A) ≤
∑

ω∈F µ̂t([ω]). We say that a set F ⊂ X is S-invariant if⋃
e∈E

φe(F ) ⊂ F.

We say that a Borel probability measure µ on X is S-invariant if there exists a Borel probability

shift-invariant measure µ̃ on E∞ such that

µ = µ̃ ◦ π−1.

Then obviously µ(JS) = 1. Also such a measure µ is called ergodic iff the measure µ̃ is; that is µ is

ergodic if and only if for an S-invariant Borel subset F of X either µ(F ) = 0 or µ(F ) = 1. Define

also the boundary at infinity

∂∞X :=
⋃
ω∈E∗

φω(∂X).

Of course ∂∞X is an S–invariant subset of X.

Recall that S(∞), the boundary at infinity of the system, is defined to consist of all accumulation

points of all sequences (xn)∞n=1, where xn ∈ φen(X) with some en ∈ E, and all elements en, n ≥ 1,

are mutually distinct. Obviously S(∞) is a closed subset of X. We put

S+(∞) :=
⋃
ω∈E∗

φω(S(∞)).

So, S+(∞) is a Borel S-invariant subset of X. We say that the system S is small at infinity if

µ(S(∞)) = 0

for every Borel S-invariant probability measure µ on JS such that µ(∂X) = 0.

Conditions in which the system S is small at infinity are not difficult to find. Assume that S
is a conformal irreducible IFS. If any of the following conditions holds, then it can be shown easily

(see [55]) that S is small at infinity.

(a) S(∞) ⊂ ∂∞X .

109



(b) S(∞) is countable.

(c) S(∞) ∩ JS = ∅

(d) S(∞) = ∅ meaning that the alphabet E is finite.

We proved in [55], an upper bound for the Hausdorff dimension of the limit set JS from which

an invariant subset is taken away.

Theorem 6.2.1 ([55]). Let S = {φe}e∈E be a conformal iterated function system. Let H be an

S-invariant subset of JS . If k ≥ 1 is an integer satisfying d(x) ≥ k for all x ∈ JS \ H, then

HD(JS \H) ≤ hk.

The main result of [55] was the proof of the lower bound for the Hausdorff dimension of

the limit set of an infinite IFS with overlaps. The difference from the finite case, in the formulation

and in the proof, is now larger than in the case of the upper bound that we gave above. In this

countable case we have to assume that the system is small at infinity; also the boundary points

∂∞X and S+(∞) play an important role.

Theorem 6.2.2 ([55]). Let S = {φe}e∈E be an irreducible conformal iterated function system which

is small at infinity. If κ̂ : JS → [1,+∞) is a Hölder continuous function such that d(x) ≤ κ̂(x) for

all x ∈ JS \ (∂∞X ∪ S+(∞)), then we obtain the lower estimate for the dimension,

HD(JS \ (∂∞X ∪ S+(∞))) ≥ hκ,

where κ = κ̂ ◦ π : E∞ → R.

We also obtained results in the case when the dimension of the limit set attains its minimal

possible value as the zero of a pressure function that involves the number of overlaps d(·).

Theorem 6.2.3 ([55]). Let S = {φe}e∈E be an irreducible conformal iterated function system which

is small at infinity. Assume that

D := sup{d(x) : x ∈ JS \ (∂∞X ∪ S+(∞))}

is finite; in particular the supremum becomes a maximum. Then we obtain:

HD(JS \ (∂∞X ∪ S+(∞))) = hD ⇔ d(x) = D, ∀ x ∈ JS \ (∂∞X ∪ S+(∞)).

We also gave in [55] many examples of countable IFS with overlaps, which are small at infinity

and for which we can apply the Theorems above. Here are some of these examples.

Example 1. Let X = [−1, 1], and for every n ∈ Z \ {0}, define φn : [−1, 1]→ [−1, 1] by:

φn(x) =
n

|n|

(
x

4n2
+ 1− 1

|n|

)
.
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Then φn([−1, 1]) ⊂ [−1, 1], the system S := {φ\}\∈Z\{′} is irreducible, S(∞) = {−∞,∞}, so S is

small at infinity as it satisfies condition (c) of the above conditions for small at infinity, and d(x) = 1

for all x ∈ JS \ {0} while d(0) = 2. Therefore, from the above results we obtain that HD(JS) = h1.

Example 2. Let again X = I = [0, 1], and φ1 : X → X be a strictly increasing differentiable (ex.

linear) contraction such that φ1(0) = 0 and φ1(1) < 1/2. Then define inductively φ2(n+1) : X → X

to be a strictly increasing differentiable (ex. linear) contraction such that

φ2(n+1)(0) = φ2n+1(1) and φ2(n+1)(1) < 1/2.

and

φ2n+1(0) > φ2n(1) and φ2n+1(1) < 1/2.

Similarly, let φ−1 : X → X be a strictly increasing differentiable (ex. linear) contraction such that

φ0(1) = 1 and φ0(0) > 1/2. Then define recursively φ2(n+1) : X → X to be a strictly increasing

differentiable (ex. linear) contraction such that

1/2 < φ−(n+1)(1) < φ−n(0).

Consider the system

S = {φn : n ∈ Z}.

We now notice that both points 0 = πS(1∞) and 1 = πS(0∞) belong to JS. Thus all the points of

type φj(0), φj(1), j ∈ Z, belong to JS . But for the contact points of type φ2j+1(1), j > 0 we see

that the function d is equal to 2, whereas for all other points in JS it is equal to 1. Also notice that

S(∞) is countable, thus the system is small at infinity. Moreover, S is an irreducible system, since

JS 6⊂ ∂X. Thus since these contact points are in ∂∞(X), we can apply the above Corollary and

obtain that HD(JS) = h1.

Example 3. Let X = B(0, 1) be the closed unit disk in the plane. For every n ∈ Z let

φn : B(0, 1)→ B(0, 1) be a contracting similarity z 7→ anz + bn, where both an and bn are real and

0 < an < 1. Then φn([−1, 1]) ⊂ (−1, 1) and hence we obtain JS ⊂ [−1, 1], where S = {φn : n ∈ Z}.
We may select the numbers an and bn, n ∈ Z, so that φn([−1, 1]) ∩ φk([−1, 1]) 6= ∅ if and only if

|n − k| = 1, and when this does hold then in addition φn((−1, 1)) ∩ φk((−1, 1)) 6= ∅. We further

require that |an| →
n→∞

0, and assume also that the sequence (φn(0))n∈Z is increasing and

lim
n→+∞

φn(0) = 1, while lim
n→−∞

φn(0) = −1

In this example S(∞) is equal to the finite set {−1, 1}, hence the system is small at infinity. Thus

we obtain that (−1, 1) ⊂ JS. However the function d(·) is oscillating in (−1, 1), from the value 1 to

the value 2, and thus is not continuous on JS.

By choosing now a Hölder continuous function κ̃ such that d(x) ≤ κ̃(x), we obtain from Theorem

4.1 that HD(JS) = 1 ≤ hκ.
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6.3 Families of non-stationary Moran fractals determined by asymptotic frequencies,

and their pressure functions.

A class of special iterated function systems is given by non-stationary Moran fractals. We considered

in [51], Moran fractals with countably many generators and, this time, satisfying the Open Set

Condition. Our fractals are determined by certain asymptotic frequencies of letters, and thus, as

shall be seen in the sequel, prove to be useful for number theoretic applications.

First, let us take {Φk}k≥1 a sequence of positive vectors in the infinite dimensional space RN∗ ,

such that for all k ≥ 1, Φk = (ck1, ck2, · · · ), ckj ≥ 0, k, j ≥ 1 satisfying

∞∑
j=1

ckj ≤ 1, and sup{ckj : j ∈ DN} < 1

Let D0 be the empty set. For k ≥ 1 write

Dm,k = {(im, im+1, · · · , ik) : ij ∈ N, m ≤ j ≤ k},

and Dk = D1,k, D∞ = limk→∞Dk. Define D :=
⋃
k≥0Dk. Elements of D are called words. For any

σ ∈ D if σ = (σ1, σ2, · · · , σn) ∈ Dn, we write σ− = (σ1, σ2, · · · , σn−1) to denote the word obtained

by deleting the last letter of σ, |σ| = n to denote the length of σ, and σ|k := (σ1, σ2, · · · , σk), k ≤ n,

to denote the truncation of σ to the length k. If σ = (σ1, σ2, · · · , σk) ∈ Dk and τ = (τ1, τ2, · · · , τm) ∈
Dk+1,m, then we write στ = σ ∗ τ = (σ1, · · · , σk, τ1, · · · , τm) to denote the juxtaposition of σ, τ ∈ D.

For σ ∈ D and τ ∈ D
⋃
D∞ we say τ is an extension of σ, written as σ ≺ τ , if τ ||σ| = σ.

Let J a nonempty compact subset of Rd such that J = cl(intJ), where int(A) denotes the

interior of a set A, and let F = {Jσ : σ ∈ D} be an infinite collection of nonempty subsets of Rd.

We say that F fulfills the conditions for the infinite Moran structure with non-stationary

contraction rates (IMSNC), if it satisfies the following:

1) J∅ = J .

2) For any σ ∈ D, Jσ is similar to J , i.e there exists a similarity Sσ : Rd → Rd so that Jσ = Sσ(J).

3) For any k ≥ 0 and σ ∈ Dk, Jσ∗1, Jσ∗2, · · · are subsets of Jσ, and int(Jσ∗i) ∩ int(Jσ∗j) = ∅ for

i, j ≥ 1 and i 6= j.

4) For any k ≥ 1 and σ ∈ Dk−1, j ≥ 1,
|Jσ∗j |
|Jσ | = ckj.

Since the cardinality of Dk is infinity for any k ≥ 1, the set
⋃
σ∈Dk Jσ may not be closed. For

example: if k = 1, then Dk = D1 = N. Take J = [0, 1] and Jj = [1 − 1
2j−1 , 1 − 1

2j
], and then⋃∞

j=1 Jj = [0, 1) which is not closed.

The nonempty compact set E := E(F) given by

E =
⋃

σ∈D∞

∩1≤i<∞Jσ|i

is called the Moran set (or Moran fractal) associated with the collection F . As F satisfies the

infinite Moran structure conditions, we call E an infinitely generated Moran set with non-stationary

contraction coefficients, or simply an infinitely generated non-stationary Moran fractal.
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Let now Fk = {Jσ : σ ∈ Dk}, and F =
⋃
k≥0Fk. The elements of Fk are called the basic sets of

order k, and the elements of F are called the basic elements of the Moran set E.

If limk→∞ supσ∈Dk |Jσ| > 0, then E contains interior points. Then the measure and dimension

properties will be trivial. We assume therefore limk→∞ supσ∈Dk |Jσ| = 0.

By the definition of the Moran set E associated with F , we see that F is a net of E, i.e., for

any x ∈ E and any ε > 0, there is G ∈ F such that x ∈ G and |G| < ε. Two basic elements are

said to be disjoint if their interiors are disjoint.

Suppose that the set J and {Φk}k≥1 are given; we denote by M(J,N, {Φk}) the class of Moran

sets satisfying the IMSNC. We call M(J,N, {Φk}) the Moran class associated with the triplet

(J,N, {Φk}); this class is obtained by considering all the possible similitudes Sσ, σ ∈ D, which

satisfy the conditions IMSNC above. Without loss of generality we can assume that the diameter

of the set J is one.

Consider A := {a1, a2, · · · , am} to be a finite set of distinct positive integers, and define

AN := {(tj)∞j=1 ∈ D∞ : tj ∈ A}

Consider an element ω = (s1, s2, · · · ) ∈ AN, and let ω|k = (s1, s2, · · · , sk) and ‖ω|k‖ai := #{sj =

ai : sj appears in ω|k} denote the number of times that ai appears in the truncated word ω|k. In

addition assume that the infinite sequence ω ∈ AN satisfies:

lim
k→∞

‖ω|k‖ai
k

= ηi > 0,

for every ai ∈ A, 1 ≤ i ≤ m; then we say that ω has the frequency vector η = (η1, η2, · · · , ηm).

Let T be the left shift on AN, i.e., T (ω) = (s2, s3, · · · ) where ω = (s1, s2, · · · ) ∈ AN. Note that∑m
i=1 ‖ω|k‖ai = k, and

∑m
i=1 ηi = 1. For η = (η1, η2, · · · , ηm) ∈ [0, 1]m define

AN
η := {ρ = (ρj)j≥1 : ρj ∈ A, lim

k→∞

‖ρ|k‖ai
k

= ηi, 1 ≤ i ≤ m}

We fix now Ψi = (γi1, γi2, · · · ), 1 ≤ i ≤ m an infinite positive vector satisfying the conditions:

∞∑
j=1

γij ≤ 1, and sup{γij : j ∈ N} < 1, for all 1 ≤ i ≤ m (80)

If ω = (s1, s2, · · · ) ∈ AN
η , then for k ≥ 1 arbitrary, if it happens that the element sk of ω is equal to

some ai ∈ A, then we define the infinite positive vector

Φk = (ck1, ck2, . . .) := Ψi = (γi1, γi2, · · · )

In this way by using our construction above, we obtain a class of Moran sets associated with

ω ∈ AN
η , by taking all possible similitudes that satisfy IMSNC. Denote such a generic Moran set by

E := E(ω), and call it a Moran set with infinitely many generators and non-stationary

contraction rates associated to Ψi, 1 ≤ i ≤ m, to η and to ω ∈ AN
η . Later in the paper, we extend

this construction also to the case of countably many infinite vectors Ψi.
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Let C = sup{γij : j ∈ N, 1 ≤ i ≤ m}. Then by our assumption, 0 < C < 1. Let us define

θi = inf{t > 0 :
∞∑
j=1

γtij <∞}, 1 ≤ i ≤ m, and θ = max{θi : 1 ≤ i ≤ m}

Note that θi ≥ 0 for 1 ≤ i ≤ m, and so θ ≥ 0, and thus one of the following two mutually exclusive

cases can occur:

(C1)
∑∞

j=1 γ
θ
ij =∞ for some i;

(C2)
∑∞

j=1 γ
θ
ij <∞ for all i.

We assume that (C1) happens, and then
∑∞

j=1 γ
t
ij <∞ for all t ∈ (θ,+∞) and for all 1 ≤ i ≤ m.

If (C2) happens, then
∑∞

j=1 γ
t
ij <∞ for all t ∈ [θ,+∞) and for all 1 ≤ i ≤ m.

We will study now pressure functions for the fractals introduced before. Recall that we fixed

an element ω ∈ AN
η , and a sequence of infinite vectors {Φk}k≥1, with Φk = (ck1, ck2, . . .), k ≥ 1

defined in terms of ω and of Ψ1, . . . ,Ψm. For an arbitrary σ = (σ1, σ2, · · · , σk) ∈ Dk, let us define

cσ =

{
c1σ1c2σ2 · · · ckσk if k ≥ 1

1 if k = 0.

Let t ∈ (θ,+∞) be given, and define

ck(t) =
1

k
log

∑
σ∈Dk

ctσ =
1

k
log

m∏
i=1

(
∞∑
j=1

γtij

)‖ω|k‖ai
=

m∑
i=1

‖ω|k‖ai
k

log
∞∑
j=1

γtij,

for k ∈ N. Let us denote by L(t) =
∑m

i=1

∣∣∣log
∑∞

j=1 γ
t
ij

∣∣∣. Note that 0 <
∑∞

j=1 γ
t
ij < ∞ for all

t ∈ (θ,+∞) and for all 1 ≤ i ≤ m. Thus L(t) is a positive number for any t ∈ (θ,+∞).

We claim that {ck(t)}∞k=1 is a Cauchy sequence. For all 1 ≤ i ≤ m,
{
‖ω|k‖ai

k

}∞
k=1

is convergent,

and so for any ε > 0 there exists a positive integer N such that for all n, p ≥ N and for all 1 ≤ i ≤ m,∣∣∣∣‖ω|n‖ain
− ‖ω|p‖ai

p

∣∣∣∣ < ε

L(t)

Using this fact, and noting that

cn(t)− cp(t) =
m∑
i=1

(
‖ω|n‖ai
n

− ‖ω|p‖ai
p

)
log

∞∑
j=1

γtij,

for all n, p ≥ N , we obtain:

|cn(t)− cp(t)| ≤
m∑
i=1

∣∣∣∣‖ω|n‖ain
− ‖ω|p‖ai

p

∣∣∣∣
∣∣∣∣∣log

∞∑
j=1

γtij

∣∣∣∣∣ < ε

L(t)

m∑
i=1

∣∣∣∣∣log
∞∑
j=1

γtij

∣∣∣∣∣

114



which implies |cn(t)− cp(t)| < ε, and thus the claim is true. Notice also that from above, the

sequence {ck(t)}∞k=1 is bounded. Hence {ck(t)}∞k=1 is a convergent sequence. Then, we can define a

function P (t):

P (t) = lim
k→∞

ck(t) = lim
k→∞

m∑
i=1

‖ω|k‖ai
k

log
∞∑
j=1

γtij =
m∑
i=1

ηi log
∞∑
j=1

γtij, (81)

where t ∈ (θ,+∞). The function P (t) will be called the pressure function corresponding to the

Moran set E := E(ω), by analogy to the usual topological pressure for continuous functions [96],

where the sets Dk play the role of Bowen sets of order k. The pressure function associated to E(ω)

depends only on the contraction rates ckj, k, j ≥ 1, which in turn depend on ω and Ψ1, . . . ,Ψm.

We will assume also that there exists some u ∈ (θ,+∞) with 0 < P (u) < ∞. We proved in

[51] two lemmas that give some properties of the function P (t), similar to the classical notion of

pressure for a dynamical system ([5], [71], etc.)

Lemma 6.3.1 ([51]). The function P (t) is strictly decreasing, convex and continuous on (θ,+∞).

We also showed that there exists a unique zero for the pressure function in this case; this zero

will prove useful later when dealing with the dimension of the limit set.

Lemma 6.3.2 ([51]). There exists a unique h ∈ R such that P (h) = 0. In addition h ∈ (θ,+∞).

6.4 Representations of real numbers in m-ary expansions, beta-expansions, Lüroth

expansions, continued fractions, and f-expansions. Besicovitch-Eggleston sets.

The ergodic theory of numbers and that of representations of real numbers in various expansions

is a well established and rich field, at the crossroads of number theory, real analysis and ergodic

theory (see for instance [13], [25], [76], etc.)

In this section we will recall some properties of expansions, starting with well-known expansions

such as the m-ary and β-expansions, and then expansions with infinitely many digit values, such

as the continued fractions. At the end of this section we will recall also some interesting ergodic

properties of f -expansions. We will recall also the notion of (quasi)-normal numbers for certain

expansions, and that of Besicovitch-Eggleston sets.

Let us take an integer number m ≥ 2; any number x ∈ [0, 1)\Q has a unique m-ary expansion:

x =
∞∑
k=1

dk(x)

mk
, dk(x) ∈ {0, 1, . . . ,m− 1} (82)

The coefficients dk(x) may also be denoted by dk when no confusion arises, and are called the

digits of x in the m-ary expansion; they are obtained from iterations of the piecewise linear map

T : [0, 1)→ [0, 1), T (x) = mx (mod 1), x ∈ [0, 1). Hence,

x =
d1(x)

m
+
Tx

m
=
d1(x)

m
+
d2(x)

m2
+ . . .+

dk(x)

mk
+
T kx

mk
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It is well-known that the Lebesgue measure λ is T -invariant, and that the random variables Xk

given by the digits dk(·), k ≥ 1 are independent identically distributed with respect to Lebesgue

measure on [0, 1) (see [13], etc.) Then, for any j ∈ {0, . . . ,m − 1} it follows from the Strong Law

of Large Numbers that Lebesgue-a.e number x ∈ [0, 1) is normal, i.e for Lebesgue-a.e x ∈ [0, 1) and

0 ≤ j ≤ m− 1, the asymptotic frequency of the digit j is in this case 1
m

,

lim
n→∞

1

n
Card{1 ≤ k ≤ n, dk(x) = j} = lim

n→∞

1

n

n∑
i=1

Xi(x) = λ(y ∈ [0, 1), d1(y) = j) =
1

m

Denote now by N (m) the set of normal numbers in the m-ary expansion.

Nevertheless, there are also other real numbers x ∈ [0, 1) \ Q which are not normal, but for

which the asymptotic frequency pj of digit j exists, for every 0 ≤ j ≤ m − 1; such numbers are

called (p0, . . . , pm−1)-quasinormal, and let us denote their set by

F (p0, . . . , pm−1) :=
{
x =

∑
k≥1

dk(x)

mk
,
Card{j, 1 ≤ j ≤ n, dj(x) = i}

n
−→
n→∞

pi, 0 ≤ i ≤ m− 1
}

Definition 6.4.1. A set F (p0, . . . , pm−1) as above, is called a Besicovitch-Eggleston set associated

to the frequency probability vector (p0, . . . , pm−1) in the m-ary expansion.

From the work of Besicovitch (for the dyadic case) and Eggleston (for the general case), we have

the dimension formula (see also [19]):

dimH(F (p0, . . . , pm−1)) = − 1

logm

∑
0≤j≤m−1

pj log pj

Also the sets F (p1, . . . , pm) are dense in the unit interval, as can be seen since the frequencies are

not affected by the first n digits, for any fixed n.

Let us denote byQm the union of all sets F (p0, . . . , pm−1), over all probability vectors (p0, . . . , pm−1);

a number from Qm is called quasinormal in the m-ary expansion.

Another expansion where digits take finitely many values, is the beta-expansion for β > 1,

β /∈ Z. It was introduced by Rényi ([76]) and uses iterations of the map

Tβ : [0, 1)→ [0, 1), Tβ(x) = βx (mod 1)

In this case the main generating equation is βx = Tβ(x) + [Tβ(x)], where [y] and {y} := y − [y],

denote respectively the integer part, and the fractional part of the real number y. Thus one obtains

the β-expansion of x,

x =
d1(x)

β
+
d2(x)

β2
+ . . . ,

where the digits di(x), i ≥ 1 may be denoted also by di, i ≥ 1 and where di ∈ {0, . . . , [β]}, i ≥ 1.

However as it can be seen, the map Tβ does not preserve Lebesgue measure on [0, 1), unlike the

map Tm for m ∈ Z. Rényi proved in [76] that there exists however a unique probability measure νβ

116



equivalent to the Lebesgue measure, and which is Tβ-invariant. The probability νβ is ergodic with

respect to Tβ (see [76], [13]). Moreover Parry ([67]) gave an explicit form for the density function

hβ of νβ, hβ(x) :=
dνβ
dλ

(x) for Lebesgue-a.e x,

hβ(x) =
1

I(β)

∑
n≥0, x<Tnβ 1

1

βn
, and I(β) =

1∫
0

( ∑
n≥0, x<Tnβ 1

1

βn
)
dλ(x) (83)

From the Ergodic Theorem ([96]), it follows that for νβ-a.e x ∈ [0, 1) (hence for Lebesgue-a.e

x ∈ [0, 1)) and for j ∈ {0, 1, . . . , [β]},

lim
n→∞

1

n
Card{1 ≤ i ≤ n, di = j} = lim

n→∞

1

n

n−1∑
i=0

χ[ j
β
, j+1
β

)(T
i
β(x))

= νβ([
j

β
,
j + 1

β
)) = ηj

(84)

As before, we will denote the set of numbers x ∈ [0, 1) for which the above holds, by N (β) and call

it the set of normal numbers for the β-expansion; N (β) has full Lebesgue measure in [0, 1). Hence

for x ∈ N (β), the sequence ω = (d1(x), d2(x), . . .) given by the digits of x, belongs to AN
η , for the

stochastic vector η = (η0, . . . , η[β]) specified in (84).

In general, for a stochastic vector (p0, . . . , p[β]) we define the set of (p0, . . . , p[β])-quasinormal

numbers :

F (p0, . . . , p[β]) := {x =
∑
k≥1

dk(x)

βk
∈ [0, 1),

Card{j, 1 ≤ j ≤ n, dj(x) = i}
n

→
n→∞

pi, 0 ≤ i ≤ [β]}

We obtain now the dimension of a Besicovitch-Eggleston set for the β-expansion F (p0, . . . , p[β]),

similarly as in case of the m-ary expansion.

Lemma 6.4.1 ([51]). Consider a number β > 1, β /∈ Z and a stochastic vector (p0, . . . , p[β]). Then

the set of (p0, . . . , p[β])-quasinormal numbers for the β-expansion, has Hausdorff dimension

dimH(F (p0, . . . , p[β])) = −

[β]∑
i=0

pi log pi

log β − p[β] log{β}

Proof. We use the mass distribution principle (see for eg. [19]), in order to obtain a probability

measure and then to compare it with Lebesgue measure on basic intervals. Let us denote by

I0 = [0, 1
β
), . . . , I[β] = [β, 1) the basic intervals for the expansive map Tβ, and let Ii1...ik := {x ∈

Ii1 , T
j(x) ∈ Iij , 1 ≤ j ≤ k}, k ≥ 1.

For a given j ∈ {0, . . . , [β]}, let us define the random variables Xi, i ≥ 1 defined by

Xi(x) =

{
1, if di(x) = j,

0, if di(x) 6= j
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We will take now a probability measure µ which makes the random variables Xi, i ≥ 1 independent.

This is defined such that ν(Ii1...ik) = pi1 . . . pik for any i1, . . . , ik and k ≥ 1. For this probability

we thus have a sequence of independent identically distributed random variables Xi, i ≥ 1. From

the Strong Law of Large Numbers it follows as in [19] that, if we denote by nj(x, k) the number of

occurences of the digit j in the first k digits of x, then

lim
k→∞

nj(x, k)

k
= pj, j = 0, . . . , [β]

Hence we see that µ gives measure 1 to the set F (p0, . . . , p[β]). Now let us notice that the length of

the interval Ii1...ik is given by: λ(Ii1...ik) = {β}n[β](x,k)

βk
. So by denoting the interval Ii1...ik containing

x by Ik(x), we have for any δ > 0,

1

k
log

P (Ik(x))

λ(Ik(x))δ
→
k→∞

∑
0≤i≤[β]

pi log pi + δ(log β − p[β] log{β})

From the mass distribution principle ([19], [34]) it follows that the Hausdorff dimension is:

dimH(F (p0, . . . , p[β])) = −

∑
0≤i≤[β]

pi log pi

log β − p[β] log{β}

Another important representation for real numbers, which now has an infinite set of possible

digit values, is that in terms of continued fractions (see for eg. [13], [25], etc.)

In this case, T : [0, 1) → [0, 1) is given by the formula T (x) = 1
x
−
[

1
x

]
, x 6= 0, and T (0) = 0.

Any irrational number x ∈ [0, 1) can be represented uniquely in its continued fraction form as

x =
1

d1(x) + 1
d2(x)+ 1

d3(x)+...

The integers dk(x) are called the digits of x in its continued fraction expansion and are defined

by: dn(x) :=
[

1
Tn−1(x)

]
, n ≥ 1. The map T does not preserve the Lebesgue measure λ, but there

exists a T -invariant ergodic measure µG, i.e the Gauss measure which is absolutely continuous with

respect to λ (see for eg. [13]). It is well-known that the Gauss measure satisfies

µG(A) =
1

log 2

∫
A

1

1 + x
dx

It follows that we can apply the Ergodic Theorem for T and µG, and obtain the set of normal

numbers for the continued fraction expansion NG ⊂ [0, 1) which has µG-measure 1 (and thus also

Lebesgue measure 1). For any x ∈ NG and k ≥ 1 we have

1

n
Card{1 ≤ i ≤ n, di(x) = k} →

n→∞
µG(x ∈ [0, 1), d1(x) = k) := pG,k
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Let us consider now an infinite stochastic vector η = (η1, η2, . . .) and consider, as in [30] the

probability νη which makes the digits {Xi}i in the continued fraction expansion to be independent

random variables. Namely if the probability measure µ is defined by µ(dn = j) = ηj, ∀n, j ≥ 1,

then the probability measure

νη(A) := µ(X ∈ A), (85)

gives the distribution of the random variable X = 1
d1+ 1

d2+ 1
...

.

The measure νη is useful in our case since it gives the asymptotic frequencies of appearance

of digits for quasinormal numbers. Clearly νη is singular with respect to the Lebesgue measure if

η 6= pG := (pG,1, pG,2, . . .). For a stochastic vector η = (η1, η2, . . .) define the set of η-quasinormal

numbers F (η) to be

F (η) := {y ∈ [0, 1),
Card{1 ≤ i ≤ n, di(y) = k}

n
→
k→∞

ηk, k ≥ 1}

Now, from the Ergodic Theorem applied to the T -invariant ergodic probability νη (or from the

Strong Law of Large Numbers), we know that νη(F (η)) = 1.

We denote by QG the union of all sets F (η) over stochastic vectors η with

∣∣∣∣∑
i≥1

ηi log ηi

∣∣∣∣ < ∞,

and call it the set of quasinormal numbers for the continued fraction expansion. Then, Kinney and

Pitcher proved that the dimension of the probability νη is given by: dimH(νη) =
−

∑
i≥1

ηi log ηi

2
∫ 1
0 | log x| dνη(x)

> 0,

hence from the fact that F (η) has νη-measure equal to 1, it follows that

dimH(F (η)) > 0 (86)

In [30], Kifer, Peres and Weiss proved that there exists a constant ε0 > 0 with dimH(νη) ≤ 1− ε0.

In the end of this section we shall recall also the general notion of f -expansions, introduced by

Rényi in [76]. General f -expansions have been studied by several authors (see also [30]), and are

important in the ergodic theory of numbers.

Let first an integer M ≥ 2 or M = ∞, and assume f is either a strictly decreasing continuous

function on [1,M + 1] with f(1) = 1, f(M + 1) = 0, or f is strictly increasing continuous on [0,M ]

with f(0) = 0, f(M) = 1. In f -expansion, one represents real numbers by a repeated application

of f and extraction of integer parts at each step; clearly one has the identities x = f(f−1(x)) and

f−1(x) = [f−1(x)]+{f−1(x)}. Thus one can define inductively the digits dk(x) and the remainders

rk(x) of x:

d0(x) = 0, r0(x) = x, dk+1(x) = [f−1(rk(x))], rk+1(x) = {f−1(rk(x))}, k ≥ 0

Then for any x ∈ [0, 1), the series

f(d1(x) + f(d2(x) + f(d3(x) + · · · ) · · · ))),
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converges to x, if certain technical conditions are satisfied (see [76]) namely:

(C) in case f is strictly decreasing, there exists α ∈ (0, 1) so that |f(t) − f(s)| ≤ α|t − s| if

1 + f(2) < s < t and |f(t) − f(s)| ≤ |t − s| if 0 ≤ s < t; and, in case f is strictly increasing, we

should have |f(t)− f(s)| < |t− s|, 0 ≤ s < t.

Now consider the associated transformation of [0, 1),

T (x) := f−1(x)− [f−1(x)], x ∈ [0, 1),

which is injective on the intervals Ik := f(k, k+ 1), 1 ≤ k ≤M when f decreases, or 0 ≤ k ≤M − 1

when f increases.

The map T is assumed to satisfy the following regularity and expansiveness conditions ([97]):

i) T |Ik is C2, for all k;

ii) there exists some p ∈ N such that inf
x∈Ik,k≥1

|(T p)′(x)| > 1;

iii) sup
x,y,z∈Ik,k≥1

| T ′′(x)
T ′(y)T ′(z)

| <∞.

Then by using the Perron-Frobenius operator, Walters showed in [97] that T has a unique

absolutely continuous invariant probability µT , which is in fact the equilibrium measure of the

potential − log |T ′|. Moreover, the probability µT is exponentially mixing. In particular when

f(x) = 1
x
, we obtain the continued fraction expansion and its Gauss measure µG.

For a general f -expansion, consider now a potential φ on ∪
k
Ik, satisfying the following growth

conditions:

a1)
∑

y∈T−1(x)

eφ(y) ≤ KT,φ <∞, x ∈ ∪
K
Ik;

a2) there exists some γ > 0 and constants Ck, k ≥ 1 such that |φ(x)−φ(y)| ≤ Ck|x−y|γ, x, y ∈ Ik
and sup

x∈Ik,k≥1
Ck|T ′(x)|−γ <∞.

Under conditions i), ii), iii), a1), a2), (C), it follows from [97] that there exists a unique T -

invariant equilibrium measure µφ corresponding to φ, which is positive on open nonempty sets and

has no atoms. Consider now the infinite stochastic vector

η(φ) = (µφ(I1), µφ(I2), . . .),

then from Birkhoff Ergodic Theorem applied to the transformation T and to the ergodic measure

µφ, there must exist a Borel set F (φ) ⊂ [0, 1) with µφ(F (φ)) = 1, such that every x ∈ F (φ) has

asymptotic frequency vector η(φ) in its f -expansion.

6.5 Connections between families of infinitely generated Moran fractals, and the er-

godic theory of f-expansions.

In [51], we studied also connections between the families of non-stationary fractals constructed above

in 6.3, and the ergodic theory of f -expansions; namely the relations between dimension for the above
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infinitely generated Moran fractals, and the speed of convergence in the asymptotic frequencies of

digits in f -expansions with countably many digit values.

We were able to relate the Hausdorff dimension of the non-stationary Moran fractal constructed

above with the pressure function, in the following:

Theorem 6.5.1 ([51]). Let E := E(ω) ∈ M(J,N, {Φk}) for ω ∈ AN
η , and consider h ∈ (θ,+∞) to

be the unique number which satisfies the equation P (h) = 0. Then

dimH(E) = h, and Hh(E) <∞

Moreover if h = d, then it follows that Hd(E) > 0.

In the proof of the Theorem above, we used the following result about a natural dynamically

defined distribution on the fractal:

Proposition 6.5.1 ([51]). Let h ∈ (θ,+∞) be determined by P (h) = 0. Then there exists a Borel

probability measure µh supported on Ē such that for any k ≥ 1 and σ0 ∈ Dk,

µh(Jσ0) =
chσ0∑
σ∈Dk c

h
σ

In particular if k is large enough, then µh(Jσ) = chσ = |Jσ|h, for σ ∈ Dk.

From Theorem 6.5.1 above we can conclude that the dimension of E(ω) depends only on the

frequency vector η and on the contraction rates given by the infinite vectors Ψi, 1 ≤ i ≤ m, for any

sequence ω belonging to the space AN
η .

We then proved in [51] that the Hausdorff dimension of E(ω), ω ∈ AN
η , depends in fact real

analytically on the frequency vector η = (η1, . . . , ηm), in case the contraction rates are fixed.

Theorem 6.5.2 ([51]). Let us fix the infinite positive vectors Ψi, 1 ≤ i ≤ m satisfying (80), and

denote by V the interior of the set {(η1, . . . , ηm) ∈ [0, 1]m, η1 + . . . + ηm = 1}. Consider now

η = (η1, . . . , ηm) ∈ V ⊂ Rm and ω ∈ AN
η , and let E(ω) be an associated Moran fractal with

contraction rates given by {Ψi}1≤i≤m as in Section 6.3. Then, function ∆ : V → R,

∆(η1, . . . , ηm) := dimH(E(ω)),

is real analytic on V.

From the above Theorem 6.5.2 and the Lojaciewicz Vanishing Theorem, we obtained then

the following estimation from below of the dimension oscillation, in terms of distances to certain

real-analytic subvarieties in Rm:

Corollary 6.5.1 ([51]). In the setting of Theorem 6.5.2, it follows that for any compact set K ⊂
V ⊂ Rm there exists a constant C > 0 and an integer q depending on K, such that for any

η = (η1, . . . , ηm) ∈ K and any ω ∈ AN
η we obtain:

|dimH(E(ω))− dimH(E(ρ0))| ≥ C · dist(η, Zρ0)q, where, (87)
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Zρ0 := {ω′ ∈ V , ∆(ω′) = dimH(E(ρ0))}

is a real-analytic subvariety in Rm, for any fixed stochastic vector ρ0 ∈ V.

We then studied the dependence of dimension of these Moran fractals on quasi-normal numbers.

Fix first a finite collection of infinite positive vectors Ψi = (γi1, γi2, . . .), 0 ≤ i ≤ m − 1, satisfying

the conditions (80) in the construction from Section 2, i.e

∞∑
j=1

γij <∞, 1 ≤ i ≤ m and sup{γij, 1 ≤ i ≤ m, j ∈ N} < 1

Given the infinite vectors Ψi, 0 ≤ i ≤ m−1 as above, we obtain then a functional E(·;m) assigning

to every x ∈ Qm, a Moran set E(x;m) ⊂ Rd with infinitely many generators and non-stationary

contractions as in Section 6.3, by using the sequence of digits ω = (d1(x), d2(x), . . .). This gives a

function describing the Hausdorff dimensions of these Moran sets,

Hm : Qm → [0,∞), Hm(x) := dimH(E(x;m)), x ∈ Qm

Similarly, for β-expansions, given a collection of infinite vectors Ψi = (γi1, γi2, . . .), 0 ≤ i ≤ [β]

satisfying (80) we construct infinitely generated non-stationary Moran fractals E(x; β) ⊂ Rd for

every x ∈ F (p0, . . . , p[β]), and obtain a dimension function

Hβ : Qβ → [0,∞), Hβ(x) := dimH(E(x; β))

The dependence of the dimension of the non-stationary fractal on the quasi-normal numbers is

given by:

Theorem 6.5.3 ([51]). Consider integer m ≥ 2 and a collection of infinite vectors Ψi = (γi1, . . .), 0 ≤
i ≤ m−1 satisfying (80), and consider the dimension function Hm(·) defined above for the associated

infinitely generated non-stationary Moran fractals E(·;m) ⊂ Rd .

Then, Hm is measurable, everywhere discontinuous on Qm, and it is constant on every set of

positive dimension F (p0, . . . , pm−1). Moreover for any x ∈ Qm and any neighbourhood U of x, it

follows that Hm attains all its possible values inside U , i.e

Hm(Qm) = Hm(U ∩Qm)

Same conclusions hold, for the function Hβ associated to β > 1, β /∈ Z and to a fixed collection

of infinite vectors Ψi, 0 ≤ i ≤ [β] satisfying (80).

Then, we studied the problem of dimension for non-stationary Moran fractals determined by

expansions with infinitely many digit values (for example continued fractions).

Let us consider now an infinite stochastic vector η = (η1, η2, . . .) and consider, as in [30] the

probability νη which makes the digits {Xi}i in the continued fraction expansion to be independent
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random variables. Hence the probability µ is defined by µ(dn = j) = ηj, ∀n, j ≥ 1, then the

probability measure

νη(A) := µ(X ∈ A), (88)

gives the distribution of the random variable X = 1
d1+ 1

d2+ 1
...

. The measure νη is useful in our case

since it gives the asymptotic frequencies of appearance of digits for quasinormal numbers. Also it

can be seen that νη is singular with respect to the Lebesgue measure if η 6= pG := (pG,1, pG,2, . . .).

For a stochastic vector η = (η1, η2, . . .) define the set of η-quasinormal numbers F (η) to be

F (η) := {y ∈ [0, 1),
Card{1 ≤ i ≤ n, di(y) = k}

n
→
k→∞

ηk, k ≥ 1}

From the Ergodic Theorem applied to the T -invariant ergodic probability νη, we know that νη(F (η)) =

1.

As before we denote byQG the union of all sets F (η) over stochastic vectors η with

∣∣∣∣∑
i≥1

ηi log ηi

∣∣∣∣ <
∞, and call it the set of quasinormal numbers for the continued fraction expansion. In this setting,

Kinney and Pitcher proved that the dimension of the probability νη is given by: dimH(νη) =
−

∑
i≥1

ηi log ηi

2
∫ 1
0 | log x| dνη(x)

> 0, hence from the fact that F (η) has νη-measure equal to 1, it follows that

dimH(F (η)) > 0. Also, in [30] it was showed that there exists a constant ε0 > 0 with dimH(νη) ≤
1− ε0.

We considered then a countable collection of fixed infinite vectors Ψi = (γi1, γi2, . . .), i ≥ 1,

satisfying the condition

sup{
∑
j≥1

γij, i ≥ 1} <∞, and sup{γij, i, j ≥ 1} < 1 (89)

For any stochastic infinite vector η = (η1, η2, . . .) satisfying

∣∣∣∣∑
i≥1

ηi log ηi

∣∣∣∣ < ∞ and any quasi-

normal number x ∈ F (η), construct an associated infinitely generated fractal E(ω) ⊂ Rd with

non-stationary contraction rates given by (Ψi)i≥1 and η, where ω := (d1(x), d2(x), . . .). The set

E(ω) will be denoted also by E(x;G). We defined as before,

HG : QG → [0,∞), HG(x) := dimH(E(x;G)),

and proved a Theorem similar to the one in the β-expansion case:

Theorem 6.5.4 ([51]). Consider a sequence of infinite positive vectors Ψi, i ≥ 1 satisfying condition

(89), and the associated infinitely generated non-stationary Moran fractals E(x;G) ⊂ Rd, x ∈ QG.

Then the function HG is constant on dense subsets of positive Hausdorff dimension, and for any

x ∈ QG and any interval U ⊂ [0, 1), x ∈ U , it follows that

HG(QG) = HG(U ∩QG)

123



We finish this section with some results about dimension of non-stationary Moran fractals as-

sociated to general f -expansions; in this case, unlike in the cases discussed above, we do not have

a specific form of the unique absolutely continuous invariant measure. Generalities about ergodic

properties of f -expansions were given in Section 6.4.

Assume then, that the contraction vectors Ψi = (γi1, γi2, . . .), i ≥ 1 are fixed. As in Section 6.3,

we obtain for x ∈ F (φ) a family of non-stationary Moran fractals E(x; f, φ) ⊂ Rd, constructed by

using the digits of x in its f -expansion. From Theorem 6.5.1, for x ∈ F (φ), the Hausdorff dimension

of E(x; f, φ) is equal to the unique number h(φ) satisfying:∑
i≥1

µφ(Ii) · log
∑
j≥1

γ
h(φ)
ij = 0 (90)

In general, for any stochastic vector η = (η1, η2, . . .), there exists a probability measure νη as

follows: first consider the measure µη for which di(·) are i.i.d. random variables and µη(dn(·) =

k) = ηk, ∀n, k ≥ 1; then the measure νη is defined as the µη-distribution of the random variable

X, X(·) := f(d1(·) +f(d2(·) +f(d3(·) + . . .))). From the definition of νη, for any arbitrary Borel set

B ⊂ [0, 1), we have νη(B) = µη(X ∈ B). The digits di(·) in the f -expansion, become independent

random variables with respect to νη.

By fixing the contraction vectors, and by taking as stochastic asymptotic frequency vector

η = (µφ(I1), µφ(I2), . . .), we obtained in [51] a dimension function Hf (x) = dimH(E(x; f)) on the

set of quasinormal numbers x in the f -expansion, that can be studied as before.
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7 Plans for future research.

We will continue to investigate several directions in smooth ergodic theory and the thermo-

dynamic formalism of systems with certain degrees of hyperbolicity, and mainly for systems with

overlaps (self-intersections). This theory is very rich and has connections with several other fields

in mathematics. Thermodynamic formalism for non-invertible systems is different both in methods

and in results from the case of diffeomorphisms

Some of our concrete objectives in the future are: Entropy production for various invariant

probability measures in the context of non-invertible hyperbolic dynamics. Pointwise dimensions

for equilibrium measures on fractal saddle sets. Hausdorff dimension for non-conformal basic sets.

Conformal iterated function systems with overlaps, and applications. Estimation of topological

entropy for dynamical systems associated to approximation operators. Examples of endomorphisms

far from diffeomorphisms, and invariant measures with non-zero Lyapunov exponents. Conformal

measures on saddle folded fractals. Perron-Frobenius operators. Connections with ergodic number

theory. Applications in economics, statistical physics, chaos theory, etc.

The elements of originality and innovation in our approach will be: Relating the entropy pro-

duction of equilibrium measures of arbitrary Holder potentials for smooth non-invertible systems on

a notion of asymptotic logarithmic degree which, instead of considering all n-preimages of a point

in the basic set through the function, considers only those good n-preimages from the point of view

of the measure. We plan to find also concrete examples of invariant measures for endomorphisms

for which we can determine whether the entropy production is positive or not. This is a central

problem in the theory of entropy production (see also Ruelle [79])). We plan to investigate the

entropy production of inverse SRB measures (introduced for non-invertible repellers in [46]).

The study of pointwise dimension for equilibrium measures on folded fractals of saddle type.

This is a new approach, until now there were studied measures invariated by diffeomorphisms on

surfaces, probabilities with positive Lyapunov exponent preserved by rational maps or the case of

the measure of maximal entropy T ∧ T for polynomial endomorphisms. Our approach will however

be completely different and will use some deep properties of equilibrium measures on folded basic

sets of saddle type, in the sense of estimations of measure of various intersections of unstable tubular

neighbourhoods.

We also plan to show that certain invariant measures obtained as wedge products of positive

closed currents on minimal/terminal sets are in fact equilibrium (Gibbs) measures, and to estimate

their pointwise and Hausdorff dimensions. We plan to extend also the results about conditional

measures of certain equilibrium states.

The study of non-conformal fractal sets presents also originality and difficulties; so far the

conformal case received much more attention. In the non-conformal case the Hausdorff dimension

and the box dimension may differ, and new interesting phenomena appear. We plan to investigate

these issues in the setting of non-conformal iterated function systems, and in the case of non-
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conformal repellers with overlaps.

Our research will investigate an area with great potential in smooth ergodic theory, namely that

of the thermodynamics of systems where we do not have the usual stable and unstable foliations

from the case of Anosov or Axiom A diffeomorphisms, and especially the thermodynamics of non-

invertible systems with a certain degree of uniform or non-uniform hyperbolicity.

We will investigate new research directions, like the entropy production for non-reversible sys-

tems, conformal finite or infinite iterated function systems with overlaps, thermodynamic formalism

for endomorphisms with various levels of hyperbolicity (or non-uniform hyperbolicity), Hausdoff di-

mension in the context of iterated function systems with overlaps, estimations of topological entropy

for chaotic dynamical systems given by approximation operators (like those obtained from Newton’s

method), and applications of the above in chaos theory, economics, statistical physics. Thus there

will be forged new connections between these fields and we shall investigate also several classes of

examples of non-reversible systems and measures for them.

In the area of entropy production for non-invertible systems we will investigate new connections

between entropy production, folding entropy and a notion of asymptotic logarithmic degree asso-

ciated to an equilibrium measure for a Holder potential. Also in the study of pointwise dimension

of equilibrium measures on folded fractals, we plan to open new lines of research for instance by

investigating this notion for equilibrium measures supported on minimal basic sets for endomor-

phisms on Riemannian manifolds, and also to make connections with the theory of positive, closed

currents.

In the field of iterated function systems most of the research so far was by using the Open Set

Condition or its variants or to show that certain classes of systems fall close to this situation. In our

research we want to explore iterated function systems where it is not possible to get rid of overlaps,

instead they influence strongly the dynamics and the dimension of the limit set. These iterated

function systems with overlaps present the potential for new phenomena and a rich theory, different

than in the case of iterated function systems with Open Set Condition (or its variants).

Collaborations and advising.

In the future I plan to continue my ongoing collaborations with several well-known mathemati-

cians, M. Urbanski (North Texas, USA), J. E Fornaess (now in Trondheim, Norway), B. Stratmann

(Bremen, Germany), M. Roychowdhury (Texas, USA), etc.

In addition I plan to start new research projects with the above mathematicians and also with

others. This will include collaborative work, mutual research visits and participation in important

conferences in the field. I also plan to work in dynamical systems and thermodynamic formalism

with professors at the Institut des Hautes Études Sciéntifiques (IHÉS)-Paris, in the Fall of 2013 and

Summer of 2014.

We plan to publish research papers on subjects of high current interest, in which we will use
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sophisticated methods, not only from a very narrow subfield, but instead various methods and ideas

from several fields. We plan to publish in high caliber journals such as Advances in Math., Ergodic

Theory and Dynam. Syst., J. Stat. Physics, International Math Res Notices, Math. Annalen,

Commun. Math. Physics, Inventiones Math., Discrete and Cont. Dynam. Syst., Math Proceed

Cambridge Phil Soc., Commun Contemp Math, Bulletin and Journal of London Math Soc, Dynam

Systems, etc.

From the point of view of advising and teaching advanced courses, I plan to continue to teach

Masters courses in Dynamical Systems and Ergodic Theory, at the Normal Superior School of

Bucharest (SNSB), and possibly also at Univ. of Bucharest.

I also plan to attract students who want to pursue a PH.D in Dynamical Systems and Er-

godic Theory at IMAR. One possibility is to attract students from the Normal Superior School

of Bucharest through courses and seminars. I also plan to have common research projects with

postdocs and PH.D students at Univ. of Bremen, who may visit me at IMAR, and I could visit

them in order to work together.

Jointly with B. Stratmann (Germany) and B. Schapira (France), I will also organize a conference

on Hyperbolic Dynamics, Thermodynamic Formalism and Stable Foliations, at Mathematische

ForschungsInstitut Oberwolfach, Germany, in 2014.

In addition, I plan to organize in the future a conference in Dynamical Systems and Smooth

Ergodic Theory in Romania too, in case there will be enough funds available.

I am also currently preparing a book on Dimension Theory for Folded Dynamical Systems.
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