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Inverse Pressure Estimates and the
Independence of Stable Dimension for
Non-Invertible Maps

Eugen Mihailescu and Mariusz Urbański

Abstract. We study the case of an Axiom A holomorphic non-degenerate (hence non-invertible) map

f : P
2

C → P
2

C, where P
2

C stands for the complex projective space of dimension 2. Let Λ denote a

basic set for f of unstable index 1, and x an arbitrary point of Λ; we denote by δs(x) the Hausdorff

dimension of W s
r (x) ∩ Λ, where r is some fixed positive number and W s

r (x) is the local stable man-

ifold at x of size r; δs(x) is called the stable dimension at x. Mihailescu and Urbański introduced a

notion of inverse topological pressure, denoted by P−, which takes into consideration preimages of

points. Manning and McCluskey studied the case of hyperbolic diffeomorphisms on real surfaces and

give formulas for Hausdorff dimension. Our non-invertible situation is different here since the local

unstable manifolds are not uniquely determined by their base point, instead they depend in general

on whole prehistories of the base points. Hence our methods are different and are based on using a

sequence of inverse pressures for the iterates of f , in order to give upper and lower estimates of the

stable dimension. We obtain an estimate of the oscillation of the stable dimension on Λ. When each

point x from Λ has the same number d ′ of preimages in Λ, then we show that δs(x) is independent of x;

in fact δs(x) is shown to be equal in this case with the unique zero of the map t → P(tφs − log d ′). We

also prove the Lipschitz continuity of the stable vector spaces over Λ; this proof is again different than

the one for diffeomorphisms (however, the unstable distribution is not always Lipschitz for conformal

non-invertible maps). In the end we include the corresponding results for a real conformal setting.

1 Introduction and Notations. Inverse Topological Pressure

In the case of C2 Axiom A diffeomorphisms of real surfaces, Manning and Mc-
Cluskey [2] proved that the Hausdorff dimension of a basic set Λ is given by the
formula HD(Λ) = δu + δs, with δu, δs being the unique zeros of the pressure func-
tions of the potentials −t log |D fu|, t log |D fs| respectively, considered on Λ. For the

case of hyperbolic automorphisms on C
2 (Henon maps), Verjovsky and Wu [10]

showed that the Hausdorff dimension of the intersection between local stable man-
ifolds and the Julia set is given also as the unique zero of a pressure function. For
non-invertible conformal maps f (for example holomorphic maps on the projective

complex space P
2) which are hyperbolic on a basic set Λ, the situation is completely

different, and as shown in [3, 5], this stable dimension (the precise definition will
be given later) is not equal to the unique zero of the pressure function. At the same
time, we do not have a uniquely determined unstable manifold going through a given

point of the basic set Λ. In order to deal with the non-invertible case, Mihailescu and
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Urbanski have introduced a notion of inverse pressure [6], which takes into consid-
eration all the inverse iterates of points (instead of the forward iterates from the case

of usual topological pressure). In this paper we will obtain a theorem (Theorem 2.1)
giving lower estimates of the stable dimension by using zeros of inverse pressures of
iterates of f . As a corollary we obtain an estimate of the maximum possible oscilla-
tion of the stable dimension on Λ.

Then, when the map is open on the basic set Λ, we will prove (Theorem 3.1) that
the stable dimension is independent of the point; in the proof we use again ideas and
concepts related to inverse pressure.

Most of these proofs and results work for a more general setting (finite-to-one

conformal maps with hyperbolic structure on a basic set, and with the dimension of
the stable vector spaces equal to 2), but we prefer to state them first in the case of
holomorphic Axiom A maps on P

2, and we include a section at the end of the paper
with the theorems in the more general case.

Note also that in Theorem 1.5 we actually use the holomorphicity at the end of
the proof.

In this section we recall some definitions and properties of inverse pressure which
will be used later. We consider the setting where X is a compact metric space, f : X →
X is a continuous surjective map on X, and Y ⊆ X is a subset of X. Due to the
surjectivity of f , for any point y of X, and any positive integer m, there exists y−m ∈ X
such that f m(y−m) = y. By prehistory of length m (or m-prehistory, or branch of
length m) of y, we will understand a collection of consecutive preimages of y, C =

(y, y−1, . . . , y−m), where f (y−i) = y−i+1, i = 1, . . . ,m, y0 = y. Given a prehistory
C , we shall denote by n(C) its length. Fix ε > 0. Denote by Cm the set of all m-
prehistories of points from X. For such an m-prehistory C , let X(C, ε) be the set of
points ε-shadowed by C (in backward time) i.e.,

X(C, ε) :=
{

z ∈ B(y0, ε) : for j = 1, . . . ,m, ∃z− j ∈ f −1(z− j+1) and z = z0

such that d(z− j , y− j) < ε
}

Given the m-prehistory of y, C = (y, y−1, . . . , y−m) and a real continuous function
φ on X, one can define the consecutive sum of φ on C , S−mφ(C) = φ(y) + φ(y−1) +
· · · + φ(y−m). We may also use the notation S−mφ(y−m) instead of S−mφ(C). We will

define now the inverse pressure P− by a procedure similar to that used in the case of
Hausdorff outer measure. Let φ be an arbitrary continuous function φ ∈ C(X,R)
(where C(X,R) is the set of real continuous functions on X); also let λ be a real
number and N a positive integer. Denote by C∗ :=

⋃
m≥0 Cm. We say that a subset

Γ ⊂ C∗, ε-covers X if X =
⋃

C∈Γ
X(C, ε). Then define

M−
f (λ, φ,Y,N, ε) := inf

{∑

C∈Γ

exp(−λn(C) + S−n(C)φ(C)), n(C) ≥ N, ∀C ∈ Γ,

and Γ ⊂ C∗ s.t Y ⊂
⋃

C∈Γ

X(C, ε)
}
.

When N increases, the set of acceptable candidates Γ which ε-cover X gets smaller,
therefore the infimum increases in the previous expression. Hence

lim
N→∞

M−
f (λ, φ,Y,N, ε)
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exists and will be denoted by M−
f (λ, φ,Y, ε). Now, let

P−
f (φ,Y, ε) := inf{λ : M−

f (λ, φ,Y, ε) = 0}.

Consider two positive numbers ε1 < ε2 and let us compare

P−
f (φ,Y, ε1) and P−

f (φ,Y, ε2).

Given any prehistory C , we have that X(C, ε1) ⊂ X(C, ε2), so if Γ ⊂ C∗ ε1-covers

Y , then Γ also ε2-covers Y . Therefore there are more candidates Γ in the expression
of M−

f (λ, φ,Y,N, ε2) than in the expression of M−
f (λ, φ,Y,N, ε1). This shows that

for any N , M−
f (λ, φ,Y,N, ε2) ≤ M−

f (λ, φ,Y,N, ε1). Hence 0 ≤ M−
f (λ, φ,Y, ε2) ≤

M−
f (λ, φ,Y, ε1), and then from definition, P−

f (φ,Y, ε2) ≤ P−
f (φ,Y, ε1). This proves

that when ε decreases to 0, P−
f (φ,Y, ε) increases, so the limit limε→0 P−

f (φ,Y, ε)

does exist and is denoted by P−
f (φ,Y ) and is called the inverse pressure (or inverse

upper pressure) of φ on Y . We call P−
f (φ,Y, ε) the ε-inverse pressure of φ on Y .

This notion has been introduced in [6]; here we have used slightly different nota-
tions. When the map f will be clear from the context, we may drop the index f

from the notations for P−
f (φ,Y ), P−

f (φ,Y, ε),M−
f (λ, φ,Y,N, ε), etc. Also, we will de-

note by P−
f (φ), P−

f (φ, ε), M−
f (λ, φ,N, ε), etc., the quantities P−

f (φ,X), P−
f (φ,X, ε),

M−
f (λ, φ,X,N, ε), etc., respectively. The following proposition provides some prop-

erties of P−.

Proposition 1.1 Let f : X → X be a continuous surjective map on the compact metric
space X, ε a positive number and φ a function from C(X,R).

(i) If Y1 ⊂ Y2 ⊂ X, then P−
f (φ,Y1) ≤ P−

f (φ,Y2) and P−
f (φ,Y1, ε) ≤ P−

f (φ,Y2, ε).

(ii) If Y =
⋃

j∈ J Y j is a finite or countable union of subsets of X, then P−
f (φ,Y, ε) =

sup j∈ J P−
f (φ,Y j , ε) and P−

f (φ,Y ) = sup j∈ J P−
f (φ,Y j).

(iii) If f is a homeomorphism on X, then P−
f (φ) = P f (φ), where P f (φ) denotes the

usual (forward) topological pressure of φ with respect to the map f .
(iv) P−

f (φ,Y ) is invariant to topological conjugacy, i.e., if f : X → X, g : X ′ → X ′

are continuous surjective maps and Ψ : X → X ′ is a homeomorphism such that

Ψ ◦ f = g ◦ Ψ, then P−
f (φ,Y ) = P−

g (φ ◦ Ψ−1,Ψ(Y )), for any subset Y ⊂ X.

Proof We will prove only part (ii), the others are straightforward. Assume that Y =⋃
j∈ J Y j is a finite or countable union of subsets of X. We will show that given some

ε > 0, P−
f (φ,Y, ε) = sup j P−

f (φ,Y j , ε), for any function φ ∈ C(X,R); the other

equality, P−
f (φ,Y ) = sup j P−

f (φ,Y j) will follow similarly. First, directly from the

definition of P−, it follows that P−
f (φ,Y, ε) ≥ sup j P−

f (φ,Y j , ε). Now take t >

sup j P−
f (φ,Y j , ε). Then there exists some number α > 0 so small that t − α >

P−
f (φ,Y j , ε), ∀ j ∈ J. So M−

f (t − α, φ,Y j, ε) = 0 for all j ∈ J. But from the fact that
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M−
f (t − α, φ,Y j,N, ε) grows with N , we obtain that

M−
f (t − α, φ,Y j ,N, ε) = 0, ∀ j ∈ J, ∀N > 0.

So, if N is fixed, then for any j ∈ J there exists a set Γ j ⊂ C∗ such that Y j ⊂⋃
C∈Γ j

X(C, ε) and n(C) ≥ N, ∀C ∈ Γ j and we have
∑

C∈Γ j
exp(−(t − α)n(C) +

S−n(C)φ(C)) ≤ 1
2 j . Now, if we consider the collection Γ :=

⋃
j∈ J Γ j , then Y =⋃

j∈ J Y j ⊂
⋃

C∈Γ
X(C, ε), n(C) ≥ N, ∀C ∈ Γ, and

∑
C∈Γ

exp(−(t − α)n(C) +

S−n(C)φ(C)) ≤ 1. This means that M−
f (t − α, φ,Y,N, ε) ≤ 1, hence

M−
f (t, φ,Y,N, ε) ≤ e−αN .

Thus M−
f (t, φ,Y, ε) = 0 and t ≥ P−

f (φ,Y, ε). In conclusion, since t has been

taken arbitrarily larger than sup j∈ J P−
f (φ,Y j , ε), we obtain the required equality,

P−
f (φ,Y, ε) = sup j∈ J P−

f (φ,Y j , ε).

Here are also some additional properties of P−, whose proofs can partly be found
in [6]; the proofs of the properties for ε-inverse pressures are similar.

Proposition 1.2 Let f : X → X be a continuous surjective map on the compact metric
space X, Y a subset of X and φ, ψ ∈ C(X,R). Then

(i) P−
f (φ + α,Y ) = P−

f (φ,Y ) + α.

(ii) If φ ≤ ψ on Y and ε is a positive number, then P−
f (φ,Y ) ≤ P−

f (ψ,Y ) and

P−
f (φ,Y, ε) ≤ P−

f (ψ,Y, ε).

(iii) P−
f ( · ,Y ) is either finitely valued or constantly ∞.

(iv) |P−
f (φ,Y ) − P−

f (ψ,Y )| ≤ ‖φ − ψ‖ if P−
f ( · ,Y ) is finitely valued; a similar

inequality holds for the corresponding ε-inverse pressures.

(v) P−
f (φ + ψ ◦ f − ψ,Y ) = P−

f (φ,Y ).

(vi) If φ is a strictly negative function on X, then the mapping t → P−
f (tφ,Y )

is strictly decreasing if P−
f ( · ,Y ) is finitely valued. Furthermore, the mapping

t → P−
f (tφ,Y, ε) is strictly decreasing.

The inverse entropy h− obtained by definition as P−(0) is smaller then or equal

to the preimage entropy hi [6] and actually, in the case of homeomorphisms, they
both coincide with the usual topological entropy (definitions and useful properties
of hi are given, for example, in [6, 7]). Another interesting property of P− gives an
alternative way of calculating the inverse pressure, which will be used later in a proof.
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Proposition 1.3 ([6]) Let f : X → X be a continuous surjective map on a compact
metric space X, and φ ∈ C(X,R). Let

Q−
m (φ, ε) := inf

{∑

C∈Γ

exp(S−mφ(C)),Γ ⊂ Cm,Γε− covering X
}
.

Then P−(φ) = limε→0 limm→∞
1
m
· log Q−

m (φ, ε).

In the sequel, we will focus on the case of a holomorphic non-degenerate map
f : P

2 → P
2, where P

2 represents the 2-dimensional complex projective space P
2

C.

Any holomorphic map f on P
2 is given as

f ([z : w :t]) = [P(z,w, t) : Q(z,w, t) : R(z,w, t)],

with P,Q,R homogeneous polynomials in z,w, t , all having the same degree d. If
d ≥ 2, then f is called non-degenerate; in this case f is non-invertible. We shall
assume in the sequel that f is non-degenerate and has Axiom A; let Λ be one of its
basic sets of unstable index 1, meaning that D f has on Λ both stable and unstable

directions. For definitions and discussions of Axiom A for non-invertible maps [3,8]
are good references. An important point to remember is that, since f is not invertible
on the invariant set Λ, one has to define hyperbolicity with respect to the natural
extension of Λ. We recall briefly this notion and also how to define hyperbolicity in

this non-invertible case. Denote first

Λ̂ := {x̂ = (x, x−1, . . . ) where x−i ∈ Λ and f (x−i−1) = x−i , i ≥ 0, x0 = x}

and call this set the natural extension of Λ with respect to f . Then Λ̂ is a com-
pact metric space endowed with the metric d(x̂, ŷ) =

∑
i≥0 d(x−i , y−i)/2i . More

generally, we can define a metric dK on Λ̂ for any K > 1 by setting dK(x̂, ŷ) =∑
i≥0 d(x−i , y−i)/K i . As above, we will not specify the constant K in the notation dK

when K = 2. Also, it can be noticed that for all K > 1, dK gives the same topology
on Λ̂, namely the topology induced on the subset Λ̂ by the product topology on the
larger space ΛN. We denote by π : Λ̂ → Λ the canonical projection π(x̂) = x and by f̂

the homeomorphism f̂ : Λ̂ → Λ̂, f̂ (x̂) = ( f x, x, x−1, . . . ). The hyperbolicity of f on
Λ means that there exist constants C > 0, λ ′ > 1, and for every x̂ ∈ Λ̂, a vector space
Eu

x̂ ⊂ TxP
2, and a vector space Es

x ⊂ TxP
2 such that D f (Eu

x̂ ) ⊂ Eu
bf x
,D f (Es

x) ⊂ Es
f x

and we have the inequalities ‖D f k
x (v)‖ ≤ C(λ ′)−k‖v‖, ‖D f k

x (w)‖ ≥ C(λ ′)k‖w‖, for
every x ∈ Λ, k ≥ 0 and all vectors v ∈ Es

x,w ∈ Eu
x̂ . In the definition of hyperbolicity

on Λ̂ we assume also that Es
x ⊕ Eu

x̂ = TxP
2, ∀x̂ ∈ Λ̂ and that Es

x depends continuously
on x, while Eu

x̂ depends continuously on x̂. And Es
x is called the stable tangent vector

space (or the stable space) at x; Eu
x̂ is called the unstable tangent vector space (or un-

stable space) corresponding to the prehistory x̂. As in the diffeomorphism case, it is
possible [8] to show that if r is small enough (for example 0 < r < r0), there exist
stable and unstable local manifolds passing through x:

W s
r (x) := {y ∈ P

2, d( f ix, f i y) < r, i ≥ 0},
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and
W u

r (x̂) := {y ∈ P
2, ∃ ŷ ∈ π−1(y) with d(y−i, x−i) < r, i ≥ 0}.

If moreover f is holomorphic on P
2, the local (un)stable manifolds on a basic set of

unstable index one are analytic disks.
Now, given a point x ∈ Λ and a small fixed number 0 < r < r0 < diam Λ/2,

let δs(x) := HD(W s
r (x) ∩ Λ), where HD stands for the Hausdorff dimension of a

set. We shall call δs(x), the stable dimension at x. In the sequel we shall suppose also
that C f ∩ Λ = ∅, where C f denotes the critical set of f . Hence, one can define the

negative function φs(y) := log
∣∣D f |Es

y

∣∣ , y ∈ Λ; as a notational remark, Es
y is a one-

dimensional complex space and
∣∣D f |Es

y

∣∣ denotes the norm of D f restricted to this
stable space.

We studied the stable dimension in [3, 5, 6]. In [3], the first author showed that
δs(x) ≤ t s

∗, where t s
∗ is the unique zero of the pressure function t → P(tφs) (the

topological pressure being calculated with respect to the map f |Λ). However in the
above inequality, we do not have equality in general. Indeed the gap between δs(x)
and t s

∗ is influenced by the number of preimages that a point from Λ has in Λ, as was
explained in [5], where we obtained a better upper estimate t s

0:

Theorem 1.4 In the above setting, assume that the map f |Λ has the property that

every point x ∈ Λ has at least d ′ ≤ d preimages in Λ. Then δs(x) ≤ t s
0, where t s

0 is the
unique zero of the function t → P

(
t log

∣∣D f |Es
y

∣∣ − log d ′
)

and as a consequence,

δs(x) ≤
h( f |Λ) − log d ′

∣∣∣ log supy∈Λ

∣∣D f |Es
y

∣∣
∣∣∣
.

Let us focus now on the zeros t s
n(ε) of the ε-inverse pressure functions for the

iterates f n|Λ. If Λ is a basic set for f , then f (Λ) = Λ, hence f n(Λ) = Λ, ∀n > 0

integer. Let us denote by D fs(y) the linear map D f |Es
y
; similarly, D f n

s (y) denotes

D f n|Es
y
, y ∈ Λ. Since f is conformal on stable manifolds,

|D f n
s (y)| = |D fs(y)| · |D fs( f y)| · · · |D fs( f n−1 y)|, ∀y ∈ Λ.

Then φs
n(y) := log |D f n

s (y)|, y ∈ Λ, so φs
n is a strictly negative function on Λ, which

has finite values since C f ∩Λ = ∅. From Proposition 1.2(vi) applied to f n|Λ : Λ → Λ,
it follows that the function t → P−

f n (tφs
n, ε) is strictly decreasing; since P−

f n (0, ε) ≥ 0,
and P−

f n (tφs
n, ε) < 0 for t > 0 large enough, it follows that this strictly decreasing

function has a unique zero, denoted by t s
n(ε). The same is true for the function t →

P−
f n (tφs

n) which has a unique zero t s
n. When n = 1 we denote t s

1(ε) by t s(ε), and t s
1

by t s. We shall prove in the sequel that t s
n(ε) ≥ t s

np(ε) and t s
n = t s, for any positive

integers n, p and any ε > 0.
First, we will prove that the stable spaces Es

y depend Lipschitz-continuously on

y ∈ Λ. In addition we will show the Lipschitz continuity of y → Es
y when y ranges in

W s
r (x) (x ∈ Λ), and moreover, that the Lipschitz constant on these stable leaves can

be chosen independently of the point x ∈ Λ in the holomorphic case. Remark also
that the unstable spaces cannot depend Lipschitz-continuously on their base points
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since in general they depend on whole prehistories. In [3], one of the authors showed
that the unstable spaces Eu

x̂ depend Hölder-continuously on x̂, with respect to a fixed

metric dK on Λ̂; the respective Hölder exponent depends on the chosen constant K >
1. The following theorem was known in the case of conformal diffeomorphisms, but
to our knowledge it has never appeared in the case of non-degenerate holomorphic
maps on P

2 (which are non-invertible). As it turns out below, the non-invertible

case requires its own proof, different from the one given for diffeomorphisms. (For
example, in the non-invertible situation we cannot use the inverse iterate f −1, and
on the natural extension Λ̂ we cannot use a differentiable structure.)

Theorem 1.5 Consider f : P
2 → P

2 a holomorphic Axiom A map, and let Λ be one of
its basic sets of unstable index one such that C f ∩Λ = ∅. Then the map x → Es

x is Lip-
schitz continuous as a map from Λ to the bundle G1(Λ) of spaces of complex dimension
one in the tangent bundle over Λ, i.e., there exists a positive constant Υ such that for all

x, y from Λ, d(Es
x, E

s
y) ≤ Υd(x, y). In particular, if φs(y) := log |D f |Es

y
|, y ∈ Λ, then

φs is Lipschitz continuous. Moreover, there exist a small r > 0 and Ξ > 0 such that for
any x ∈ Λ and any points y, z ∈ W s

r (x), we have |φs(y) − φs(z)| ≤ Ξ · d(y, z).

Proof For every K > 1, consider the metric dK on Λ̂, given by the formula

dK(x̂, ŷ) := d(x, y) +
d(x−1, y−1)

K
+

d(x−2, y−2)

K2
+ · · · .

Notice that the topology given by dK on Λ̂ is independent of K and is induced by

the product topology on a countable product of Λ’s. In the sequel we shall use a
Pointwise Hölder Section Theorem from [11].

Theorem (Pointwise Hölder Section Theorem) Let E = X × Y be a vector bundle
over a metric space X, where Y is a closed, bounded subset of a Banach space, and let
π : E → X be the canonical projection. Let F : E → E be a bundle map covering a
homeomorphism h : X → X, i.e., π ◦ F = h ◦ π. Suppose that F satisfies the following

conditions:

(i) F contracts the fibers of E in the sense that for all x ∈ X, there exists a constant

0 ≤ λx < 1 such that d(F(x, y), F(x, z)) ≤ λxd(y, z), ∀y, z ∈ Y .
(ii) There exist constants L ≥ 1 and α > 0 such that for all x, x ′ ∈ X and y ∈ Y ,

|F(x, y) − F(x ′, y)| ≤ L · d(x, x ′)α.
(iii) There exists some positive number η such that supx∈X λx · µ−α

x =: ρ(α) < 1

where

µx := inf
{ d(hx, hx ′)

d(x, x ′)
, x, x ′ ∈ X, x 6= x ′, d(x, x ′) < η

}
.

Also, let µ := infx∈X µx and assume that µ > 0.

Then we have the following:

(a) There exists a unique section σ : X → E whose image is invariant under F, i.e.,
σ ◦ h(x) = F ◦ σ(x), x ∈ X.
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(b) σ is Hölder continuous with exponent α, i.e., |σ(x) − σ(x ′)| ≤ Hd(x, x ′)α for all
x, x ′ ∈ X.

(c) Assume that the diameter of Y is bounded by R, then we can bound the Hölder
constant H by

H ≤
LR

µηα(1 − supλxµ
−α
x )

.

Let us now return to our setting and see how we can apply this theorem. By defi-
nition of hyperbolicity of f , there exists a continuous splitting of the tangent bundle

to P
2 over Λ̂, given by T

Λ̂
P

2 = Es ⊕ Eu, where Es
x depends continuously on x ∈ Λ

and Eu
x̂ depends continuously on x̂ ∈ Λ̂. The stable space Es

x and the stable manifold
of size r > 0 at x depend only on the forward iterates of x, whereas the unstable space
Eu

x̂ and the unstable manifold W u
r (x̂) depend on the entire prehistory x̂ of x. Let us

take an arbitrary constant K > 1 and consider the metric dK on Λ̂. Since continu-

ous maps can be approximated by Lipschitz continuous maps, there exists a splitting
Fs ⊕ Fu(K) of T

Λ̂
P

2 such that the linear subspaces of complex dimension 1, Fs
x, de-

pend Lipschitz-continuously on x ∈ Λ and the subspaces of dimension 1, Fu
x̂ (K) de-

pend Lipschitz-continuously on x̂ ∈ Λ̂; also we assume that Fs
x approximates Es

x, and

Fu
x̂ (K) approximates Eu

x̂ uniformly in x, respectively x̂. As a remark, the spaces Fu
x̂ (K)

depend in general on K since they must vary Lipschitz-continuously with respect to
the metric dK , whereas the spaces Fs

x are Lipschitz only with respect to the usual Eu-
clidian metric induced on Λ, therefore they do not depend on K. Let us assume that

d(Fs
x, E

s
x) < ε, d(Fu

x̂ (K), Eu
x̂ ) < ε, for all x̂ in Λ̂, where ε is a small positive number.

From the above Lipschitz conditions, there exist positive constants τ and τK such
that d(Fs

x, F
s
y) ≤ τd(x, y), ∀x, y ∈ Λ, and d(Fu

x̂ (K), Fu
ŷ (K)) ≤ τKdK(x̂, ŷ), ∀x̂, ŷ ∈ Λ̂.

In this case, Es
x can be interpreted as the image of a linear map from Fs

x to Fu
x̂ (K),

for any prehistory x̂ of x ∈ Λ. Therefore let Lx̂(K) := L(Fs
x, F

u
x̂ (K)) be the space of

linear maps from Fs
x to Fu

x̂ (K). Let L(K) denote the vector bundle over Λ̂ given by
Lx̂(K), x̂ ∈ Λ̂, where we consider the metric dK on Λ̂. The space X of the Point-
wise Hölder Section Theorem will be Λ̂ endowed with dK and the homeomorphism

h from the statement of the same theorem is the map f̂ −1 : Λ̂ → Λ̂. We will also con-
sider the bundle map Ψ : L(K) → L(K) induced by the graph transform associated
with the derivative

D f −1(x̂) : Fs
x ⊕ Fu

x̂ (K) → Fs
x−1

⊕ Fu
f̂ −1 x̂

(K),

where x̂ = (x, x−1, . . . ) ∈ Λ̂. The mapping D f −1(x̂) represents the derivative at
x of the local branch of f −1 which takes x into x−1, in case x̂ = (x, x−1, . . . ) is an
arbitrary point of Λ̂; this derivative does exist because we assumed that the critical
set of f does not intersect Λ. In the sequel we shall also use the notation D f −1

s (x̂)

as being the inverse of the isomorphism D fs(x−1) : Es
x−1

→ Es
x; similarly for the

notation D f −1
u (x̂). The notion of graph transform used above is explained in [9]. If

we assume that

D f −1(x̂) =

(
Ax̂ Bx̂(K)

C x̂(K) Gx̂(K)

)
,

then we have Ax̂ : Fs
x → Fs

x−1
, Bx̂(K) : Fu

x̂ (K) → Fs
x−1

, C x̂(K) : Fs
x → Fu

f̂ −1 x̂
(K), and

Gx̂(K) : Fu
x̂ (K) → Fu

f̂ −1 x̂
(K). Let us notice that from the decomposition above, Bx̂(K),
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C x̂(K), and Gx̂(K) depend on K, but Ax̂ does not, since the bundle Fs is independent
of K. From the definition of graph transform,

(1.1) Ψx̂(g) = (C x̂(K) + Gx̂(K)g) ◦ (Ax̂ + Bx̂(K)g)−1,

for any linear map g ∈ Lx̂(K). So it can be noticed that Ψx̂(g) ∈ L f̂ −1 x̂(K), for
any x̂ ∈ Λ̂. From construction, Ax̂ and Gx̂(K) approximate D f −1

s (x̂), respectively
D f −1

u (x̂), while |Bx̂(K)| < a1(ε), |C x̂(K)| < a1(ε), where a1( · ) is a positive continu-
ous function with a1(0) = 0. Hence, if ε is small enough, then the Lipschitz constant

of Ψx̂ is smaller than or equal to λx̂(K), where

(1.2) λx̂(K) := |D f −1
u (x̂)| · |D fs(x−1)| + a2(ε) =

|D fs(x−1)|

|D fu(x−1)|
+ a2(ε) < 1,

and where a2(ε) is a positive continuous function in ε, with a2(0) = 0. Let us recall
now that the metric on Λ̂ is dK which depends on the constant K > 1. In the same
spirit as in [9], we can also assume that the bundle E := L(K) is trivial, otherwise we
can replace it with E⊕E ′, for some complementary bundle E ′. This replacement does

not depend on the metric dK , since the metric on E is already induced by the product
of the metric dK on Λ̂ and the usual Euclidian metric on the spaces of linear maps.
We will estimate the local Lipschitz constant µx̂(K) of h at x̂ ∈ Λ̂, where h = f̂ −1 is
our base homeomorphism. Thus, as in the statement of the Pointwise Hölder Section

Theorem, let

µx̂(K) := inf
{ dK(hx̂, hŷ)

dK(x̂, ŷ)
, x̂ 6= ŷ, x̂, ŷ ∈ Λ̂ and dK(x̂, ŷ) < η

}

for some small η > 0. Denote also by µ(K) := inf
x̂∈Λ̂

µx̂(K). Then we have

dK(x̂, ŷ) = d(x, y) +
d(x−1, y−1)

K
+

d(x−2, y−2)

K2
+ · · · = d(x, y) +

1

K
d( f̂ −1x̂, f̂ −1 ŷ).

Let us denote by ε0 a positive constant depending only on f such that f is injective on
balls of radius ε0(infΛ |D fs|)

−1 centered on Λ and such that we can apply the Mean
Value Inequality on balls of radius ε0(infΛ |D fs|)

−1. Suppose that 0 < η < ε0. If
dK(x̂, ŷ) < η, and dK( f̂ −1x̂, f̂ −1 ŷ) > η, then

dK(x̂, ŷ) < (|D fu(x−1)| +
1

K
)dK

(
f̂ −1x̂, f̂ −1 ŷ

)

since |D fu(x−1)| + 1
K
> 1. So, with the assumption that dK(x̂, ŷ) < η, let us suppose

also that dK( f̂ −1x̂, f̂ −1 ŷ) < η. Hence d(x−1, y−1) < η and, from our assumption it
follows also that d(x, y) < η, so, using the Mean Value Inequality, we obtain that

dK(x̂, ŷ) ≤
(
|D fu(x ′

−1)| +
1

K

)
dK( f̂ −1x̂, f̂ −1 ŷ)

=

(
|D fu(x ′

−1)| +
1

K

)
dK(hx̂, hŷ),

(1.3)
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where x ′
−1 is some point with d(x−1, x

′
−1) < η. This implies that the constant µx

which appears in the Pointwise Hölder Section Theorem is represented in our situa-

tion by µx̂(K) and, as we saw in (1.3),

(1.4) µx̂(K) ≥
(
|D fu(x−1)| +

1

K
+ ω(|D fu|, η)

)−1
,

where ω(|D fu|, η) is the maximum oscillation of |D fu| on a ball of radius η cen-
tered at an arbitrary point of Λ, and we used above that |D fu(x ′

−1)| ≤ |D fu(x−1)| +
ω(|D fu|, η).

Next, we show that Ψx̂ is Lipschitz in x̂; recall that we assumed that L(K) is a trivial

bundle, so we can identify all the 1-dimensional complex spaces Lx̂(K) with C, and
do this independently of K. We wish to prove that there exists a constant ΘK > 0
such that

(1.5) |Ψx̂(g) − Ψ ŷ(g)| ≤ ΘKdK(x̂, ŷ), ∀x̂, ŷ ∈ Λ̂, ∀g ∈ C, |g| ≤ 1.

From the fact that f is smooth and Fs depends Lipschitz in x ∈ Λ, while Fu
x̂ (K)

depends Lipschitz in x̂ ∈ Λ̂, it follows that Ax̂ depends Lipschitz in x (with respect to
the Euclidian metric induced on Λ) and Bx̂(K), C x̂(K), Gx̂(K) depend Lipschitz in x̂

(with respect to the metric dK). Recall from (1.1) that

Ψx̂(g) = (C x̂(K) + Gx̂(K)g) · (Ax̂ + Bx̂(K)g)−1,

for any linear map g ∈ Lx̂(K). But in our case, g, Ax̂, Bx̂(K), C x̂(K), Gx̂(K) are just
complex numbers. It is enough to show that x̂ → (Ax̂ + Bx̂(K)g)−1 is Lipschitz. But
since we work with complex numbers, we have

|(Ax̂ + Bx̂(K)g)−1 − (A ŷ + B ŷ(K)g)−1| =

∣∣∣ (A ŷ − Ax̂) + (B ŷ(K) − Bx̂(K))g

(Ax̂ + Bx̂(K)g)(A ŷ + B ŷ(K)g)

∣∣∣ .

Now we use the fact that Ax̂, Bx̂(K) depend Lipschitz in x̂ and |Bx̂(K)| < a1(ε) ≪ 1,
∀x̂ ∈ Λ̂. Thus, for |g| ≤ 1 we get that |Ax̂ + Bx̂(K)g| is uniformly (in x̂) bounded
away from 0, since |Ax̂| approximates |D f −1

s (x̂)| (and we know that |D f −1
s (x̂)| ≥

(sup
Λ
|D fs|)

−1 > 0), and |Bx̂(K)| is very small in comparison to |Ax̂|. In conclusion

we have obtained the Lipschitz continuity of Ψ, hence inequality (1.5).
Let us check now the condition (iii) of the Pointwise Hölder Section Theorem

with α = 1. Using the relations in (1.2) and (1.4), we have that

ρ(1,K) := sup
x̂∈Λ̂

λx̂ · µx̂(K)−1

≤
( |D fs(x−1)|

|D fu(x−1)|
+ a2(ε)

)
·
(
|D fu(x−1)| +

1

K
+ ω(|D fu|, η)

)

=

( |D fs(x−1)|

|D fu(x−1)|
+ a2(ε)

)
·
( 1

K
+ ω(|D fu|, η)

)

+
|D fs(x−1)|

|D fu(x−1)|
· |D fu(x−1)| + a2(ε)|D fu(x−1)|

≤ |D fs(x−1)| + M(ε, η,K) < 1,

(1.6)
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where M(ε, η,K) is a positive continuous function in ε, η, and K with M(0, 0,∞) =

0. This is why in the last inequality of (1.6) we were able to take M(ε, η,K) <
1 − sup

Λ
|D fs|, for ε and η small enough and K large enough. The values of such

ε, η,K depend only on f . Therefore, we found that in this case condition (iii) of the
Pointwise Hölder Section Theorem is satisfied for α = 1.

Now, according to (1.5), it follows that condition (ii) from the statement of the

Pointwise Hölder Section Theorem is satisfied as well, so all the conditions of the
Pointwise Hölder Section Theorem hold and we get that the unique invariant section
σ is Lipschitz. But in our case this unique invariant section σ is just the stable bundle
σ(x̂) = Es

x, ∀x̂ ∈ Λ̂, hence there exists a constant CK depending on K such that

(1.7) d(Es
x, E

s
y) ≤ CKdK(x̂, ŷ), ∀x̂, ŷ ∈ Λ̂.

Now let λs := infz∈Λ |D fs(z)|, and take ε̃0 := λsε0, where the number ε0 has been

introduced earlier; clearly ε̃0 6= 0, since the critical set of f avoids Λ. We want to
prove that (1.7) implies that, in fact, x → Es

x is Lipschitz.

Case 1: Let us then assume first that x, y ∈ Λ with d(x, y) ≥ ε̃0. If ∆0 denotes the
diameter of Λ, then

dK(x̂, ŷ) ≤ d(x, y) +
2∆0

K
≤ d(x, y) +

2∆0

K
·

d(x, y)

ε̃0

≤ d(x, y)(1 +
2∆0

Kε̃0
) < d(x, y)(1 +

2∆0

ε̃0
) ≤ C ′d(x, y),

(1.8)

with C ′ > 0 a constant independent of K.

Case 2: Now suppose that 0 < d(x, y) < ε̃0 for some x, y ∈ Λ. We consider here the
map f restricted to Λ. We will say that (x, x−1, . . . , x−n) are consecutive preimages

of x in Λ if f (x−1) = x, f (x−2) = x−1, . . . , f (x−n) = x−n+1 and x− j ∈ Λ, ∀ j =

1, . . . , n. Consider n = n(x, y) to be the largest positive integer such that there exist
consecutive preimages of x and of y, (x, x∗−1, . . . , x

∗
−n) and (y, y∗−1, . . . , y∗−n) with

d(x∗−i , y∗−i) < ε0, i = 1, . . . , n. Since n is the largest such integer, it follows that for

some x∗−n−1 ∈ f −1(x∗−n) and y∗−n−1 ∈ f −1(y∗−n), with d(x∗−n−1, y∗−n−1) < ε0λ
−1
s ,

we have

(1.9) ε0 < d(x∗−n−1, y∗−n−1) ≤ λ−1
s d(x∗−n, y∗−n).

We also obtain

(1.10) d(x∗−i , y∗−i) ≤ λ−i
s d(x, y), i = 1, . . . , n.

From (1.9) and (1.10), we obtain that d(x∗−n−1, y∗−n−1) ≤ λ−n−1
s d(x, y). This implies

that for any complete prehistories x̂∗, ŷ∗ of x, y, which start with the consecutive
preimages (x, x∗−1, . . . , x

∗
−n), (y, y∗−1, . . . , y∗−n) considered above, we have

dK(x̂∗, ŷ∗) = d(x, y) +
d(x∗−1, y∗−1)

K
+ · · ·

≤ d(x, y) +
1

λsK
d(x, y) + · · · +

1

λn
s Kn

d(x, y) +
2∆0

Kn+1
.

(1.11)
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Assume that K is fixed such that K > λ−2
s and such that M(ε, η,K) < 1− sup

Λ
|D fs|

for some ε < 1 and some η < ε0. Then from (1.9) and (1.10), ε0 < λ−n−1
s d(x, y) <

Kn+1d(x, y), which implies that 1
Kn+1 <

d(x,y)
ε0

. Introducing this inequality in (1.11),

one sees that there exists a positive constant C ′ ′ such that for our chosen prehistories
x̂∗, ŷ∗, of x, respectively y,

(1.12) dK(x̂∗, ŷ∗) ≤ C ′ ′d(x, y).

By considering now both Case 1, (1.8), and Case 2, (1.12), together with (1.7), we ob-
tain the Lipschitz continuity of the stable spaces with respect to their base points, i.e.,

there exists a positive constant Υ such that for all x, y from Λ, d(Es
x, E

s
y) ≤ Υd(x, y).

This implies immediately that also φs is Lipschitz on Λ.

Now, we will prove the uniform Lipschitz continuity of the stable distribution
and of φs along the stable leaves in the holomorphic case. We notice that since Λ is
compact, one can construct local stable manifolds of uniform size r at all points of Λ

if r > 0 is small enough. If y is a point in a manifold W s
r (x), but y is not necessarily in

Λ, we shall call stable space at y, denoted by Es
y , the tangent space at W s

r (x) at y. We
see that the spaces Es

y vary smoothly when y moves inside W s
r (x) for x fixed. So the

existence of a constant Ξ as in the statement is conditioned only on the boundedness

of the “curvature” of these local stable manifolds. Assume then that there exists a
sequence zn ∈ Λ such that the Lipschitz constants Ln of the maps gn converge to
infinity, where gn(y) := Es

y, y ∈ W s
r (zn). Since Λ is compact, the sequence (zn)n has

at least one convergent subsequence and without loss of generality we can assume

that this subsequence is again (zn)n and zn → z. If x is an arbitrary point in Λ,
then W s

r (x) is an analytic disk which is given as the image of an analytic map hx

from the unit disk ∆ to C
2. We denote by hn the map hzn

for n positive integer. But
from the hyperbolicity condition, the analytic maps hx vary continuously in x ∈ Λ,

hence also hn vary continuously in n. The norm on ∆ of the second derivative of
hn bounds the Lipschitz constant Ln of the map gn, for all n. Notice however that
since hn are holomorphic and vary continuously in n, the second derivatives of the
maps hn also vary continuously in n. Therefore, since we assumed zn → z ∈ Λ, we

obtain that Ln are bounded by some finite positive constant L. So the map y → Es
y

is L-Lipschitz on W s
r (x), ∀x ∈ Λ. Then, due to the smoothness of f , there exists a

small r > 0 and Ξ > 0 such that for any x ∈ Λ and any points y, z ∈ W s
r (x), we have

|φs(y) − φs(z)| ≤ Ξ · d(y, z).

Proposition 1.6 Let f : P
2 → P

2 be holomorphic, with Axiom A and such that C f ∩
Λ = ∅ for a basic set Λ of unstable index one. Also, let C be a prehistory of a point x in
Λ, with respect to f . If m := n(C), C = (x, x−1, . . . , x−m) and y is an arbitrary point

in Λ(C, ε), with the corresponding prehistory (y, y−1, . . . , y−m) ε-shadowed by C, then

we have 1
C1

≤
|D f m

s (y−m)|
|D f m

s (x−m)| < C1, where C1 > 1 is a constant independent of m and C.

Proof From the fact that (y, . . . , y−m) is an m-prehistory of y in Λ, we know in
particular that y−m ∈ Λ, hence there exists a local stable manifold through y−m

of size ε. Let us also take x̂ to be any complete prehistory in Λ of x, starting with
(x, x−1, . . . , x−m). Set x̂−m := f̂ −m(x̂). In this case W u

ε (x̂−m) intersects W s
ε(y−m) in
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a unique point z. It follows from the local product structure of Λ that z belongs to Λ.
From the fact that y belongs to Λ(C, ε) and (y, . . . , y−m) is its prehistory ε-shadowed

by C , we know that d( f ix−m, f i y−m) < ε for all i = 0, 1, . . . ,m. Also, from the fact
that z ∈ W s

ε(y−m), it follows that d( f iz, f i y−m) < ε for all i = 0, 1, . . . ,m. From the
last two inequalities we get that d( f ix−m, f iz) < 2ε for all i = 0, 1, . . . ,m. But, since
z ∈ W u

ε (x̂−m) ∩ W s
ε(y−m), we have that there exist constants c̃ > 0 and γ ∈ (0, 1)

such that for all i = 0, 1, . . . ,m,

(1.13) d( f ix−m, f iz) < c̃γm−i and d( f i y−m, f iz) < c̃γi .

Now from Theorem 1.5, φs(y) depends Lipschitz-continuously on y ∈ Λ. This,

together with (1.13), implies that there exists a constant K ′ > 0 such that

∣∣∣
m∑

j=0

φs(y− j) −
m∑

j=0

φs(x− j)
∣∣∣ ≤

∣∣∣
m∑

j=0

φs(y− j) −
m∑

j=0

φs( f m− jz)
∣∣∣

+
∣∣∣

m∑

j=0

φs( f m− jz) −

m∑

j=0

φs(x− j)
∣∣∣

≤ K ′
( m∑

j=0

d(y− j , f m− jz) +

m∑

j=0

d( f m− jz, x− j)
)

≤ 2K ′c̃ ·

m∑

j=0

γ j < K ′ ′,

where K ′ ′ is a constant independent of m and ε. Hence the statement of the propo-

sition follows immediately from the previous inequalities.

Proposition 1.7 Let f : P
2 → P

2 be holomorphic with Axiom A and such that C f ∩
Λ = ∅ for a basic set Λ of unstable index one. Denote χu := sup

Λ
|D fu|.

(i) Then we have that t s
n(ε) ≥ t s

np(ε) and that t s = t s
n, for any positive integers n, p

and any ε > 0.
(ii) For ε < ε0, and ρ an arbitrary number in the interval (0, χ−1

u ), let ρn := ε · ρn,
n > 1. Then P−

f n (tφs
n, ρn) = P−

f n (tφs
n), for any t; consequently t s

n(ρn) = t s
n =

t s, n > 1.

Proof (i) First we make the following notations. If m is a positive integer, denote by

C
n
m :=

{
(y, yn

−1, . . . , yn
−m) ∈ Λ

m+1,

such that f n(yn
−i) = yn

−i+1, i = 1, . . . ,m, and y0 = y
}
.

Also let C
n
∗ :=

⋃
m≥0 C

n
m be the set of prehistories of finite length for f n in Λ. Now,

if n, p, and ε > 0 are fixed, we consider an arbitrary number t ∈ (t s
n(ε), t s

n(ε) + 1).
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From the definition of t s
n(ε), we get that for N large, there exists an ε-covering Γ of

Λ, Γ ⊂ C
n
∗ with n(C) ≥ N, ∀C ∈ Γ and

∑

C∈Γ

exp
(

S−n(C)(tφ
s
n(C))

)
< exp

(
−(t s

n(ε) + 1)n(2p − 1) sup
Λ

|φs|
)
.

For every C ∈ Γ, let us divide n(C) by p, and obtain n(C) = p · m(C) + k(C),

where 0 ≤ k(C) < p. If C = (y, yn
−1, . . . , yn

−n(C)), then denote by C ′ the m(C)-pre-

history of y with respect to f np given by C ′ = (y, z
np
−1, . . . , z

np
−m(C)), where z

np
−1 :=

yn
−p, . . . , z

np
−m(C) := yn

−pm(C). Then it is easy to see that Λ(C, ε) ⊂ Λ(C ′, ε), for all

C ∈ Γ. Denote by Γ ′ the collection of all the prehistories C ′ associated by the above
procedure with the prehistories C from Γ. We now calculate the consecutive sum

S−n(C)φ
s
n(C) = φs

n(y) + · · · + φs
n(yn

−m(C)p) + φs
n(yn

−m(C)p−1) + · · · + φs
n(yn

−n(C))

= log |D f n(pm(C)+1)
s (yn

−m(C)p)| + log |D f nk(C)
s (yn

−n(C))|.

On the other hand,

S−m(C)φ
s
np(C ′) = φs

np(y) + · · · + φs
np(z

np
−m(C))

= φs(yn
−m(C)p)

+ φs( f yn
−m(C)p) + · · · + φs(y) + φs( f y) + · · · + φs( f np−1 y)

= log |D f np(m(C)+1)
s (yn

−m(C)p)|.

These last two relations show that

S−n(C)φ
s
n(C) = S−m(C)φ

s
np(C ′) + log |D f n

s (y)| + log |D f nk(C)
s (yn

−n(C))| − log |D f np
s (y)|.

Using that k(C) < p and the last equality, we obtain that

|S−n(C)φ
s
n(C) − S−m(C)φ

s
np(C ′)| ≤ n(p − 1) · sup

Λ

|φs| +
∣∣ log |D f nk(C)

s (yn
−n(C))|

∣∣

≤ n(2p − 1) · sup
Λ

|φs|.

Therefore

inf
{ ∑

C ′∈Γ ′

exp
(

S−m(C)(tφ
s
np(C ′))

)
,Γ ′ ⊂ C

np
∗ ε− covers Λ

}

≤
[∑

C∈Γ

exp
(

S−n(C)(tφ
s
n(C))

)]
· exp(tn(2p − 1) sup

Λ

|φs|) < 1.

The last inequality follows since t < t s
n(ε) + 1 and from the way we chose Γ in the

begining of the proof. But from the definition of P−
np, we obtain then that t ≥ t s

np(ε).
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However since t was taken arbitrarily in the finite interval (t s
n(ε), t s

n(ε) + 1), it follows
that t s

n(ε) ≥ t s
np(ε). The inequality t s(ε) ≥ t s

n(ε) implies that t s ≥ t s
n, n ≥ 1. We

want to prove now the opposite inequality, i.e., t s ≤ t s
n (actually the same proof

shows more generally that P−
f n (tφs

n) = nP−
f (tφs)). Indeed, let us consider an arbitrary

t > t s
n for a fixed integer n. For a given ε > 0, let ε̄n > 0 satisfying the following

conditions: for any y, z with d(y, z) < ε̄n we have d( f j y, f jz) < ε, 0 ≤ j ≤ n,

and also P−
f n (tφs

n, ε̄n) < 0. Hence for all m large, there exists an (m, ε̄n)-cover Γn
m

of Λ (i.e., Γn
m is a collection of m-prehistories C ′ with respect to f n, so that Λ =⋃

C ′∈Γn
m
Λ(C ′, ε̄n)), satisfying

∑

C ′∈Γn
m

eS−m (tφs
n)(C ′) < 1.

Now, out of every C ′ we will form a prehistory C with respect to f in the canonical

way, i.e., if C ′ = (y, y−n, . . . , y−nm), then

C = (y, f n−1 y−n, . . . , y−n, . . . , f (y−nm), y−nm).

Also, from the condition satisfied by ε̄n, we see that Λ(C ′, ε̄n) ⊂ Λ(C, ε); so if Γnm

denotes the collection of prehistories C of length nm (with respect to f ) obtained as
above from the prehistories C ′ of Γn

m, we obtain that Γnm is an (nm, ε) cover of Λ.
Moreover, as found above, S−nm(tφs)(C) = S−m (tφs

n)(C ′) + log |D fs(y)|− log |D f n
s (y)|.

These facts imply that ∑

C∈Γnm

eS−nm(tφs)(C) < Mn,

where Mn is a constant depending only on n. Therefore if we let m → ∞ (and keep
n fixed), we see that P−

f (tφs, ε) ≤ 0 ⇒ t ≥ t s(ε). But 0 < ε < ε0 was arbitrary
and t was taken arbitrarily larger than t s

n, hence t s
n ≥ t s. This proves the equality

t s = t s
n, n ≥ 1.

(ii) First, from the proof of Proposition 1.6 we know that for all m ≥ 1 and pre-
history (x, x−1, . . . , x−m) of x in Λ,

1

C1(ε)
≤

|D f m
s (y−m)|

|D f m
s (x−m)|

≤ C1(ε),

for (y, y−1, . . . , y−m) an m-prehistory of y, ε-shadowed by (x, x−1, . . . , x−m). The

proof of Proposition 1.6 implies also that C1(ε) ≤ C2 · ε, 0 < ε < ε0, for
some constant C2 > 0. Let us consider now the situation for f n for some
fixed n ≥ 1. Consider (x, x−n, . . . , x−np) a p-prehistory of x in Λ (with re-
spect to f n), and let (y, y−n, . . . , y−np) be another p-prehistory in Λ which is ρn-

shadowed by (x, x−n, . . . , x−np). Then if d(y−np, x−np) < ρn < ερn, we get
that d( f j(y−np), f j(x−np)) < ε, 0 ≤ j ≤ n, and similarly we obtain that
d( f j(y−np), f j(x−np)) < ε, 0 ≤ j ≤ np. Therefore the np-prehistory with re-
spect to f , (y, y−1, . . . , y−np) is ε-shadowed by (x, x−1, . . . , x−np). So we can apply

Proposition 1.6 in this case to obtain similar inequalities for prehistories of f n:

(1.14)
1

C1(ε)
≤

|D f
np

s (y−np)|

|D f
np

s (x−np)|
≤ C1(ε),
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for any p ≥ 1. Next, take C an arbitrary p-prehistory in Λ with respect to
f n for n fixed. If ε ′ is an arbitrary number in the interval (0, ρn), we see that

the set Λ(C, ρn) can be covered with at most ( ρnC1(ε)
ε ′ )4 sets of the form Λ(C ′, ε ′),

where C ′ are p-prehistories with respect to f n. Thus, recalling the definition of
P−

f n (tφs
n, ρn), P−

f n (tφs
n, ε

′) and inequality (1.14), we conclude that P−
f n (tφs

n, ρn) =

P−
f n (tφs

n, ε
′) = P−

f n (tφs
n). The last equality above follows from the fact that

P−
f n (tφs

n, ε
′) → P−

f n (tφs
n) when ε ′ → 0. Hence, recalling also the conclusion of part

(i), we get t s
n(ρn) = t s

n = t s, n > 1.

2 Estimates from Above and Below for the Stable Dimension in the
General Holomorphic Case Using the Inverse Pressure of
Iterates

Given a map f and a basic set Λ as in Proposition 1.6, define λs := infω∈Λ |D fs(ω)|
and χs := supω∈Λ

|D fs(ω)|. Remark that λs > 0 since we assumed that Λ ∩ C f = ∅.
For every positive integer n and small positive number ε, let t s

n(ε) (respectively t s
n) be

the unique zero of the function t → P−
f n (tφs

n, ε) (respectively t → P−
f n (tφs

n)), where

φs
n(y) := log |D f n

s (y)|, y ∈ Λ.

Theorem 2.1 Let f : P
2 → P

2 be a holomorphic non-degenerate map with Axiom A
and Λ a basic set of f with unstable index one. Assume also that the critical set of f , C f

does not intersect Λ.

(i) Then for every x ∈ Λ, we have δs(x) ≤ t s
n(ρn) = t s, where ρn > 0 are small

numbers of the form ερn, n ≥ 1, where χu := sup
Λ
|D fu|, ρ > 0 is an arbitrary number

smaller than χ−1
u , and ε < min{ε0, r0}.

(ii) For all positive numbers ε < ε0, and η > 0, we get δs(x) + η ≥ t s
n(ε), where

n ≥ n(ε, η) and n(ε, η) is a positive integer satisfying

n(ε, η) >
4 log 1

ε

η · logχ−1
s

.

In particular, if η = ε small enough, we get t + ε ≥ t s
n(ε), for n ≥ ( 1

ε )1.1.

Proof (i) According to Proposition 1.7, we have t s
n(ρn) = t s. From [6] we have that

δs(x) ≤ t s. Hence δs(x) ≤ t s
n(ρn), n > 1.

(ii) We prove now the inequality δs(x) + η ≥ t s
n(ε) for ε > 0 small enough (to be

determined next), η > 0 small, and n ≥ n(ε, η).

First let us notice that by definition δs(x) ≤ 2. Let us take an arbitrary t with
δs(x) < t < 3. Recall also that ε0 has been introduced earlier as a positive constant, so

that we can apply the mean value inequality for f on balls of radius ε0(infΛ |D fs|)
−1,

and also such that f is injective on balls of radius ε0(infΛ |D fs|)
−1 centered on Λ.

Consider now N0(ε) to be the smallest cardinality of a covering of Λ with balls of
radius ε. Then if β = dimB(Λ) denotes the upper box dimension of Λ and β0 < β <
β1, we will have that ( 1

ε )β0 < N0(ε) < ( 1
ε )β1 , for ε > 0 small enough. With ε > 0
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and η > 0 fixed, consider n(ε, η) to be the smallest positive integer n such that

(2.1) N0(ε) · χnη
s < 1

This is satisfied if, for example,

n(ε, η) >
4 log 1

ε

η · log 1
χs

.

In the sequel we consider ε with 0 < ε < min{ε1/2, r, d(Λ,C f )/4}. We shall prove
that for such an ε and η > 0, the inequality t + η > t s

n(ε) holds for n ≥ n(ε, η).
Define now a constant 0 < α̃ < 1 which depends only on f and on Λ, such that

for all x ′ ∈ Λ and 0 < r ′ ≪ diam Λ , we have that W s
r ′(y ′) intersects W u

r ′(ẑ ′) for all

points y ′, z ′ ∈ B(x ′, α̃r ′) and all prehistories ẑ ′ ∈ Λ̂ of z ′. The existence of such a
constant follows from the transversality of stable and unstable manifolds.

Next let us cover the compact set Λ with a finite number of balls

B(y1, α̃ε/4), . . . ,B(ys, α̃ε/4)

which are centered at points of Λ. Let us choose one such ball and denote its inter-
section with Λ by Y .

We will show now that there exists a positive integer m such that all local unstable
manifolds W u

ε (ŷ) intersect the set f −m(W ), for all prehistories ŷ ∈ Λ̂ of all points

y ∈ Y , where we recall that W := W s
r (x) ∩ Λ.

Indeed, from the transitivity of f on Λ, there exists a positive integer m and a point
z ∈ Y ∩Λ such that f m(z) ∈ B(x, α̃ε/2) ∩Λ. Take now a complete prehistory ŷ ∈ Λ̂

of an arbitrary point y from Y . From the fact that Y is contained in a ball of radius

α̃ε/4, we can conclude that W s
ε/2(z) ∩ W u

ε/2(ŷ) 6= ∅ and denote this intersection

(which is a point) by ξ. From the local product structure ξ belongs to Λ. We have

also that f m(ξ) ∈ W s
ε( f mz) ∩ Λ. Now take f̂ mξ to be the prehistory in Λ of f mξ

given by ( f mξ, f m−1ξ, . . . , ξ, ξ−1, . . . ), where ξ̂ := (ξ, ξ−1, . . . ) is the prehistory of
ξ ε/2-shadowed by ŷ; such a prehistory of ξ exists since ξ ∈ W u

ε/2(ŷ). So we get

that there exists a local unstable manifold W u
ε/2( f̂ mξ) which intersects W s

ε/2(x) in a

point ζ ; again from the local product structure, ζ ∈ Λ and since ζ ∈ W s
ε/2(x), we

obtain that ζ ∈ W . If we consider ζ−m the m-th preimage of ζ obtained from the

fact that ζ ∈ W u
ε/2( f̂ mξ), we will have d(ζ−m, ξ) < ε/2. Combining with the fact

that ξ̂ corresponds to a prehistory of ξ ε/2-shadowed by ŷ, it follows that ζ−m ∈
W u

ε (ŷ) ∩ f −mW . We may denote the point ζ−m also by ζ−m(ŷ) when we want to

emphasize its dependence on ŷ.
Therefore, we proved that the set f −mW intersects all unstable manifolds W u

ε (ŷ)
for all prehistories ŷ ∈ Λ̂ of points y from Y .

From the fact that ζ ∈ W u
ε/2( f̂ mξ), it follows that d(ζ−m, ξ) < ε/2, d( f ζ−m, f ξ) <

ε/2, . . . , d(ζ, f mξ) < ε/2. But ξ ∈ Λ and Λ is f -invariant, hence

(2.2) d(ζ,Λ) < ε/2, . . . , d(ζ−m,Λ) < ε/2.
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Let us denote by Jm the set of these points ζ−m(ŷ) obtained for all the prehistories
ŷ of points y ∈ Y . Relation (2.2) together with the fact that ζ ∈ Λ, imply that

ζ−m(ŷ) ∈ Λ, therefore Jm ⊂ Λ. The relations in (2.2) imply also that f m is injective
on a neighbourhood of Jm, since ε < d(Λ,C f )/4 and f j( Jm)∩C f = ∅, j = 0, . . . ,m.
And from our construction, f m( Jm) ⊂ W . But from above, f m is injective on a
neighbourhood of Jm and it is bi-Lipschitz on that neighbourhood, hence HD( Jm) ≤
HD(W ) = δs(x). Recall also that t > δs(x), so t > HD( Jm). This means that there
exists 0 < γ < ε, γ small enough, and an open cover of Jm with balls, U = (Ui)i∈I ,
such that diam Ui < γ and

(2.3)
∑

i∈I

(diam Ui)
t < εt+1 · λ4n

s χ
n
s ,

for a fixed n, n ≥ n(ε).
Let us choose now an arbitrary i ∈ I and assume that Card(Ui ∩ Jm) > 1. Let

us denote by Yi the set of points y of Y which have some prehistory ŷ with W u
ε (ŷ) ∩

Jm ∩Ui 6= ∅; denote by Fi the set of prehistories ŷ ∈ Λ̂ with this property.
For each point z ′ ∈ Ui ∩ Jm, there exists then a point y ∈ Yi and a prehistory

ŷ ∈ Λ̂ such that z ′ ∈ W u
ε (ŷ), and actually z ′ = ζ−m(ŷ). Therefore z ′ has a pre-

history ẑ ′ given by that procedure, i.e., which is ε-shadowed by ŷ; this prehistory

may also be denoted by ẑ ′(ŷ) if we want to emphasize its dependence on ŷ. Let also
F ′

i := {ẑ ′(ŷ), ŷ ∈ Fi}. Let us now take a prehistory ẑ ′ ∈ F ′
i . Since εwas assumed suf-

ficiently small, we can define local branches of f −1 on balls of radius ε. Let us denote
by f −1

∗ the branch of f −1 defined on B(z ′, ε) such that f −1
∗ (z ′) = z ′−1. It may happen

that the diameter of f −1
∗ Ui increases. In case diam f −1

∗ Ui < ε, define afterwards the
inverse iterate f −2

∗ such that f −2
∗ (z ′) = z ′−2, etc. Let us denote by ni(ẑ ′) the largest

integer n ′ which is a multiple of n and for which diam f −k ′

∗ (Ui) < ε, 0 ≤ k ′ ≤ n ′,
where ẑ ′ = ẑ ′(ŷ) for some ŷ ∈ Fi ⊂ Λ̂ as above. We do this for all the points

of Ui ∩ Jm and denote by ni the largest integer ni(ẑ ′) for all z ′ ∈ Ui ∩ Jm and
all prehistories ẑ ′ from F ′

i . Obviously, we cannot stretch the open set Ui in back-
ward time forever, while keeping the diameter of its inverse iterates smaller than
ε, hence ni is finite. Also, ni, ni(ẑ ′) are multiples of n, so they can be written as

ni = nmi , ni(ẑ ′) = nmi(ẑ ′). In addition, for a point z ′ ∈ Ui ∩ Jm and a prehistory
ẑ ′ ∈ F ′

i , we will also define the integer n̄i(ẑ ′) as the smallest integer (not necessarily

a multiple of n) such that diam f −n̄i (ẑ ′)
∗ Ui > ε. We remark that the definitions imply

the inequalities ni(ẑ ′) ≤ n̄i(ẑ ′) ≤ ni(ẑ ′) + n, for any point z ′ ∈ Jm ∩ Ui and any
prehistory ẑ ′ ∈ F ′

i .
Now we shall cover the set Yi with sets of type Λ(C ′, ε), where C ′ ∈ C

n
∗ (i.e.,

C ′ are prehistories with respect to f n). In order to do this, take an arbitrary z ′ ∈
1
2
Ui ∩ Jm and a prehistory ẑ ′ = ẑ ′(ŷ) ∈ F ′

i , which corresponds to some complete
(infinite) prehistory C = ŷ ∈ Fi . By 1

2
Ui we understand the ball with the same

center as Ui and with half its radius. Then consider the mi(ẑ ′)-prehistory C ′ of y
(prehistory with respect to f n), coming from the prehistory C , i.e., we have C ′ =

(y, y−n, . . . , y−nmi (ẑ ′)). Recall that z ′ ∈ W u
ε/2(ŷ). From the definition of ni(ẑ ′) we

see immediately that Ui ⊂ P
2(C ′, ε), and also y ∈ Λ(C ′, ε). Recall that C ′ is an

mi(ẑ ′)-prehistory with respect to f n. Hence, since N0(ε) is the smallest cardinality of
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a cover of Λ with balls of radius ε, and since ni = nmi is the largest integer of the form
ni(ẑ ′), we can cover the set Yi with at most N0(ε)mi sets of the form Λ(C ′, ε), where

C ′ are prehistories for f n of length n(C ′), with n(C ′) ≤ mi . We will denote by Γi the
set of prehistories C ′ used for the last covering. So we have Yi ⊂

⋃
C ′∈Γi

Λ(C ′, ε),
and Γi ⊂ C

n
∗, n(C ′) ≤ mi , ∀C ′ ∈ Γi . This construction can be done for every i ∈ I,

and for each such i, we have Card Γi ≤ N0(ε)mi .

But we proved that for all ŷ ∈ Λ̂, the local unstable manifold W u
ε (ŷ) intersects

Jm; on the other hand, Jm ⊂
⋃

i∈I Ui . In conclusion, Y ⊂
⋃

i∈I Yi , hence Y ⊂⋃
i∈I

⋃
C ′∈Γi

Λ(C ′, ε). Using this cover of Y with sets Λ(C ′, ε),C ′ ∈ C
n
∗, we will

estimate M−
f n (0, (t + η)φs

n,Y,N, ε) for some large integer N chosen so that n(C ′) ≥

N, ∀C ′ ∈
⋃

i∈I Γi :

M−
f n (0, (t + η)φs

n,Y,N, ε) ≤
∑

i∈I

∑

C ′∈Γi

exp(S−n(C ′)(t + η)φs
n(C ′))

Let us investigate now the relation between diam Ui and exp(S−n(C ′)(t + η)φs
n(C ′)),

C ′ ∈ Γi . From the definition of ni(ẑ ′), we know that it represents the largest integer
n ′, multiple of n, such that diam f −k ′

∗ (Ui) < ε, 0 ≤ k ′ ≤ n ′. Also, n̄i(ẑ ′) represents
the smallest integer (not necessarily multiple of n) such that diam f −n̄i (ẑ ′)

∗ Ui > ε,

where the inverse branches f −k
∗ were defined along the prehistory ẑ ′ = ẑ ′(C).

We consider now what happens to Ui when taking inverse iterates. Let z ′ ′ be
another point in 1

2
Ui ∩Λ, and ζ ′′ the intersection between W s

r (z ′ ′) and the unstable
manifold W u

r (ẑ ′); from the local product structure ζ ′′ ∈ Λ. Then since Ui is a ball,

we get

diam f −n̄i (ẑ ′)(W s
r (z ′) ∩Ui) = constant ·|D f n̄i (ẑ ′)

s (z ′−n̄i (ẑ ′))|
−1,

diam f −n̄i (ẑ ′)(W s
r (z ′ ′) ∩Ui) = constant ·|D f n̄i (ẑ ′)

s (ζ ′ ′−n̄i (ẑ ′))|,

due to the bounded distortion property from Proposition 1.6. But since ζ ′′ ∈ W u
r (ẑ ′)

and ζ̂ ′′ is the prehistory of ζ ′′ following ẑ ′, we see that the distance d(z ′ ′− j , ζ
′′
− j) de-

creases exponentially when j increases; thus due to the fact that |D fs|(z) depends

Lipschitz-continuously on z (Theorem 1.5), we get that

|D f n̄i (ẑ ′)
s (ζ ′ ′−n̄i (ẑ ′)))|, |D f n̄i (ẑ ′)

s (z ′−n̄i (ẑ ′)|

are the same up to a constant independent of z ′.
Therefore we will obtain, for every i ∈ I that

(2.4) diam Ui > ε exp(S−n̄i (ẑ ′)φ
s(C ′ ′)) ≥ ε exp(S−mi (ẑ ′)φ

s
n(C ′))λn

s ,

where we considered first the n̄i(ẑ ′)-prehistory C ′′ := (y, y−1, . . . , y−n̄i (ẑ ′)), (pre-

history with respect to f , induced by the full prehistory C := ŷ), and then the
mi(ẑ ′)-prehistory C ′ := (y, y−n, . . . , y−nmi (ẑ ′)), (prehistory with respect to f n, in-
duced by the same complete prehistory C). We used also in (2.4) the fact that n̄i(ẑ ′) ≤
ni(ẑ ′) + n.
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Therefore by using (2.4) and the fact that Card Γi ≤ N0(ε)mi , we can continue
now with the estimate for M−

f n (0, (t + η)φs
n,Y,N, ε) as follows:

M−
f n (0, (t + η)φs

n,Y,N, ε)

≤
∑

i∈I

∑

C ′∈Γi

ε−t−η(diam Ui)
t · exp(S−mi (ẑ ′)φ

s
n(C ′))ηλ−n(t+η)

s

≤
∑

i∈I

[N0(ε)mi · exp(S−mi (ẑ ′)φ
s
n(C ′))η]ε−t−η(diam Ui)

tλ−n(t+η)
s

≤
∑

i∈I

[N0(ε) · χnη
s ]miχ−nη

s ε−t−η(diam Ui)
tλ−n(t+η)

s ,

(2.5)

where we used in the last inequality the definition of ni(ẑ ′) and that |D f ni (ẑ ′)
s (z ′−ni (ẑ ′))|

is the same as |D f ni (ẑ ′)
s (z ′−ni (ẑ ′))| up to a factor less than χn

s for any z ′, z ′ ∈ Ui ∩ Jm.
Thus we may as well use for ẑ ′ the prehistory with the maximum ni(ẑ ′), hence with
ni(ẑ ′) = ni = nmi .

In the above sequence of inequalities, we used also that 0 < η < 1, 0 < t < 3.
But ni = nmi , so (2.5) implies that

M−
f n (0, (t + η)φs

n,Y,N, ε) ≤ ε−t−1
∑

i∈I

(diam Ui)
t [N0(ε)χηn

s ]miλ−4n
s χ−n

s

≤ ε−t−1λ−4n
s χ−n

s

∑

i∈I

(diam Ui)
t [N0(ε)χηn

s ]mi .

(2.6)

But from (2.1) and since n ≥ n(ε, η), we see that N0(ε)χηn
s < 1. From the way

of choosing the cover U in (2.3), we have also
∑

i∈I(diam Ui)
t < εt+1 · λ4n

s χ
n
s . In

conclusion, the inequality (2.6) becomes

(2.7) M−
f n (0, (t + η)φs

n,Y,N, ε) < 1.

Since γ and consequently diam Ui, i ∈ I can be taken as small as we wish, we see
that n(C ′) can also be made arbitrarily large, for C ′ ∈

⋃
i∈I Γi . Therefore if γ → 0,

N can be taken arbitrarily large, and (2.7) implies that M−
f n (0, (t + η)φs

n,Y, ε) = 0.

Thus one can conclude that P−
f n ((t + η)φs

n,Y, ε) ≤ 0, for 0 < η < 1 and n ≥ n(ε, η).
But let us also remember that Y was just the intersection between Λ and one of the
balls B(y1, α̃ε/4), . . . ,B(ys, α̃ε/4) which cover Λ. Therefore by Proposition 1.1(ii),
it follows that

P−
f n ((t + η)φs

n,Λ, ε) ≤ 0, for n ≥ n(ε, η).

This implies that t + η ≥ t s
n(ε), for n ≥ n(ε, η). Since t was chosen arbitrarily larger

than δs(x), we obtain δs(x) + η ≥ t s
n(ε), for n ≥ n(ε, η).

Corollary 2.2 In the same setting as in the previous theorem, if x, y are arbitrary

points from Λ, then

|δs(x) − δs(y)| ≤
(dimBΛ) · logχu

logχ−1
s

,

where χu := supz∈Λ
|D fu(z)|.
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Proof First, let us notice that dimBΛ ≤ 4 since Λ ⊂ P
2, so even if dimBΛ cannot be

calculated explicitly, the statement of the corollary still gives a good estimate of the

maximum possible variation of δs( · ) on Λ.
Let us take an arbitrary η with η > (dimBΛ) logχu/logχ−1

s and an arbitrary t
with t > δs(x). Then there exists β1 > dimBΛ such that η > β1 · logχu/logχ−1

s .
Now, if β1 > dimBΛ, then there will exist a large integer n1 = n1(β1) depending

on β1 such that for any n ≥ n1, ρn is small enough so that N0(ρn) ≤ ( 1
ρn

)β1 , where
N0(·) and ρn were introduced in the proof of Theorem 2.1. Hence N0(ρn) · χnη

s ≤
(ερn)−β1χnη

s . But we assumed η > β1 logχu/logχ−1
s , so there exists n1 large enough

and ρ ∈ (0, χ−1
u ) close to χ−1

u , such that (ερn)−β1χnη
s < 1 for n > n1. This then

implies that

(2.8) N0(ρn) · χnη
s < 1.

Now we can use inequality (2.8) and (2.6) to prove that M−
f n (0, (t + η)φs

n,Y, ρn) < 1;

this implies then that

P−
f n ((t + η)φs

n, ρn) ≤ 0, for n > n1

Thus we conclude from above that t +η ≥ t s
n(ρn). But from Proposition 1.7, t s

n(ρn) =

t s, n ≥ 1. So t + η ≥ t s. Since t is arbitrarily larger than δs(x) and η is arbitrarily
larger than (dimBΛ) logχu/logχ−1

s , it follows that

δs(x) +
(dimBΛ) logχu

logχ−1
s

≥ t s ≥ δs(y), y ∈ Λ,

where the inequality t s ≥ δs(y) follows from Theorem 2.1. Therefore,

|δs(x) − δs(y)| ≤ (dimBΛ) · logχu/logχ−1
s , ∀x, y ∈ Λ.

3 Independence of δs(x) When the Map f Is Open on Λ

In this section we show that for an Axiom A holomorphic map f on P
2 which, in

addition, is also open on the basic set Λ, the stable dimension δs(x) becomes inde-
pendent of x ∈ Λ.

It is easy to prove that for Λ connected, the condition f |Λ : Λ → Λ open, is equiv-

alent to saying that the cardinality of the set f −1(x) ∩ Λ is constant when x ranges
in Λ.

Fornaess and Sibony [1] have introduced a type of holomorphic maps g on P
2

which are Axiom A and such that the saddle part S1 of the non-wandering set has a

neighbourhood U with the property that g−1(S1)∩U = S1 (among other properties).
Such maps were called s-hyperbolic. Notice that any s-hyperbolic map is in particular
open on any basic set Λ of saddle type. Examples of s-hyperbolic maps were given in
[1].

In the sequel we will prove that the openness of f on Λ is a sufficient condition
in order to guarantee that δs(x) does not depend on x ∈ Λ. The proof will use ideas
and notations related to the concept of inverse pressure (the sets Λ(C, ε), and their
concatenations, for example).
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Theorem 3.1 Consider a holomorphic Axiom A map f : P
2 → P

2 and a basic set
of saddle type Λ which does not intersect the critical set C f . Moreover assume that

f |Λ : Λ → Λ is open, in particular any point x ∈ Λ has the same number of preimages
in Λ (this number being denoted by d ′). Then for any x ∈ Λ, δs(x) = t s

0, where t s
0 is the

unique zero of the pressure function t → P(tφs − log d ′).

Proof In [5], we proved that δs(x) ≤ t s
0, so it remains to prove now only the op-

posite inequality. Denote W := W s
r (x) ∩ Λ. As in the second part of the proof of

Theorem 2.1, we find an integer m ≥ 1 and a set Jm ⊂ f −mW ∩ Λ such that all local
unstable manifolds of size ε/2 intersect Jm (for some small fixed 0 < ε < ε0). Take
also t > δs(x) arbitrary. Then there exists a finite open cover U = (Ui)i∈I of Jm with

balls of diameter less than γ ≪ 1, and so that
∑

i∈I(diam Ui)
t < 1

2
. Recall the proof

of Theorem 2.1, the definition of F ′
i , and the set of prehistories in Λ of points from

Ui ∩ Jm. In the sequel, for clarity of notation, we will denote the set Ui ∩ Jm by Ui

too.

Assume ẑ is a prehistory in Λ of a point z ∈ Ui ; denote by n(ẑ) the largest integer

such that diam f −k
∗ Ui < ε/2, 0 ≤ k ≤ n(ẑ), where f −k

∗ is the branch of f −k deter-
mined by the prehistory ẑ. For the prehistory ẑ, denote by C(ẑ) the n(ẑ)-prehistory
(z, z−1, . . . , z−n(ẑ)) which is obtained by truncating ẑ.

Now for each i ∈ I, let us fix a point zi ∈
1
2
Ui ∩ Λ and then consider the set F̃i

of all n(ẑi)-prehistories C(ẑi) obtained as above, for all prehistories in Λ of zi . Notice

that we consider in this case all d ′ f -preimages in Λ of a given point zi ∈ Ui .

Denote also by U ∗
i :=

⋃
C∈F̃i

Λ(C, ε); then Λ =
⋃

i∈I U ∗
i . For later reference,

it is useful to note that for any prehistory ŷ ∈ Λ̂, there exists j ∈ I such that
W u

ε/2(ŷ) ∩ U j 6= ∅; but then there exists a certain prehistory ẑ j of z j such that

W u
ε (ŷ) ∩ Λ ⊂ Λ(C(ẑ j ), ε) (this follows from the definition of C(ẑ j) and the fact

that f |Λ is open). Therefore, all unstable manifolds of prehistories in Λ̂ (intersected
with Λ ) are contained in some Λ(C, ε),C ∈

⋃
i∈I F̃i .

For i ∈ I, C ∈ F̃i , write C as (zC , . . . , zC
−n(C)) (obviously notationally zC = zi).

Denote also by Gi := {n(C),C ∈ F̃i}, (recall that n(C) denotes the length of C), and
write Gi as {ni1, . . . , niqi

}, where ni1 < · · · < niqi
. Now, let Ni j be the number of

prehistories C ∈ F̃i with n(C) = ni j , 1 ≤ j ≤ qi , i ∈ I.

We will make the connection between the sets Λ(C, ε) (obtained as above in the
process of covering Λ, in the definition of inverse pressure P−), and the Bowen
balls needed in the definition of the (forward) pressure. In general by a Bowen ball
Bk(z, ε), z ∈ Λ, we mean the set {y ∈ Λ, d( f j y, f jz) < ε, 0 ≤ j ≤ k}. Therefore,

if C ∈ F̃i , i ∈ I, we have Λ(C, ε) = f n(C)(Bn(C)(zC
−n(C), ε)); for simplicity of nota-

tion, denote the Bowen ball Bn(C)(zC
−n(C), ε) by B(C),C ∈ F̃i , i ∈ I. From the above

discussion, we know that Λ =
⋃

i∈I U ∗
i =

⋃
i∈I

⋃
C∈F̃i

f n(C)(B(C)). However since
the integers n(C) are different among themselves, it does not follow directly that the

Bowen balls B(C) cover Λ. In order to get a covering of Λ with Bowen balls, we will
make a construction using concatenations of sets of type Λ(C, ε); it will be possible
then to take the lengths of these concatenations arbitrarily large.

Let in general C and C ′ be two prehistories of points in Λ, C = (z, z−1, . . . , z−n(C))
and C ′ = (w,w−1, . . . ,w−n(C)). Assume also that there exists a point z ′ ∈ Λ(C, ε),
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so that z ′−n(C) ∈ Λ(C ′, ε), where z ′−n(C) represents the n(C)-preimage of z ′ which
is ε-shadowed by z−n(C). If z ′−n(C) ∈ Λ(C ′, ε), it follows that it has a prehistory

(z ′−(n(C)+1), . . . , z
′
−(n(C)+n(C ′))) which is ε-shadowed by C ′. So we can form the set

Λ(CC ′, ε) := {y ∈ Λ(C, ε), y−n(C) ∈ Λ(C ′, ε)}, and from above, if this set is non-
empty, then Λ(CC ′, ε) ⊂ Λ(C ′ ′, 2ε), where C ′ ′ is an (n(C) + n(C ′))-prehistory. This
process will be called concatenation.

We will use concatenation repeatedly in order to obtain a cover of Λ with sets
Λ(C ′ ′, 2ε) with n(C ′ ′) arbitrarily large. Define now the collection

Γn := {C̄ = C1 · · ·Cs,Ck ∈ F̃ jk
, jk ∈ I, 1 ≤ k ≤ s, n ≤ n(C1)+· · ·+n(C js

) < n+N},

where here N := maxi∈I,C∈F̃i
n(C). Since Λ =

⋃
i∈I

⋃
C∈F̃i

Λ(C, ε), we also see

that Λ =
⋃

C̄∈Γn
Λ(C̄, 2ε). If C̄ ∈ Γn and C̄ = C1 · · ·Cs, let n(C̄) := n(C1) +

· · · + n(Cs). But as noted before, if C̄ ∈ Γn, there exist points zC̄
−n(C̄)

such that

Λ(C̄, 2ε) = f n(C̄)(Bn(C̄)(zC̄
−n(C̄)

, 2ε)), and n ≤ n(C̄) < n + N . Therefore Λ =
⋃

C̄∈Γn
f n( f n(C̄)−nBn(C̄)(zC̄

−n(C̄)
, 2ε)).

Let us recall now the remark made earlier, after the definition of U ∗
i . Since any

set W u
ε/2(ŷ) ∩ Λ, ŷ ∈ Λ̂ is contained in Λ(C, ε) for some C ∈

⋃
i∈I F̃i and since we

collected the corresponding C(ẑi) for all prehistories ẑi ∈ Λ̂ and all i ∈ I, we obtain
that any f n-preimage in Λ of a point from Λ belongs to the union

⋃
C̄∈Γn

f n(C̄)−nBn(C̄)(zC̄
−n(C̄)

, 2ε)).

So we can conclude that Λ =
⋃

C̄∈Γn
f n(C̄)−nBn(C̄)(zC̄

−n(C̄)
, 2ε)).

On the other hand, notice that f n(C̄)−nBn(C̄)(zC̄
−n(C̄)

, 2ε) ⊂ Bn(zC̄
−n, 2ε).

Denote then Fn := {zC̄
−n, C̄ ∈ Γn}. From the previous considerations it follows

that Fn is an (n, ε)-spanning set for Λ, in the classical (forward) sense. We will use
this particular spanning set Fn in order to estimate

Pn(tφs − log d ′) := inf
{∑

z∈F

eSn(tφs)(z)−n log d ′

, F(n, ε) − spanning set for Λ

}
.

Let us remember the construction of the set Fn and the points zC̄
−n(C̄)

. If C̄ = C1 · · ·Cs,

Ck ∈ F̃ jk
, 1 ≤ k ≤ s, then from the proof of Proposition 1.6, we have that there exists

a positive constant σ so that

|D f n(Cs)
s (zC̄

−n(C̄))| ≤ eσε · diam U js
, . . . , |D f n(C1)

s (zC̄
−n(C1))| ≤ eσε · diam U j1

,

(since C1 ∈ F̃ j1
, . . . ,Cs ∈ F̃ js

). Hence since n ≤ n(C̄) < n + N , there will exist a
positive constant T1 independent of n such that

|D f n(C̄)
s (zC̄

−n(C̄)
)| ≤ T1 · enσε · (diam U j1

) · · · (diam U js
).
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But recall that |D f n(C̄)
s (zC̄

−n(C̄)
)| = |D f n(C̄)−n

s (zC̄
−n(C̄)

)|·|D f n
s (zC̄

−n)|. Thus, for a positive

constant T2 we obtain the inequality:

(3.1) |D f n
s (zC̄

−n)| ≤ T2 · enσε · (diam U j1
) · · · (diam U js

),

for all C̄ ∈ Γn and all integers n > 1.

Now given n, and j1, . . . js ∈ I, we will estimate how many prehistories C̄ =

C1 · · ·Cs there are with Ck ∈ F̃ jk
, 1 ≤ k ≤ s and C̄ ∈ Γn.

For i ∈ I and 1 ≤ j ≤ qi , we denoted by Ni j the number of prehistories C ∈ F̃i

with n(C) = ni j , ni j ∈ Gi . Hence for each s, j1, . . . , js ∈ I, and integers n jk pk
∈

G jk
, 1 ≤ k ≤ s, satisfying n ≤ n j1 p1

+ · · · + n js ps
< n + N , there exist at most

N j1 p1
· · ·N js ps

prehistories of type C̄ = C1 · · ·Cs in Γn with Ck ∈ F̃ jk
and n(Ck) =

n jk pk
, 1 ≤ k ≤ s. If i ∈ I, let

Σi :=
Ni1

(d ′)ni1
+ · · · +

Niqi

(d ′)niqi
.

To start with, let us compare Ni1 and Ni2. Since ni1 < ni2, the prehistories stopping at
ni1 cannot be continued to ni2-prehistories; hence using the fact that each point in Λ

has at most d ′ preimages in Λ, it follows that Ni2 ≤ [(d ′)ni1 − Ni1] · (d ′)ni2−ni1 . Simi-

larly one can show that Ni j ≤ (d ′)ni j −Ni1(d ′)ni j−ni1 −· · ·−Ni( j−1)(d ′)ni j−ni( j−1) , 2 ≤
j ≤ qi . This implies that for each i ∈ I, we obtain:

Σi ≤
Ni1

(d ′)ni1
+

Ni2

(d ′)ni2
+ · · · +

Ni(qi−1)

(d ′)ni(qi−1)

+
(d ′)niqi − Ni1(d ′)niqi

−ni1 − · · · − Ni(qi−1)(d ′)niqi
−ni(qi−1)

(d ′)niqi

≤ (1 −
Ni1

(d ′)ni1
− · · · −

Ni(qi−1)

(d ′)ni(qi−1)
) +

Ni1

(d ′)ni1
+ · · · +

Ni(qi−1)

(d ′)ni(qi−1)
= 1

Therefore from the last inequality it follows that Σi ≤ 1, i ∈ I and hence
Σ j1

· · ·Σ js
≤ 1, j1, . . . , js ∈ I. This implies then

∑

1≤p1≤q j1
,...,1≤ps≤q js

N j1 p1
· · ·N js ps

(d ′)n j1 p1
+···+n js ps

≤ 1.

In particular, if j1, . . . , js ∈ I, we get

(3.2)
∑′ N j1 p1

· · ·N js ps

(d ′)n
≤ Θ,

where Θ > 0 is a constant independent of n, j1, . . . , js and where the sum
∑ ′ ′

is
taken over all integers n jk pk

∈ G jk
, 1 ≤ k ≤ s satisfying n ≤ n j1 p1

+ · · ·+n js ps
< n+N .

We will use the above conclusions in order to estimate now
∑

z∈Fn
eSn(tφs)(z)−n log d ′

;
first notice that for each j1, . . . , js ∈ I, there exist at most

∑
N j1 p1

· · ·N js ps
prehisto-

ries C̄ = C1 · · ·Cs ∈ Γn, with Ck ∈ F̃ jk
, 1 ≤ k ≤ s, where the last sum is taken over
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all integers n jk pk
∈ G jk

, 1 ≤ k ≤ s satisfying n ≤ n j1 p1
+ · · · + n js ps

< n + N . Then
using (3.1) and (3.2), we will obtain:

Pn(tφs − log d ′) ≤
∑

z∈Fn

eSn(tφs)(z)−n log d ′

≤
∑′ ′(∑

N j1 p1
· · ·N js ps

)
· (d ′)−n · T2enσε · (diam U j1

)t · · · (diam U js
)t

≤ ΘT2 · enσε ·
∑ ′ ′

(diam U j1
)t · · · (diam U js

)t ,

(3.3)

where the sum
∑ ′ ′

is taken over all integers s > 0 and s-uples j1, . . . , js ∈ I having
some prehistories C1, . . . ,Cs in F̃ j1

, . . . , F̃ js
respectively, which satisfy: C1 · · ·Cs ∈

Γn. But the cover (Ui)i∈I has been taken such that
∑

i∈I(diam Ui)
t < 1

2
, therefore∑

s>0(
∑

i∈I(diam Ui)
t )s < 1. This implies that

∑

s>0

∑

j1,..., js∈I

(diam U j1
)t · · · (diam U js

)t < 1.

Therefore using (3.3) it follows that Pn(tφs − log d ′) < ΘT2 · enσε. The constants

Θ,T2, σ do not depend on n, ε, if ε < ε1 is small enough. So we get P(tφs − log d ′) =

limn
1
n

log Pn ≤ σε, and since ε > 0 is arbitrarily small, we get P(tφs − log d ′) ≤ 0.
But this means that t ≥ t s

0, where t s
0 denotes the unique zero of the function t →

P(tφs − log d ′). Now recall that t has been taken arbitrarily larger than δs(x), hence
δs(x) ≥ t s

0. Recalling that the opposite inequality was proved in [5], we finally get
that δs(x) = t s

0, x ∈ Λ. So, in case f |Λ is open, the stable dimension is independent
of the point.

In particular Theorem 3.1 shows that in the case of s-hyperbolic maps studied in
[1], the stable dimension along basic sets of saddle type, is independent of the point .

Finally, notice that the proof of Theorem 3.1 shows more generally that δs(x) ≥ t s
0

if each point of Λ has at most d ′-preimages in Λ (one may also denote t s
0 by t s

0(d ′)
when emphasizing its dependence on d ′). The number of preimages d(x) that a point
x from Λ has in Λ, is not necessarily constant. The above remark and [5, Theo-

rem 1.2] prove the following.

Corollary 3.2 In the setting of Theorem 2.1, if d ′ ≤ d(y) ≤ d ′ ′, y ∈ Λ, then for each

x ∈ Λ it follows that t s
0(d ′ ′) ≤ δs(x) ≤ t s

0(d ′).

It is important to remark that this Corollary does not require f |Λ to be open; it

gives estimates of the stable dimension, for example in the case of quadratic maps
from [5].

4 Results in the Real Conformal Case

Most of the results of the previous sections work also in a more general setting, al-
though for historical and example reasons we preferred to give them in the holomor-
phic case.
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Definition 1 Let M be a compact Riemannian manifold of real dimension 4, and
f : M → M a C

r, r ≥ 2 map, possibly non-invertible. Let also Λ a basic set of saddle

type for f , i.e., there exists an open neighbourhood V of Λ in M, such that Λ =⋂
n∈Z

f n(V ), f |Λ : Λ → Λ is transitive and f is hyperbolic on Λ̂ with both expanding
and contracting directions. Suppose also that f is finite-to-one, the dimension of
stable tangent spaces on Λ is 2, and f is conformal on its stable manifolds on Λ.

We will say that such a map f is c-hyperbolic on the basic set Λ (c coming from
“conformal”).

The notations for the stable dimension δs(x), the zero of the inverse pressure
t s
n(ε), t s

n, etc., remain the same.

The following theorems are proved in the same way as the previous corresponding
theorems in the holomorphic case.

Theorem 4.1 Consider f : M → M a c-hyperbolic map on the basic set Λ, such that
C f ∩ Λ = ∅. Then the map x → Es

x is Lipschitz continuous and in particular, if

φs(y) := log |D fs(y)|, y ∈ Λ, then φs is Lipschitz continuous on Λ.

Theorem 4.2 Let f : M → M be a c-hyperbolic map on a basic set Λ, with C f ∩Λ =

∅. Then
(i) for every x ∈ Λ, we have δs(x) ≤ t s

n(ρn) = t s, where ρn are numbers of the form
ερn, n ≥ 1, with χu := sup

Λ
||D fu||, and ρ > 0 is an arbitrary number smaller than

χ−1
u , and ε < min{ε0, r0}.

(ii) for all positive numbers ε < ε0, and η > 0, we obtain δs(x) + η ≥ t s
n(ε), where

n ≥ n(ε, η) > 4 log(ε−1)/η logχ−1
s . In particular, if η = ε small enough, we get

δs(x) + ε ≥ t s
n(ε), for n > 1

ε1.1 .

Consequently we have the similar corollary.

Corollary 4.3 In the same setting as in Theorem 4.2, if x, y ∈ Λ, then |δs(x) −
δs(y)| ≤ (dimBΛ) · logχu/logχ−1

s .

Theorem 4.4 Consider a smooth map f : M → M which is c-hyperbolic on a con-
nected basic set Λ which does not intersect the critical set C f . Moreover assume that
f |Λ : Λ → Λ is open, in particular any point x ∈ Λ has the same number of preimages

in Λ (denote this number by d ′). Then for any x ∈ Λ, δs(x) = t s
0, where t s

0 is the unique
zero of the pressure function t → P(tφs − log d ′).

Corollary 4.5 Let f : M → M be a smooth map, c-hyperbolic on the basic set Λ which
does not intersect the critical set C f ; if d(y) denotes the cardinality of f −1(y)∩Λ, y ∈ Λ

and d ′, d ′′ are positive integers such that d ′ ≤ d(y) ≤ d ′ ′, ∀y ∈ Λ, then for each x ∈ Λ

it follows that t s
0(d ′ ′) ≤ δs(x) ≤ t s

0(d ′), where t s
0(d ′) represents the unique zero of the

pressure function t → P(tφs − log d ′).

This corollary does not require f |Λ to be open.
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