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Chapter 1

An overview

1.1 Abstract

This thesis describes my main academic achievements after I obtained my
Ph.D Degree, from the University of Edinburgh, in 2001. It begins with a
short description of my research profile, with information on: the areas in
which I have worked, the (most important) journals of mathematics where
I published my research results, my collaborators, the research grants which
I won and the institutions where I held post-doctoral and visiting positions.
Details on all of these may be found in my CV and list of publications.

It follows a description of my main research results in the four research
fields in which I worked after I obtained my Ph.D Degree: Kähler and Sasaki
Geometry; Quaternionic Geometry; Generalized Complex Geometry; Frobe-
nius Manifolds. For each of these areas, we present an introduction, which
contains details on the most important original results and the way they fit
into the research field. Then we give a short account on various notions and
well-known results from the field, which are relevant from the point of view
of the original results. Afterwards, we describe these original results. To
keep the text of reasonable length, only the ideas of the proofs are given,
and, sometimes, the proofs are skipped completely. More details can be
found in the papers published by the author of this thesis.

Below we briefly describe the relevant results of our research.
Kähler and Sasaki Geometry. We define and study a class of natu-

ral connections (the so called Tanaka connections) on a CR manifold, which
may be viewed as the analogue of Weyl connections from conformal geom-
etry. This is the starting point in our treatment of the relations between
Kähler and Sasaki geometry, using the Webster’s correspondence and a gen-
eralized cone construction. We give a new proof of the Guillemin’s formula
for the potential of the canonical Kähler metric of a compact toric symplectic
manifold.

Quaternionic Geometry. We study in detail the quaternionic con-
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8 CHAPTER 1. AN OVERVIEW

nections using twistor theory and Penrose operators. We study, from the
local and global point of view, the conformal-Killing operator acting on
(compatible) 2-forms on a quaternionic-Kähler manifold. We determine the
G-structures (G := Sp(1)Sp(n), G2 and Spin7) whose fundamental forms
are conformal-Killing.

Generalized Complex Geometry. We develop a detailed study of a
class (called regular) of invariant generalized complex structures on a real
semisimple Lie group G. The problem reduces to the description of ad-
missible pairs (k, ω), where k ⊂ gC is an appropriate regular subalgebra of
the complex Lie algebra gC associated to G and ω is a closed 2-form on k,
such that Im

(
ω|k∩g

)
is non-degenerate. When G is a semisimple Lie group

of inner type (in particular, when G is compact semisimple) a classifica-
tion of regular generalized complex structures on G is given. When G is a
semisimple Lie group of outer type, we describe the subalgebras k in terms
of appropriate root subsystems of a root system of gC and we construct
a large class of admissible pairs (k, ω) (hence, regular generalized complex
structures of G).

Frobenius Manifolds. We develop a generalization of the construction
of K. Saito of adding a variable to a Frobenius manifold. We prove a du-
ality theorem for F -manifolds with eventual identities, a problem raised by
Y. Manin. We relate this duality to several notions and constructions from
the theory of Frobenius and F -manifolds: compatible connections, Rieman-
nian F -manifolds (by introducing an invariant metric) and tt∗-geometry (by
introducing a Hermitian metric).

The final part of the thesis contains an account on the future academic
plans of the author. My main activity will continue to be the research at
IMAR, supported also in the future, I hope, by the research grants I will
win. The research directions I intend to follow and the new background
I will acquire are described. In the same chapter it is described briefly
the contents of a book I am writing with D. V. Alekseevsky and on which
I intend to work also in the following years. There are described various
topics I would like to teach, in order to attract young mathematicians to
differential geometry and, eventually, to coordinate their doctoral studies.

1.2 Rezumat

Aceasta teza descrie realizarile mele stiintifice dupa ce am obtinut titlul
de Doctor in Matematica, la Universitatea din Edinburgh, in 2001. Ea
incepe cu o scurta prezentare a profilului cercetarii, incluzand informatii
despre: domeniile in care am lucrat, revistele de matematica (semnificative)
in care am publicat, despre colaboratori, granturi de cercetare obtinute prin
concurs si institutiile unde am efectuat stagii de cercetare. Detalii despre
toate acestea se gasesc in CV si in lista de publicatii.
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Urmeaza o descriere a rezultatelor principale obtinute in cele patru direc-
tii de cercetare abordate dupa doctorat: Geometria Kähler si Sasaki; Geome-
tria Cuaternionica; Geometria Complexa Generalizata; Varietati Frobenius.
Pentru fiecare din aceste domenii se incepe cu o introducere, care contine
detalii si precizari asupra rezultatelor originale mai importante si a felului
in care se incadreaza ele in literatura de specialitate. Se mentioneaza apoi
diverse notiuni si rezultate de baza din domeniu, relevante din punctul de
vedere al rezultatelor originale obtinute de catre autoare. In continuare sunt
descrise aceste rezultate originale. Pentru a nu depasi o anumita lungime a
textului, se prezinta numai ideile demonstratiilor, iar uneori demonstratiile
se omit in intregime. Detalii suplimentare pot fi gasite in lucrarile publicate
de catre autoare.

Mai jos descriem pe scurt rezultatele relevante ale cercetarii:
Geometria Kähler si Sasaki. Se studiaza o clasa de conexiuni natu-

rale pe o varietate CR (asa numitele conexiuni Tanaka), care sunt similare
conexiunilor Weyl din geometria conforma. Acesta este punctul de plecare
al studiului pe care il dezvoltam asupra legaturilor dintre varietatile Kähler
si Sasaki, prin intermediul corespondentei lui Webster si constructiei conu-
lui generalizat. De asemenea, se da o noua demonstratie a formulei lui
Guillemin pentru potentialul metricii canonice Kähler pe o varietate sim-
plectica torica compacta.

Geometria Cuaternionica. Se trateaza detaliat conexiunile cuater-
nionice folosind teoria twistor si operatori Penrose. Se studiaza, din punct
de vedere local si global, operatorul conform-Killing ce actioneaza pe spatiul
2-formelor (compatibile) pe o varietate cuaternionica-Kähler. Se determina
G-structurile (unde G = Sp(1)Sp(n), G2 sau Spin7) cu forma fundamentala
conforma-Killing.

Geometria Complexa Generalizata. Se dezvolta un studiu detaliat
al unei clase (numita regulata) de structuri complexe generalizate invari-
ante pe un grup Lie real semisimplu G. Problema se reduce la descrierea
perechilor admisibile (k, ω), unde k ⊂ gC este o subalgebra regulata a alge-
brei complexe gC asociata lui G si ω este o 2-forma pe k, astfel ca Im

(
ω|g∩k

)
sa fie nedegenerata. Cand grupul Lie semisimplu G este de tip interior (in
particular, cand G este compact semisimplu), se dezvolta o clasificare a
structurilor complexe generalizate invariante regulate pe G. Cand G este
un grup Lie semisimplu de tip exterior, se descrie subalgebra k in termeni de
sisteme de radacini ale algebrei Lie complexe semisimple gC si se constru-
ieste o larga clasa de perechi admisibile (k, ω) (si, deci, de structuri complexe
generalizate invariante regulate pe G).

Varietati Frobenius. Se dezvolta o generalizare a constructiei lui K.
Saito de adaugare a unei variabile la o varietate Frobenius si o teorema de
dualitate pentru F -varietati cu identitati eventuale, o problema sugerata de
Y. Manin. De asemenea, se pune in evidenta legatura acestei dualitati cu
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alte notiuni si constructii din teoria varietatilor Frobenius si a F -varietatilor:
conexiuni compatibile, F -varietati Riemanniene (introducand o metrica in-
varianta) si geometria tt∗ (introducand o metrica Hermitiana).

In partea finala a tezei sunt prezentate planurile academice ale autoarei.
Activitatea mea principala va continua sa fie cercetarea la IMAR, sprijinita,
sper, si in viitor, de granturile pe care le voi obtine prin concurs. Se prezinta
directiile de cercetare pe care intentionez sa le urmez si noi teme in care in-
tentionez sa ma introduc. Este rezumat continutul unei carti pe care o scriu
cu D. V. Alekseevsky si la care voi lucra si in anii urmatori. De asemenea, se
descriu aici unele tematici pe care mi-ar placea sa le predau, pentru a atrage
tineri matematicieni inspre geometrie diferentiala si, eventual, pentru a le
coordona studiile doctorale.

1.3 Introduction

This thesis presents an overview of my scientific activity after I obtained my
Ph.D from the University of Edinburgh, in 2001.

My research from this period can be divided into four main directions:
Kähler and Sasaki Geometry; Quaternionic Geometry; Generalized Complex
Geometry; Frobenius Manifolds.

I published research papers in international journals of mathematics of
high influence score, between which I mention: Proc. London Math. Soc.
(2012), Adv. Math (2011), Compositio Math. (2008), , J. London Math.
Soc (2009), Internat. Math. Res. Notices (2004), Ann. Math. Pura Applic.
(2011), J. Geom. Physics (2006, 2010, 2011), Int. J. Math. (2008), Ann.
Global Anal. Geom. (2004), Diff. Geom. Aplic. (2008).

In 2008 I was awarded the ”Gheorghe Titzeica Prize of the Romanian
Academy”, for research in Riemannian Geometry.

I presented my research results at various international workshops from
Romania and abroad and I collaborated with internationally recognized
mathematicians, like D. V. Alekseevsky, D. M. J. Calderbank, P. Gaudu-
chon, M. Pontecorvo, I. A. B. Strachan.

I did research stages (as post-doctoral or visiting fellow) at some of the
most well-known institutions from abroad, namely: Ecole Polytechnique
(Palaiseau), Scuola Normale Superiore di Pisa, Institut des Hautes Etudes
Scientifiques (Paris), International Center for Theoretical Physics (Trieste)
University of Glasgow (UK).

I was the Director of a CNCS-UEFISCDI research project (project no.
1187/2008) during 2008-2011. I am currently the Director of a CNCS-
UEFISCDI research project (project no. PNII-ID-PCE-2011-0362), which
will last until December 2013. I was also a member of the research teams of
two other (CNCSIS and CEX) research projects at IMAR. For more details
on my scientific activity, see the CV and list of publications.



Chapter 2

Contributions to
Bochner-flat Kähler
Geometry and Sasaki
Geometry

2.1 Introduction

In this chapter is concerned with the geometry of Bochner-flat Kähler mani-
folds and its interactions with CR and Sasaki geometry and summarizes the
results published by the author of this thesis in Compositio Mathemat-
ica [36], Annals of Global Analysis and Geometry [40], Journal of
Symplectic Geometry [25], C.R.M Proceedings and Lecture Notes
[43]. It includes three main related topics: a detailed study of a class of
natural connections on a CR manifold (the so called Tanaka connections)
and two constructions which relate Kähler and Sasaki geometry, namely the
Webster’s correspondence and a generalized cone construction. At the end
of the chapter we also derive a simple proof for the Guillemin formula on
compact toric symplectic manifolds.

We now present with details the contents of each section separately,
explaining also how the original results fit into the general research field.

In Section 2.2 we recall basic definitions and well-known facts from
Kähler and Sasaki geometry: the Bochner tensor, CR and Sasaki manifolds,
the Webster’s correspondence (which states that any Kähler manifold is
locally isomorphic to the quotient of a Sasaki manifold by its Reeb vector
field).

In Section 2.3 we define and study a class of natural connections on
a CR manifold. They will be refered as Tanaka connections, because they
generalize, in a framework similar to conformal geometry, a class of connec-
tions already considered by Tanaka in [106]. On a CR manifold the Tanaka
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connections are parametrized by 1-forms, and for this reason they may be
seen as the analogue of Weyl connections from conformal geometry. How-
ever, unlike Weyl connections from conformal geometry, they always have
torsion. A detailed study of the curvature of Tanaka connections was de-
veloped in [40]. In this section we content ourselves to give a description
of the Chern-Moser tensor of a CR manifold, in terms of the curvature of
Tanaka connections (see Theorem 9). The advantage of this description is
that it makes more transparent the well-known identification between the
Chern-Moser tensor and the Bochner tensor in the Webster’s correspon-
dence, which is the starting point of our treatment from Section 2.4. Recall
that the Chern-Moser tensor in CR geometry plays the same role as the
Weyl tensor in conformal geometry, and measures the non-flatness of a CR
manifold. More precisely, it is known that the Chern-Moser tensor of a CR
manifold of dimension 2n + 1 ≥ 5 is zero if and only if the CR manifold is
locally isomorphic to the standard CR sphere (S2n+1, Hcan, Ican).

In Section 2.4 we develop a local study of Bochner-flat Kähler mani-
folds, using the Webster’s correspondence. The Bochner tensor of a Kähler
manifold is the ”biggest” irreducible component of the curvature tensor un-
der the action of the unitary group. In complex dimension two, the Bochner
tensor coincides with the anti-self-dual Weyl tensor. A Kähler manifold is
Bochner-flat if its Bochner tensor vanishes. Bochner-flat Kähler manifolds
represent an important class of Kähler manifolds and have been intensively
studied by mathematicians like V. Apostolov, R. Bryant, D. Calderbank, P.
Gauduchon, etc. Despite the formal similarity between the Bochner tensor
and the Weyl tensor from conformal geometry (or the Chern-Moser tensor
from CR geometry), the local geometry of Bochner-flat Kähler manifolds is
very rich. In this section we show how the geometry of Bochner-flat Kähler
manifolds can be read from the standard CR sphere by means of the Web-
ster’s correspondence. Because in the Webster’s correspondence the Chern-
Moser tensor of the Sasaki manifold is the pull-back of the Bochner tensor
of the Kähler manifold and the Chern-Moser tensor is zero if and only if the
CR manifold is locally isomorphic to the standard CR sphere (in dimension
at least 5), any Bochner-flat Kähler manifold of dimension 2m ≥ 4 is locally
isomorphic to the quotient of the standard CR sphere (S2m+1, Hcan, Ican)
by the Reeb vector field of a Sasaki structure. Therefore the problem of
classifying locally the Bochner-flat Kähler manifolds reduces to the problem
of describing all compatible Sasaki structures on the standard CR sphere. It
turns out that any compatible Sasaki structure on the standard CR sphere
(S2m+1, Hst, Ist) is determined by an element iA ∈ sum+1,1 and there are
four types of compatible Sasaki structures on (S2m+1, Hst, Ist) determined
by the four types of conjugacy classes in the Lie algebra sum+1,1 (see The-
orem 13). For any iA ∈ sum+1,1, we consider the associated Bochner-flat
Kähler manifold MA and we compute its Ricci and scalar curvatures, see
Section 2.4. As an example on how the geometry of MA can be described in
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terms of A, we determine the operators A such that MA is Kähler-Einstein.
(This will also be a key fact in the generalized cone construction from the
next section). Finally, we show how the type of a Bochner-flat Kähler man-
ifold can be read from its Ricci tensor (with no reference to the standard
CR sphere) by means of the so called Bryant minimal and characteristic
polynomials, hence we relate our approach of Bochner-flat Kähler manifolds
with Bryant’s approach [19]. More details on the material presented in this
section may be found in [43]. Besides complementing the paper of R. Bryant
[19], the results from this section are also closely related to the more general
theory of Kähler manifolds which admit a Hamiltonian 2-form, studied by
V. Apostolov, D. Calderbank, P. Gauduchon in [13, 14, 59]. The relation is
given by the remark that a Kähler manifold is Bochner-flat if and only if a
certain modified Ricci tensor is Hamiltonian.

In Section 2.5 we develop a new construction which relates CR and
Bochner-flat Kähler manifolds, called a generalized cone construction. Re-
call that an important class of Kähler manifolds is represented by the Kähler
cones over Sasaki manifolds. Unfortunately, except when the Sasaki mani-
fold is an open subset of the standard CR sphere with its standard metric as
the Sasaki metric, the Kähler cones are not Bochner-flat. With this moti-
vation, we develop a natural generalization of the Kähler cone construction,
which produces, from a CR manifold (N,H, I) endowed with a family of
compatible Sasaki-Reeb vector fields, a Kähler structure on an open subset
of the cone N × R>0. We refer to such a Kähler structure as a generalized
Kähler cone. It coincides with the usual Kähler cone of a Sasaki mani-
fold when the family of Reeb vector fields is constant. Besides the usual
Kähler cone, another strong motivation for this construction comes from
the fact that the Bryant family of Bochner-flat Kähler structures (which
has been discovered by R. Bryant in his classification theorem of complete
Bochner-flat Kähler structures on simply connected manifolds [19] and has
been further studied in [43]) are generalized Kähler cones. The main result
from this section states that any Bochner-flat Kähler manifold of complex
dimension bigger than two is locally isomorphic to a generalized Kähler cone
(see Theorem 27).

Based on the straightforward behaviour of dual potentials under Kähler
reduction, in Section 2.6 we develop an alternative proof of the Guillemin’s
formula for the Kähler potential of the canonical Kähler metric of a compact
toric symplectic manifold (see Theorem 28).

2.2 Preliminary material

2.2.1 The Bochner tensor of a Kähler manifold

In this section we recall the definition of the Bochner tensor of a Kähler
manifold. We use the formalism developed in [13, 59].
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Let (V, g, J) be a real vector space together with a complex structure
J and a J-invariant positive definite metric g. We identify vectors and
covectors of V using the metric g. Let ω := g(J ·, ·) be the Kähler form.
Recall that the space K(V ) of Kähler curvature tensors of (V, g, J), defined
as those curvature tensors which annihilate all J-anti-invariant 2-forms on
V , decomposes into a g-orthogonal sum

K(V ) := c∗K
(
Sym1,1(V )

)
⊕WK(V ), (2.1)

where c∗K : Sym1,1(V )→ K(V ) is the adjoint of the Ricci contraction

cK : K(V )→ Sym1,1(V ), cK(R)(v, w) := traceR(v, ·, w, ·), v, w ∈ V

and has the following expression [59]

c∗K(S) =
1
2

[
S ∧ Id + (J ◦ S) ∧ J

2
+ ω ⊗ S + β ⊗ J ], (2.2)

where S ∈ Sym1,1(V ) is a symmetric J-invariant endomorphism of V , ”Id”
is the identity endomorhism, β ∈ Λ1,1(V ) is the J-invariant 2-form on V ,
related to S by β(v, w) := g(SJv,w), and, for two endomorphisms S and T
of V , S ∧ T is the endomorphism of Λ2(V ) defined by the formula

(S ∧ T )(v ∧ w) := S(v) ∧ T (w)− S(w) ∧ T (v), v, w ∈ V.

According to the decomposition (2.1), a Kähler curvature tensor R ∈ K(V )
decomposes into the sum

R = c∗K(S) +WK ,

where WK ∈ WK(V ) is the principal part (or the Bochner part of R) and
S ∈ Sym1,1(V ) is a modified Ricci tensor.

The curvature Rg of a Kähler metric g on a complex manifold (M,J),
is, at any point p ∈ M , a Kähler curvature tensor of the tangent space
(TpM,Jp, gp).

Definition 1. The principal part of the curvature Rg of a Kähler manifold
(M,J, g) is called the Bochner tensor of (M,J, g). The Kähler manifold
(M,J, g) is Bochner-flat if its Bochner tensor vanishes.

2.2.2 CR and Sasaki manifolds

Recall that a (strongly pseudo-convex) CR manifold (N,H, I) (always as-
sumed to be connected and oriented) has a codimension one oriented subbun-
dle H of the tangent bundle TN , called the contact bundle, and a bundle
homomorphism I : H → H with I2 = −Id, such that, for every smooth
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sections X,Y ∈ Γ(H), [IX, IY ] − [X,Y ] is also a section of H and the
integrability condition

[IX, IY ]− [X,Y ] = I ([IX, Y ] + [X, IY ]) (2.3)

is satisfied. Since N and H are oriented, the co-contact line bundle L :=
TN/H is also oriented, hence trivialisable. A positive section µ of L defines
a contact form θ := ηµ−1 on M , where η : TN → L is the natural projection
and µ−1 ∈ Γ(L∗) is the dual section of µ, i.e. the natural contraction between
µ and µ−1 is the function on N identically equal to one. The bilinear form

g(X,Y ) := ω(X, IY ) :=
1
2
dθ(X, IY ), X, Y ∈ TM (2.4)

of the bundle H is independent, up to a positive multiplicative function, of
the choice of the contact form and is positive definite – the strongly pseudo-
convexity condition. The contact form θ determines a Reeb vector field T ,
uniquely defined by the conditions θ(T ) = 1 and iTdθ = 0. Note that the
Reeb vector field preserves the bundle H, i.e. [T,X] ∈ Γ(H) when X ∈ Γ(H)
and hence the Lie derivative LT (I) is a well-defined endomorphism of H.
The contact form θ determines a Riemannian metric g on the manifold
N , which on H is defined by (2.4) and such that T is of norm one and
g-orthogonal to H.

Definition 2. The metric g is called Sasaki if T is a Killing vector field on
(M, g).

It is easy to see that the Sasaki condition LT (g) = 0 is equivalent to
LT (I) = 0.

2.2.3 The Webster’s correspondence

Let (N,H, I) be a CR manifold, together with a fixed Reeb vector field
T , which determines a Sasaki metric g on M . Since g is Sasaki, the com-
plex structure I and the metric g of the bundle H descend on the quotient
M := N/T (assumed to be smooth), and determine an almost complex
structure Î and an Î-invariant Riemannian metric ĝ on M . The Webster’s
correspondence is stated as follows:

Theorem 3. The quotient M := N/T of a Sasaki manifold (N,H, I, T, g)
by its Reeb vector field is a Kähler manifold. Moreover, any Kähler manifold
can be locally obtained in this way (via the choice of a primitive of the Kähler
form).
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2.3 Tanaka connections on CR-manifolds

In this section we define and study the notions of Weyl connections and
associated Tanaka connections on CR manifolds. All our CR manifolds are
assumed to be oriented and strongly pseudo-convex. Our main results are
Theorem 6 (which describes the Tanaka connections) and Theorem 9 (which
describes the Chern-Moser tensor in terms of Tanaka connections). Theorem
10 is well-known and recalls the importance of the Chern-Moser tensor in
CR geometry.

Definition 4. A Weyl connection on a CR manifold (N,H, I) is a con-
nection D on the line bundle L = TN/H. Its curvature FD is called the
Faraday curvature. The Weyl connection D is said to be closed if FD = 0
and exact if there is a global non-vanishing D-parallel section of L.

Let η : TN → L be the natural projection. If D0 and D := D0 + γ are
two Weyl connections, then dDη = dD

0
η + γ ∧ η and the restriction of the

2-form ω := 1
2d

Dη to H×H is independent of the choice of Weyl connection
D. Remark that the bilinear form g := ω(·, I·) of H is a positive definite
metric (with values in the oriented bundle L).

Lemma 5. Let D be a Weyl connection on N . There is a unique ψD : L→
TN (called the Reeb vector field associated to D) such that η ◦ψD = Id and
iψDd

Dη = 0. (Here and elsewhere ’Id’ denotes the identity operator).

As has already been done in the context of conformal geometry (see [23])
we define a Weyl-Lie derivative LψD associated to D in the following way:
we first introduce a Weyl-Lie derivative LX along any (genuine) vector field
X, acting on tensor fields tensored with any section of L, or Lk (for any
integer k) by saying that LX(µ) = DX(µ) for any section µ of L and then
combining with the usual Lie derivative. Then LX(ψD) is well-defined (since
ψD is a section of L−1TN) and we set LψD(X) := −LX(ψD).

Theorem 6. Let (N,H, I) be a CR manifold with η : TN → L the natu-
ral contact form. Let D be a Weyl connection on N , ψD : L → TN the
corresponding Reeb vector field and J the endomorphism of TN which ex-
tends I, being zero on the image of ψD. There is a unique connection ∇D
on TN = H ⊕ ImψD, called the Tanaka connection associated to D, which
has the following properties:

i) The connection ∇D preserves the bundle H and coincides with D on
ImψD ∼= L. (The second condition is equivalent to (D ⊗∇D)ψD = 0, when
ψD is considered as a section of L−1TM .)

ii) The connection ∇D preserves J . The covariant derivative of the
coupled connection D ⊗∇D, in the directions of H, preserves the canonical
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L-valued metric
g(X,Y ) =

1
2
dDη(X, JY ) (2.5)

on H.

iii) The torsion T∇
D

of ∇D satisfies

T∇
D

X Y = (dDη)(X,Y )ψD (2.6)

for every X,Y ∈ H and

T∇
D

ψD JX + JT∇
D

ψD X = 0 (2.7)

for every X ∈ H.

Proof. We only explain the uniqueness of ∇D (for a complete proof, see
[40]). From ii), ∇D is determined on H by a Koszul type formula

2g(∇DXY,Z) = DX (g(Y, Z)) +DY (g(X,Z))−DZ (g(X,Y ))

+ g([X,Y ]H , Z)− g([X,Z]H , Y )− g([Y,Z]H , X) (2.8)

where X,Y, Z ∈ Γ(H) and for a vector field W of N , WH := W − η(W )ψD

is its g-orthogonal projection on the bundle H. Relation (2.7) implies that

T∇
D

ψD X = −1
2
JLψD(J)(X), X ∈ H

which, together with the D ⊗∇D-flatness of ψD, implies that

∇DψDX = LψD(X)− 1
2
JLψD(J)(X). (2.9)

From (2.8) and (2.9), ∇D is uniquely determined on the bundle H, hence
on all of TN , from condition i).

Remark 7. When D is an exact Weyl connection, it determines a genuine
contact form θ = µ−1η (where D(µ) = 0, µ ∈ Γ(L)), unique up to the
multiplication by a constant factor. The connection ∇D was already defined
in [106] and is known in the literature as the Tanaka connection associated
to θ.

Notations 8. In the next theorem we identify H with H∗ ⊗ L using the
canonical (i.e. independent of D) L-valued metric g, defined by (2.5). For
a fixed Weyl connection D, we denote by (R∇

D
)skew the 2-form on H with

values in End(H), whose value at a pair (X,Y ) ∈ H×H is the skew-part with
respect to g of the endomorphism R∇

D
(X,Y ) of H (note that R∇

D
(X,Y )

preserves H because so does ∇D). Similarly, FD,+ is the I-invariant part
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of the restriction of the Faraday form FD to H. Since we identify H with
H∗ ⊗ L, the expression FD,+ ∧ Id + FD,+ ◦ J ∧ J is a genuine 2-form on H
with values in End(H). In the next theorem the expression (2.10) is viewed
as a vector valued 2-form on H and its I-invariant part is a vector valued
(1, 1)-form on H.

In [40] it was developed a detailed study of the curvature of Tanaka
connections. Here we only state the result which allows to define the Chern-
Moser tensor in terms of Tanaka connections, in a similar way as the Weyl
tensor of a conformal manifold is defined in terms of Weyl connections. We
use the conventions from the previous paragraph.

Theorem 9. Let D be a Weyl connection on a CR-manifold (N,H, I) and
∇D the associated Tanaka connection. The I-invariant part of

(R∇
D

)skew − 1
4
(
FD,+ ∧ Id + FD,+ ◦ J ∧ J

)
(2.10)

is a Kähler curvature tensor on (H, I, g). Its principal part is independent
of the choice of Weyl connection and coincides with the Chern-Moser tensor
of (N,H, I).

We end this section by recalling the well-known importance of the Chern-
Moser tensor in CR-geometry [30, 16].

Theorem 10. Let (N,H, I) be a CR manifold of dimension 2m + 1 ≥ 5.
Then (N,H, I) is flat (i.e. its Chern-Moser tensor is zero) if and only if
(M,H, I) is locally isomorphic to the standard CR sphere (S2m+1, Hcan, Ican),
with CR structure (Hcan, Ican) induced from the standard embedding S2m+1 ⊂
Cm+1.

2.4 Bochner-flat Kähler manifolds

The following local characterization of Bochner-flat Kähler manifolds holds.

Theorem 11. Any Bochner-flat Kähler manifold of dimension 2m ≥ 4 is lo-
cally isomorphic to the quotient of the standard CR sphere (S2m+1, Hcan, Ican)
by the Reeb vector field of a Sasaki structure, compatible with (Hcan, Ican).

Proof. It may be shown that in the Webster’s correspondence (see Theorem
3), the Tanaka connection of the Sasaki manifold (N,H, I, T, g) descends
to the Levi-Civita connection of the Kähler manifold (M, Î, ĝ). Similarly,
the Bochner-tensor of (M, Î, ĝ) pulls back to the Chern-Moser tensor of
(N,H, I). Hence, the Chern-Moser tensor is zero (and (N,H, I) is locally iso-
morphic to the standard CR sphere, see Theorem 10) if and only if (M, Î, ĝ)
is Bochner-flat. This implies our claim.
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Therefore, the local classification of Bochner-flat Kähler manifolds of
dimension 2m reduces to the description of Sasaki structures on S2m+1,
compatible with (Hcan, Ican). In the next section we describe these Sasaki
structures.

2.4.1 Sasaki structures on odd-dimensional sphere

In order to describe the Sasaki structures on (S2m+1, Hcan, Ican), we need
an alternative description of the standard CR sphere, as follows. Let W be
a complex vector space of dimension m+ 2 and h a Hermitian form on W ,
of signature (m+ 1, 1).

Definition 12. The space Σ2m+1 of all complex null lines of the Hermitian
vector space (W,h) is called the Hermitian 2m+ 1-dimensional sphere.

Our first remark is that Σ2m+1 is diffeomorphic to S2m+1. Indeed, chose
a basis {e0, · · · , em+1} of W which is orthonormal with respect to h, i.e.
h(ei, ej) = 0 for any i 6= j, h(e0, e0) = −1 and h(ej , ej) = +1, for any
j = 1, . . . ,m + 1. A null line l ∈ Σ2m+1 has a unique representative of the
form e0 + u, where u ∈ Span{e1, · · · , em+1} satisfies h(u, u) = 1, i.e. it
belongs to the unit sphere S2m+1 of the positive definite Hermitian vector
space Span{e1, · · · , em+1}. Then the map

Σ2m+1 3 l→ u ∈ S2m+1 (2.11)

is a diffeomorphism, whose inverse maps the standard CR structure (Hcan, Ican)
of S2m+1 to the CR-structure (H, I) of Σ2m+1, where H → Σ2m+1 is given
by Hl := HomC(l, l⊥/l), for any l ∈ Σ2m+1 (where l⊥ denotes the Hermitian
orthogonal of l) and I is induced by the natural complex structure of l⊥/l.

The classification of Sasaki structures of (Σ2m+1, H, I) is stated as fol-
lows:

Theorem 13. i) Any element iA ∈ sum+1,1, where A is a Hermitian trace-
free endomorphism of W defines a Sasaki structure (gA, TA), compatible with
the CR-structure (H, I), on the open subset

Σ2m+1
A := {l ∈ Σ2m+1 : h(Av, v) > 0, ∀v ∈ l, ∀v 6= 0}

of Σ2m+1, where

TA,l(v) := iAv (modv) , ∀l ∈ Σ2m+1
A , ∀v ∈ l

is the velocity vector field on Σ2m+1
A generated by iA and

gA = θ2
A +

1
2
dθA(·, I·).
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Here

θA(X) =
Imh(Xv, v)
h(Av, v)

, X ∈ TlΣ2m+1 ⊂ Hom(l,W/l), 0 6= v ∈ l, l ∈ Σ2m+1
A

is the contact form of (H, I) which corresponds to TA.

ii) Any Sasaki structure compatible with the CR structure (H, I) is ob-
tained as above.

iii) Two Sasaki structures (gA, TA) and (gA′ , TA′) are isomorphic (in the
obvious way) if and only if iA and iA′ belong to the same adjoint orbit of
sum+1,1.

Using the above classification of Sasaki structures on the standard CR
sphere, we obtain the following local classification of Bochner-flat Kähler
manifolds.

Corollary 14. Any Bochner-flat Kähler manifold of dimension 2m ≥ 4 is
locally isomorphic, as a Kähler manifold, with the quotient of a Sasaki man-
ifold (Σ2m+1

A , gA) by its Reeb vector field TA, for a Hermitian endomorphism
A of W . In particular, there are four types of classes of Bochner-flat Kähler
manifolds, which correspond to the four types of conjugacy classes in the Lie
algebra su2m+1,1.

Proof. The first statement follows from Theorems 11 and 13. For the second
statement, recall that there are four types of conjugacy classes in the Lie
algebra su2m+1,1 (see [65]) - elliptic, hyperbolic, 1 and 2-step parabolic,
which can be described as follows. If iA ∈ su2m+1,1, then A ∈ End(W )
is Hermitian with respect to h. If A has a time-like eigenvector then it is
diagonalisable with respect to an orthonormal basis of W . In this case A
is called of elliptic type. Suppose now that A does not have any time-like
eigenvectors and let W0 be the complement of the maximal subspace of W
generated by the space-like eigenvectors of A. There are three possibilities.
The first possibility happens when A|W0 has an eigenvector, which can’t
be timelike or spacelike, hence must be null. It turns out that W0 is of
dimension two, and is generated by two independent null eigenvectors of
A, with eigenvalues δ and δ̄, for a non-real number δ. The remaining two
possibilities happen when A|W0 doesn’t have any eigenvectors. Then A must
be of the form λI + N , where λ ∈ R and N is nilpotent. It turns out that
either dim(W0) = 2 (in which case A is 1-step parabolic) or dim(W0) = 3
(in which case A is 2-step parabolic).

Example 15. i) The weighted projective space Pm~a of weights ~a = (a1, · · · , am+1)
(where ai are positive integers) is defined as the quotient of Cm+1 \ {0} by
the weighted diagonal action

τ · (z1, · · · , zm+1) := (τa1z1, · · · , τam+1zm+1), τ ∈ C \ {0}.
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It may be shown that Pm~a is isomorphic to the space of trajectories of the
vector field TA on Σ2m+1, where

A = diag

−m+1∑
j=1

λj , λ1, · · · , λm+1


and

λj := aj −
1

m+ 1

m+1∑
r=1

ar, 1 ≤ j ≤ m+ 1.

Hence Pm~a inherits a Bochner-flat Kähler structure of elliptic type.
ii) The Bryant’s family of Bochner-flat Kähler structures [19] is a family

of complete Bochner-flat Kähler structures on the standard Cm, parametrized
by systems of m of positive numbers. Let ~k = (k1, · · · , km) be such a system.
The associated Bochner-flat Kähler structure Mm

~k
has a globally defined

Kähler potential s~k, defined implicitly by

s~k(w) =
m∑
k=1

|wi|2

ekis~k(w)
, w = (w1, · · · , wm).

It can be shown that Mm
~k

is of 1-step parabolic type, determined by a Her-
mitian endomorphism of W which in an orthonormal basis is given by

A =


λ− 1 1 0 · · · 0
−1 λ+ 1 0 · · · 0
0 0 λ1 · · · 0
...

...
... · · ·

...
0 0 0 · · · λm


and λi are related to ki by

λi := ki −
∑m

r=1 kr
m+ 2

, 1 ≤ i ≤ m ,λ = −
∑m

r=1 kr
m+ 2

.

2.4.2 The local geometry of Bochner-flat Kähler manifolds

From the theory developed in the previous section, any Bochner-flat Kähler
manifold of dimension 2m is locally isomorphic to a quotientMA = Σ2m+1

A /TA
and the entire geometry of the Kähler manifold may be expressed only in
terms of A. We shall denote by ḡA and ω̄A the Kähler metric and Kähler
form of MA. In this section we state the expression of the curvature of ḡA
and its various contractions (Ricci and scalar curvatures). The proof is based
on the remark (from the Webster’s correspondence) that the curvature of ḡA
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pulls back to the horizontal part of the curvature of the Tanaka connection
∇A associated to TA. Thus, one needs to find ∇A and then compute its
curvature. This was done in [43]. Here we only give the final formulae.

We identify vector fields on MA with TA-invariant sections of H. In
particular, we view ḡA and ω̄A as a (TA-invariant) metric and 2-form on H.
Define a complex linear operator ΘA : H → H by

ΘA(X)(w) := AX(w)−(AX(w), w)
(Aw,w)

Aw, mod(l) ∀X ∈ Hl = Hom(l, l⊥/l),

(2.12)
for any w ∈ l \{0}. One may check that the complex trace of ΘA is given by

sA(x) = −(A2w,w)
(Aw,w)

, ∀x ∈ Σ2m+1
A , ∀w ∈ l \ {0}.

Proposition 16. i) The curvature RḡA has the following expression: for
any X,Y, Z ∈ Γ(H),

RḡA(X,Y )(Z) = 2ω̄A ((ΘA + trΘAId)X,Y ) iZ + 2ω̄A(X,Y )iΘA(Z)
− hA ((ΘA + sA)Z, Y )X − hA(Z, Y )ΘA(X)
+ hA ((ΘA + sA)Z,X)Y + hA(Z,X)ΘA(Y ),

where
hA(X,Y ) =

(Xw, Y w)
(Aw,w)

, X, Y ∈ Γ(H).

ii) the Ricci curvature RicḡA has the following expression:

RicḡA = 2(m+ 2) (ΘA + sAId) .

Proof. Straightforward curvature computations. See [43].

Definition 17. The operator ΘA is called the modified Ricci operator of
(MA, ḡA, ω̄A). Its complex trace sA is called the modified scalar curvature of
(MA, ḡA, ω̄A).

Bochner-flat Einstein-metrics

It is natural to ask how various curvature conditions on a Bochner-flat
Kähler manifold (MA, ḡA, ω̄A) determine the endomorphism A. In such
questions, the next theorem turns out to be very useful. We first need
to introduce some notations.

Remark 18. Preserving the setting from the previous section, let QA and
qA be the minimal and characteristic polynomials of A and rA := QA/qA
their quotient polynomial. Denote by Ã and ã the operator polynomials
defined by

(tId−A)Ã(t) = QA(t)Id, (tId−A)ã(t) = qA(t)Id.
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Hence,
Ã(t) = rA(t)ã(t).

The following theorem holds.

Theorem 19. For any x ∈MA, the characteristic polynomial, PA,x, of the
modified Ricci operator ΘA at x is given by

PA,x(t) =
(Ã(t)w,w)

(Aw,w)
= rA(t)pA,x(t)

where pA,x, called the reduced characteristic polynomial at ΘA at x, is the
monic polynomial of degree l, defined by

pA,x(t) :=
(ã(t)w,w)
(Aw,w)

.

In particular, PA,x has at least l constant roots, namely the roots of rA.
Moreover, on a dense open subset, PA,x has precisely l constant roots, and
the other roots are smooth and functionally independent.

As an application of Theorem 19, we determine the operators A such
that MA with its canonical metric ḡA is Einstein. For this, we remark that
if (MA, ḡA) is Einstein, then the characteristic polynomial PA,x of ΘA has
only one eigenvalue, which is constant. It follows that rA(t) = (t − λ)m,
where m is the complex dimension of MA and λ ∈ R, and we are left with
three cases, described in the following proposition.

Proposition 20. A Bochner-flat Kähler manifold (MA, ḡA) is Kähler-Einstein
if and only if, with respect to an orthonormal basis of W , one of the follow-
ing three situations hold:

i) If λ > 0, A = λdiag(−(m + 1), 1, · · · , 1) is elliptic and MA = CPm,
with the Fubini Study metric of modified scalar curvature λ.

ii) If λ < 0, A = λdiag(1,−(m + 1), 1, · · · , 1) is again elliptic and
MA = CHm, with the hyperbolic metric of modified scalar curvature λ.

iii) If λ = 0, A is 1-step parabolic and all its eigenvalues are equal to
zero.

We end this section with a remark, very useful in explicit computations.
It explains how to ”read” the type of a Bochner-flat Kähler manifold directly
from the geometry of the manifold, with no reference to the standard CR
sphere. It also makes the link between our approach of Bochner-flat Kähler
manifolds via the Webster’s correspondence and the Bryant’s approach [20].
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Remark 21. Given a Bochner-flat Kähler manifold (M, g, J), it is difficult
in general to write it down explicitly as a quotient of the standard CR
sphere by the Reeb vector field of a compatible Sasaki structure. However,
there is another way to determine the local type of (M,J, g), by means of the
Bryant’s minimal and characteristic polynomials, defined as follows [20]. Let
S be a symmetric, J-invariant endomorphism of TM such that c∗K(S) = Rg

(where c∗K is the adjoint of the Ricci contraction cK, see (2.2)) and P (t) the
characteristic polynomial of a new modified Ricci operator Θ, related to S
by

Θ :=
1
4

(
S − traceR(S)

2(m+ 2)
Id
)
, (2.13)

where m is the complex dimension of M . The Ricci operator Θ will be con-
sidered as a complex linear operator on the complex vector bundle (TM, J).
Its trace is called the modified scalar curvature of (M, g, J). Denote by
ξ1, · · · , ξl the non-constant roots of P and by Pn its non-constant part,
defined by Pn(t) := (t − ξ1) · · · (t − ξl). The number l is called the order
of (M, g, J). On a dense open subset M0 of M , the eigenvalues ξj (for any
j ∈ {1, · · · , l}) are simple, different from each other at any point and differ-
ent, at any point, from any constant eigenvalue of Θ; the functions ξ1, · · · , ξl
are functionally independent on M0 and

|gradg(ξj)|2 = −4
pm(ξj)
P ′n(ξj)

, j ∈ {1, · · · , l} (2.14)

where pm is a monic polynomial of degree l + 2, with constant coefficients,
independent of j, called the Bryant minimal polynomial of (M, g, J). The
Bryant characteristic polynomial pc of (M, g, J) is by definition the product
of pm with the constant part P/Pn of P.

When the Kähler manifold is (MA, ḡA, ω̄A), for iA ∈ sum+1,1, the Ricci
operator Θ defined by (2.13) coincides with the operator ΘA from (2.12) and
the Bryant characteristic and minimal polynomials of (MA, ḡA, ω̄A) coincide
with the characteristic and minimal polynomials of A (which determine A
up to conjugacy). Therefore, the local type of a Kähler manifold (i.e. the
conjugacy class of the associated operator A) may be read directly from its
Ricci tensor.

2.5 The generalized cone construction

In Section 2.5.1 we define the generalized Kähler cones and we prove our
main result (Theorem 27). Section 2.5.2 is concerned with examples: we
describe the weighted projective spaces (with their canonical Bochner-flat
Kähler structure) and the Bryant family of Bochner-flat Kähler metrics as
generalized Kähler cones.
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2.5.1 The main result

Let (N,H, I) be an (oriented strongly pseudo-convex) CR manifold and
{Tr}r∈J , with J ⊆ R>0 a connected open interval, a family of Reeb vector
fields of Sasaki structures on (N,H, I). On the cone manifold N × J we
define the vector fields T and V , by

T(p,r) := Tr(p), V(p,r) := r
∂

∂r
, ∀(p, r) ∈ N × J ,

an almost complex structure J by

J |H := I, J(V ) := T,

a 2-form ω and a bilinear form g by

ω :=
1
2
ddJr2, g := ω(·, J ·).

Let M ⊂ N × J be the open subset where g(T, T ) is positive. It turns out
that g is positive definite on M .

Lemma 22. The pair (ω, J) defines a Kähler structure on M .

Proof. The integrability of J follows from the integrability of I and the
Sasaki condition LTr(I) = 0, for any r. Since ω is closed and g is positive
definite, (ω, J) is Kähler.

Definition 23. The Kähler manifold (M,ω, J) is a generalized Kähler cone
over the CR manifold (N,H, I). It is a restricted generalized Kähler cone
if the function g(T, T ) on M is constant along the trajectories of the vector
field T .

Example 24. When the Sasaki-Reeb vector fields Tr are independent of r,
the associated generalized Kähler cone is restricted and coincides with the
usual Kähler cone over a Sasaki manifold.

Conventions 25. For simplicity, we consider only restricted generalized
Kähler cones. When we refer to a generalized Kähler cone, we implicitly
mean restricted generalized Kähler cone. The restricted condition simplifies
considerably the curvature computations of the generalized Kähler cones.

A CR manifold (N,H, I) with a family of Sasaki-Reeb vector fields {Tr}r
as above, with contact forms θr, comes equipped with a second family of
contact forms, which plays an important role in finding the Bochner-flat
generalized Kähler cones. They are defined as follows. Define a positive
function f : M → R>0 by g(T, T ) = r2f . It is easy to see that

f = 1 +
rθ̇r(Tr)

2
. (2.15)
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The restriction fr := f(·, r) of f to Nr := M ∩ (N × {r}) is positive. We
introduce a new family of contact forms

θ̃r =
1
fr
θr. (2.16)

For any r, the contact form θ̃r is defined on Nr (viewed as an open subset
of N).

Main class of generalized Kähler cones. We shall be mainly con-
cerned with generalized Kähler cones over (open subsets) of Hermitian CR
spheres. Suppose that N ⊂ Σ2m+1 is an open subset of the Hermitian CR
sphere of complex null lines in a pseudo-Hermitian vector space W = Cm+1,1

with pseudo-Hermitian metric h of signature (m+ 1, 1), and let

η(X) = Imh(Xw,w), X ∈ Tx(N), w ∈ x,

be the canonical (line bundle valued) contact form of Σ2m+1, restricted to N
(above X is considered as a tangent vector in x at Σ2m+1, hence an element
of Hom(x,W/x)). Being the contact form of a Sasaki structure,

θr(X) =
η(X)

(Brw,w)
, X ∈ Tx(N), 0 6= w ∈ x

for any r, where Br is a Hermitian operator of (W,h) (see Theorem 13).
From (2.15) and (2.16), it turns out that

θ̃r(X) =
η(X)

(Arw,w)

where
Ar := Br −

r

2
Ḃr. (2.17)

The condition T (f) = 0 is equivalent to [Ar, Br] = 0 for any r.

Our main result from this section is the following:

Theorem 26. A generalized Kähler cone (M, g, J) defined by a family of
Sasaki Reeb vector fields {Tr} over a CR manifold (N,H, I) of dimension
2m+1 ≥ 5 is Bochner-flat if and only if (N,H, I) is locally isomorphic to the
Hermitian CR sphere Σ2m+1 of complex null lines in a complex Hermitian
vector space W of signature (m + 1, 1), and {Tr} is defined by one of the
following families of Hermitian operators Br of W :

i) Br = r2(B − µ(r2)A). Here the real function µ satisfies µ′ > 0 and is
a solution of the differential equation

µ′ =
1
2
µ2 + d, (2.18)
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where d ∈ R is an arbitrary real number. The operator A is Hermitian
semisimple, with a positive definite eigenspace, of dimension m + 1, which
corresponds to the eigenvalue 1

2(m+2) and a 1-dimensional timelike eigenspace,

which corresponds to the eigenvalue − (m+1)
2(m+2) .

ii) Br = r2(B + µ(r2)A), where µ satisfies (2.18) and µ′ < 0. The op-
erator A is Hermitian semisimple, with an eigenspace of signature (m, 1),
which corresponds to the eigenvalue − 1

2(m+2) , and a 1-dimensional spacelike
eigenspace, which corresponds to the eigenvalue m+1

2(m+2) .

iii) Br = r2(B − r2A), where A is 1-step parabolic, with all eigenvalues
equal to zero.

iv) Br = r2
(
B − eλr

2

λ A
)

, where λ ∈ R \ {0} and A is 1-step parabolic
with all eigenvalues equal to zero.

In all these cases, B is any Hermitian, trace-free operator of W which
commutes with A.

Proof. From straightforward computations one determines the Levi-Civita
connection and the curvature of g. The Bochner-flatness condition on g
applied to horizontal arguments (i.e. arguments which belong to H) readily
implies that the Chern-Moser tensor of (N,H, I) is zero, i.e. (N,H, I) is
locally isomorphic to the Hermitian CR sphere (Σ2m+1, H, I) of complex null
lines in a Hermitian vector space W = Cm+1,1. Thus, we may assume that
θr and θ̃r (where θ̃r is defined by (2.16)) are given by Hermitian operators
Br and Ar of W (see the main class of generalized Kähler cones described
above), i.e.

θr(X) :=
η(X)

(Brw,w)
, θ̃r(X) :=

η(X)
(Arw,w)

, X ∈ Tx(N), 0 6= w ∈ x,

where Ar and Br are related by (2.17) and η is the canonical (line bundle
valued) contact form of Σ2m+1. The Bochner-flatness condition also implies
that the operators Ar determine an Einstein Bochner-flat Kähler structure
MAr with scalar curvature satisfying a certain differential equation. This
allows to determine, using Proposition 20, the operators Ar. Once the Ar’s
are known, the operators Br are then determined from (2.17), as in the
statement of the theorem. For more details, see [36]. The condition [A,B] =
0 just means that (M, g, J) is a restricted generalized Kähler cone.

Our main result from this section is the following.

Theorem 27. Any Bochner-flat Kähler manifold of dimension 2m > 4 is
locally isomorphic to a Bochner-flat generalized Kähler cone.
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Proof. One shows (either by using the Webster’s correspondence or by com-
puting directly the Bryant minimal and characteristic polynomials) that the
Bochner-flat generalized Kähler cones (M,J, g) which belong to case i) of
Theorem 26 cover all hyperbolic (when d > 0), 1-step parabolic (when d = 0)
and elliptic (when d < 0) types, while the Bochner-flat generalized Kähler
cones which belong to the case iii) of Theorem 26 cover all 2-step parabolic
types. Thus, all local types of Bochner-flat Kähler manifolds are covered by
the generalized Kähler cones from Theorem 26.

2.5.2 Examples

We now consider some important classes of Bochner-flat Kähler manifolds
and show how they can be realised locally as generalised Kähler cones.

i) Weighted projective spaces as generalized Kähler cones. Let Pm+1
~a be

a weighted projective space, of weights (a1, · · · , am+2), where aj are pos-
itive integers. As shown in [20, 43] (see also Example 15) Pm+1

~a has a
canonical Bochner-flat Kähler structure, of elliptic type, isomorphic with
MC , where C is a Hermitian elliptic operator of Cm+2,1, with eigenval-
ues −

∑m+2
j=1 λj , λ1, · · · , λm+2, where λj are related to the weights aj by

λj = aj − 1
m+2

∑m+2
i=1 ai, for any j ∈ {1, · · · ,m+ 2}. As a Bochner-flat gen-

eralized Kähler cone, Pm+1
a belongs to the first case of Theorem 26; µ is any

solution of equation (2.18), with d =
2a2
m+2

(m+3)2
, and the Hermitian operator B

is elliptic, with eigenvalues −
Pm+1
j=1 aj
m+2 , a1 −

Pm+1
j=1 aj
m+2 , · · · , am+1 −

Pm+1
j=1 aj
m+2 .

ii) Bryant Bochner-flat Kähler structures. They were defined in [19] and
further studied in [43] (see also Example 15). Here we give an alternative
description, as generalized Kähler cones. Let N = S2m+1 ⊂ Cm+1 with
its standard CR structure and (k1, · · · , km+1) a system of non-negative real
numbers. Define, for every r > 0, the vector field

Tr(z) :=
m+1∑
j=1

(
1 + kjr

2
)(

xj
∂

∂yj
− yj

∂

∂xj

)
,

which is the Reeb vector field of a Sasaki structure on S2m+1 ⊂ Cm+1. Here
z = (z1, · · · , zm+1) belongs to S2m+1, zj = xj+iyj for any j ∈ {1, · · · ,m+1}
and r2 = |z1|2 + · · · + |zm+1|2. The family of Sasaki Reeb vector fields
{Tr, r > 0} defines a Bochner-flat generalized Kähler cone on Cm+1 \ {0},
which belongs to the first case of Theorem 26; the solution of equation (2.18)
is µ(t) = −2

t and the Hermitian operator B is semisimple, with eigenvalues
k′j = kj − 1

m+2

∑m+1
i=1 ki, for j ∈ {1, · · · ,m + 1}, and k0 = − 1

m+2

∑m+1
i=1 .

This Bochner-flat generalized Kähler cone extends to the entire Cm+1 and as
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such it is isomorphic to Bryant Bochner-flat Kähler structure Mm+1
~k

, where
~k := (k1, · · · , km+1) (see e.g. Example 15).

2.6 The Guillemin formula for toric symplectic man-
ifolds

Dual potentials and Legendre transformations. In this section we
often identify the standard vector space Rn with its dual, using the natural
metric 〈·, ·〉 of Rn. We denote by {ei} the standard basis of Rn and by {e∗i }
the dual basis.

Let (M,ω) be a 2n-dimensional symplectic manifold together with a
free Hamiltonian action of a torus Tn. In a neighborhood of any point,
one may find coordinates (x, t) such that ω =

∑n
r=1 dx

r ∧ dtr. The vector
fields ∂

∂ti
are fundamental vector fields generated by the torus action and

(x1, · · · , xn) is the moment map. In these coordinates, invariant compatible
Kähler metrics are parametrized by functions G depending on (xi) only,
with positive definite Hessian (defining the induced metric on the image of
the moment map). Such a function is called a dual potential. From the
dual potential, one may obtain an invariant potential of the Kähler metric
by means of a Legendre transformation

F +G =
n∑
k=1

xk
∂G

∂xk
. (2.19)

The Guillemin formula. Let (M2n, ω) be a compact toric symplectic
manifold and ν : M → (Rn)∗ the moment map, whose image is a Delzant
polytope

∆ = {x ∈ (Rn)∗, lj(x) := 〈x, uj〉 − λj ≥ 0, j = 1, · · · , d},

where d > n, λj ∈ R, uj ∈ Zn and the uj corresponding to the faces meeting
any vertex of ∆ is Z-basis of the lattice Zn. It is well-known that (M2n, ω)
can be recovered from ∆ as a symplectic reduction of the standard symplectic
vector space

(
R2d, ω0 =

∑d
j=1 rjdrj ∧ dθj

)
with the natural action of a (d−

n)-subtorus N of T d, where N is the kernel of the map T d → Tn, induced
by the map u : Rd → Rn, ej → uj . More precisely, M = µ−1

N (c)/N , where
µN = i∗ ◦ µ is the moment map of the N -action on R2d, µ is the moment
map of the natural action of T d on R2d, i.e.

µ(r1, θ1, · · · , rd, θd) =
1
2

(r2
1, · · · , r2

d), (2.20)

i∗ : (Rd)∗ → n∗ is the adjoint of the inclusion of n = Lie(N) in Rd = Lie(T d)
and c = i∗(−λ) ∈ n∗, where λ = (λ1, · · · , λd) ∈ (Rd)∗. Moreover, M comes



30CHAPTER 2. CONTRIBUTIONS TO BOCHNER-FLAT KÄHLER GEOMETRY AND SASAKI GEOMETRY

with a Hamiltonian action of the quotient torus Tn := T d/N , whose moment
map ν fits into a commutative diagram

µ−1
N (c)

µ→ (Rd)∗

q ↓ ↑ l
M

ν→ ∆ ⊂ (Rn)∗

where l : (Rn)∗ → (Rd)∗ has components (l1, · · · , ld). The symplectic mani-
fold (M,ω) has a canonical Kähler metric gcan, inherited from the standard
Kähler metric of R2d ∼= Cd, which on M0 := ν−1(∆0) (∆0 the interior of ∆)
has a global invariant Kähler potential, computed by Guillemin [63]. We
now give an alternative simple argument for the Guillemin formula.

Our argument is based on the natural behaviour of dual potentials under
Kähler reduction [25], which in our case means that G = l∗(G0), where
G0 is the dual potential of the standard Kähler structure on C2d. Since
G0 = 1

2

∑d
j=1 µj logµj (a simple computation) we obtain G = 1

2

∑d
j=1 lj loglj .

The Kähler potential of gcan is now obtained from G, using a Legendre
transformation (2.19). We obtain:

Theorem 28. The canonical invariant Kähler metric gcan of the compact
toric symplectic manifold (M,ω) admits an invariant Kähler potential which,
read on ∆0, is given by F = 1

2

∑d
j=1 (λj loglj + lj) .



Chapter 3

Contributions to
Quaternionic Geometry

3.1 Introduction

This chapter is concerned quaternionic connections and natural differential
operators in quaternionic geometry and summarizes the results published
by the author of this thesis in Journal of the London Mathemati-
cal Society [42], International Journal of Mathematics [37], Annali
di Matematica Pura ed Applicata [31], Journal of Geometry and
Physics [32, 33]. We are mainly interested in the geometry of two differ-
ential operators on quaternionic or quaternionic-Kähler manifolds, closely
related to each other: the Penrose operator and the conformal-Killing oper-
ator.

We now present with details the contents of each section separately,
explaining also how the original results fit into general research field.

In Section 3.2 we recall the basic facts we need from quaternionic ge-
ometry: quaternionic connections, the E − H formalism, twistor spaces,
quaternionic-Kähler manifolds. At the end of this section we recall the
definition of conformal-Killing forms in the general setting of Riemannian
manifolds.

In Section 3.3 we develop a detailed study of the geometry of quater-
nionic connections, their twistor theory and associated Penrose operators.
The results from this section may be seen as an extension of the theory
developed in [56], from the conformal setting to the quaternionic setting.
We are concerned with the tangent vertical bundle Θ of the twistor fibra-
tion π : Z → M of a quaternionic manifold (M,Q). It is a complex vector
bundle, with complex structure induced by the complex structure of the
twistor lines (i.e. the fibers of π). Our main result is a classification of all
holomorphic structures of Θ, in terms of self-dual quaternionic connections
(i.e. quaternionic connections for which the skew part of the Ricci tensor

31
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is Q-Hermitian) and Maxwell fields (i.e. 1-forms with Q-Hermitian exterior
derivative), see Theorem 30. In particular, any self-dual quaternionic con-
nection D on (M,Q) defines an holomorphic structure on ∂̄D on Θ and we
develop a Penrose transformation from the kernel of the Penrose operator
PD defined by D to a class of (so called purely imaginary) holomorphic
sections of (Θ, ∂̄D) (see Proposition 33). We find a criterion for the non-
existence of global holomorphic sections of (Θs, ∂̄D), for any s ∈ N\{0} (see
Proposition 34).

In Section 3.4 we develop a local treatment of a class (called com-
patible) of conformal-Killing 2-forms on quaternionic-Kähler manifolds. A
2-form on a quaternionic-Kähler manifold (M4n, g) is called compatible if
it is a section of the direct sum bundle S2H ⊕ S2E, where E and H are
the (locally defined) complex vector bundles associated to the standard rep-
resentations of Sp(n) and Sp(1) on C2n and C2, respectively. Compatible
conformal-Killing 2-forms are closely related to Penrose operators - one may
show that the S2H-component ψS

2H of a compatible conformal-Killing 2-
form ψ on (M, g) belongs to the kernel of the Penrose operator defined by
the Levi-Civita connection of g. Our main result from this section is Theo-
rem 35, which provides a prolongation D of the conformal-Killing operator
acting on compatible 2-forms on (M, g). This means that D is a vector bun-
dle connection whose space of parallel sections is isomorphic to the space
C2(M) of compatible conformal-Killing 2-forms on (M, g). The connection
D acts on the bundle S2H ⊕ S2E ⊕ TM . We compute the curvature of
D and we show that D is flat if and only if the quaternionic-Weyl tensor
WQ of (M, g) is zero (see Proposition 38). Several applications of this re-
sult are developed. Namely, we obtain an upper bound for the dimension
of the space of compatible conformal-Killing 2-forms, which is reached on
the standard quaternionic projective space (see Corollary 39). We also show
that a quaternionic-Kähler manifold (M4n, g), with non-zero scalar curva-
ture, which admits a non-parallel compatible conformal-Killing 2-form ψ
has holonomy group the entire Sp(1)Sp(n) (see Proposition 40) and that
ψ is uniquely determined by its S2E-component (see Proposition 41). It
is worth to mention that D may be seen as the quaternionic analogue of
a prolongation of the conformal-Killing operator on a conformal manifold,
constructed in [99], and whose curvature was identified with the Weyl tensor
of the conformal manifold.

In Section 3.5 we prove that any compact quaternionic-Kähler mani-
fold (M, g) of dimension 4n ≥ 8 admitting a non-parallel conformal-Killing
2-form is isomorphic to the quaternionic projective space HPn, with its
standard quaternionic-Kähler structure, and we find all conformal-Killing
2-forms on the standard HPn - it turns out that all are compatible 2-forms.
The idea of the proof is the following. First one reduces (easily) this state-
ment to the case when the scalar curvature of the compact quaternionic-
Kähler manifold (M, g) is positive. With this additional assumption, the
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proof of the statement consists in two steps. In a first stage, one shows
that the codifferential X of a non-parallel conformal-Killing 2-form ψ on
(M, g) is a (non-trivial) Killing vector field which belongs to the kernel of
the quaternionic-Weyl tensor WQ. In a second stage, one shows that a com-
pact quaternionic-Kähler manifold with positive scalar curvature and which
admits a Killing vector field X such that WQ(X, ·) = 0 is isomorphic to the
quaternionic projective space, with its standard quaternionic-Kähler metric.
Then one determines the general form of conformal-Killing 2-forms on HPn
and this concludes the proof of the statement. The results of this section
complement a theorem by A. Moroianu and U. Semmelman, which states
that any Killing p-form (p ≥ 2) on a compact quaternionic-Kähler mani-
fold is parallel and fit into the systematic treatment of conformal-Killing or
Killing forms on other compact Riemannian manifolds with special holon-
omy (e.g. Un, G2 and Spin7), developed by the same authors in [81, 82, 100].

The initial motivation of Section 3.6 is a result of U. Semmelmann [99],
which states that an almost Hermitian manifold (M,J, g) whose Kähler form
ω is conformal-Killing is necessarily nearly-Kähler (i.e. ω is a Killing form or,
equivalently, ∇ω = 1

2dω, where ∇ is the Levi-Civita connection). We prove
the analogous statements for other G-structures, where G := Sp(1)Sp(n),
G2 and Spin7. More precisely, we prove that if the fundamental form of an
almost quaternionic-Hermitian manifold (respectively, of a manifold with
a G2-structure or a manifold with a Spin7-structure) is conformal-Killing,
then the almost quaternionic-Hermitian manifold is quaternionic-Kähler (re-
spectively, the G2-structure is nearly parallel and the Spin7-structure is par-
allel). The proofs of these statements are based on the Schur’s lemma and
representation theory of the groups in question. It is worth to mention that
other similar results exist in the literature. Namely, A. Swann proved that
an almost quaternionic-Hermitian manifold with closed fundamental form
is necessarily quaternionic-Kähler [104]. In [105] he also considered almost
quaternionic-Hermitian manifolds with co-closed fundamental form.

3.2 Preliminary material

3.2.1 Quaternionic connections

An almost quaternionic structure on a manifold M (always assumed of di-
mension 4n ≥ 8) is a rank three subbundle Q of End(TM) locally generated
by three anti-commuting almost complex structures {J1, J2, J3} such that
J3 = J1J2 (such a triple is called a local admissible basis of Q). The bundle
Q has a natural Euclidian metric 〈·, ·〉, with respect to which any local admis-
sible basis is orthonormal. Q is called a quaternionic structure (and (M,Q)
a quaternionic manifold) if it is preserved by a torsion-free linear connec-
tion on M , called a quaternionic connection. Alternatively, a quaternionic
manifold may also be defined as a manifold with a GLn(H)Sp(1)-structure.
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On a quaternionic manifold (M,Q) the space of quaternionic connections
is parametrized by 1-forms on M , i.e. any two quaternionic connections D
and D′ are related by D′ = D + Sα, where α ∈ Ω1(M) and Sα is an
End(TM)-valued 1-form on M whose expression may be found e.g. in [5].
We say that D and D′ are equivalent if α is an exact 1-form. We say that
D is a closed quaternionic connection (respectively, an exact quaternionic
connection) if it induces a flat connection on Λ4n(T ∗M) (respectively, if there
is a volume form on M preserved by D). Since the curvature of the induced
connection on Λ4n(T ∗M) coincides (up to a multiplicative constant) with
the skew part of the Ricci tensor [5], a quaternionic connection is closed if
and only if its Ricci tensor is symmetric. It can be shown that any two exact
quaternionic connections are equivalent. The family of exact quaternionic
connections forms the canonical class of equivalent quaternionic connections
of (M,Q). We shall meet a third class of connections, the so called self-
dual quaternionic connections; a quaternionic connection is self-dual if the
induced connection on the bundle Λ4n(T ∗M) has Q-Hermitian curvature,
i.e. its curvature is of type (1, 1) with respect to any complex structure on
M which is a section of the bundle Q.

A quaternionic curvature tensor of (M,Q) is a curvature tensor R of
M (i.e. a section of Λ2(T ∗M) ⊗ End(TM) in the kernel of the Bianchi
map) which takes values in the normalizer of Q, i.e. for any X,Y ∈ TM ,
[R(X,Y ), Q] ⊂ Q. The space R(N(Q)) of quaternionic curvature tensors
decomposes into the direct sum WQ ⊕RBil where WQ, called the space of
quaternionic Weyl curvatures, is the kernel of the Ricci contraction Ricci :
R(N(Q)) → Bil(TM), defined by Ricci(R)(X,Y ) := trace{Z → RZ,XY }
and RBil is its orthogonal complement, isomorphic to the space Bil(TM)
of bilinear forms on TM (see [5]). The curvature RD of a quaternionic
connection D belongs to R(N(Q)) and its projection to WQ is independent
of the choice of D and is called the quaternionic-Weyl tensor of (M,Q). The
following result is well-known.

Theorem 29. A quaternionic manifold (M,Q) of dimension 4n ≥ 8 is
locally isomorphic to the quaternionic projective space HPn with its standard
quaternionic structure if and only if WQ = 0, where WQ is the quaternionic-
Weyl tensor of (M,Q).

3.2.2 Twistor theory for quaternionic manifolds

Recall that the quaternionic bundle Q of a quaternionic manifold (M,Q)
has a natural Euclidian metric 〈·, ·〉, for which any local admissible basis is
orthonormal. The twistor space Z of (M,Q) is defined as the total space
of the unit sphere bundle of Q and has a natural complex structure. In
order to define it, we first consider a twistor line Zp, i.e the fiber of the
natural projection π : Z → M corresponding to a point p ∈ M. Then TJZp
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consists of all J-anti-linear endomorphisms of TpM which belong Qp, or to
the orthogonal complement J⊥ of J in Qp, with respect to the metric 〈·, ·〉.
Note that Zp is a Kähler manifold, with complex structure J defined by

J (A) := J ◦A, ∀A ∈ TJZp, ∀J ∈ Zp, ∀p ∈M. (3.1)

Note that J is well-defined, since

TJZp = {A ∈ Qp : A ◦ J + J ◦A = 0} = J⊥ ⊂ Qp,

where ⊥ denotes the orthogonal complement with respect to the metric 〈·, ·〉.
Now we are able to define the complex structure J of Z: chose a quater-
nionic connection D of (M,Q). Since D preserves Q and 〈·, ·〉, it induces a
connection on the twistor bundle π : Z → M , i.e. a decomposition of ev-
ery tangent space TJZ into the vertical tangent space TJZp and horizontal
space HorJ . On HorJ , identified with TpM by means of the differential π∗,
J is equal to J . On TJZp, J is defined as in (3.1). It can be shown that
J so defined is independent of the choice of quaternionic connection and is
integrable. The twistor space Z becomes a complex manifold of dimension
2n + 1 and the twistor lines are complex projective lines of Z with normal
bundle C2n ⊗O(1) (where 4n is the dimension of M).

The tangent vertical bundle Θ: The tangent vertical bundle Θ of the
twistor projection π : Z → M is the bundle over Z whose fiber at a point
J ∈ Z is the tangent space TJZp at the twistor line Zp where p = π(J). It is
a complex line bundle over the complex manifold Z, with complex structure
of the fibers defined by the complex structure of the twistor lines. Moreover,
it has a canonical Hermitian metric h(X,Y ) := 1

2 (〈X,Y 〉 − i〈JX,Y 〉), for
any X,Y ∈ ΘJ = TJZp ⊂ Qp.

Any section A ∈ Γ(Q) defines a section Ã of Θ, by the formula:

Ã(J) = ΠJ(A) :=
1
2

(A+ J ◦A ◦ J) = A− 〈A, J〉J, J ∈ Z,

where the bundle homomorphism Π : π∗Q→ Θ is the orthogonal projection
onto Θ ⊂ π∗Q with respect to the metric of π∗Q induced by the natural Eu-
clidian metric 〈·, ·〉 of Q. Such sections of Θ will be called distinguished. The
differential σ∗ : TZ → TZ of the antipodal map σ : Z → Z, σ(J) = −J in-
duces an involution on the space of smooth sections of Θ, which associates to
a section s the section s̄ defined as follows: for any J ∈ Z, s̄J := σ∗

(
sσ(J)

)
.

If s := Ã is distinguished, then s̄ = −s. This is why the distinguished sec-
tions are also called purely imaginary. Moreover, J s is real, i.e. J s = J s.
The distinguished sections of Θ will play a fundamental role in our twistor
theory for Penrose operators (see Section 3.3).
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3.2.3 Quaternionic-Kähler manifolds

A quaternionic-Kähler manifold is a Riemannian manifold (M, g) of dimen-
sion 4n ≥ 8 with holonomy group included in Sp(n)Sp(1). A quaternionic-
Kähler manifold is quaternionic and the Levi-Civita connection is a quater-
nionic connection. The metric g of a quaternionic-Kähler manifold is Ein-
stein and its curvature has the expression

Rg(X,Y ) = −ν
4

(
X ∧ Y +

3∑
i=1

JiX ∧ JiY + 2
3∑
i=1

ωi(X,Y )ωi

)
+WQ(X,Y )

(3.2)
where ν := k

4n(n+2) is the reduced scalar curvature (k being the usual scalar
curvature).

When the reduced scalar curvature ν of (M, g) is positive, the twistor
space Z of the underlying quaternionic structure of (M, g) has an Einstein
metric ḡ, which, together with the natural complex structure J of Z, makes
Z a Kähler-Einstein manifold. In order to define ḡ, consider the horizontal
bundle H∇ ⊂ TZ associated to the Levi-Civita connection ∇ of g, acting
on the twistor bundle π : Z → M . On H∇ ḡ is the pull-back of g; the
twistor lines are ḡ-orthogonal to H∇; when ν = 1 the restriction of ḡ to
the twistor lines is the standard metric on S2 of curvature one; equivalently,
the restriction of ḡ to a twistor line Zp is induced by the Euclidian metric
〈·, ·〉 of the fiber Qp of Q over p, by means of the inclusion Zp ⊂ Qp. The
twistor projection π : (Z, ḡ) → (M, g) becomes a Riemannian submersion
with totally geodesic fibers.

3.2.4 The E −H-formalism

Like for conformal 4-manifolds, on any quaternionic manifold (M,Q) there
are two locally defined complex vector bundles H and E over M (sometimes
called the spin bundles), of rank 2 and 2n, associated to the standard repre-
sentations of Sp(1) and GL(n,H) on C2 and C2n respectively. The bundles
E and H play the role of the spin bundles in conformal geometry, because

TCM = H ⊗ E. (3.3)

Since Sp(1) ∼= SU(2), H has a complex parallel symplectic form ωH and a
compatible quaternionic structure, i.e. a C-anti-linear map qH : H → H,
which satisfies q2

H = −IdH , ωH(qv, qw) = ωH(v, w) and ωH(v, qHv) > 0,
for any v, w ∈ H. The 2-form ωH together with qH define an invariant
Hermitian positive definite metric 〈·, ·〉H := ωH(·, qH ·) on H. By means
of the identification H 3 h → ω(h, ·) ∈ H between H and its dual H∗,
S2(H) ⊂ H ⊗ H ∼= H∗ ⊗ H ⊂ End(H) acts on H and its real part (with
respect to the real structure on End(H) induced by qH) is isomorphic to
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the bundle Q. Similarly, S2E is isomorphic to the complexification of the
bundle of Q-Hermitian forms, i.e. 2-forms ψ which satisfy

ψ(AX,Y ) = −ψ(X,AY ), ∀A ∈ Q, ∀X,Y ∈ TM.

When Q is the quaternionic bundle of a quaternionic-Kähler manifold
(M, g), the bundle E comes equipped with a parallel complex symplectic
form ωE and, by means of the decomposition (3.10),

gC = ωH ⊗ ωE .

Moreover,
Λ2(T ∗CM) = S2H ⊕ S2E ⊕ (S2H ⊗ Λ2

0E), (3.4)

where Λ2
0E ⊂ Λ2E is the kernel of the natural contraction with the standard

symplectic form on E. For a 2-form ψ ∈ Ω2(M), we denote by ψS
2H , ψS

2E

and ψS
2H⊗Λ2

0E its projections on the three factors of the decomposition (3.4).
By identifying vectors with covectors using g, for any decomposable 2-form
ψ = X ∧ Y , the following identities hold:

(X ∧ Y )S
2H =

1
2n

3∑
i=1

ωi(X,Y )ωi (3.5)

and

(X ∧ Y )S
2E =

1
4

(
X ∧ Y +

3∑
i=1

JiX ∧ JiY

)
, (3.6)

with respect to any local admissible basis {J1, J2, J3} of Q, with associated
Kähler forms ωi = g(Ji·, ·).

3.2.5 Conformal-Killing forms on Riemannian manifolds

At the end of this preliminary section we briefly recall the definition of
conformal-Killing forms on Riemannian manifolds. For a survey on this
topic, see [99].

Let (Mm, g) be a Riemannian m-dimensional manifold. For any 1 ≤
p ≤ m consider the tensor product bundle T ∗M ⊗Λp(M) and its irreducible
O(m)-decomposition:

T ∗M ⊗ Λp(M) = Λp+1(M)⊕ Λp−1(M)⊕ T p,1(M), (3.7)

where the sub-bundle T p,1(M) of T ∗M ⊗ Λp(M) is the intersection of the
kernels of the wedge product and inner contraction maps. The orthogonal
projection Pp,m onto the third component in the above decomposition is
called the algebraic conformal-Killing operator and depends on the degree
of the form and the dimension of the manifold. If ψ ∈ Ωp(M) is a p-form,
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the covariant derivative ∇ψ with respect to the Levi-Civita connection ∇ of
g is a section of T ∗M ⊗Λp(M). Its projection onto Λp+1(M) and Λp−1(M)
is given, essentially, by the exterior derivative dψ and the codifferential δψ,
respectively. The p-form ψ is called conformal-Killing if ∇ψ is a section of
Λp+1(M)⊕ Λp−1(M), i.e. belongs to the kernel of Pp,m, i.e. the conformal-
Killing equation

∇Y ψ =
1

p+ 1
iY dψ −

1
m− p+ 1

Y ∧ δψ, ∀Y ∈ TM (3.8)

is satisfied (we identify, without mentioning explicitly, tangent vectors with
1-forms by means of the Riemannian duality). A co-closed conformal-Killing
form is called Killing.

3.3 The geometry of quaternionic connections

3.3.1 Holomorphic structures on Θ

In this section we classify the holomorphic structures of the tangent vertical
bundle Θ of the twistor fibration π : Z → M of a quaternionic manifold
(M,Q). Recall that Θ is a complex Hermitian line bundle over the twistor
space Z, which is a complex manifold. Due to this, there is an isomor-
phism between Chern connections of Θ (i.e. Hermitian connections with
J -invariant curvature) and holomorphic structures of Θ, i.e. operators

∂̄ : Γ(Θ)→ Ω0,1(Z,Θ)

which satisfy the Liebniz rule

∂̄(fs) = f∂̄(s) + ∂̄(f)s, f ∈ C∞(Z,C), s ∈ Γ(Θ)

and whose natural extension to the complex Ω0,∗(Z,Θ) satisfy ∂̄2 = 0. The
isomorphism associates to a Chern connection ∇ its (0, 1)-part

∂̄Us :=
1
2

(∇Us+ J∇JUs) , ∀U ∈ TZ, ∀s ∈ Γ(Θ).

Hence the study of holomorphic structures of Θ reduces to the study of
Chern connections.

Remark now that if D is a quaternionic connection on (M,Q), then
π∗D is a connection on the pull-back bundle π∗Q and ∇D := Π ◦ π∗D is a
connection on the bundle Θ, where Π : π∗Q→ Θ is the orthogonal projection
(with respect to the metric of π∗Q induced by the standard metric 〈·, ·〉 of Q).
One may show that ∇D is a Chern connection (and defines an holomorphic
structure ∂̄D) if and only if D is self-dual. More generally, one may prove:
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Theorem 30. i) Any holomorphic structure of Θ is equivalent (i.e. con-
jugated by an element of the gauge group C∞(Z,C∗)) with an holomorphic
structure ∂̄D,β := ∂̄D + β̃, where ∂̄D is the (0, 1)-part of the Chern connec-
tion ∇D of Θ induced by a self-dual quaternionic connection D of (M,Q),
β ∈ Ω1(M) has Q-Hermitian exterior differential and β̃ ∈ Ω0,1(Z,EndC(Θ))
is defined as follows: for any U ∈ TJZ with π∗U = X and s ∈ Γ(Θ),

β̃U (s) :=
1
2

(β(X)J s− β(JX)s) .

ii) Two holomorphic structures ∂̄D,β and ∂̄D
′,β′ are equivalent if and

only if D and D′ are equivalent as quaternionic connections of (M,Q) (see
Section 3.3) and β − β′ is an exact 1-form.

Recall now that any two exact quaternionic connections are equivalent.
The following Corollary is a consequence of Theorem 84.

Corollary 31. The tangent vertical bundle of the twistor fibration of a
quaternionic manifold (M,Q) has a canonical class of equivalent holomor-
phic structures, determined by the exact quaternionic connections of (M,Q).

3.3.2 A Penrose transform

Let (M,Q) be a quaternionic manifold, with spin bundles E and H. The
product H ⊗ S2(H) decomposes into two irreducible subbundles: S3(H),
which is the kernel of the map F : H ⊗ S2(H)→ H defined by

F (h, h1h2 + h2h1) = ωH(h, h1)h2 + ωH(h, h2)h1, h1, h2, h ∈ H, (3.9)

and H, isomorphic to the Hermitian orthogonal of S3(H) in H⊗S2(H) with
respect to the Hermitian metric of H ⊗ S2(H) induced by the Hermitian
metric 〈·, ·〉H of H (to simplify notations, we omit the tensor product signs,
so that h1h2 + h2h1 denotes h1 ⊗ h2 + h2 ⊗ h1). Therefore,

T ∗M ⊗Q = E∗ ⊗ S3H ⊕ E∗ ⊗H. (3.10)

Definition 32. The Penrose operator

PD : Γ(S2H)→ Γ(E∗ ⊗ S3H)

defined by a quaternionic connection D on (M,Q) maps a section σ of S2H
to the projection of Dσ ∈ Γ(T ∗M ⊗ S2H) onto the first component of the
irreducible decomposition (3.10).

Our main result in this section is the following.
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Proposition 33. Let D be a self-dual quaternionic connection on (M,Q)
and A ∈ Γ(Q). Then the distinguished section Ã of Θ, defined by

ÃJ := Ap − 〈Ap, J〉J, J ∈ Z, p = π(J),

is ∂̄D-holomorphic if and only if PD(A) = 0.

Proof. The proof is representation theoretic. The section Ã is ∂̄D-holomorphic
if and only if it satisfies

∇DJU (Ã) = J∇DU (Ã), ∀U ∈ TZ, (3.11)

where ∇D is the Chern connection of Θ induced by D. It can be seen that
(3.11) is equivalent with

DJXA−〈DJXA, J〉J−JDXA−〈DXA, J〉IdTM = 0, ∀X ∈ TM, ∀J ∈ Z.
(3.12)

Remark now that γ := DA is a section of E∗ ⊗H∗ ⊗ S2H, which has two
G̃-irreducible subbundles (where G̃ := GLn(H) × Sp(1)), namely E∗ ⊗ H
and E∗ ⊗ S3H. In terms of γ, relation (3.12) becomes

γJX −〈γJX , J〉J − JγX −〈γX , J〉IdTM = 0, ∀X ∈ TM, ∀J ∈ Z. (3.13)

The action of G̃ on E∗ ⊗ H∗ ⊗ S2H preserves the space of solutions of
(3.13). Since obviously there are distinguished sections of Θ which are not
∂̄D-holomorphic, it follows that the space of solutions of (3.13) coincides
either with E∗ ⊗H or with E∗ ⊗ S3H. One then shows that any element of
E∗⊗H satisfies (3.13). This means that Ã is ∂̄D-holomorphic if and only if
DA is a section of E∗ ⊗H, i.e. PD(A) = 0.

In the compact case, when the quaternionic manifold has in addition a
compatible quaternionic-Kähler metric, there is the following non-existence
criterion on holomorphic sections of tensor powers of Θ. For details of the
proof (which uses the so called conformal weight operator in the quaternionic
setting, similar to the one from the conformal setting [56], and the Penrose
transformation from the above proposition), see [37].

Proposition 34. Let D be a closed quaternionic connection on a compact
quaternionic-Kähler manifold (M,Q, g). If Scalg < 0 (respectively, Scalg =
0 and D is not exact) then Θs (for any s ∈ N\{0}) has no global non-trivial
∂̄D-holomorphic sections.

3.4 A prolongation of the conformal-Killing oper-
ator on quaternionic-Kähler manifolds

In this section we find a prolongation of the conformal-Killing operator act-
ing on the space of so called compatible 2-forms on a quaternionic-Kähler
manifold and we deduce various consequences of this prolongation.
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3.4.1 The prolongation D

Given a linear differential operator D, it is sometimes useful to determine
a vector bundle connection (called a prolongation of D) whose space of
parallel sections is isomorphic with the kernel of D. In general, there are
several connections with this property. However, if one prolongation is flat,
then all are.

In this section we determine a prolongation D of the conformal-Killing
operator acting on compatible 2-forms on a quaternionic-Kähler manifold
(M, g) and we show that D is flat if and only if the quaternionic-Weyl
tensor WQ of (M, g) is zero. (Recall that a 2-form on a quaternionic-Kähler
manifold is called compatible if it is a (real) section of S2H ⊕ S2E.) The
prolongation D acts on the direct sum bundle S2H ⊕ S2E ⊕ TM. More
precisely, we state:

Theorem 35. Let (M, g) be a quaternionic-Kähler manifold of dimension
4n ≥ 8, reduced scalar curvature ν and quaternionic-Weyl tensor WQ. De-
fine a connection D on S2H ⊕ S2E ⊕ TM , by

DZ(ψ,X)S
2E⊕S2H = ∇Zψ −

1
4n− 1

(
X ∧ Z +

3∑
i=1

JiX ∧ JiZ −
3∑
i=1

ωi(X,Z)ωi

)

DZ(ψ,X)TM = ∇ZX −
4n− 1

4
iZ

(
νψS

2E − 2νψS
2H +

1
n+ 1

WQ(ψ)
)
,

where ∇ is the Levi-Civita connection, {J1, J2, J3} is a local admissible basis
of the quaternionic bundle Q, with Kähler forms {ω1, ω2, ω3}, ψ is a section
of S2H ⊕ S2E and X, Z are vector fields on M . Then D is a prolongation
of the conformal-Killing operator acting on compatible 2-forms. Moreover,
D is flat if and only if WQ = 0.

We divide the proof of Theorem 35 into three propositions. In Proposi-
tion 36 we rewrite the conformal-Killing equation on compatible 2-forms in
a way suitable for the prolongation procedure. In Proposition 37 we show
that the connection D from Theorem 35 is a prolongation of the conformal-
Killing operator acting on compatible 2-forms. Finally, in Proposition 38
we compute the curvature of D and we show that D is flat if and only if
WQ = 0. For detailed proofs, see [31].

Proposition 36. With the notations from Theorem 35, a compatible 2-form
ψ on (M, g) is conformal-Killing if and only if it satisfies

∇Y ψ =
1

4n− 1

(
X ∧ Y +

3∑
i=1

JiX ∧ JiY −
3∑
i=1

ωi(X,Y )ωi

)
, ∀Y ∈ TM,

(3.14)
where X is a vector field (necessarily equal to δψ).
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We remark that Proposition 36 implies that any compatible Killing 2-
form on (M, g) is parallel, a result previously proved, in the compact case
(and also for higher degree Killing forms), in [81]. It also implies that the
S2H-component of a compatible conformal-Killing 2-form is a solution of
the Penrose operator defined by the Levi-Civita connection [31].

Proposition 37. The map

ψ → (ψ, δψ)

is an isomorphism from the vector space C2(M) of compatible conformal-
Killing 2-forms to the vector space of D-parallel sections (where D is the
connection from Theorem 35).

In order to conclude the proof of Theorem 35, we still need to compute
the curvature of the connection D. This is done in the following proposition.

Proposition 38. The curvature RD of the connection D defined in Theorem
35 has the following expression: for any section (ψ,X) of S2H⊕S2E⊕TM
and vector fields Y, Z ∈ X (M),

RDY,Z(ψ,X)S
2H⊕S2E = [WQ

Y,Z , ψ]− 1
n+ 1

(
WQ(ψ) ∧ Id

)S2E

Y,Z

RDY,Z(ψ,X)TM =
n+ 2
n+ 1

WQ
Y,ZX +

4n− 1
4(n+ 1)

C(ψS
2E)Y,Z ,

where

(WQ(ψ) ∧ Id)S
2E

Y,Z :=
(
iYW

Q(ψ) ∧ Z − iZWQ(ψ) ∧ Y
)S2E

(3.15)

and

C(ψS
2E)Y,Z := iY

(
∇ZWQ

)
(ψS

2E)− iZ
(
∇YWQ

)
(ψS

2E). (3.16)

In particular, D is flat if and only if WQ = 0.

The proof of Theorem 35 is now completed.

The dimension of the space C2(M)

As a first application of Theorem 35 we determine a sharp estimate for
the dimension of the vector space C2(M) of compatible conformal-Killing
2-forms on a quaternionic-Kähler manifold (M, g). It is known that on
an arbitrary Riemannian manifold (not necessarily compact) the space of
conformal-Killing forms (of any degree) is finite-dimensional and an upper
bound, which is realized on the standard sphere, was found in [99]. For the
special class of compatible conformal-Killing 2-forms on quaternionic-Kähler
manifolds, this upper bound can be improved, due to the following result:
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Corollary 39. Let (M, g) be a quaternionic-Kähler manifold of dimension
4n ≥ 8. Then

dimC2(M) ≤ (n+ 1)(2n+ 3). (3.17)

Equality holds on the standard HPn.

Proof. Notice that (n+1)(2n+3) is the rank of the bundle S2H⊕S2E⊕TM
on which the connection D is defined. Therefore, inequality (3.17) follows
from Theorem 35. It remains to show that equality holds on the quaternionic
projective space HPn, with its standard quaternionic-Kähler structure. This
follows from Theorem 42 (see the next section), where it is shown that
C2(HPn) is isomorphic to the space of Killing vector fields on HPn, which
has dimension (n+ 1)(2n+ 3). Our claim follows.

The case when ν 6= 0

In this section we develop various properties (see Propositions 40 and 41)
which hold under the additional assumption that the scalar curvature is non-
zero. They are consequences of the prolongation D found in the previous
section.

Proposition 40. If a quaternionic-Kähler manifold (M, g) of dimension
4n ≥ 8 and non-zero scalar curvature has a non-parallel compatible conformal-
Killing 2-form, then the holonomy group of (M, g) is Sp(1)Sp(n).

Proof. We will show that the holonomy algebra hol(M, g) of (M, g) coincides
with sp(1)⊕ sp(n). Let ψ be a non-parallel compatible conformal-Killing 2-
form on (M, g) and X := δψ, which is non-trivial (from Proposition 36).
The key fact in the proof is the following relation

WQ(V,X) =
4n− 1

4(n+ 2)
(∇VWQ)(ψ), ∀V, (3.18)

which is a consequence of the curvature computation from Proposition 38.
Using the Ambrose-Singer theorem (see Chapter 10 of [15]) and (3.18) we
obtain that WQ(X,V ) ∈ hol(M, g). Since Rg(Y,Z) belongs to the holonomy
algebra as well, and sp(1) ⊂ hol(M, g) (since the scalar curvature is non-zero,
see Lemma 14.46 of [15]), we deduce that Rg(Y, Z)S

2E belongs to hol(M, g),
for any Y,Z ∈ TM. It follows that

Rg(X,V )S
2E −WQ(X,V ) = −ν(X ∧ V )S

2E ∈ hol(M, g), ∀V (3.19)

and

Rg(JiX,V )S
2E−WQ(JiX,V ) = −ν(JiX∧V )S

2E ∈ hol(M, g), ∀V, (3.20)

where {J1, J2, J3} is a local admissible basis of Q. We just proved that if
Y or U belong to V := Span{X, J1X, J2X,J3X}, then (Y ∧ U)S

2E belongs
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to hol(M, g). It remains to show that (Y ∧ U)S
2E belongs to the holonomy

algebra when both Y and U are orthogonal to V. Take such two tangent
vectors Y and U . Since both (X∧Y )S

2E and (X∧U)S
2E belong to hol(M, g),

also their Lie bracket does, and its S2E projection as well. We obtain that
(Y ∧ U)S

2E ∈ hol(M, g). Our claim follows.

Proposition 41. On a quaternionic-Kähler manifold with non-zero scalar
curvature, the map

C2(M) 3 ψ → u := ψS
2E (3.21)

is an isomorphism from the vector space C2(M) of compatible conformal-
Killing 2-forms on (M, g) to the vector space of (real) sections of S2E which
satisfy

∇Y u =
1

4n− 1

(
X ∧ Y +

3∑
i=1

JiX ∧ JiY

)
∀Y ∈ TM, (3.22)

where X ∈ X (M) is a vector field on M (necessarily equal to 4n−1
4n+2δu) and

{J1, J2, J3} is an admissible basis of Q. The inverse is the map

u→ ψ := u− 1
(2n+ 1)ν

(∇δu)S
2H . (3.23)

Proof. For a proof, see [31].

3.5 Global classification of conformal-Killing 2-forms
on quaternionic-Kähler manifolds

3.5.1 Statement of the main result

In this section we find a complete description of conformal-Killing 2-forms
on compact quaternionic-Kähler manifolds. Our main result is the following
[42].

Theorem 42. i) A compact, connected, quaternionic-Kähler manifold (M, g)
of dimension 4n ≥ 8 admits a non-parallel conformal Killing 2-form if and
only if it is isomorphic to the quaternionic projective space HPn, with its
standard quaternionic-Kähler structure.

ii) Let gcan(ν) be the standard metric of HPn, with reduced scalar cur-
vature ν > 0. The map which associates to a Killing vector field X on
(HPn, gcan(ν)) the 2-form

ψ := − 2
ν(4n− 1)

(∇X)S
2H +

4
ν(4n− 1)

(∇X)S
2E (3.24)



3.5. GLOBAL CLASSIFICATION OF CONFORMAL-KILLING 2-FORMS ON QUATERNIONIC-KÄHLER MANIFOLDS45

is an isomorphism from the space of Killing vector fields to the space of
conformal-Killing 2-forms on (HPn, gcan(ν)), with inverse the codifferential:
δ(ψ) = X.

We divide the proof of Theorem 42 in two steps. In a first stage (Sec-
tion 3.5.2) we discuss the structure of conformal-Killing 2-forms on compact
quaternionic-Kähler manifolds (see Proposition 43). In a second stage (Sec-
tion 3.5.3) we prove a property of Killing vector fields on quaternionic-Kähler
manifolds, in relation with the quaternionic-Weyl tensor (see Proposition
46). Combining these two steps we conclude the proof of Theorem 42.

3.5.2 Structure of conformal-Killing 2-forms

Proposition 43. Let ψ be a conformal-Killing 2-form on a compact quaternionic-
Kähler manifold (M, g) of dimension 4n ≥ 8 and reduced scalar curvature
ν.

i) If ν > 0 then

ψ = − 2
ν(4n− 1)

(∇X)S
2H +

4
ν(4n− 1)

(∇X)S
2E + ũ, (3.25)

where X := δ(ψ) is the codifferential of ψ and belongs to the kernel of the
quaternionic-Weyl tensor, ũ ∈ Ω2(M) is parallel and ∇ is the Levi-Civita
connection.

ii) If ν ≤ 0 then ψ is parallel.

Proof. On an Einstein manifold the (dual of the) codifferential of a conformal-
Killing 2-form is a Killing vector field [99]. With this remark, the statement
of Proposition 43 in the case when ν ≤ 0 is an easy consequence of the
following facts: there are no (non-trivial) Killing vector fields on a compact
quaternionic-Kähler manifold (M, g), with ν < 0 (this is an application of
the Weizenböck formula; see also [17], Theorem 1.84). Similarly, if ν = 0
then any Killing vector field on (M, g) is harmonic, and, if coexact, it is iden-
tically zero (M being compact). Due to these facts, any conformal-Killing
2-form on a compact, quaternionic-Kähler manifold with non-positive scalar
curvature is Killing, hence parallel [81]. This proves our claim when ν ≤ 0.

Now we assume that ν > 0. Recall the decomposition (3.4) of the bun-
dle of 2-forms into irreducible subbundles. A Weizenböck type argument
together with the estimates on the eigenvalues of the Laplace operator on
compact quaternionic-Kähler manifolds [101] allows to determine the S2H
and S2H ⊗ Λ2

0(E) components of ψ as follows:

ψS
2H = − 2

ν(4n− 1)
(∇X)S

2H , ψS
2H⊗Λ2

0(E) = 0



46CHAPTER 3. CONTRIBUTIONS TO QUATERNIONIC GEOMETRY

(to determine the S2H-component one may also use Proposition 41). There-
fore, we may write

ψ = − 2
ν(4n− 1)

(∇X)S
2H +

4
ν(4n− 1)

(∇X)S
2E + ũ,

where ũ is a section of S2E. The conformal-Killing equation for ψ becomes

∇Z ũ = − 4
ν(4n− 1)

WQ(Z,X) ∀Z ∈ TM. (3.26)

Using (3.26), we get

(dũ)(Z0, Z1, Z2) = (∇Z0 ũ)(Z1, Z2) + (∇Z2 ũ)(Z0, Z1) + (∇Z1 ũ)(Z2, Z0)

=
4

ν(4n− 1)
(
−WQ(Z0, X, Z1, Z2) +WQ(Z1, X, Z0, Z2)

)
− 4
ν(4n− 1)

WQ(Z2, X, Z0, Z1).

The symmetries of the curvature tensor WQ imply that dũ = 0. Similarly,
we can write the codifferential of u in the form

δũ = −
4n∑
i=1

(∇Eiu)(Ei, ·) =
4

ν(4n− 1)

4n∑
i=1

WQ(Ei, X)(Ei) = 0,

because WQ is in the kernel of the Ricci contraction. We proved that ũ is
harmonic. Recall now that the second Betti number b2(M) of (M, g) is zero,
unless (M, g) is isomorphic to the Grassmannian Gr2(Cn+2) of complex 2-
planes in Cn+2, with its standard quaternionic-Kähler metric [75]; moreover,
the space of harmonic 2-forms on Gr2(Cn+2) is one dimensional, generated
by the Kähler form, which is a parallel section of S2E. This proves that ũ
is actually parallel. Our claim follows.

3.5.3 Killing vector fields and the quaternionic-Weyl tensor

In this Section we conclude the proof of Theorem 84. We do this by proving
Proposition 46 stated below, which in turn relies on the following Theorem
of Obata (see [84], Theorem C).

Theorem 44. Let (N2n, J, g) be a complete, connected and simply connected
Kähler manifold. Suppose there is a non-constant smooth function f on N
which satisfies the Obata’s equation

4∇2(df)(Y, U, V ) = −2df(Y )g(U, V )− df(U)g(Y, V )− df(V )g(Y,U)
+ df(JU)ω(Y, V ) + df(JV )ω(Y,U),
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for any vector fields Y,U, V ∈ X (N), where ∇ is the Levi-Civita connection
and ω is the Kähler form. Then (N, J, g) is isometric to (CPn, gFS), where
gFS is the Fubini-Study metric of constant holomorphic sectional curvature
equal to one.

Remark 45. In order to explain the geometric meaning of Obata’s theorem,
we recall some well-known facts about Hamiltonian functions and Hamilto-
nian Killing vector fields. A Killing vector field X on a connected Kähler
manifold (N, J, g) is called Hamiltonian, if it is of the form X = Jgradg(f),
for a smooth function f ∈ C∞(N), uniquely determined up to addition by a
constant and usually called the Hamiltonian function of X. There is a gen-
eral result due to Matsushima (see [79] or [17], page 330) which states that
any Killing vector field on a compact Kähler-Einstein manifold with positive
scalar curvature is Hamiltonian; in fact, the Hamiltonian function can be
chosen to be an eigenfunction of the Laplace operator ∆, with eigenvalue
k/m (where k is the scalar curvature and m is the complex dimension) and
the map f → Xf = Jgradg(f) is an isomorphism between the eigenspace of
∆ relative to k/m and the space of Killing vector fields.

Coming back to Obata’s theorem, it is easy to verify that the Hamilto-
nian function of any Killing vector field on (CPn, gFS) satisfies the Obata’s
equation. Theorem 44 is a strong converse of this statement: the existence
of a single smooth non-constant solution of Obata’s equation on a complete,
connected and simply connected Kähler manifold, insures that the Kähler
manifold is isometric to the standard complex projective space, with Fubini-
Study metric gFS .

Proposition 46 below concerns compact quaternionic-Kähler manifolds
with positive scalar curvature. Without loss of generality, we will normalize
the quaternionic-Kähler metric to have reduced scalar curvature ν = 1. We
shall denote by gcan := gcan(1) the standard quaternionic-Kähler metric of
HPn, normalized in this way. The main result of this section, which will be
used to conclude the proof of Theorem 84, is the following.

Proposition 46. Let (M, g) be a compact, quaternionic-Kähler manifold,
of dimension 4n ≥ 8 and reduced scalar curvature ν = 1. Suppose there is a
non-trivial Killing vector field X on M such that WQ(X, ·) = 0, where WQ

is the quaternionic-Weyl tensor. Then WQ = 0 and (M, g) is isometric to
(HPn, gcan).

Proof. The idea of the proof is to show that the Hamiltonian function fX

of the natural lift XZ of X to the Kähler-Einstein twistor space (Z, ḡ,J ) of
(M, g) satisfies the Obata’s equation stated above. Then Theorem 44 implies
that (Z, ḡ,J ) is isomorphic to (CPn, gFS) and hence (M, g) is isomorphic
to (HPn, gcan). Details can be found in [42]. Here we only explain how
the natural lift XZ is defined. The flow of X lifts in a natural way to
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a flow on all tensor bundles on M , in particular also on End(TM), and
the associated vector field XEnd(TM) is the natural lift of X to End(TM).
Moreover, XEnd(TM) is tangent to Z ⊂ End(TM) along Z, and defines a
genuine vector field on Z, denoted by XZ and called the natural lift of
X to the twistor space Z. Note that XZ is Killing, real holomorphic and
Hamiltonian on the compact Kähler-Einstein manifold (Z,J , ḡ) of positive
scalar curvature. At a point J ∈ Zp, it is given by [42]

XZ
J = X̄J + [∇X, J ], (3.27)

where X̄J is the horizontal lift of X to J (using the Levi-Civita connection
∇ of g) and [∇X, J ] is viewed as a tangent vertical vector at J (since ∇X
is a section of S2H ⊕ S2E [73], [∇X, J ] anti-commutes with J , i.e. belongs
to the tangent space of Zp at J). The second covariant derivatives of XZ

on (Z, ḡ) and the proof that the Hamiltonian function of XZ satisfies the
Obata equation on (Z, ḡ,J ) can be found in [42].

Theorem 84 can now be easily concluded as follows. From Proposition
43 and Proposition 46, a compact quaternionic-Kähler manifold (M, g) of
real dimension 4n ≥ 8 and reduced scalar curvature ν, admits a non-parallel
conformal-Killing 2-form if and only if (M, g) is isometric to (HPn, gcan(ν)).
Recall now that there are no non-trivial parallel 2-forms on the standard
quaternionic projective space. Using this fact, Proposition 43 implies that
any conformal-Killing 2-form ψ on (HPn, gcan(ν)) must be of the form

ψ = − 2
ν(4n− 1)

(∇X)S
2H +

4
ν(4n− 1)

(∇X)S
2E , (3.28)

where X = δ(ψ) is the codifferential of ψ and is Killing. Conversely, one
may check that for any Killing vector field X, the 2-form (3.28) is conformal-
Killing on (HPn, gcan(ν)) and the map ψ → X is an isomorphism from the
space of conformal-Killing 2-forms to the space of Killing vector fields. This
concludes the proof of Theorem 42.

3.6 The conformal-Killing equation and G-structures

3.6.1 Statement of the main result

Our main result from this section is the following [32, 33]:

Theorem 47. i) Let (M4n, Q, g) be a 4n-dimensional manifold with an
Sp(1)Sp(n)-structure (i.e. an almost quaternionic-Hermitian structure) and
n ≥ 2. Suppose that the fundamental 4-form

Ω = ω1 ∧ ω1 + ω2 ∧ ω2 + ω3 ∧ ω3,
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where ωi are the Kähler forms of an admissible basis {J1, J2, J3} of Q,
is conformal-Killing. Then Ω is parallel (and (M,Q, g) is quaternionic-
Kähler).

ii) Let M be a 7-manifold with a G2-structure defined by φ ∈ Ω3
+(M).

Then φ is conformal-Killing with respect to the associated metric gφ if and
only if the G2-structure is nearly parallel (i.e. ∇φ is a multiple of ∗φφ, where
∇ is the Levi-Civita connection of gφ and ∗φ is the Hodge star operator de-
termined by gφ and the orientation on M defined by φ).

iii) Let M be an 8-manifold with a Spin7-structure defined by ψ ∈
Ω4

+(M). Then ψ is conformal-Killing with respect to the associated met-
ric gψ if and only if the Spin7-structure is parallel (i.e. ψ is parallel with
respect to the Levi-Civita connection of gψ).

Proof. The above statements are proved using, basically, the same concep-
tual argument for all three cases, G = Sp(1)Sp(n), G2 or Spin7. For this
reason we present the main ideas of the proofs in a unified way, for all state-
ments at once. As usual, we identify vectors with covectors using the metric.
The main idea of the proof is to use the well-known facts [20, 53, 104] that
the covariant derivatives (with respect to the Levi-Civita connections of g,
gφ and gψ respectively) of the forms Ω, φ, ψ from the statements of the the-
orem, which are sections of T ∗M⊗Λi(M) (where i = 4 in the first and third
cases and i = 3 in the second case), actually belong to the tensor product
T ∗M ⊗ adj(G)⊥, where adj(G) ⊂ Λ2(M) is the adjoint bundle with typical
fiber g = Lie(G) and adj(G)⊥ ⊂ Λ2(M) is its orthogonal complement, con-
sidered as a subbundle of Λi(M). (The embedding of adj(G)⊥ in Λi(M) is
described in [20, 104]). Then one shows, using Schur’s lemma and standard
arguments from representation theory, that the algebraic conformal Killing
operator (see Section 3.2.5) is injective on T ∗M ⊗ adj(G)⊥ in the first and
third case (i.e. when G = Sp(1)Sp(n) and Spin7). This implies that Ω and
ψ are parallel, i.e. the first and third required statements. In the second case
(when G = G2) one shows that the kernel of the algebraic conformal-Killing
operator restricted to T ∗M ⊗ adj(G)⊥ is the one dimensional subbundle Lφ
generated by ∗φφ; the way Lφ is realized as a subbundle of T ∗M⊗adj(G)⊥ is
described in [20]). This implies the second statement. For complete proofs,
[32, 33].
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Chapter 4

Contributions to Generalized
Complex Geometry

4.1 Introduction

Chapter 4 is concerned with the generalized complex geometry of Lie groups
and describes the results published by the author of this thesis in Proceed-
ings of the London Mathematical Society [3]. Generalized complex
geometry was discovered by N. Hitchin as a unification of complex and sym-
plectic geometries and has become one of the main streams of current re-
search in mathematics. The idea is to replace the usual tangent bundle TM
of a manifold M by the generalized tangent bundle TM := TM ⊕T ∗M and
to consider both complex and symplectic structures as particular classes of
a more general structure, the so called generalized complex structure. Many
notions from complex and/or symplectic geometry were extended to gener-
alized complex geometry. In this chapter we develop a systematic treatment
of a class (called regular) of invariant generalized complex structures on
semisimple Lie groups. The results of this chapter may be seen as comple-
mentary to some previous constructions of invariant generalized complex and
Kähler structures on some classes of homogeneous manifolds (e.g. nilpotent
or solvable Lie groups and their compact quotients [12, 28, 54], homogeneous
manifolds G/K, where G is a compact Lie group and K a closed subgroup of
maximal rank and adjoint orbits in semisimple Lie algebras [83]). They also
complement a result of M. Gualtieri, namely that any compact semisimple
Lie group of even dimension admits a H-twisted generalized Kähler struc-
ture (see Example 6.39 of [61]).

Section 4.2 is intended to fix the notations and conventions we shall
use along the chapter. We recall basic facts we need about real and com-
plex semisimple Lie algebras, invariant complex structures on homogeneous
manifolds and generalized complex structures on manifolds. Our approach
follows closely [61, 72, 109].

51
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In Section 4.3 we present an infinitesimal description of invariant gener-
alized complex structures on Lie groups, in terms of the so called admissible
pairs. The holomorphic bundle L of an invariant generalized complex struc-
ture J on a Lie group G, with Lie algebra g, can be defined in terms of a
pair (k, ω) (called g-admissible), formed by a subalgebra k ⊂ gC and a closed
2-form ω ∈ Λ2(k∗), with the property that ωl := Im

(
ω|l
)

is non-degenerate,
where l = k ∩ g is the real part of k ∩ k̄.

In Section 4.4 we begin our treatment of invariant generalized com-
plex structures on semisimple Lie groups. An invariant generalized complex
structure J on a semisimple Lie group G and the associated g-admissible
pair (k, ω) are called regular if k is a regular subalgebra of gC, i.e. is nor-
malized by a Cartan subalgebra hg of g = Lie(G). We describe all regular
g-admissible pairs (hence also the associated generalized complex structures
on G) where g is a real form of inner type and hg is a maximally compact
Cartan subalgebra of g (see Proposition 59 and Theorem 84). We study how
these generalized complex structures can be reduced to the normal form by
means of invariant B-field transformations (see Proposition 61). At the end
of this section we show that any invariant generalized complex structure on
a compact semisimple Lie group G, with Lie algebra g, is regular, provided
that the Lie algebra k of the associated g-admissible pair has the property
that k ∩ g generates a closed subgroup of G (see Theorem 62).

Section 4.5 is concerned with regular generalized complex structures (or
regular admissible pairs (k, ω)) on simple Lie groups G of outer type, using
the formalism of Vogan diagrams. The classification of the subalgebras
k reduces to the description of the so called σ-positive root systems (see
Definition 57). We describe explicitly these systems and we obtain a large
class of regular generalized complex structures on G.

4.2 Preliminary material

4.2.1 Invariant complex structures on Lie groups and homo-
geneous manifolds

Invariant complex structures on homogeneous manifolds

The Lie algebra of a Lie group will be identified as usual with the tangent
space at the identity element or with the space of left-invariant vector fields.

Let G be a real Lie group, with Lie algebra g, and L a closed connected
subgroup of G, with Lie algebra l. Suppose that the space M = G/L of left
cosets is reductive, i.e. g has an AdL-invariant decomposition

g = l⊕m. (4.1)

We shall identify m with the tangent space ToM at the origin o = eL ∈ G/L.
An invariant complex structure J on M is determined by its value Jo at o,
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which is an AdL-invariant complex structure on the vector space m = ToM .
Let m1,0 and m0,1 = m1,0 be the holomorphic, respectively anti-holomorphic
subspaces of Jo, so that

mC = m1,0 ⊕m0,1. (4.2)

The invariance and integrability of J mean that k = lC +m1,0 is a (complex)
subalgebra of gC. Conversely, any decomposition (4.2) of mC into two vector
spaces m1,0 and m0,1 = m1,0 such that k = lC + m1,0 is a subalgebra of gC,
defines an invariant complex structure on M . We get the following well
known algebraic description of invariant complex structures on reductive
homogeneous manifolds.

Proposition 48. Let M = G/L be a reductive homogeneous manifold, with
reductive decomposition (4.1). There is a natural one to one correspondence
between:

i) invariant complex structures on M ;

ii) decompositions mC = m1,0⊕m0,1, where m0,1 = m1,0 and k = lC+m1,0

is a subalgebra of gC;

iii) subalgebras k ⊂ gC such that

k + k̄ = gC, k ∩ k̄ = lC. (4.3)

In particular, if M = G is a Lie group, there is a one to one correspon-
dence between invariant complex structures on G and decompositions

gC = g1,0 ⊕ g0,1,

where g1,0 and g0,1 are subalgebras of gC and g0,1 = g1,0.

Some basic facts on semisimple Lie algebras

We fix our notations from the theory of semisimple Lie algebras.

Complex semisimple Lie algebras. Recall that any complex semisim-
ple Lie algebra gC has a root space decomposition

gC = h + g(R) = h +
∑
α∈R

gα

with respect to a Cartan subalgebra h, where R ⊂ h∗ is the root system of
gC relative to h and for any subset P ⊂ R we denote by g(P ) the direct sum
of root spaces

g(P ) :=
∑
α∈P

gα.
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Along the paper we will denote by Eα ∈ gα the root vectors of a Weyl basis
of g(R), which have the following properties:

i)
〈Eα, E−α〉 = 1, ∀α ∈ R,

where B = 〈·, ·〉 is the Killing form of gC;
ii) the structure constants Nαβ defined by

[Eα, Eβ] = NαβEα+β, ∀α, β ∈ R

are real and satisfy

N−α,−β = −Nαβ, ∀α, β ∈ R.

We will identify the dual space h∗ with h using the restriction 〈·, ·〉 of
the Killing form to h, which is non-degenerate on h and positive definite
on the real form h(R) of h, spanned by the root system R ⊂ h. For a
set of roots P , we will constantly use the notation P sym := P ∩ (−P ) for
the symmetric part of P and P asym := P \P sym for the anti-symmetric part.

Real semisimple Lie algebras. Let g be a real semisimple Lie algebra.
Its complexification gC is a complex semisimple Lie algebra and g = (gC)σ,
that is, g can be reconstructed from gC as the fix point set of a complex
conjugation or antiinvolution

σ : gC → gC, x→ x̄,

that is, σ is an involutive automorphism of gC, as a real Lie algebra, and
is antilinear. One can always assume that the antiinvolution σ preserves a
Cartan subalgebra h of gC. Then hg = hσ := h ∩ g is a Cartan subalgebra
of g. The antiinvolution σ acts naturally on the set of roots R of gC relative
to h, by

σ(α) := α ◦ σ, ∀α ∈ R

and
σ(gα) = gσ(α), ∀α ∈ R.

The compact real form of a complex semisimple Lie algebra gC is unique
(up to conjugation) and is defined by the antiinvolution τ (called compact)
given by

τ |h(R)
= −Id, τ(Eα) = −E−α, ∀α ∈ R.

Assume now that g is a real form of gC, not necessarily compact. Consider
a Cartan decomposition

g = k⊕ p
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of g and let θ be the associated Cartan involution, with +1 eigenspace k and
−1 eigenspace p. The real form

u = k⊕ ip

is compact, the corresponding antiinvolution τ commutes with θ and g =
(gC)σ, where σ := θ◦τ . A θ-invariant Cartan subalgebra hg of g decomposes
as

hg = h+ ⊕ h−, h+ ⊂ k, h− ⊂ p

and any root of gC relative to (hg)C takes purely imaginary values on
h+ ⊕ ih−. The Cartan subalgebra hg is called maximally compact (respec-
tively, maximally non-compact) if the dimension of h+ (respectively, h−) is
as large as possible. The real form g is called of inner type if θ is an inner
automorphism of g, that is, it belongs to Int(g). The definition is indepen-
dent of the choice of θ, since any two Cartan involutions of g are conjugated
via Int(g), see e.g. [72, p. 301]. It can be shown that g is of inner type if
and only if there is a (maximally compact) Cartan subalgebra hg included
in k, see e.g. [21, p. 24]. Then

σ(α) = −α

for any root α of gC relative to (hg)C. Any compact real form is a real form
of inner type.

A non-inner real form g (and the corresponding antilinear involution)
is called outer. For such a real form, the Dynkin diagram of gC admits a
non-trivial automorphism of order two, defined by the Cartan involutions of
g (more precisely, any Cartan involution θ permutes a set of simple roots
of gC relative to (hg)C, where hg ⊂ g is a maximally compact θ-invariant
Cartan subalgebra, giving rise to the resulting automorphism of the Dynkin
diagram, see [72, p. 339]). In particular, if gC is simple, then gC = An,
(n ≥ 2), Dn (n ≥ 3) or E6. The list of simple non-complex Lie algebras of
outer type is short and it is given below (see [72], Appendix C):

sln(R) (n > 2), sln(H) (n ≥ 2), {so2p+1,2q+1, 0 ≤ p ≤ q}\{so1,1, so1,3}, e6(f4), e6(sp4).

For the real forms of the exceptional Lie algebra e6 we indicate in the bracket
the type of maximal compact subalgebras. A Lie group is called inner (re-
spectively, outer) if its Lie algebra is inner (respectively, outer).

Invariant complex structures on homogeneous manifolds of com-
pact semisimple Lie groups

Let F = G/K = AdG(x0) ⊂ g be a flag manifold of a compact connected
semisimple Lie group G, with Lie algebra g = (gC)τ , and K = T · L a de-
composition of the stabilizer K into a product of a torus T and a semisimple
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group L. Let T ′ be a subtorus of T , such that the quotient T/T ′ has even
dimension. The total space of the fibration

π : M = G/(L · T ′)→ F = G/K

admits an invariant complex structure, defined by an invariant complex
structure on the fiber T/T ′ and an invariant complex structure on the base
F , such that π is an holomorphic fibration. Moreover, any invariant complex
structure on M is obtained in this way.

More precisely, let hg be a Cartan subalgebra of g included in k =
Lie(K). The complexification of the B-orthogonal reductive decomposition
g = k⊕ p of F = G/K is given by

kC = h + g([Π0]), pC = g(R′), R′ = R \ [Π0]

where Π0 ⊂ Π is a subset of a system Π of simple roots of gC relative to
h = (hg)C and [Π0] := R ∩ span(Π0) is the set of all roots from R spanned
by Π0. The Cartan subalgebra hg decomposes into a B-orthogonal direct
sum

hg = t⊕ h0 = t′ ⊕ a⊕ h0

where t = Lie(T ) and t′ = Lie(T ′). The complexification of the reductive
decomposition of M = G/(L · T ′) is given by

gC = (l + t′)C ⊕mC

where l = Lie(L), lC = hC
0 + g([Π0]) and mC = aC + g(R′).

The following theorem was proved in [109].

Theorem 49. i) The compact homogeneous manifold M = G/(L · T ′) de-
scribed above admits an invariant complex structure defined by the decom-
position

mC = m1,0 ⊕m1,0 = m1,0 ⊕ τ(m1,0),

where

m1,0 = a1,0 + g(R′+), R′+ := R+ ∩ (R \ [Π0]),

R+ is the positive root system defined by Π and a1,0 is the holomorphic sub-
space of a complex structure Ja on a.

ii) Conversely, any invariant complex structure on an homogeneous man-
ifold of a compact, connected, semisimple Lie group G can be obtained by
this construction.
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4.2.2 Generalized complex structures on manifolds

Let M be a smooth manifold and gcan the canonical indefinite metric on the
generalized tangent bundle TM := TM ⊕ T ∗M , given by

gcan(X + ξ, Y + η) :=
1
2

(ξ(Y ) + η(X)) , ∀X + ξ, Y + η ∈ TM. (4.4)

A generalized almost complex structure [61, 71] onM is a gcan-skew-symmetric
field of endomorphisms

J : TM → TM

with J 2 = −Id (where “Id” denotes the identity endomorphism). A general-
ized almost complex structure J is said to be integrable (or is a generalized
complex structure) if the i-eigenbundle L = T1,0M ⊂ (TM)C of J (called
the holomorphic bundle of J ) is closed under the complex linear extension
of the Courant bracket [·, ·], defined by

[X + ξ, Y + η] := [X,Y ] + LXη − LY ξ −
1
2
d (η(X)− ξ(Y )) , (4.5)

for any smooth sections X + ξ and Y + η of TM. Complex and symplectic
structures define, in a natural way, generalized complex structures.

In this chapter we consider only generalized complex structures of con-
stant type [61]. According to M. Gualtieri [61], the holomorphic bundle
L = T1,0M ⊂ (TM)C of a generalized complex structure (of constant type)
J can be described in terms of a subbundle E ⊂ (TM)C and a 2-form
ω̃ ∈ Γ(Λ2(E∗)) defined on E. We now recall this description.

Note that L ⊂ (TM)C is isotropic with respect to the complex linear
extension of gcan and L⊕ L̄ = (TM)C. Conversely, any isotropic subbundle
L ⊂ (TM)C such that L⊕ L̄ = (TM)C defines a generalized almost complex
structure J , whose complex linear extension to (TM)C satisfies J |L = i and
J |L̄ = −i. These considerations play a key role in the proof of the following
Proposition (see [61], page 49):

Proposition 50. A complex rank n subbundle L of (TM)C is the holomor-
phic bundle of a generalized almost complex structure J if and only if it is
of the form

L = L(E, ω̃) := {X + ξ ∈ E ⊕ (TCM)∗, ξ|E = ω̃(X, ·)}

where E ⊂ (TM)C is a complex subbundle and ω̃ ∈ Γ(Λ2(E∗)) is a complex
2-form on E such that the imaginary part Im (ω̃|∆) is non-degenerate. Here

∆ = E ∩ TM ⊂ TM

is the real part of E ∩ Ē, i.e.

∆C = E ∩ Ē.
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Moreover, J is integrable if and only if E is involutive (i.e. its space of
sections is closed under the Lie bracket) and dEω̃ = 0, where dE is the
exterior derivative along E.

The codimension of the subbundle E ⊂ TCM is called the type of the
generalized complex structure J .

Any complex or symplectic structure defines a generalized complex struc-
ture (see e.g. [61]). Other examples of generalized complex structures can
be obtained using B-field transformations, as follows. Any closed 2-form
B ∈ Ω2(M) (usually called a B-field) defines an automorphism of TM , by

exp(B)(X + ξ) = X + iXB + ξ, ∀X + ξ ∈ TM

which preserves the Courant bracket (this follows from dB = 0). If J is
a generalized complex structure on M , with holomorphic bundle L(E, ω̃),
then L(E, ω̃+i∗B), where i∗B ∈ Λ2(E∗) is the restriction of (the complexifi-
cation of) B to E, is the holomorphic bundle of another generalized complex
structure exp(B) · J , called the B-field transformation of J . Obviously, a
B-field transformation preserves the type.

The last notion we need from generalized complex geometry is the normal
form of generalized complex structures [86]. Recall first that an (almost) f -
structure on a manifold M is an endomorphism F of TM satisfying F 3+F =
0. Let T 0M , T 1,0M and T 0,1M be the eigenbundles of the complex linear
extension of F , with eigenvalues 0, i and −i respectively. A (real) 2-form
η ∈ Ω2(M) is called compatible with F if ηC|T 0M is non-degenerate and
Ker(ηC) = T 1,0M ⊕T 0,1M , where ηC is the complex linear extension of η. A
generalized (almost) complex structure J on M , with holomorphic bundle
L, is in normal form if L = L(T 0M ⊕ T 1,0M, iηC) for some almost f -
structure and compatible 2-form η. In the language of [61], this means that
Jp, at any p ∈M , is the direct sum of a complex structure and a symplectic
structure.

4.3 Infinitesimal description of invariant general-
ized complex structures on Lie groups

4.3.1 Admissible pairs: definition and general results

Generalized geometry of Lie groups and homogeneous spaces already ap-
pears in the literature (see e.g. [12, 28, 54, 83]). It is known that invariant
generalized complex structures on a Lie group G are in bijective correspon-
dence with invariant complex structures on the cotangent group T ∗G, which
are compatible with the standard neutral bi-invariant metric of T ∗G, see
[12]. The proof follows from the remark that the restriction of the Courant
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bracket to the space of invariant generalized vector fields (i.e. invariant sec-
tions of TG) coincides with the Lie bracket in the Lie algebra t∗(g) of the
cotangent group T ∗G.

In this section we develop an infinitesimal description of invariant gener-
alized complex structures on Lie groups in terms of the so called admissible
pairs, which will be a main tool in this paper [3, 83].

Let G be a real Lie group. On the generalized tangent bundle TG we
consider the natural action induced by left translations:

g · (X + ξ) := (Lg)∗X + ξ ◦ (L−1
g )∗, ∀g ∈ G, ∀X + ξ ∈ TG.

Definition 51. A generalized almost complex structure J on G is called
invariant if

J (X + ξ) = g−1 · J (g · (X + ξ)) , ∀g ∈ G, ∀X + ξ ∈ TG. (4.6)

The holomorphic bundle L = L(E, ω̃) of an invariant generalized almost
complex structure J is determined by its fiber Le at the identity element
e ∈ G, i.e. by a subspace k := Ee ⊂ gC and a complex 2-form ω := ω̃e ∈
Λ2(k∗). It is easy to check that the bundle E is involutive if and only if k is a
complex subalgebra of gC. Moreover, if E is involutive, then dEω̃ = 0 if and
only if ω is closed as a 2-form on the Lie algebra k, i.e. for any X,Y, Z ∈ k,

(dkω)(X,Y, Z) := ω(X, [Y,Z]) + ω(Z, [X,Y ]) + ω(Y, [Z,X]) = 0.

To simplify terminology we introduce the following definition.

Definition 52. Let g be a real Lie algebra, given by the fixed point set of an
antiinvolution σ(x) = x̄ of gC. A pair (k, ω) formed by a complex subalgebra
k ⊂ gC and a closed 2-form ω ∈ Λ2(k∗) is called g-admissible if

i) gC = k + k̄;

ii) ωl := Im
(
ω|l
)

is a symplectic form on l = k ∩ g, i.e. it is non-
degenerate (and closed).

The following result, which is a corollary of Proposition 50, reduces the
description of invariant generalized complex structures on a Lie group G to
the description of g-admissible pairs.

Theorem 53. Let G be a Lie group, with Lie algebra g. There is a natural
one to one correspondence between:

i) invariant generalized complex structures on G;

ii) g-admissible pairs (k, ω).
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More precisely, a g-admissible pair (k, ω) defines an invariant generalized
complex structure J , with holomorphic space at e ∈ G given by

T1,0
e G = w1,0 := {X + ξ ∈ k⊕ (gC)∗ : ξ|k = ω(X, ·)}.

Theorem 53 has the following important consequence.

Corollary 54. Let J be an invariant generalized complex structure on a
Lie group G, defined by a g-admissible pair (k, ω). Suppose that the real Lie
algebra

l = g ∩ k ⊂ g

generates a closed, connected Lie subgroup L of G, such that the homoge-
neous space M = G/L is reductive. Then J defines an invariant complex
structure J on M .

Proof. Since k belongs to an admissible pair, k+ k̄ = gC. Moreover, k∩ k̄ = lC.
From Proposition 48 iii), k defines an invariant complex structure J on M .

We end this section with a property of admissible pairs, which will be use-
ful in our treatment of invariant generalized complex structures on semisim-
ple Lie groups.

Proposition 55. Let g be a Lie algebra and (k, ω) a g-admissible pair.
Suppose that l = k ∩ g is reductive. Then l is abelian.

Proof. The claim is a consequence of the general statement that any (real
of complex) reductive Lie algebra which admits a symplectic form is abelian
(see e.g. [3]). We apply this statement to the reductive Lie algebra l = k∩g,
which admits a symplectic form, namely ωl := Im

(
ω|l
)
.

4.4 Invariant generalized complex structures of reg-
ular type on semisimple Lie groups

In the remaining part of the paper we define and study a class (called regular)
of invariant generalized complex structures on semisimple Lie groups.

4.4.1 Regular g-admissible pairs: definition and general re-
sults

Let G be a real semisimple Lie group with Lie algebra g.

Definition 56. A g-admissible pair (k, ω) and the associated invariant gen-
eralized complex structure J on G are called regular if the complex subalgebra
k ⊂ gC is regular, i.e. it is normalized by a Cartan subalgebra of g.
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We denote by
σ : gC → gC, x→ x̄

the conjugation of gC with respect to g. Let k be a regular subalgebra of gC.
The complexification h of the Cartan subalgebra hg of g which normalizes
k is a σ-invariant Cartan subalgebra of gC. Being regular, the subalgebra k
is of the form

k = hk + g(R0) (4.7)

where hk := k ∩ h and R0 ⊂ R is a closed subset of the root system R of
gC relative to h. The condition k + k̄ = gC from the definition of admissible
pairs is equivalent to

R0 ∪ σ(R0) = R, hk + h̄k = h.

To simplify terminology we introduce the following definition:

Definition 57. i) A subset R0 ⊂ R is called σ-parabolic if it is closed and

R0 ∪ σ(R0) = R.

ii) A σ-parabolic subset R0 ⊂ R is called a σ-positive system if it satisfies
the additional condition

R0 ∩ σ(R0) = ∅.

iii) Two σ-parabolic subsets R0, R
′
0 are called equivalent if one of them can

be obtained from the other by transformations R → −R, R → σ(R) and a
transformation from the Weyl group of R, which commutes with σ.

We remark that if g is a real form of inner type of gC and hg is a
maximally compact Cartan subalgebra of g, then

σ(α) = −α, ∀α ∈ R (4.8)

and by a result of Bourbaki [18] (Chapter VI, Section 1.7), σ-parabolic
subsets (respectively, σ-positive systems) of R are just parabolic subsets,
that is, closed subsets which contain a positive root system (respectively,
positive root systems).

Lemma 58. Let k be the regular subalgebra (4.7) of gC, such that

(R0 ∩ σ(R0))asym = ∅. (4.9)

Suppose that k can be included into a g-admissible pair (k, ω). Then

k = lC + a1,0 + g(R0)

where R0 is a σ-positive system of R, l := k∩hg and a1,0 is the holomorphic
space of a complex structure Ja on a complement a of l in hg. In particular,
the dimension of a is even.
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Proof. The complex conjugated subalgebra k̄ has the form

k̄ = h̄k + σ(g(R0)) = h̄k + g(σ(R0)). (4.10)

From (4.10),
k ∩ k̄ = hk ∩ h̄k + g(R0 ∩ σ(R0)).

Condition (4.9) means that R0 ∩ σ(R0) is symmetric. Thus the Lie algebra
k ∩ k̄ is reductive, with semisimple part generated by g(R0 ∩ σ(R0)) and
the center which is the annihilator of R0 ∩ σ(R0) in hk ∩ h̄k. Since k ∩ k̄
is a reductive subalgebra with a symplectic form, from the proof of Lemma
55 it is commutative. It follows that R0 ∩ σ(R0) = ∅. On the other hand,
k + k̄ = gC implies that R0 ∪ σ(R0) = R. We proved that R0 is a σ-positive
system.

Let w be a complement of hk∩ h̄k in hk. Since hk + h̄k = h, w+ w̄ = aC

where a is a complement of l in hg. Being transverse, w and w̄ are the
holomorphic and anti-holomorphic spaces of a complex structure Ja on a.

Note that if σ(α) = −α, for any α ∈ R, the condition (4.9) is automati-
cally satisfied. Our main result in this section is stated as follows.

Proposition 59. Let g be a real form of inner type of a complex semisim-
ple Lie algebra gC. Any regular subalgebra of gC which is normalized by
a maximally compact Cartan subalgebra hg of g and can be included in a
g-admissible pair is of the form

k = lC + a1,0 + g(R+) (4.11)

where l := k ∩ hg, a1,0 is the holomorphic space of a complex structure on a
complement a of l in hg and R+ is a system of positive roots of gC relative
to h := (hg)C.

Proof. Condition (4.9) is trivially satisfied and R0 = R+ is a positive system.

In the next section we find all 2-forms, which, together with the subal-
gebra (4.11), form g-admissible pairs.

4.4.2 Regular pairs on semisimple Lie groups of inner type

In this Section we assume that the real form g = (gC)σ of a complex semisim-
ple Lie algebra gC is of inner type. Then, preserving the notations of Propo-
sition 59, a regular subalgebra k ⊂ gC normalized by a maximally compact
Cartan subalgebra hg of g and which is part of a g-admissible pair (k, ω)
has the form

k = h0 + g(R+) = lC + a1,0 + g(R+), (4.12)
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where R+ ⊂ R is a positive root system of gC relative to h = (hg)C and
h0 ⊂ h satisfies h0+h̄0 = h. We now determine all 2-forms ω ∈ Λ2(k∗) which,
together with k, form a g-admissible pair. In the following theorem we fix
root vectors {Eα}α∈R of a Weyl basis of g(R) and we denote by ωα ∈ (gC)∗

the dual covectors defined by

ωα|h = 0, ωα(Eβ) = δαβ, ∀α, β ∈ R. (4.13)

As usual Nαβ will denote the structure constants, defined by [Eα, Eβ] =
NαβEα+β.

Theorem 60. Let k ⊂ gC be the regular subalgebra defined by (4.12) and
ω ∈ Λ2(k∗). Then (k, ω) is a g-admissible pair if and only if

ω = ω̂0 +
∑
α∈R+

µαα ∧ ωα +
1
2

∑
α,β∈R+

µα+βNαβωα ∧ ωβ, (4.14)

where µα ∈ C, for any α ∈ R+, and ω̂0 ∈ Λ2(h∗0) is any 2-form on h0

(trivially extended to k), such that Im
(
ω̂0|l

)
is non-degenerate.

Proof. The proof is based on the theory of (invariant) closed forms defined
on Lie algebras, developed in [11]. More specifically, there is a general result
which describes all closed 2-forms defined on a Lie algebra k which admits a
semidirect decomposition k = s⊕p into a subalgebra s and ideal p. Namely,
consider any 2-form ρ ∈ Λ2(k∗) and decompose it into three parts

ρ = ρ0 + ρ1 + ρ2,

where ρ0 ∈ Λ2(s∗) is the s-part, ρ1 ∈ Λ2(p∗) is the p-part and ρ2 ∈ s∗∧p∗ ⊂
Λ2(k∗) is the mixed part of ρ (all trivially extended to k). It turns out that
ρ is closed if and only if the forms ρ0, ρ1 are closed on s and, respectively,
on p, and the following two conditions are satisfied:

ρ2(s, [p, p′]) = ρ1([s, p], p′) + ρ1(p, [s, p′]) (4.15)

and
ρ2([s, s′], p) + ρ2([s′, p], s) + ρ2([p, s], s′) = 0, (4.16)

for any s, s′ ∈ s and p, p′ ∈ p. One applies this general result to the Lie
algebra k from the statement of the theorem, with commutative subalgebra
s := h0 = lC + a1,0 and ideal p := g(R+). Any ω ∈ Λ2(k∗) is given by

ω = ω̂0 + ρ1 + ρ2

where ω̂0 ∈ Λ2(h∗0), ρ1 ∈ Λ2(p∗) and ρ2 ∈ h∗0 ∧ p∗ are trivially extended to
k. Since h0 is abelian, dh0

ω̂0 = 0 for any ω̂0. It may be shown that other
conditions (4.15) and (4.16) together with the closedness of ρ1 imply:

ρ1 =
1
2

∑
α,β∈R+

Nαβµα+βωα ∧ ωβ (4.17)
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and
ρ2 =

∑
α∈R+

µαα ∧ ωα (4.18)

for some constants µα. Combining (4.17) with (4.18) we obtain (4.14). If,
moreover, Im

(
ω̂0|l

)
is non-degenerate, then (k, ω) is a g-admissible pair.

For simplicity, the following proposition is stated for compact forms, but
it holds also for any real form of inner type. We preserve the notations from
Theorem 60.

Proposition 61. Let J be a regular generalized complex structure on a
compact semisimple Lie group G, with associated g-admissible pair (k, ω)
defined by (4.12) and (4.14). Define a covector ξ ∈ g∗ by

ξ := −
∑
α∈R+

µαωα +
∑
α∈R+

µ̄αω−α

and let B := dξ. Then J is the B-field transformation of the regular gen-
eralized complex structure Ĵ whose associated g-admissible pair is (k, ω̂0).
Moreover, Ĵ is in normal form if and only if

iH ω̂0 = 0, ∀H ∈ a1,0.

4.4.3 Invariant generalized complex structures on compact
semisimple Lie groups

We now show that any invariant generalized complex structure J on a com-
pact semisimple Lie group G is regular, provided that J satisfies an addi-
tional natural condition. More precisely, we prove:

Theorem 62. Let G be a compact semisimple Lie group, with Lie algebra
g, and J an invariant generalized complex structure on G defined by a g-
admissible pair (k, ω). Suppose that l := k ∩ g generates a closed subgroup L
of G. Then J is regular.

Proof. Since G is semisimple and compact, M = G/L is reductive and J
induces an invariant complex structure J on M , defined by the subalgebra
k (see Corollary 54). By Theorem 49, k is regular.

4.5 Invariant generalized complex structures on
semisimple Lie groups of outer type

In this section we construct a large class of regular generalized complex
structures on semisimple Lie groups of outer type. The following Proposition
simplifies considerably this task. It shows that we can chose (arbitrarily),
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for each complex Lie algebra gC = sl2n(C) (n ≥ 2), so2n(C) (n ≥ 3) and
e6, a real form of outer type and find regular pairs with respect to these
real forms. They will provide invariant generalized complex structures on
all real forms of outer type of SL2n(C) (n ≥ 2), SO2n(C) (n ≥ 3) and E6.

Proposition 63. Let gC be a complex simple Lie algebra, g = (gC)σ a real
form of outer type of gC and (k, ω) a regular g-admissible pair, with

k = hk + g(R0) (4.19)

normalized by a maximally compact Cartan subalgebra hg of g and R0 a σ-
positive system. Then any other real form of outer type of gC is conjugated
to a real form g′ such that (k, ω) is g′-admissible.

Proof. To prove the claim, we recall the formalism of Vogan diagrams (see
[72], page 344) which describes the real forms of a given complex simple
Lie algebra gC. An abstract Vogan diagram is an abstract Dynkin diagram,
which represents a system of simple roots Π of gC relative to a Cartan sub-
algebra h, together with two pieces of additional information: some arrows
between vertices, which indicate the action of an involutive symmetry s of
the Dynkin diagram (in the case of outer real forms) and a subset of painted
nodes (in the fix point set of s), which indicates the non-compact simple
roots. The symmetry s defines an involution θ of the Cartan subalgebra h,
which can be canonically extended to an involutive automorphism θ of gC,
by the conditions: for any α ∈ Π,

θ(Eα) =


Eα′ , if s(α) = α′ 6= α

Eα, if α = s(α) is not a painted root
−Eα, if α = s(α) is a painted root,

(4.20)

where {Eα} are root vectors of a Weyl basis.
The composition σ := θ◦τ , where τ is the compact involution commuting

with θ, defines the real form g = (gC)σ associated to the Vogan diagram.
Moreover, the real subalgebra

hg = h+⊕h− = {x ∈ ih(R), θ(x) = x}⊕{x ∈ h(R), θ(x) = −x} (4.21)

is a maximally compact (θ-invariant) Cartan subalgebra of g.
Consider now a regular g-admissible pair (k, ω), like in (4.19), where g is

a real form of outer type of a complex simple Lie algebra gC. The defining
conditions for (k, ω), namely

R0 ∪ σ(R0) = R, R0 ∩ σ(R0) = ∅, hk + h̄k = h, dkω = 0

and Im(ω|
(hk∩

¯hk)σ
) non-degenerate, depend only on the symmetry s of the

associated Vogan diagram. Remark now that the symmetry s is unique,
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for gC 6= D4 and for D4 there are three symmetries related by an outer
automorphism of D4. This proves our claim.

Remark 64. In the statement of Proposition 63 it is essential that R0 is a
σ-positive system. When R0 is σ-parabolic but not necessarily σ-positive,
(k∩ k̄)σ does not reduce in general to the Cartan part (hk ∩ h̄k)σ and it may
depend also on which nodes from the Vogan diagram are painted; therefore,
the same is true for the condition Im(ω|

(k∩¯k)σ
) from the definition of g-

admissible pairs.

Motivated by Proposition 63, in the remaining part of this section we
construct regular generalized complex structures (defined by associated ad-
missible pairs) on G = SLn(H) (n ≥ 2), SO2n−1,1 (n ≥ 3) and two real
forms of outer type of E6.

4.5.1 Generalized complex structures on SLn(H)

a) Description of the antiinvolution σ which defines sln(H)

Let V = C2n be a complex vector space of dimension 2n ≥ 4, with stan-
dard basis {e1, · · · , en, e1′ , · · · , en′} and sl2n(C) the Lie algebra of traceless
endomorphisms of V . We denote by

Eij = ei ⊗ e∗j , Ei′j′ = ei′ ⊗ e∗j′ , Ei′j = ei′ ⊗ e∗j , Eij′ = ei ⊗ e∗j′

the associated basis of gl(V ) and we choose a Cartan subalgebra

h = {H =
n∑
i=1

xiEii +
n∑

j′=1

xj′Ej′j′ ,

n∑
i=1

xi +
n∑

j′=1

xj′ = 0}

which consists of traceless diagonal matrices. Denote by εi, εj′ the linear
forms on h defined by

εi(H) = xi, εj′(H) = xj′ .

The roots of sl(V ) are

R := {εij := εi − εj , εi′j′ := εi′ − εj′ , εi′j := εi′ − εj , εij′ := εi − εj′}.

The Lie algebra sln(H) is a real form of outer type of sl2n(C), defined by
the antilinear involution

σ(A) = −JĀJ, ∀A ∈ sl2n(C),

where J is the matrix

J =
(

0 Id
−Id 0

)
.
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The antilinear involution σ acts on roots, transforming unprime indices into
prime indices and vice versa, i.e.

σ(εij) = εi′j′ , σ(εi′j′) = εij , σ(εij′) = εi′j , σ(εi′j) = εij′ .

Alternatively, one may also define sln(H) as the unique real form of outer
type of sl2n(C), whose Vogan diagram has no painted node. As described
above, sln(H) can be obtained as in the proof of Theorem 6.88 of [72] (see
also Proposition 63), by considering the Weyl basis (4.23) (see below) and
assigning to the nodes of A2n−1 the simple roots ε12′ , ε2′3, ε34′ , · · · , ε3′2, ε21′ .
The unique simple root fixed by the non-trivial automorphism of A2n−1

(given by the horizontal reversal) is εn′n (n-even) or εnn′ (n-odd) and is a
white root. The Cartan subalgebra

hσ = {H =
n∑
i=1

xiEii +
n∑
j=1

xjEj′j′ ,

n∑
i=1

(xi + x̄i) = 0}

is a maximally compact Cartan subalgebra of sln(H). Any α ∈ R for which
σ(α) = −α is of the form εii′ or εi′i and is compact, since σ(Eεii′ ) = −Eεi′i ,
where Eεij are root vectors of the Weyl basis (4.23). It follows that hσ is also
a maximally non-compact Cartan subalgebra of sln(H) (see [72, p. 335]).

b) σ-positive systems of the Lie algebra sl2n(C)

Proposition 65. Any σ-positive root system R0 of the root system R is
equivalent to one of the following systems:

a) {εi − εj , εi − εj′ , i, j = 1, 2, · · · , n};
b) {εi − εj , εi′ − εj , i, j = 1, 2, · · · , n}.

Proof. For a proof, see [3].

c) sln(H)-admissible pairs

Now we describe sln(H)-admissible pairs (k, ω), where the subalgebra
k ⊂ sl2n(C) is regular with root system the σ-positive system R0 of type
a) from Proposition 65. The case b) is similar. The subalgebra k can be
written as

k = h0 + g(R0) = h0 +
∑
i,j

gεij +
∑
i,j′

gεij′ ⊂ sl2n(C), (4.22)

where h0 ⊂ h, with h0 + h̄0 = h. The vectors

Eεij =
1√
2n
Eij , Eεi′j′ =

1√
2n
Ei′j′ , Eεi′j =

1√
2n
Ei′j , Eεij′ =

1√
2n
Eij′

(4.23)
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are root vectors of a Weyl basis and the associated structure constants are
given by

Nεij ,εjs = −Nεji,εsj =
1√
2n
, ∀i 6= j 6= s

and their prime analogues (obtained by replacing any of the i, j, s by its
prime analogue). Below the covectors ωεij , ωεi′j , ωεij′ , ωεi′j′ are dual to the
root vectors (4.23) and annihilate h. We assume that n ≥ 3 (when n = 2 the
theorem still holds, under the additional assumption that εi + εr − εj′ − εs′
is not identically zero on h0, for any i, r, j′, s′, with (i, j′) 6= (r, s′)).

Theorem 66. Any closed 2-form ω on the Lie algebra k defined in (4.22)
is given by

ω = ω̂0 +
∑
i 6=j

λ(ij)εij ∧ ωεij +
1√
2n

∑
i 6=j 6=k

λ(ik)ωεij ∧ ωεjk +
∑
i 6=j

η(ij)ωεij ∧ ωεji

+
∑
k,j′

λ(kj′)

√2nεkj′ ∧ ωεkj′ +
∑
i 6=k

ωεki ∧ ωεij′


where ω̂0 ∈ Λ2(h∗0) is such that

ω̂0(Eii − Ejj , ·) = 0, ∀i, j (4.24)

and λ(ij), λ(ij′), η(ij) ∈ C. The pair (k, ω) is sln(H)-admissible, hence it
defines a regular generalized complex structure on SLn(H), if and only if the
real 2-form Im (ω̂0) is non-degenerate on h0 ∩ sln(H).

Proof. The proof is similar to the proof of Theorem 60 and follows by de-
composing k into a subalgebra s := h0 + g({εij}) and ideal p := g({εij′}).
For more details, see [3].

4.5.2 Generalized complex structures on SO2n−1,1

a) Description of the antiinvolution σ which defines so2n(C)

Let (V, (·, ·)) be a complex Euclidean vector space of dimension 2n ≥ 6
and so(V ) ' so2n(C) the associated complex orthogonal Lie algebra. We
identify so(V ) with Λ2V using the scalar product (·, ·) and we choose a basis
ei, e−i, i = 1, · · · , n of V with the only non-zero scalar products (ei, e−i) = 1.
The diagonal Cartan subalgebra h ⊂ so(V ) has a basis

{Hi := ei ∧ e−i, i = 1, 2, · · · , n}.

We denote by {εi} the dual basis of h∗. Then the root system of so(V )
relative to h is given by

R := {±εi ± εj , i, j = 1, 2, · · · , n, i 6= j}
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and the root vectors of a Weyl basis are

Eεi+εj :=
1√

2(n− 1)
(ei ∧ ej), i < j

E−εi−εj := − 1√
2(n− 1)

(e−i ∧ e−j), i < j

Eεi−εj :=
1√

2(n− 1)
(ei ∧ e−j), i 6= j.

The associated structure constants are given by

Nεi+εj ,εk−εj = − 1√
2(n− 1)

γijγik

N−(εi+εj),εl+εj =
1√

2(n− 1)
γijγjl

N−(εi+εj),εj−εk =
1√

2(n− 1)
γijγik

Nεi−εj ,εj−εk =
1√

2(n− 1)
,

where γij = 1 if i < j and −1 if i > j.
Consider the antilinear involution σ of V defined by

σ(e±i) = e∓i, 1 ≤ i < n, σ(e±n) = e±n.

It induces an antilinear involution σ on so(V ) whose associated real form
is the Lorentzian Lie algebra so2n−1,1. The map σ preserves the Cartan
subalgebra h and it acts on the weights εi as follows:

σ(εi) = −εi, i < n, σ(εn) = εn.

Alternatively, one may also define so2n−1,1 as the unique real form of outer
type of so2n(C), whose Vogan diagram has no painted node and the auto-
morphism is given by interchanging the two ends of Dn. As described above,
so2n−1,1 can be obtained as in the proof of Theorem 6.88 of [72] (see also
Proposition 63), by considering the root vectors of the Weyl basis defined
above and assigning to the nodes of Dn the simple roots ε1− ε2, · · · , εn−2−
εn−1, εn−1 − εn, εn−1 + εn. The roots εi − εi+1, 1 ≤ i ≤ n − 2 are compact.
The automorphism θ of Dn is given by

θ(εi − εi+1) = εi − εi+1, 1 ≤ i ≤ n− 2; θ(εn−1 − εn) = εn−1 + εn

and

hσ = {H =
n−1∑
k=1

ixkHk + xnHn, xk ∈ R}
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is a maximally compact Cartan subalgebra of so2n−1,1. It is also maximally
non-compact (easy check).

b) σ-positive systems of the Lie algebra so2n(C)

We denote by R′ ⊂ R the root system of the subalgebra so2n−2(C) ⊂
so(V ) which preserves the vectors e±n. Then

σ|R′ = −1 and σ(εn−1 − εn) = −(εn−1 + εn).

Proposition 67. Any σ-positive system R0 ⊂ R is equivalent to one of the
systems:
a) R0 = R+ := {εi ± εj , 1 ≤ i < j ≤ n};
b) R0 = (R+ \ {εn−1 + εn}) ∪ {εn − εn−1};
c) R0 = (R+ \ {εn−1 − εn}) ∪ {−(εn−1 + εn)}.

Proof. For the proof, see [3].

c) SO2n−1,1-admissible pairs.

Since the σ-positive system R0 of type a) found in Proposition 67 is a
system of positive roots, the corresponding admissible pairs can be described
using the method of Theorem 60. Now, we describe the so2n−1,1-admissible
pairs (k, ω), where k ⊂ so2n(C) is a regular subalgebra with the root system
R0 of type c) (the case b) can be treated similarly). Let

k := h0 + g(R0) ⊂ so2n(C), (4.25)

where h0 is included in the diagonal Cartan subalgebra h of so2n(C) and R0

is given by Proposition 67 c):

R0 =
(
R+ \ {εn−1 − εn}

)
∪{−(εn−1 + εn)}, R+ = {εi± εj , 1 ≤ i < j ≤ n}.

Define
h0 = (Ker(εn−1 + εn) ∩ h0)⊕ Span(Hn−1 +Hn)

and
R′0 := R+ \ {εn−1 ± εn} = R0 \ {±(εn−1 + εn)}.

For simplicity, we assume that for any α ∈ R′0,

α|
Ker(εn−1+εn)∩h0

6≡ 0. (4.26)

This condition is needed in the computations in order to deduce that any
closed 2-form on k is given as in Theorem 68 below. Without this condition,
it is still true that any 2-form ω as in the statement of Theorem 68 is closed,
but not all closed 2-forms are of this form. We also remark that the above
condition is automatically true when α = εi ± εj , i < j ≤ n− 1 (recall that
σ|R′ = −1 and h0 + h̄0 = h). It also holds for any α ∈ R′0, when h0 = h.
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Theorem 68. Any closed 2-form ω on the Lie algebra k defined in (4.25)
is given by

ω = (εn−1 + εn) ∧
(
aωεn−1+εn + bω−(εn−1+εn)

)
+ cωεn−1+εn ∧ ω−(εn−1+εn)

+ ω̂0 +
∑
α∈R′0

cαα ∧ ωα +
1
2

∑
α∈R′0

Nαβcα+βωα ∧ ωβ

+
1√

2(n− 1)

∑
i<n−1

ωεn−1+εn ∧
(
cεi+εn−1ωεi−εn − cεi+εnωεi−εn−1

)
+

1√
2(n− 1)

∑
i<n−1

ω−(εn−1+εn) ∧
(
cεi−εnωεi+εn−1 − cεi−εn−1ωεi+εn

)
+

1
2

∑
i<n−1

(εn−1 + εn) ∧
(
cεi+εnωεi+εn + cεi+εn−1 ∧ ωεi+εn−1

)
− 1

2

∑
i<n−1

(εn−1 + εn) ∧
(
cεi−εnωεi−εn + cεi−εn−1 ∧ ωεi−εn−1

)
where ω̂0 ∈ Λ2(h0) is such that

ω̂0(Hn−1 +Hn, ·) = 0,

a, b, c ∈ C and cα ∈ C, for any α ∈ R′0. The pair (k, ω) is so2n−1,1-admissible,
hence it defines a regular generalized complex structure on SO2n−1,1, if and
only if the real 2-form Im (ω̂0) is non-degenerate on h0 ∩ so2n−1,1.

Proof. The proof is similar to the proof of Theorem 60 and follows by de-
composing k into an ideal

p := (Ker(εn−1 + εn) ∩ h0) + g(R′0)

and subalgebra

s := C(Hn−1 +Hn) + gεn−1+εn + g−(εn−1+εn).

For a detailed proof, see [3].

4.5.3 Generalized complex structures on the real Lie groups
E6 of outer type

a) Description of the real forms (e6)σ of outer type of e6

We follow the description of the exceptional complex Lie algebra e6 given
in [98, p. 80]. The complex Lie algebra e6 has dimension 78 and rank 6. We
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take h = C6 for the Cartan subalgebra. Let {e1, · · · , e6} be the standard
basis of C6, with dual basis {ε1, · · · , ε6}. The Killing form restricted to h is

〈x, y〉 = 24
6∑
i=1

εi(x)εi(y) + 8(
∑
i

εi(x))(
∑
j

εj(y)).

The root system R is formed by ±(εi−εj) with 1 ≤ i < j ≤ 6, ±(εi+εj +εk)
with 1 ≤ i < j < k ≤ 6 and ±(ε1 + · · ·+ ε6). A system of simple roots is

Π = {α1 = ε1 − ε2, α2 = ε2 − ε3, · · · , α5 = ε5 − ε6, α6 = ε4 + ε5 + ε6}.

The complex Lie algebra e6 has two real forms of outer type, with maxi-
mally compact subalgebras f4 and sp4. The Vogan diagram of e6(f4) has no
painted node and an automorphism of order two, given by the horizontal
reversing in the Dynkin diagram of e6. The Vogan diagram of e6(sp4) is
the same, the only difference being that the triple node from the Dynkin
diagram is painted, see [72, p. 361]. This means that the Cartan involutions
of e6(f4) and e6(sp4) induce the same canonical order two automorphism of
the Dynkin diagram of e6, given, in terms of the simple roots from Π, by

θ(α1) = α5, θ(α2) = α4,

θ(α3) = α3, θ(α6) = α6.

Similarly, the defining antiinvolutions σ of e6(f4) and e6(sp4) induce the
same action on R:

σ(α) = −θ(α), ∀α ∈ R.

We shall denote by hσ = he6(f4)
= he6(sp4) the common maximally compact

Cartan subalgebras of e6(f4) and e6(sp4), defined as in (4.21). For e6(f4)
both roots α3 and α6 are compact, while for e6(sp4), α3 is non-compact and
α6 is compact, with respect to hσ.

b) σ-positive systems of the Lie algebra e6

We denote by the same symbol σ the antiinvolutions of e6 which de-
fine the real forms e6(f4) and e6(sp4), like in the previous paragraph. The
following Proposition describes all σ-positive systems in R.

Proposition 69. Any σ-positive system of R is equivalent to one of the
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following σ-positive systems:

R
(1)
0 = {±(εi − εj)}1≤i<j≤3 ∪ {εi − εj}i≤3,j≥4 ∪ {εi + εj + εk, ε1 + · · ·+ ε6};

R
(2)
0 = {±(εi − εj)}1≤i<j≤3 ∪ {εi − εj}i≤3,j≥4 ∪ {εi + εj + εk 6= ε4 + ε5 + ε6}
∪ {−(ε4 + ε5 + ε6), ε1 + · · ·+ ε6};

R
(3)
0 = {±(εi − εj)}1≤i<j≤3 ∪ {εi − εj}i≤3,j≥4 ∪ {−(εi + εj + εk)}
∪ {−(ε1 + · · ·+ ε6)};

R
(4)
0 = {±(εi − εj)}1≤i<j≤3 ∪ {εi − εj}i≤3,j≥4 ∪ {−(εi + εj + εk) 6= −(ε1 + ε2 + ε3)}
∪ {ε1 + ε2 + ε3,−(ε1 + · · ·+ ε6)};

R
(5)
0 = {±(εi − εj)}1≤i<j≤3 ∪ {εi − εj}i≤3,j≥4 ∪ {−(εi + ε5 + ε6)}i≤4

∪ {−(εi + ε4 + ε6)}i≤3 ∪ {εi + εj + ε6}i,j≤3 ∪ {−(εi + ε4 + ε5)}i≤3

∪ {εi + εj + ε5}i,j≤3 ∪ {εi + εj + ε4}i,j≤3 ∪ {ε1 + ε2 + ε3, ε1 + · · ·+ ε6};

R
(6)
0 = {±(εi − εj)}1≤i<j≤3 ∪ {εi − εj}i≤3,j≥4 ∪ {−(εi + ε5 + ε6)}i≤4

∪ {−(εi + ε4 + ε6)}i≤3 ∪ {εi + εj + ε6}i,j≤3 ∪ {−(εi + ε4 + ε5)}i≤3

∪ {εi + εj + ε5}i,j≤3 ∪ {εi + εj + ε4}i,j≤3 ∪ {ε1 + ε2 + ε3,−(ε1 + · · ·+ ε6)}.

Proof. The proof uses the action of σ on roots and the properties of σ-
positive systems (see Definition 57). See [3] for details.

c) eσ6 -admissible pairs

We preserve the notations from the previous paragraphs. We denote by

k(k) := h(k)
0 + g(R(k)

0 )

a regular subalgebra of e6, normalized by hσ, with root system R
(k)
0 (1 ≤

k ≤ 6) described in Proposition 69 and with Cartan part h(k)
0 ⊂ h, satisfying

h(k)
0 + σ(h(k)

0 ) = h.

Theorem 70. For any 1 ≤ k ≤ 6, the 2-form ω(k) on k(k), defined by

ω(1) := ω̂(1) + λ1(ε4 + ε5 + ε6) ∧ ωε4+ε5+ε6

ω(2) := ω̂(2) + λ2(ε4 + ε5 + ε6) ∧ ω−(ε4+ε5+ε6)

ω(3) := ω̂(3) + λ3(ε1 + ε2 + ε3) ∧ ω−(ε1+ε2+ε3)

ω(4) := ω̂(4) + λ4(ε1 + ε2 + ε3) ∧ ωε1+ε2+ε3

ω(5) := ω̂(5) + λ5(ε1 + · · ·+ ε6) ∧ ωε1+···+ε6

ω(6) := ω̂(6) + λ6(ε1 + · · ·+ ε6) ∧ ω−(ε1+···+ε6)

where λk ∈ C and ω̂(k) is a 2-form on h(k)
0 with

ω̂(k)(ei − ej , ·) = 0, ∀1 ≤ i, j ≤ 3, (4.27)
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is closed. If, moreover, Im
(
ω̂(k)

)
is non-degenerate on h(k)

0 ∩ hσ, then
(k(k), ω(k)) is an admissible pair and it defines a regular generalized com-
plex structure on the real Lie group (E6)σ.

Proof. For a proof, see [3].



Chapter 5

Contributions to Frobenius
Manifolds

5.1 Introduction

This chapter is concerned with the geometry of Frobenius manifolds and re-
lated structures and summarizes the results published by the author of this
thesis in Advances in Mathematics [44], International Mathematics
Research Notices [46], Journal of Geometry and Physics [45] and
two other preprints [41, 47] sent for publication. Frobenius manifolds were
defined by B. Dubrovin, as a geometrical interpretation of the so called
WDVV (Witten-Dijkgraaf-Verlinde-Verlinde) equations. They also appear
in many different areas of mathematics (singularity theory [66], quantum
cohomology [77] and integrable systems [71]), providing an unexpected link
between these different fields. A Frobenius manifold is a manifold M to-
gether with a commutative, associative, with unit field multiplication ◦ on
TM , a multiplication invariant flat metric g and sometimes a vector field E
(the Euler field) subject to various compatibility conditions. The associa-
tivity property for ◦ translates, in flat coordinates for the metric g, to the
WDVV-equations for a function F , usually referred as the potential of the
Frobenius manifold.

We now present with details the contents of each section separately,
explaining also how the original results fit into the general research field.

In Section 5.2 we recall basic facts we need from the theory of Frobenius
manifolds, including their relations with the WDVV-equations, flat pencils
of metrics and Saito bundles. We also recall two notions from tt∗-geometry in
connection with the theory of Frobenius manifolds, namely harmonic Higgs
bundles and DChk-structures. We end this section with several well-known
constructions of Frobenius manifolds: adding a variable to a Frobenius man-
ifold, orbit spaces of Coxeter groups as Frobenius manifolds, Frobenius man-
ifolds from super-potentials, and the notion of almost Frobenius manifold

75
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and Dubrovin’s almost duality for almost Frobenius manifolds. More details
on the topics presented in this section can be found in various places, e.g.
[50, 92, 95, 96].

In Section 5.3 we develop a generalization of adding a variable to a
Frobenius manifold. The general setting is a K-vector bundle (i.e. a real
vector bundle if K = C, or an holomorphic vector bundle if K = R) π :
V →M , with base a Frobenius manifold (M, ◦M , eM , gM ) and typical fiber
a Frobenius algebra (◦V , eV , gV ). In addition we assume that the bundle
V comes equipped with a connection D and a morphism α : V → TM
preserving multiplications and unit fields. From this data we construct an
almost Frobenius structure on V . (The case when V is the trivial bundle of
rank one, D is the trivial connection and α(eV ) = eM corresponds to adding
a variable to the Frobenius manifold (M, ◦M , eM , gM )). Our main result is
a description, in the real case, of all Frobenius structures on V obtained in
this way, with positive definite metric, when (M, ◦M , eM , gM ) is semisimple
with non-vanishing rotation coefficients (see Theorem 80).

Motivated by Dubrovin’s almost duality for almost Frobenius manifolds,
in Section 5.4 we develop a duality for F -manifolds with eventual identities.
F -manifolds are closely related to Frobenius manifolds and were defined by
Hertling and Manin in [68]. An F -manifold is a manifold M together with a
commutative, associative multiplication ◦ on TM , with unit field, such that
the integrability condition

LX◦Y (◦) = X ◦ LY (◦) + Y ◦ LX(◦)

is satisfied. A Frobenius manifold without metric is an F -manifold. F -
manifolds also appear within integrable systems - both in examples coming
from the submanifold geometry of Frobenius manifolds [103] and non-local
bi-Hamiltonian geometry. In this section we consider an F -manifold (M, ◦, e)
with an invertible vector field E and we define a dual multiplication via

X ∗ Y = X ◦ Y ◦ E−1. (5.1)

While ∗ is commutative and associative with unit field, whether or not this
defines an F -manifold is not immediately clear. Using the terminology of
[78], we call an invertible vector field E an eventual identity on (M, ◦, e) if ∗
defined by (5.1) is the multiplication of an F -manifold structure (the reason
for the terminology is that E is the unit for the new multiplication ∗). Our
main result from this section is a characterization of eventual identities (thus
answering a question raised by Manin [78]) and a duality for F -manifolds
with eventual identities (see Theorem 84). We also study the interactions
of this duality with several other notions and constructions from the theory
of Frobenius manifolds: compatible connections, Riemannian F -manifolds,
compatible pairs of metrics, tt∗-geometry (see Sections 5.4.1-5.4.4).
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5.2 Preliminary material

We fix our conventions and notations.

Notations 71. Unless otherwise stated, our results hold in the real and
holomorphic category; M will denote a K-manifold, i.e. a real manifold
when K = R or a complex manifold when K = C. For a K-manifold M ,
we denote by TM the real tangent bundle if K = R and, respectively, the
holomorphic tangent bundle if K = C and by X (M) the sheaf of smooth,
respectively holomorphic, vector fields on M . For a metric g on a K-manifold
M , we denote by g∗ the induced metric on the bundle T ∗M ; by g(X) the
1-form g-dual to a vector X and by g∗(α) the vector g-dual to a covector α.
Sometimes, when we work in the holomorphic setting, there is also a real
structure involved in the picture, and we need to consider tangent vectors
of type (0, 1) as well. In such a situation we prefer to denote by T 1,0M the
holomorphic tangent bundle of a complex manifold M and by T 0,1M the
bundle of (0, 1)-tangent vectors. The associated sheaves of smooth sections
are denoted by T 1,0

M and T 0,1
M .

5.2.1 Frobenius manifolds and WDVV-equations

Rather than the original definition of Dubrovin, we shall use the following
alternative definition of Frobenius manifolds (for the equivalence of the two
definitions, see Theorem 2.5 of [66]). It includes also the definition of F -
manifolds, a key notion in our treatment from the next sections.

Definition 72. 1) An almost Frobenius structure on a manifold M is given
by the structure of an almost Frobenius algebra on each tangent space of M ,
i.e. a commutative, associative multiplication ◦ on TM , with unit field e,
and a metric g̃ on M , invariant with respect to ◦, i.e. such that

g̃(X ◦ Y,Z) = g̃(X,Y ◦ Z) ∀X,Y, Z ∈ X (M).

2) An almost Frobenius structure (◦, e, g̃) on M is called Frobenius (and
(M, ◦, e, g̃) is a Frobenius manifold) if the following global conditions hold:

i) (M, ◦, e) is an F -manifold, that is,

LX◦Y (◦) = X ◦ LY (◦) + Y ◦ LX(◦), ∀X,Y ∈ X (M). (5.2)

ii) the metric g̃ is admissible on the F -manifold (M, ◦, e) (i.e. the unit field
e is parallel with respect to the Levi-Civita connection of g̃) and is flat.

We now explain the relation between Frobenius manifolds and WDVV-
equations. For this, let (M, ◦, e, g̃) be a Frobenius manifold. It is known
that the Levi-Civita connection ∇̃ of g̃ satisfies the potentiality condition

∇̃X(◦)(Y, Z) = ∇̃Y (◦)(X,Z), ∀X,Y, Z ∈ X (M) (5.3)
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and it turns out that (5.3) implies the local existence of a function F (called
the potential of the Frobenius manifold and defined up to adding a quadratic
polynomial in ti) such that

g̃

(
∂

∂ti
◦ ∂

∂tj
,
∂

∂tk

)
=

∂3F

∂ti∂tj∂tk

in flat orthonormal coordinates (t1, · · · , tn) for the metric g̃. The associa-
tivity of ◦ translates into the WDVV-equations for F :

n∑
m=1

∂3F

∂ti∂tj∂tm
· ∂3F

∂tm∂tk∂tl
=

n∑
m=1

∂3F

∂tk∂tj∂tm
· ∂3F

∂tm∂ti∂tl

for any 1 ≤ i, j, k, l ≤ n.

Definition 73. i) An Euler field on an F -manifold (M, ◦, e) is a vector field
E such that

LE(◦)(X,Y ) = X ◦ Y, ∀X,Y ∈ X (M).

ii) An Euler field on a Frobenius manifold (M, ◦, e, g̃) is a vector field E
such that

LE(◦) = ◦, LE(g) = dg̃

where d is a constant (necessarily equal to 2, when g̃(e, e) 6= 0).

5.2.2 Frobenius manifolds and flat pencils of metrics

Let (M, ◦, e, g̃, E) be a Frobenius manifold with Euler field and assume that
E is invertible (i.e. there is E−1 such that E ◦E−1 = E−1 ◦E = e). Recall
that g̃ is flat. One may define a second metric by g(X,Y ) = g̃(E−1 ◦X,Y )
which, as it turns out, is flat as well. The metrics g and g̃ determine a pencil
of bilinear forms g∗λ = g∗+λg̃∗ on T ∗M , for any λ. We assume that all such
bilinear forms are non-degenerate, hence they may be considered as metrics
on M . One may prove that all such metrics are flat and

g∗λ(∇λXα) = g∗(∇Xα) + λg̃∗(∇̃Xα), α ∈ Ω1(M), X ∈ TM

where ∇, ∇̃,∇λ are the Levi-Civita connections of g, g̃ and gλ. We say
that the metrics (g, g̃) are compatible flat. Moreover, (g, g̃, E) is quasi-
homogeneous, i.e.

LE(g̃) = Dg̃, ∇X(E) =
1−D

2
X, (5.4)

for a constant D. A key fact of the theory is that the Frobenius multiplica-
tion ◦ may be recovered from (g, g̃, E). One obtains in this way a bijective
correspondence, due to Dubrovin [50], between Frobenius manifolds with
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(invertible) Euler fields and quasi-homogeneus compatible flat pairs of met-
rics. Here we only recall a part of this construction, namely how to recover
◦ from (g, g̃, E). This is done as follows.

The pair (g, g̃) determines a multiplication on T ∗M by

α ∗ β = ∇g∗(α)(β)− ∇̃g∗(α)(β), α, β ∈ T ∗M. (5.5)

Define an endomorphism T of T ∗M by T (u) := g(E) ∗ u and assume that it
is an automorphism. Then one may show that

α ◦ β = α ∗ T−1(β), (5.6)

viewed as a multiplication on TM by identifying TM with T ∗M using g̃, is
precisely the Frobenius multiplication ◦.

Dubrovin’s correspondence is particularly useful when describing cer-
tain classes of Frobenius manifolds (i.e. orbit spaces of Coxeter groups as
Frobenius manifolds), for which the two flat metrics and the Euler field have
simple expressions. An extension of the Dubrovin’s correspondence to the
non-flat case will be developed in Section 5.4.3.

5.2.3 Frobenius manifolds and Saito bundles

Let π : V →M be a vector bundle with rank(V ) = dim(M), endowed with
a connection ∇, a metric g and a vector valued 1-form φ ∈ Ω1(M,EndV ),
satisfying the conditions:

R∇ = 0, d∇φ = 0, ∇g = 0, φ ∧ φ = 0, φ∗ = φ, (5.7)

where
(φ ∧ φ)X,Y := φXφY − φY φX , X, Y ∈ TM

and, for any X ∈ TM , φ∗X ∈ End(TM) is the adjoint of φX ∈ End(TM)
with respect to g. Assume, moreover, that there is a vector field e on M
such that φe = −IdV . Let ω ∈ Γ(V ) (usually called a primitive section) be
∇-parallel such that the map

ψω : TM → V, ψω(X) = −φX(ω) (5.8)

is an isomorphism. Define a multiplication ◦ on TM , with unit field e, by

X ◦ Y = (ψω)−1 (φXφY ω) .

Using the map ψω, we may transport the metric g and the connection ∇
to a metric gω and a connection ∇ω on TM. It is easy to see that ◦ is
independent of the choice of primitive section, while for gω and ∇ω the
choice of ω is essential. The following theorem was proved by K. Saito [95].
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Theorem 74. The multiplication ◦ together with the metric gω make M a
Frobenius manifold, with unit e and Levi-Civita connection ∇ω.

Remark 75. In examples coming from singularity theory, the bundle V
as above comes equipped with two additional endomorphisms, R0 and R∞,
satisfying the conditions:

∇R0 + φ = [φ,R∞], [R0, φ] = 0, R∗0 = R0;
∇R∞ = 0, R∗∞ +R∞ = −wIdV ,

where w is constant. If ω is primitive and homogeneous (i.e. R∞(ω) = −qω
for a constant q), then

Eω := (ψω)−1(R0(ω))

is Euler for (M, ◦, e, gω), with LEω(gω) = (2(1 + q)− w) gω, and

Rω∞ := (ψω)−1 ◦R∞ ◦ ψω = ∇ω(Eω)− (1 + q)Id.

Thus (M, ◦, e, gω, Eω) is Frobenius with Euler field.

Definition 76. The data (∇, φ, g, R0, R∞) like in Remark 75 is called a
Saito structure (of weight w) on V (and (V,∇, φ, g, R0, R∞) is called a Saito
bundle).

Above we associated to a Saito bundle with primitive homogeneous sec-
tion a Frobenius manifold with Euler field. Conversely, one may show that
if (M, ◦, e, g̃, E) is a Frobenius manifold with Euler field and LE(g̃) = dg̃,
then (

∇̃, g̃, φ, R0 := −φE , R∞ := ∇̃(E)− 1
2

(w + d) IdTM

)
is a Saito structure of weight w on TM , where ∇̃ is the Levi-Civita connec-
tion of g and φX(Y ) = −X ◦ Y the Higgs field.

5.2.4 Semisimple Frobenius manifolds

A semisimple F -manifold is an F -manifold for which there is a coordinate
system (u1, · · · , un) (called canonical) such that the multiplication and unit
field are given by

∂

∂ui
◦ ∂

∂uj
= δij

∂

∂ui
, e =

n∑
i=1

∂

∂ui
.

It turns out that invariant metrics g̃ which make (M, ◦, e, g̃) Frobenius can
be locally written in terms of a single function η, called the metric potential,
as follows:

g̃ =
n∑
i=1

∂η

∂ui
dui ⊗ dui,
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where η satisfies the Darboux-Egoroff equations

∂γij
∂uk

= γijγkj , e(γij) = 0

for any i 6= j 6= k 6= i, where γij := 1
2

ηij√
ηiηj

are the rotation coefficients

(for simplicity, here we denoted by ηi the partial derivative ∂η
∂ui

and by ηij

the second derivative ∂2η
∂ui∂uj

). For more details about semisimple Frobenius
manifolds, see e.g. [77].

5.2.5 Constructions of Frobenius structures

Adding a variable to a Frobenius manifold

One way to construct a Frobenius manifold from an old one is provided by
a construction called adding a variable to a Frobenius manifold, described
as follows [92].

Theorem 77. Let (M, ◦M , eM , gM ) be a Frobenius K-manifold. Then M×K
is a Frobenius manifold, with multiplication

X ◦ Y = X ◦M Y, X ◦ ∂

∂τ
= X,

∂

∂τ
◦ ∂

∂τ
=

∂

∂τ

(τ being the coordinate on K) and metric

g(X,Y ) = gM (X,Y ), g

(
X,

∂

∂τ

)
= gM (eM , X), g

(
∂

∂τ
,
∂

∂τ

)
= gM (e, e)+1,

(5.9)
for any X,Y ∈ TM. Moreover, if E is an Euler field on (M, ◦M , eM , gM )
with LE(gM ) = 2gM , then E + R, where R is the radial field R(p,τ) = τ ∂

∂τ
is Euler on M ×K.

The above theorem follows by direct computations. For the statement
involving the Euler field one may consider the Saito structure of weight w(
∇M , gM , φM , R0 := −φE , R∞ := ∇M (E)− 1

2
(w + 2) IdTM

)
(5.10)

associated to the Frobenius manifold (M, ◦M , eM , gM , E) (where ∇M is the
Levi-Civita connection and φMX Y = −X ◦M Y the associated Higgs field)
and notice that it induces a Saito structure(

π∗(∇L), π∗(gL), φ′, R′∞, R′0
)

(5.11)

on the bundle π∗(TM ⊕ L). Here

π : L = M ×K→M, (p, τ)→ p
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is the trivial rank one bundle, ∇L := ∇M⊕D (with D the trivial connection
on π), gL := gM ⊕ g̃ (with g̃ a D-parallel metric on L),

φ′ := π∗(φM )− dτ ⊗ Idπ∗(TM⊕L) (5.12)

and

R′∞ := π∗
(
R∞ −

w

2
IdV

)
R′0 := π∗(R0) + τ Idπ∗(TM⊕L). (5.13)

In (5.12) and (5.13) φMX (for any X ∈ TM), R0 and R∞ are considered as
endomorphisms of TM ⊕ L, acting trivially on L. Let v be the D-parallel
section of L such that g̃(v, v) = 1. Then π∗(eM + v) is a primitive homo-
geneous section of the Saito structure (5.11) and the associated Frobenius
manifold is the one from the statement of the theorem.

In Section 5.3 we develop a generalization of this construction.

Frobenius manifolds from super-potentials

An important class of Frobenius manifolds is obtained from unfoldings of
singularities. Here we describe the simplest example. Start with

W (z,~s) = zn+1 +
n−1∑
i=0

siz
i,

called the super-potential in our setting. On the parameter space M :=
{~s = (s0, · · · , sn−1)} define a (2, 0)-tensor field

g̃(X,Y ) :=
∑
Wz=0

resz
X(W )Y (W )

Wz
dz,

where Wz is the partial derivative ∂W
∂z , and a (3, 0)-tensor field

c̃(X,Y, Z) =
∑
Wz=0

resz
X(W )Y (W )Z(W )

Wz
dz.

One may show that g̃ is flat. Moreover, g̃ and c̃ define a multiplication ◦
by c̃(X,Y, Z) = g̃(X ◦ Y,Z), with unit ∂

∂s0
which, together with g̃, define a

Frobenius structure on M . By means of the isomorphism

T~sM ∼= C[z]/(Wz), X → [X(W )]

(where (Wz) is the ideal in the space of polynomials C[z] generated by
Wz(·, ~s)) the Euler field E~s at ~s corresponds to [W (·, ~s)]



5.2. PRELIMINARY MATERIAL 83

Orbit spaces of Coxeter groups

The Saito construction provides the space of orbits of a Coxeter group with
a Frobenius manifold structure. Here we explain the main features of this
construction. Details can be found in [94] (see also [48]). Recall that a
Coxeter group of a real n-dimensional vector space V = Rn is a finite group
W of linear transformations of V generated by reflexions. Let {ti} be a basis
of W -invariant polynomials on V with degrees deg(ti) = di, ordered so that

h = d1 > d2 ≥ · · · ≥ dn−1 > dn = 2

where h is the Coxeter number of the group. The action of W extends to
the complexified space V ⊗ C = Cn. In the Saito construction of interest is
the orbit space

M = Cn/W.

Starting with the standard flat metric

g :=
n∑
i=1

(dxi)2 (5.14)

on Cn, which is W -invariant, one obtains a flat metric g on the orbit space
M \Discr(W ), where Discr(W ) is the discriminant locus of irregular orbits.
It turns out that there is another metric

g̃∗ := Le(g∗)

defined on M , which is also flat. Here e is the vector field which, in terms
of the basis {ti} of invariant polynomials, is ∂

∂t1
. The basis {ti} of invariant

polynomials can be chosen such that g̃ is anti-diagonal with constant entries

g̃ij = δi+j,n+1.

Saito proved that (g̃, g) together with

E = d1t
1 ∂

∂t1
+ · · ·+ dnt

n ∂

∂tn

make M a Frobenius manifold. The multiplication is obtained as in Section
5.2.2 (see relation (5.6).

Almost Frobenius manifolds and Dubrovin’s almost duality

Starting from a Frobenius manifold with invertible Euler field one may
construct a new geometric object (called an almost Frobenius manifold)
that shares many, but crucially not all, of the essential features of the
original manifold. In particular a new ‘dual’ solution of the underlying
Witten-Dijkgraaf-Verlinde-Verlinde (WDVV) equations may be constructed
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from the original manifold. More specifically, given a Frobenius manifold
(M , ◦ , e , E , g̃) with multiplication ◦ , unit field e , invertible Euler field E
and metric g̃ one may define a new multiplication ? and metric g by the
formulae

X ? Y = X ◦ Y ◦ E−1 ,

g(X,Y ) = g̃(E−1 ◦X,Y )

where E−1 ◦E = e . It turns out that (M,?,E) is an F -manifold (with unit
field E, the initial Euler field). The metric g is invariant with respect to ?
and the coidentity g(E) is closed. The Levi-Civita connection of g and the
multiplication ? satisfy relation (5.3), from where one obtains a new solution
of the WDVV-equations. However, not all properties of Frobenius manifolds
are shared by the new structure: e.g. while the identity e is flat on (M, g̃),
E is not flat on (M, g), in general.

Remark 78. Sometimes the expression of the dual solution of the WDVV
equations associated to a Frobenius manifold is simpler than the initial so-
lution. E.g. when M = Cn/W is the orbit space of a Coxeter group, the
dual solution has the simple form

F ∗ =
1
4

∑
α∈RW

(α · z)2log(α · z)2

where RW is the root system of the group.

In Section 5.4 we replace the Euler field of the Frobenius manifold by
an arbitrary vector field and we develop a duality in the larger setting of
F -manifolds.

5.2.6 Basic notions from tt∗-geometry

In this section we recall various basic notions from tt∗-geometry (see Defini-
tion 79). We follow closely [49, 67, 102]. We work in the holomorphic setting.
An holomorphic Higgs field on an holomorphic vector bundle V → M will
be trivially extended to T 0,1M .

Definition 79. 1) Let π : V →M be an holomorphic vector bundle. A pair
(g, h) formed by a complex bilinear, non-degenerate symmetric form g and a
(pseudo)-Hermitian metric h on V is called compatible if the Chern connec-
tion D of the holomorphic Hermitian bundle (V, h) preserves g, i.e. Dg = 0.

2) A Hermitian metric h on a Higgs bundle (V, φ) is called harmonic
(and (V, φ, h) is a harmonic Higgs bundle) if the tt∗-equations

(∂Dφ)X,Y := DX(φY )−DY (φX)− φ[X,Y ] = 0 (5.15)
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and
RDX,Ȳ + [φX , φ[Ȳ ] = 0 (5.16)

are satisfied, for any X,Y ∈ T 1,0
M . Above D denotes the Chern connection

of the holomorphic Hermitian vector bundle (V, h) and φ[ is the h-adjoint
of C, i.e.

h(φXY,Z) = h(Y, φ[X̄Z), ∀Y, Z ∈ T 1,0M, ∀X ∈ TCM.

3) Let (V, φ, h) be a harmonic Higgs bundle and k a real structure on V
(i.e. a fiber-preserving anti-linear involution) such that the complex bilinear
form

g(X,Y ) := h(X, kY )

on V is symmetric and invariant. The data (V, φ, h, k) is called a DChk-
structure if the pair (g, h) is compatible.

We remark that a harmonic Higgs bundle (V, φ, h) has an associated
pencil of flat connections

Dz := D +
1
z
φ+ zφ[. (5.17)

The flatness property of this pencil encodes the entire geometry of the har-
monic Higgs bundle [67].

5.3 A generalization of adding a variable to a Frobe-
nius manifold

Motivated by the construction of adding a variable to a Frobenius manifold,
we now consider a vector bundle π : V → M whose base is a Frobenius
manifold (M, ◦M , eM , gM ), typical fiber a Frobenius algebra (◦V , eV , gV ),
and which comes equipped with two additional data: a connection D on the
bundle V and a bundle morphism

α : V → TM,

with the following two properties:

α(v1 ◦V v2) = α(v1) ◦M α(v2), ∀v1, v2 ∈ V, α(eV ) = eM . (5.18)

The connection D induces a decomposition

TvV = TpM ⊕ Vp, ∀v ∈ Vp = π−1(p) (5.19)

into horizontal and vertical subspaces. The horizontal lift of a vector field
X ∈ X (M) will be denoted X̄. Often sections of V will be considered (with-
out mentioning explicitly) as vertical vector fields on the manifold V . From
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the data (D, ◦M , ◦V , gM , gV , α) we construct an almost Frobenius structure
on V , with metric

g(X̄, Ȳ ) := gM (X,Y ), g(v1, v2) := gV (v1, v2), g(v, X̄) := gM (α(v), X),
(5.20)

and multiplication

X◦Y := X ◦M Y , v1◦v2 := v1◦V v2, v◦X := X◦v = α(v) ◦M X, (5.21)

for any X,Y ∈ TpM , v, v1, v2 ∈ Vp and p ∈ M . The multiplication ◦ is
associative, commutative, with unit eV , and g is invariant with respect to
◦. We also assume that g is non-degenerate. One may check that this is
equivalent to the non-degeneracy of the metric gV − α∗(gM ) of the bundle
V (easy check).

In [41] we found the conditions on the initial data (D, ◦M , ◦V , gM , gV , α)
which insure that (V, ◦, eV , g) is a Frobenius manifold. It turns out that
the flatness of g translates into a complicated system of conditions on the
map α (see Proposition 11 of [41]). However, when (M, ◦M , eM , gM ) is
semisimple, this system of conditions simplifies considerably and allows,
in the real positive definite case, a complete description of all Frobenius
structures on V obtained by our method, as follows. (Recall, from Section
5.2.4, our conventions on semisimple Frobenius manifolds).

Theorem 80. Let (M, ◦M , eM , gM ) be a real semisimple Frobenius manifold
with metric

gM =
n∑
k=1

ηkdu
k ⊗ duk (5.22)

and non-vanishing rotation coefficients γij = ηij√
ηiηj

. Let V → M be a real
vector bundle with a structure of Frobenius algebra (◦V , eV , gV ) along the
fibers. Let D be a connection on V and α : V → TM a morphism such that

α(eV ) = eM , α(v1 ◦V v2) = α(v1) ◦M α(v2), ∀v1, v2 ∈ V. (5.23)

Then the almost Frobenius structure (◦, eV , g) on V defined by this data is
Frobenius with positive definite metric if and only if the following facts hold:

1) the connection D is flat and the Frobenius algebra (◦V , eV , gV ) is D-
parallel;

2) the endomorphism α is given by

α = λ⊗ eM (5.24)

where λ ∈ Γ(V ∗) is D-parallel and satisfies

λ(eV ) = 1, λ(s1 ◦V s2) = λ(s1)λ(s2), ∀s1, s2 ∈ Γ(V ). (5.25)



5.4. A DUALITY FOR F -MANIFOLDS WITH EVENTUAL IDENTITIES87

3) ηk > 0 for any 1 ≤ k ≤ n and gV−gM (eM , eM )λ⊗λ is positive definite.

Remark 81. The almost Frobenius structure (V, ◦, eV , g) from Theorem 80
is Frobenius also in the complex and real non-positive definite cases. The
main point of the above theorem is the converse of this statement, namely
that all Frobenius structures in the real positive definite case, obtained from
the initial data (◦M , eM , gM , ◦V , eV , D, α), are described by the theorem.
The positive definite condition on g (which is equivalent to the condition 3)
above) is essential in the proof of the above theorem. One first shows, with
no positive-definite assumptions, that for any D-parallel section s,

α(s) =
n∑
k=1

ak
∂

∂uk

for some constants ak. Then one shows that the flatness of g implies

n∑
j=1

η2
pj

ηj
(aj − ap)2 +

r∑
i=1

εi

(
n∑
s=1

(as − ap)ηpsdus(α(vi))

)2

= 0, (5.26)

where {vi} is an local frame of V , orthonormal with respect to gV−gM (eM , eM )λ⊗
λ and εi ∈ {±1} is the square norm of vi with respect to this metric. The
positive definite assumption (εi > 0 and ηj > 0 for any i, j) together with
relation (5.26) imply that ak are all equal and hence α(s) = λ(s)eM , where
λ(s) is constant. It follows that α is of the required form. It would be in-
teresting to study if the same conclusion holds also in the non-definite real
or complex cases.

Remark 82. i) When π : V = M × R→M is the trivial bundle, eV = ∂
∂τ ,

λ = dτ and gV is defined by the condition gV (eV , eV ) = 1 + gM (eM , eM ),
the above theorem reduces to the construction of adding a variable to the
Frobenius manifold (M, ◦M , eM , gM ).

ii) Like in the construction of adding a variable to a Frobenius manifold,
one may show that if E is Euler on (M, ◦M , eM , gM ), such that LE(gM ) =
2gM , then E + R, where R is the radial field, is Euler for the Frobenius
structure on V provided by Theorem 80. In this setting one may recover this
Frobenius structure from a Saito structure on π∗(TM ⊕ V ), with primitive
homogeneous section π∗(eM + eV ). To keep the text reasonably short, we
do not describe this Saito structure. Details can be found in [41].

5.4 A duality for F -manifolds with eventual iden-
tities

We begin with the definition of eventual identities on F -manifolds [78]. Re-
mark that the multiplication (5.27) below is defined like the dual multipli-
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cation on a Frobenius manifold (see Section 5.2.5), with Euler field replaced
by an arbitrary vector field.

Definition 83. A vector field E on an F -manifold (M, ◦, e) is called an
eventual identity if it is invertible and the multiplication

X ∗ Y = X ◦ Y ◦ E−1, ∀X,Y ∈ X (M) (5.27)

defines a new F -manifold structure on M .

The following theorem may be seen as an extension of the Dubrovin’s
almost duality for almost Frobenius manifolds to the larger setting of F -
manifolds. It turns out that at the level of F -manifolds, unlike Frobenius
manifolds, there is a perfect symmetry, as follows.

Theorem 84. i) Let (M, ◦, e) be an F -manifold and E an invertible vector
field. Then E is an eventual identity if and only if

LE(◦)(X,Y ) = [e, E ] ◦X ◦ Y, ∀X,Y ∈ X (M). (5.28)

ii) Suppose that (5.28) holds. Then e is an eventual identity on the F -
manifold (M, ∗, E), where ∗ is related to ◦ by (5.27), and the map

(M, ◦, e, E)→ (M, ∗, e, E)

is an involution on the set of F -manifolds with eventual identities.

Having found the characterization of eventual identities one may study
how such objects may be combined to form new eventual identities.

Remark 85. i) Eventual identities form a subgroup of the group of invert-
ible vector fields on an F -manifold.

ii) For any eventual identity E ,

[En, Em] = (m− n)En+m−1 ◦ [e, E ], ∀n,m ∈ Z. (5.29)

iii) The Lie bracket of two eventual identities is an eventual identity,
provided that it is invertible.

iv) On a semisimple F -manifold with canonical coordinates (u1, · · · , un),
a vector field is an eventual identity if and only if it is of the form

E =
n∑
k=1

fk(uk)
∂

∂uk

where fk are arbitrary non-vanishing functions.
v) Any eventual identity on a product F -manifold decomposes into a

sum of eventual identities on the factors and this decomposition implies a
comutativity property between our duality for F -manifolds with eventual
identities and Hertling’s the decomposition of F -manifolds [66].

In the following sections we add various structures on F -manifolds and
we study their behaviour under the duality for F -manifolds with eventual
identities, provided by Theorem 84.
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5.4.1 Compatible connections

Definition 86. A connection ∇ on an F -manifold (M, ◦, e) is called com-
patible, if

∇X(◦)(Y, Z) = ∇Y (◦)(X,Z), ∀X,Y, Z ∈ X (M).

Remark 87. i) The Levi-Civita connection of a Frobenius manifold is a
compatible connection for the underlying F -manifold.

ii) If ∇̃ is a compatible connection on an F -manifold (M, ◦, e) (not nec-
essarily Frobenius) and Z is an arbitrary vector field, then

∇XY := ∇̃XY + Z ◦X ◦ Y

is also a compatible connection on (M, ◦, e).

The motivation for the following proposition comes from the structure
connections of a Frobenius manifold with Euler field. A Frobenius manifold
(M, ◦, e, g̃, E) with invertible Euler field has a canonical connection compat-
ible with ◦, namely the Levi-Civita connection of g̃, sometimes called the
first structure connection. Its dual (M, ∗, E), where X∗Y = X◦Y ◦E−1 also
has a canonical compatible connection, namely the Levi-Civita connection
of the second metric g(X,Y ) = g̃(X ◦E−1, Y ) (sometimes called the second
structure connection of the Frobenius manifold). Since (invertible) Euler
fields of Frobenius manifolds are eventual identities for the underlying F -
manifold structure, it is natural to ask if the dual (M∗, E) of an F -manifold
(M, ◦, e, E , ∇̃) with an eventual identity and compatible torsion-free connec-
tion inherits, in a canonical way, a compatible, torsion-free connection. This
problem has been treated in [47]. The answer is that, without additional
assumptions, there is a canonical family, rather than a single connection,
inherited on the dual (M∗, E). Under further various conditions (on the co-
variant derivative of the unit fields) one can fix a connection from this fam-
ily and one obtains a duality at the level of F -manifolds with compatible,
torsion-free connections satisfying that additional condition. An example
of such a duality is provided by the following proposition (in this case the
additional condition is the flatness of the unit fields) [47].

Proposition 88. The map

(M, ◦, e, E , ∇̃)→ (M, ∗, E , e,∇)

where ∗ is related to ◦ by (5.27) and ∇ is related to ∇̃ by

∇X(Y ) = E ◦ ∇̃X(E−1 ◦ Y )− ∇̃E−1◦Y (E) ◦X +
1
2

[E−1, E ] ◦X ◦ Y

is an involution on the set of F -manifolds with eventual identities and com-
patible, torsion-free connections preserving the unit fields.
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5.4.2 Riemannian F -manifolds

Riemannian F -manifolds were defined in [76] and used to interpret argu-
ments from the theory of integrable systems in a coordinate free way. In
this section we show that our duality for F -manifolds with eventual identities
preserves the Riemannian F -manifold condition.

Definition 89. A Riemannian F -manifold is an F -manifold (M, ◦, e) to-
gether with an invariant metric g̃, such that the following two conditions are
satisfied:

i) the coidentity g̃(e) ∈ Ω1(M), which is the 1-form g̃-dual to unit field
e, is closed;

ii) the curvature of g̃ satisfies the relation:

X◦Rg̃Y,Z(V )+Z◦Rg̃X,Y (V )+Y ◦Rg̃Z,X(V ) = 0, ∀X,Y, Z, V ∈ X (M). (5.30)

Remark 90. Any Frobenius manifold is a Riemannian F -manifold. More
generally, condition (5.30) holds when g̃ has constant sectional curvature.

Our main result from this section is the following.

Proposition 91. Let (M, ◦, e, E , g̃) be an F -manifold with an eventual iden-
tity E and invariant metric g̃. Define

g(X,Y ) := g̃(X, E−1 ◦ Y ), ∀X,Y ∈ X (M). (5.31)

Then (M, ◦, e, g̃) is a Riemannian F -manifold if and only if (M, ∗, E , g) is a
Riemannian F -manifold.

Remark 92. Proposition 91 is a useful tool to construct non-flat invariant
metrics on F -manifolds, which satisfy condition (5.30). Indeed, if in the
setting of Proposition 91 one takes g̃ to be flat (hence condition (5.30) is
trivially satisfied) then g defined by (5.31) is not flat in general but relation
(5.30) holds with multiplication ∗ and metric g.

5.4.3 Compatible pairs of metrics

Compatible pairs of metrics can be used to construct bi-Hamiltonian struc-
tures of non-local type [52]. Here we study the geometry of such pairs of met-
rics. We first develop a bijective correspondence betwen quasi-homogeneus
compatible pairs of metrics and F-manifolds (which are F -manifolds with
metrics and Euler fields satisfying some additional conditions). This corre-
spondence extends to the non-flat case the Dubrovin’s correspondence [50]
between quasi-homogeneous compatible flat pairs of metrics and Frobenius
manifolds with Euler fields (see Section 5.2.2). Briefly, we show that the
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main features of Dubrovin’s correspondence [50] lie in the compatibility,
rather than the flatness property of the metrics. We also show how eventual
identities may be used to construct new pairs of compatible metrics. More
details on the results from this section may be found in [44, 45, 46].

Let (g, g̃) be two metrics on a manifold M . Assume that for any λ,
the bilinear form g∗λ := g∗ + λg̃∗ on T ∗M is non-degenerate. We denote
by ∇, ∇̃,∇λ and Rg, Rg̃, Rλ the Levi-Civita connections and the curvatures
of g, g̃, gλ. The following definition extends to the non-flat case the main
properties of the compatible flat pair of metrics on a Frobenius manifold.

Definition 93. The metrics (g, g̃) are called almost compatible if

g∗λ(∇λXα, β) = g∗(∇Xα, β)+λg̃∗(∇̃Xα, β), ∀α, β ∈ Ω1(M), ∀X ∈ X (M), ∀λ.

If, moreover,

g∗λ(RλX,Y α, β) = g∗(RgX,Y α, β)+λg̃∗(Rg̃X,Y α, β), ∀α, β ∈ Ω1(M), ∀X,Y ∈ X (M),

for any constant λ, then (g, g̃) are called compatible.

Example 94. One method to produce non-flat compatible pairs of metrics
are provided by conformal rescalings. It may be shown that if (g, g̃) is
compatible then also (fg, f g̃) is compatible, for any non-vanishing function
f . Compatible pairs of metrics, conformally related to flat pairs, appear
naturally on the space of orbits of a Coxeter group and were constructed in
[45] by means of a modified Saito construction, which starts with a metric of
constant (non-zero) sectional curvature on the ambient vector space, rather
that the standard flat metric (i.e. the metric (5.14)), as in the usual Saito
construction (see Section 5.2.5).

We now explain the main features of the extended Dubrovin’s corre-
spondence to the non-flat case. For details, see [46]. Assume that (g, g̃) is a
pair of metrics on a manifold M and E ∈ X (M) a vector field. We define,
formally in the same way as in the Dubrovin’s correspondence (see Section
5.2.5), two multiplications ∗ and ◦ on T ∗M (the latter will be considered
also on TM , by identifying TM with T ∗M using g̃) by the relations (5.5)
and (5.6) respectively (the operator T is given by T (u) := g(E) ∗ u and is
assumed to be an automorphism of T ∗M , as in the Frobenius case). It turns
out that if (g, g̃) are compatible, then ◦ is associative, commutative, with
unit field g̃∗g(E). Moreover, if the quasi-homogeneity conditions (5.4) hold,
for a vector field E, then (M, ◦, e, g̃, E) is a so called F-manifold, i.e. the
following conditions hold:

1) (M, ◦, e) is an F -manifold;
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2) g̃ and ◦ define a Frobenius algebra at each point;

3) E rescales ◦ and g̃ by constants;

4) the (3, 1)-tensor field ∇̃(◦) satisfies the symmetry

∇̃E(◦)(X,Y ) = ∇̃X(◦)(E, Y ), ∀X,Y ∈ TM.

Conversely, it may be shown that if (M, ◦, e, g̃, E) is an F-manifold then
the metric g defined by g∗g̃ = E◦ is compatible with g̃ and (g, g̃, E) is a
quasi-homogeneous compatible pair of metrics. To summarize, we obtain
the following theorem which extends the Dubrovin’s correspondence to the
non-flat case [46].

Theorem 95. There is a bijective correspondence between quasi-homogeneous
compatible pairs of metrics and F-manifolds.

We end this section by showing how eventual identities may be used to
construct compatible pairs of metrics.

Proposition 96. Let (M, ◦, e, E , g̃) be an F -manifold with an eventual iden-
tity E and invariant metric g̃. Define

g(X,Y ) := g̃(X ◦ E−1, Y ), ∀X,Y ∈ X (M).

Then (g, g̃) are almost compatible. If, moreover, the coidentity g̃(e) is closed,
then (g, g̃) are compatible.

5.4.4 Duality and tt∗-geometry

In this section we work in the holomorphic setting. We fix an F -manifold
(M, ◦, e, E , h̃, k̃) together with an eventual identity E , (pseudo)-Hermitian
metric h̃, and real structure k̃ on T 1,0M such that the complex bilinear
form

g̃(X,Y ) := h̃(X, k̃Y )

on T 1,0M is symmetric and invariant with respect to ◦. We denote by

C̃X(Y ) := −X ◦ Y

the Higgs field associated to ◦. Let

X ∗ Y := X ◦ Y ◦ E−1 (5.32)

be the dual multiplication, with associated Higgs field denoted by C. As-
sume that the inverse E−1 has a square root E−1/2 and define a new pseudo-
Hermitian metric

h(X,Y ) := h̃(E−1/2 ◦X, E−1/2 ◦ Y ) (5.33)
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and a new real structure

k(X) := E1/2 ◦ k̃(E−1/2 ◦X)

on T 1,0M. It is straightforward to check that

g(X,Y ) := h(X, kY ) = g̃(E−1/2 ◦X, E−1/2 ◦ Y ). (5.34)

In particular, g is symmetric, complex bilinear and invariant with respect
to ∗. We now consider various compatibility conditions of the structures on
the initial F -manifold (M, ◦, e) and find obstructions for the dual structures
on (M, ∗, E) to satisfy the same conditions.

Lemma 97. If the pair (g̃, h̃) is compatible, also the pair (g, h) is compatible.

Proof. From (5.33), the Chern connections D and D̃ of (T 1,0M,h) and
(T 1,0M, h̃) respectively are related by

DXZ := E1/2 ◦ D̃X(E−1/2 ◦ Z), ∀X ∈ X (M), Z ∈ T 1,0
M . (5.35)

In particular, D̃g̃ = 0 if and only if Dg = 0.

The more restrictive notions of harmonic Higgs bundles and DChk-
structures are not preserved by the duality, in general. The obstructions
are stated in the following proposition.

Theorem 98. Assume that (T 1,0M, C̃, h̃) is a harmonic Higgs bundle (re-
spectively, (T 1,0M, C̃, h̃, k̃) is a D̃C̃h̃k̃-structure). Then (T 1,0M,C, h) is a
harmonic Higgs bundle (respectively, (T 1,0M,C, h, k) is a DChk-structure)
if and only if the following conditions hold:

i) for any X,Y, Z ∈ T 1,0
M ,

D̃X(E ◦ Y ◦ Z)− D̃Y (E ◦X ◦ Z) = E ◦
(
D̃X(Y ◦ Z)− D̃Y (X ◦ Z)

)
(5.36)

ii) for any X,Y ∈ T 1,0M ,

[C̃X , k̃C̃Y k̃] = [C̃E−1◦X , k̃C̃E−1◦Y k̃]. (5.37)

The semisimple case

It should be pointed out that equations (5.36) and (5.37) place highly re-
strictive conditions on the various structures and may, in general, have no
solutions (as happens for some of the 2-dimensional non-semisimple exam-
ples in [108]). Just as almost-dual Frobenius manifolds satisfy almost all
of the axioms of a Frobenius manifold, asking for the twisted structures to
satisfy the full tt∗-axioms may be too restrictive a condition. However, it
may be shown that if (M, ◦M , eM ) is semisimple and the metric h̃ is diagonal
in canonical coordinates, then, for any eventual identity E , both conditions
(5.36) and (5.37) hold. Thus solutions in the semisimple case exist.
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Chapter 6

Academic plans for the
future

6.1 Overview

In this chapter I describe my scientific plans for the future. They are divided
into three main groups: research, book and teaching. My first priority in
the future will continue to be the research at IMAR. I will continue my
research in the fields in which I worked before and I will extend it to related
fields, in order to become an expert in differential geometry. I will continue
to work on the book I am writing with D. V. Alekseevsky, which brings
together and presents in a unified and original way various important topics
from modern differential geometry. I would like to teach courses at the
Master’s and Doctoral level, in order to share my experience with young
mathematicians, to attract them to work in my field, and eventually to
coordinate their doctoral studies. Last, but not least, I intend to extend my
scientific collaborations in Romania and abroad and to continue to apply
for research grants.

6.2 Research

6.2.1 Research projects for the near future

I describe below several research projects which are closely related to my
previous works, and which I intend to work on in the near future.

• Conformal-Killing forms. As already explained in Chapter 3, a sys-
tematic treatment of conformal-Killing and/or Killing forms on compact
Riemannian manifolds with special holonomy groups already exists in the
literature and was developed by A. Moroianu and U. Semmelmann. Be-
tween the most important results on this topic I mention: any Killing p-
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form (p ≥ 2) on a compact quaternionic-Kähler manifold is parallel [81];
any Killing form on a compact G2 or Spin7-manifold is also parallel; the
space of conformal-Killing forms of any degree on a compact Kähler mani-
fold is ”generated”, using the wedge product with the Kähler form, by the
degree two conformal-Killing forms, in a way explained in [82]. Moreover,
conformal-Killing 2-forms on a Kähler manifold (not necessarily compact)
are closely related to the so called Hamiltonian 2-forms, which are well un-
derstood from the papers of V. Apostolov, D. Calderbank, P. Gauduchon in
[13, 14].

The research projects which I have in mind in this field are closely re-
lated to the results presented in Sections 3.4 and 3.5 from this thesis. They
are a natural continuation of my previous research and, at the same time,
they complement the results of A. Moroianu and U. Semmelmann stated
above. As explained in Section 3.5, in a joint work with M. Pontecorvo [42]
we proved that a compact quaternionic-Kähler manifold (M, g) of dimension
4n ≥ 8 admits a non-parallel conformal-Killing 2-form if and only if (M, g)
is isometric to the standard quaternionic projective space HPn and we de-
scribed explicitly the space of conformal-Killing 2-forms on HPn (it turns out
that it is isomorphic to the space of Killing vector fields, via the codifferen-
tial). Therefore, conformal-Killing 2-forms on compact quaternionic-Kähler
manifolds are completely understood. But a treatment of higher degree
conformal-Killing forms on compact quaternionic-Kähler manifolds is still
missing from the literature. A complete classification of conformal-Killing
forms of any degree on compact quaternionic-Kähler manifolds may be too
optimistic - one would have to combine the representation theory of the
group Sp(1)Sp(2) with the conformal-Killing operator, and for the space of
forms of higher degree the decomposition of the form bundles into irreducible
subundles is already quite complicated. However, I will try to find at least
some general constructions to produce interesting examples of non-parallel
conformal-Killing forms of higher degree on compact quaternionic-Kähler
manifolds; or to prove the non-existence of such forms.

Another research project I will consider in the near future is to develop
a local classification of quaternionic-Kähler manifolds which admit a non-
parallel compatible conformal-Killing 2-form. A first step in this direction is
the prolongation D of the conformal-Killing operator on compatible 2-forms
on a quaternionic-Kähler manifold, found in [31] and presented in Section
3.4 of this thesis, which allowed to relate the existence of a non-parallel
compatible conformal-Killing 2-form with the geometry of the quaternionic-
Kähler manifold (see e.g. Proposition 40 of this thesis). The possibility to
develop such a classification is suggested by various similarities (at least at
the formal level) which exist between compatible conformal-Killing 2-forms
on quaternionic-Kähler manifolds and Hamiltonian 2-forms on Kähler man-
ifolds, and by the local classification of Kähler manifolds which admit a
Hamiltonian 2-form, developed in [13]. Hamiltonian 2-forms are defined as
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2-forms which satisfy a certain first order differential equation, strongly re-
lated to the geometry of the Kähler manifold (e.g. a Kähler manifold is
Bochner-flat if and only if a certain modified Ricci form is Hamiltonian).
The name ”Hamiltonian” is justified by one of the basic properties of such
forms, namely that the coefficients of their characteristic polynomial are
Poisson-commuting Hamiltonians for Killing vector fields, a property which
allows a complete local classification of Kähler manifolds with a Hamilto-
nian 2-form. The analogies between compatible conformal-Killing 2-forms
on quaternionic-Kähler manifolds and Hamiltonian 2-forms on Kähler mani-
folds are expressed by various algebraic properties of compatible conformal-
Killing 2-forms, in relation with the quaternionic Weyl tensor, properties
which hold also for Hamiltonian 2-forms, with the quaternionic-Weyl tensor
replaced by the Bochner tensor of the Kähler manifold (compare Proposition
9 of [59] with Proposition 6 of [31]). A possible attempt of this project would
be to see if a compatible conformal-Killing 2-form on a quaternionic-Kähler
manifold defines, besides the dual of its codifferential (which is known to be
a Killing field), other Killing fields. Once such Killing fields are determined,
one may hope to develop a local classification, like in the Kähler case [13].
• Generalized complex geometry. In Chapter 4 we found an infinitesimal

description of invariant generalized complex structures on a Lie group G,
in terms of the so called admissible pairs (k, ω) (where k is a subalgebra of
the complexified Lie algebra gC of Lie(G) and ω is a closed 2-form on k,
satisfying a non-degeneracy condition) and we used it in order to develop
a detailed study of regular generalized complex structures on semisimple
Lie groups (i.e. those invariant generalized complex structures for which k
is a regular subalgebra of gC). When G is semisimple of inner type, the
root system R0 of k is necessarily a positive root system. At the same
time, we remark that in the case when G is a semisimple Lie group of outer
type, all regular g-admissible pairs (k, ω) constructed in Chapter 4 have the
property that the root system R0 of k is a σ-positive system (see Definition
57), where σ is the antilinear involution of gC which defines the real form
g = Lie(G). The problem of constructing (when G is of outer type) more
general regular g-admissible pairs, with σ-parabolic (see Definition 57) but
not σ-positive system R0, is still open and will hopefully be developed in the
future. Also, the problem of constructing non-regular invariant generalized
complex structures on semisimple Lie groups is open as well and is another
of my future research projects.

6.2.2 Long term research projects

As longer term projects, I intend to introduce myself to new topics and ex-
tend my research to new fields, closely related to the ones in which I worked
before, as follows.
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• Parabolic geometry. It is an important and quite recent direction of
research in mathematics, which unifies conformal, CR and quaternionic ge-
ometry, in a way which I still need to understand. Many internationally
recognized mathematicians are working in this field e.g. D. V. Alekseevsky,
A. Cap, D. Calderbank, M. Eastwood, I. Slovak, etc. Since I have experience
in CR and quaternionic geometry, a natural thing to do would be to extend
my research also to the larger setting of parabolic geometry. The main tool
in parabolic geometry is representation theory; for this reason in a first stage
I will get thoroughly into some important topics from representation theory,
which are relevant to parabolic geometry: graded Lie algebras, parabolic
groups and subalgebras, Bott Borel-Weyl theorem, BGG resolutions, invari-
ant differential operators. These topics can be found in various places in the
literature. After I will understand the basic ideas and tools from parabolic
geometry, I hope to extend some of my previous works on CR and quater-
nionic geometry to this more general setting. I already have some ideas in
this direction.

• Frobenius manifolds. Another direction of research which I intend to
pursue in the future is the theory of Frobenius manifolds. Frobenius mani-
folds are of high interest, mainly because they appear in many different areas
of mathematics (e.g. differential geometry, integrable systems, algebraic ge-
ometry). Until now my research in this field was based on my background
in differential geometry. However, to become a good researcher in Frobenius
manifolds it is essential, I think, to extend my knowledge and research also
to integrable systems and algebraic geometry, at least to the topics involved
in Frobenius manifolds. Therefore, in the future I will acquire new back-
ground in quantum cohomology, isomonodromic deformations, the theory
of meromorphic bundles with connections, lattices, Gauss-Manin systems,
unfoldings of singularities. All these involve a more algebraic approach of
Frobenius manifolds. In a first stage, I will read Hitchin’s paper on isomon-
odromic deformations and Einstein metrics [70], which is closer to my re-
search expertise, because it involves twistor theory, a field in which I already
worked before. There are also other excellent sourses which I intend to use
in the future, of more algebraic approach, like Sabbah’s book on Frobenius
manifolds and isomonodromic deformations [92], Hertling’s book on Frobe-
nius manifolds and singularity theory [67], Dunajski’s introductory book
on integrable systems [51], Guest’s book on quantum cohomology and in-
tegrable systems [62], and various more advanced articles on these themes,
written by the same or other authors.
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6.3 Book

During the last years I am working on a book with D. V. Alekseevsky. The
book will contain two volumes. In volume I, entitled ”Differential Geometry;
Riemannian and Non-Riemannian Geometry”, we develop a self-contained
theory of the most important geometrical structures which appear in differ-
ential geometry. In volume II we consider the homogeneous version these
structures, whose treatment involve the theory of semisimple Lie groups and
Lie algebras and representation theory.

At present we are working on volume I. A large part of the theory is al-
ready written up, but the material still needs to be re-organized and written
in a last version. Volume I contains a detailed account of some of the most
important geometric structures (conformal, complex, Kähler and Sasaki,
quaternionic-Kähler) and the relations between them, via cone construc-
tions, twistor theory and reductions. In the future we hope to include also
a more advanced material, e.g. special symplectic manifolds (as a general-
ization of Bochner-flat Kähler manifolds) and advanced topics from twistor
theory (e.g. the Penrose-Ward correspondence, the Jones and Tod corre-
spondence between self-dual 4-manifolds with symmetry and Einstein-Weyl
3-spaces, the ADHM-construction, etc). These topics are covered in var-
ious research articles but it would be useful to collect them into a book,
and present them in a unified and original way. The book is addressed to
graduate students.

6.4 Teaching

I intend to teach courses at Master’s and Doctoral levels. This would be an
excellent opportunity for me to present the research results which I obtained
along the years and also to be in contact with young future researchers, to
attract them to work in my field of expertise and to coordinate their doctoral
studies. The book I am writing with D. V. Alekseevsky could be used for
a course, at various levels. One may chose one or two topics from the book
and present them in a detailed way (in this case the course would be very
specialized). Another option would be to include more material (without
going always into all details of the proofs). The second approach would have
the advantage that it would provide the student with a good overview on the
modern differential geometry (including recent or open research problems)
which would allow him/her to make a good choice for a Ph.D research topic.

A specialized one semester course could contain the material from Chap-
ter 2 of this thesis, on CR and Bochner-flat Kähler manifolds, with empha-
size on their relation with the more general notion of Hamiltonian 2-forms
on Kähler manifolds.

Another possible topic for a specialized one semester course is the ma-
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terial from Chapter 3 of this thesis on conformal-Killing forms, combined
with other recent developments of the theory, for example the papers of A.
Moroianu and U. Semmelmann on this topic.

I would also like to teach, at a Master’s level or advanced undergraduate
level, a course on representation theory, this being a main tool in geome-
try (it appears in twistor theory, invariant differential operators, parabolic
geometry, homogeneous geometry, etc). It would be very important for stu-
dents to begin their research with a good background in this topic. Such a
course could be inspired from many excellent books which exist in the field,
e.g. the book of Fulton and Harris on representation theory [55], the book of
Adams on Lie groups [2], Knapp’s book on Lie groups [72], etc. A final part
of the course and an application of the theory to differential geometry could
be the material on invariant generalized complex structures on Lie groups,
contained in [3] and presented in Chapter 4 of this thesis.
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