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ARRANGEMENTS OF HYPERSURFACES AND BESTVINA-BRADY

GROUPS

ENRIQUE ARTAL BARTOLO, JOSÉ IGNACIO COGOLLUDO-AGUSTÍN, AND DANIEL MATEI

Abstract. We show that quasi-projective Bestvina-Brady groups are fundamental groups of

complements to hyperplane arrangements. Furthermore we relate other normal subgroups of

right-angled Artin groups to complements to arrangements of hypersurfaces. We thus obtain

examples of hypersurface complements whose fundamental groups satisfy various finiteness prop-

erties.

Introduction

An important open question in the topology of complex algebraic varieties is J.-P. Serre’s prob-

lem to characterize fundamental groups of smooth algebraic varieties (cf. [31]): Which finitely

presented groups are quasi-projective, i.e. isomorphic to the fundamental group of a smooth

connected quasi-projective variety (the complement of a normal crossing divisor in a smooth,

connected, complex projective variety)? One could also consider an analogous question for

quasi-Kähler groups, that is, for fundamental groups of hypersurface complements in a compact

Kähler manifold. On the other hand, one could explore particular versions of Serre’s question

by restricting either the ambient projective variety or the divisor, or both. For example: Which

groups can be realized as fundamental groups of hypersurface (in particular hyperplane) arrange-

ment complements in a projective space? or Which finitely presented groups are projective, i.e.

isomorphic to fundamental groups of smooth connected projective varieties?

In this paper we are interested in quasi-projective groups from the point of view of their

finiteness properties. It is well known that such groups are finitely presented, but much less

is known about their higher dimensional finiteness properties. In [34], C.T.C. Wall introduced

general finiteness properties of groups and CW-complexes. A group G is said to be of type Fn

if it has an Eilenberg-MacLane complex K(G, 1) with finite n-skeleton. Clearly G is finitely

generated if and only if it is F1 and finitely presented if and only if it is F2. An interesting

example of a finitely generated group which is not finitely presented was given by Stallings
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in [33]. While Wall’s property Fn has a substantial geometric meaning, it is not easily detectable

by homological algebraic methods.

In [5], Bieri introduced homological counterparts of Wall’s finiteness conditions. A group G

is said to be of type FPn if the ZG-module Z admits a projective resolution which is finitely

generated in dimensions ≤ n. The condition FPn is clearly weaker than Fn. Note also that G

is of type FP1 if and only if it is finitely generated, and that G is of type FP2 if it is finitely

presented. But, as shown by Bestvina and Brady [3] FP2 does not imply finite presentation.

Nevertheless, if G is F2 then G is FPn if and only if it is Fn.

The first example of a group which is finitely presented but not of type FP3 was given by

Stallings in [33]. Afterwards Bieri [4, 5] generalized Stallings’ example to an infinite family. In

a nutshell, let F2 × · · · × F2 be the direct product of r+1 free groups, each of rank 2. Then the

kernel N of the map taking each generator to 1 ∈ Z is Fr but not Fr+1. Stallings considered

the cases r ≤ 2. In [3], Bestvina and Brady generalized the Bieri-Stallings family by presenting

a systematic way of constructing groups N of type Fr, but not of type Fr+1. This construction

was further extended in [22, 6], and revisited in [29]. The input is a finite graph Γ, together with

a character χ of its associated right-angled Artin group AΓ. The generalized Bestvina-Brady

group Nχ
Γ , or Artin kernel, is then defined as the kernel of the homomorphism χ : AΓ → Z,

see [29]. The Bestvina-Brady groups N of [3] are recovered as NΓ := Nχ
Γ for the diagonal

character χ : AΓ → Z sending each generator to 1.

The class of Bestvina-Brady groups NΓ which are quasi-projective was determined by Dimca,

Papadima and Suciu in [12] as those corresponding to either trees or special multipartite complete

graphs Γ, i.e. NΓ = Fn0
×. . .×Fnr with either r ≥ 2 or ni = 1 for some i. In [12], it was proved in

particular that the Stallings-Bieri groups are quasi-projective. It was noticed by Matei and Suciu

in 2004, and pointed out in [27], that the Stallings group may be realized as the fundamental

group of the complement of a complex line arrangement in P
2, first considered by Arvola in

unpublished work from 1992, see [30]. In [20] and [1] we reported on our generalization of this

observation. More precisely, we exhibited in [20], for each quasi-projective Bestvina-Brady group

NΓ, a complex line arrangement in P
2 having NΓ as the fundamental group of the complement,

and in [1] higher dimensional hyperplane arrangements realizing just the Stallings-Bieri groups.

In this work we will present the geometric construction that was announced in [20, 1] (see

Theorem 3.2 for more details).

Theorem 1. Let Γ be a graph on v vertices, and suppose NΓ is a quasi-projective Bestvina-

Brady group. Then NΓ is the fundamental group of the complement of a hyperplane arrangement

AΓ in P
r, for some r < v depending only on Γ.

Theorem 1 answers negatively [2, Question 2.10] in Bestvina’s problem list. Indeed, the

fundamental group G = NΓ of the complement of AΓ cannot have a finite K(G, 1), as long as

Hr+1(NΓ) has infinite rank. Moreover, as we shall see later in Corollary 3.3, AΓ may be given by
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real equations, and by taking a generic plane section of Pr one can realize NΓ as the fundamental

group of the complement to a real line arrangement in P
2. For another approach to this result

we refer to the work of Cohen, Falk and Randell [8].

Our geometric realization of the quasi-projective Bestvina-Brady groupNΓ as the fundamental

group of an arrangement complement M , gives more than just the fundamental group of K =

K(NΓ, 1). In fact M has the homotopy type of the r-skeleton of K.

Theorem 2. Let AΓ be a hyperplane arrangement in P
r with complement M = MΓ such that

NΓ = π1(M) is a quasi-projective Bestvina-Brady group. Then M has the homotopy type of the

r-skeleton of K(NΓ, 1). Suppose NΓ is not the direct product of free groups. Then we have that

(1) the homology groups Hi(M) and Hi(NΓ) are isomorphic for i ≤ r.

(2) the homotopy groups πi(M) vanish in the range 1 < i < r.

(3) the homotopy group πr(M) does not vanish, in fact its group of coinvariants π∗
r(M)

under the π1-action is isomorphic to Hr+1(NΓ).

One could compare this with the results in [13] where examples are constructed of smooth

projective manifolds M of dimension r ≥ 2 with π1(M) having the finiteness properties of the

Bestvina-Brady groups, and πr(M) the next non-vanishing higher homotopy group.

The results in Theorems 1 and 2 extend to quasi-projective Artin kernels beyond the Bestvina-

Brady groups. We will show that an Artin kernel Nχ
Γ is quasi-projective if Γ is a multipartite

complete graph with NΓ quasi-projective, and the character χ of the Artin group AΓ = Fn0
×

· · · × Fnr sends each free factor Fni
to a non-zero integer. More precisely, Nχ

Γ will be realized

as the fundamental group of an arrangement of hypersurfaces in an r-dimensional weighted

projective space whose weights are given by the images under χ of the generators of AΓ. In

practice though we will work not in the weighted projective space, but in its associated torus.

Thus all Artin kernel Nχ
Γ realized by our construction turn out to be fundamental groups of

complements to arrangements of hypertori in an ambient algebraic torus. The basic properties

of such toric arrangements are similar to those of hyperplane arrangements, see monographs [10]

and [25].

The description of the quasi-projective Bestvina-Brady groups provided by Theorems 1 and 2

yields a large class of hyperplane arrangements that exhibit new topological features. More

precisely, the affine arrangements in C
r+1 induced by the projective arrangements AΓ, cannot

be hypersolvable since their groups are not of type F. Thus the techniques described in [26] can

no longer be used to determine the homotopy and homology groups of these arrangement com-

plements. Compare also with the earlier results of [30], obtained using the Lefschetz hyperplane

theorem. This suggests the following open problem.

Problem. Characterize the quasiprojective Artin kernels.

In the following we will explain the motivation and the basic steps for the geometric construc-

tion that will produce quasi-projective Artin kernels. Suppose X is a smooth (quasi)-projective
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variety. Then any finite covering of X is again a (quasi)-projective manifold (see for instance

Griffiths and Harris [15, p. 192] for the projective case and Namba [24, Lemma 2.1.2] for the

general case using the Grauert-Remmert extension theorem of unramified coverings of complex

spaces).

In general, the (quasi)-projectivity property is lost when passing to infinite coverings. Suppose

π1(X) admits an epimorphism ν : π1(X) → Z. Let Y be the regular connected infinite cyclic

covering of X associated with ν. We are interested in deciding whether or not Y is a (quasi)-

projective manifold. The first obstruction would be the finite presentability of π1(Y ). We may

wonder what other properties of X or π1(X) survive after infinite cyclic coverings. For example

the K(π, 1) property for X, or other finiteness properties of π1(X) such as Fn, F, or FPn.

In this context, the general problem that motivates our construction is the following:

Problem. Identify (quasi)-projective manifoldsX admitting infinite cyclic coverings which have

the homotopy of a (quasi)-projective manifold. Alternatively, identify quasi-projective groups

G having normal subgroups N , such that G/N ∼= Z, which are again quasi-projective.

A very natural idea is to start with a polynomial mapping f : Cn → C, and analyze the

restriction f : X → C
∗, where X = C

n \ V (f). The bifurcation set Λ = Λf of f is the minimal

set to be removed so that f : X \ f−1(Λ) → C
∗ \Λ is a locally trivial fibration. Then Λ contains

C = Cf the set of critical values of f (in general only as a proper subset).

Now suppose that f has finitely many singular points, and it behaves like a proper map, in

particular the critical set is the bifurcation set of f . If n ≥ 3, then one can obtain, by standard

arguments, an exact sequence of groups

1 → π1(Fa) → π1(X) → Z → 1,

for any fiber Fa = f−1(a), a ∈ C
∗ of f , whether smooth or singular, see [12, 32].

In the present paper a different approach will be presented. Suppose f and g are two polyno-

mial mappings Cn → C, and consider the restrictions f|T : T → C
∗, where T = C

n \ V (f), and

f|X : X → C
∗, where X = T \ V (g).

If f|T : T → C
∗ is a trivial fiber bundle, and V (g) is transverse (in the stratified sense) to the

fibers f−1
|T (a) with a ∈ C

∗ \ Λ, then f|XΛ
: XΛ → C

∗ \ Λ, XΛ := X \ f−1(Λ), is again a fiber

bundle (Λ is the bifurcation set of f : X → C
∗).

Let Σ be the union of the strata in V (g) which are not transverse to f−1(Λ), and denote its

dimension by s := dimΣ. Then, using Dold-Thom fibration theory one can see that the map

f : X → C
∗ behaves like a fibration up to dimension n−s−1 (details will be given in Section 5).

Now suppose X is aspherical and s = 0. It follows that all the fibers Fa = f−1(a) share the

same homotopy type up to dimension (n − 2), in particular, if n ≥ 4, the same fundamental

group. Furthermore, if the monodromy of f : X → C
∗ about the points in Λ is trivial, we then

have an exact sequence 1 → π1(F ) → π1(X) → Z → 1. We will show that indeed that is the
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case for the constructions of interest to us, by analyzing the homotopy short exact sequence

1 → π1(F ) → π1(XΛ) → π1(C
∗ \ Λ) → 1.

The paper is organized as follows: in the first two sections the main objects are introduced.

More specifically the group theoretical objects, such as Artin groups, Artin kernels, and their

presentations, are described in Section 1. The geometrical objects such as hyperplane and toric

arrangements are described in Section 2 together with their homological properties. The main

results extending Theorems 1 and 2 are stated in Section 3 and their proofs will be shown in

the following two sections. Section 4 describes the arrangements realizing the quasi-projective

groups of Section 1. Finally, the homotopy and homology properties of these groups are discussed

in Section 5 in terms of the arrangements using quasifibration theory.

1. Artin kernels

Let Γ be a finite simplicial graph, i.e., Γ := (VΓ, EΓ), where VΓ is a finite set, say {0, 1, . . . , s},

and EΓ ⊂ {A ⊂ VΓ | #A = 2}; let LΓ be the flag simplicial complex generated by Γ, where

J := {j1, . . . , jk} is a simplex of LΓ if and only if the complete graph on the vertices J is a

subgraph of Γ. The right-angled Artin group AΓ associated with Γ is the group with generators

σ1, . . . , σs and relations σiσj = σjσi, one for each edge {i, j} ∈ EΓ of Γ.

The Eilenberg-MacLane space K(AΓ, 1) has two remarkable incarnations as toric spaces.

First, consider the real (s + 1)-torus T = (S1)
s+1

with its standard CW-complex structure,

where k-cells are in bijection with k-subsets of {0, 1, . . . , s}. From a simplicial complex L = LΓ

one constructs the subcomplex TL of T , by retaining only the cells corresponding to the simplices

of L. It is well known that TL is a K(AΓ, 1)-space [7]. In the language of [11], TL is the moment-

angle complex ZL(S
1), obtained by gluing subtori of T according to the simplicial structure of

L. A similar gluing process, but using the complex (s + 1)-torus T
s+1 = (C∗)s+1 and complex

subtori accordingly, produces ZL(C
∗), which we denote by TL.

The properties of the construction ZL, see [11], ensure that TL and TL have the same homotopy

type. It also follows that TL∗M = TL × TM , and respectively TL∗M = TL × TM , where L ∗M is

the join of L and M .

Example 1.1. Let us consider two standard examples of graphs on s+1 vertices, namely, Ks+1

the complete graph, and K̄s+1 the graph with no edges. The flag complexes are respectively

an s-dimensional simplex and K̄s+1 itself. As for the associated right-angled Artin groups,

AKs+1
∼= Z

s+1 and AK̄s+1

∼= Fs+1, the free group of rank s + 1. The toric complexes are

TKs+1
= T ≃ T = TKs+1

and TK̄s+1
=

∨s+1
S
1 ≃

∨s+1
C
∗ = TK̄s+1

respectively. Note that
∨s+1

C
∗ has the homotopy type of C punctured s + 1 times. We denote by C

∗
s+1 an (s + 1)-

punctured C. Thus we have TK̄s+1
≃ C

∗
s+1.

Example 1.2. Let n̄ := (n0, . . . , nr) be an (r + 1)-tuple of positive integers, ni ≥ 1. Denote

by K̄n̄ the multipartite graph defined by the join K̄n0
∗ · · · ∗ K̄nr . The associated flag complex
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L = LK̄n̄
has the homotopy type of a wedge of m :=

∏r
i=0(ni − 1) spheres

∨m
S
r. The Artin

group AK̄n̄
is the product Fn0

× · · · × Fnr of free groups, and TL ≃ C
∗
n0

× · · · × C
∗
nr
.

We will consider here a class of subgroups of the Artin group AΓ, generalizing the Bestvina-

Brady groups of [3]. An Artin kernel is nothing but the kernel of an epimorphism χ : AΓ → Z,

see [29]. More precisely, given an epimorphism χ : AΓ → Z such that χ(σi) ∈ Z, we denote its

kernel by Nχ
Γ .

Theorem 1.3 ([3, 22, 6, 29]). The Artin kernel Nχ
Γ is finitely presented if and only if Lχ

Γ is

simply-connected. Moreover, Nχ
Γ is of type Fr (respectively FPr) if and only if the flag complex

Lχ
Γ is (r− 1)-connected (respectively (r− 1)-acyclic). In addition, Nχ

Γ is of type FPr if and only

if dimKH≤r(N
χ
Γ ,K) < ∞, for any field K.

In this paper we will always assume that all χ(σi) are non-zero. This implies that Lχ
Γ in

Theorem 1.3 is the usual flag complex LΓ on Γ. The particular case where χ is the epimorphism

χ : AΓ → Z defined by χ(σi) := 1, the kernel NΓ := kerχ is known as the Bestvina-Brady

group associated with Γ. As noted, it is finitely presented if and only if L is simply-connected.

In that case, NΓ admits a commutator-relators presentation, see [28]. As a consequence, one

immediately obtains that b1(NΓ) = |VΓ| − 1 and b2(NΓ) = |EΓ| − |VΓ|+ 1.

The Artin kernels that interest us most here are those associated with the multipartite graph

K̄n̄. For this special case, we introduce now some notation. After a suitable labeling, we denote

the set of vertices of K̄n̄ by
⋃r

k=0{(k, i) | 1 ≤ i ≤ nk} where (k, i) is a vertex of K̄nk
. The

corresponding generators of AK̄n̄
are denoted by σk,i.

Let d := (d0, . . . , dr) ∈ Z
r and consider the character χd : AK̄n̄

→ Z defined by χd(σk,i) := dk.

Corollary 1.4. The Artin kernel Nd
n̄ := Nχd

K̄n̄
is of type Fr, but not FPr+1, if all ni > 1.

Proof. Since LK̄n̄
≃

∨m
S
r is (r − 1)-connected, but Hr(LK̄n̄

) 6= 0, it follows from Theorem 1.3

that Nd
n̄ is of type Fr, but not FPr+1, if all ni > 1. �

Note that, as soon as r ≥ 2, the Artin kernel Nd
n̄ is finitely presented and thus the Fm and

FPm properties are equivalent. For N = NK̄n̄
one obtains:

b1(N) =

r
∑

i=0

ni − 1, b2(N) =
∑

0≤i<j≤r

ninj −
r

∑

i=0

ni + 1.

Recall the definition of the Poincaré series as the generating function of the Betti numbers,

that is, PG(t) :=
∑∞

k=0 bk(G)tk. From the results of [29] it follows that the truncated Poincaré

polynomials of AΓ and NΓ are related as

PAΓ
(t) ≡ (1 + t)PNΓ

(t) mod tr+1.
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It is easily seen that the r-th truncation of the Poincaré polynomial of A = AK̄n̄
is given by

PA(t) ≡
r
∏

i=0

(1 + nit) mod tr+1.

This gives the Betti numbers bk of N = NK̄n̄
, in the range 0 ≤ k < r:

bk(N) =

k
∑

p=0

(−1)k−p
∑

0≤i1<···<ip≤r

ni1 . . . nip .

1.5. Finite presentations of NΓ. Assume Γ is a finite simplicial graph with s + 1 vertices.

As a general fact, an infinite presentation for NΓ can be obtained by the Reidemeister-Schreier

algorithm. A set of generators can be taken to be

αi;m := σm
0 σiσ

−m−1
0 , 0 < i ≤ s,m ∈ Z.

In order to simplify the notations, we will also consider α0,m := 1. Then a complete set of

relators is given by:

αi;mαj;m+1 = αj;mαi;m+1, {i, j} ∈ EΓ, m ∈ Z.

Suppose now that Γ = K̄n̄ where 2 ≤ n0 ≤ · · · ≤ nr. If r ≥ 2 then the flag complex L is

simply-connected and Bestvina-Brady work ensures that the countable presentation above can

be reduced to a finite one; for r = 1 the group will be finitely generated. In the following we

approach this question in a more direct way.

The generators of AΓ are denoted by σk,i, for 1 ≤ i ≤ nk and 0 ≤ k ≤ r. An infinite set of

generators of NΓ is given by

αk,i;m := σm
0,1σk,iσ

−m−1
0,1 , 0 ≤ k ≤ r, m ∈ Z,

with the trivial relations α0,1;m = 1, ∀m ∈ Z. An additional set of complete relators is given by:

(1.1) αk,i;mαℓ,j;m+1 = αℓ,j;mαk,i;m+1, 0 ≤ k < ℓ ≤ r, 1 ≤ i ≤ nk, 1 ≤ j ≤ nℓ, m ∈ Z.

We consider three different cases separately. If r = 0 then no relation exists and NΓ is a free

group in α0,i;m, where 2 ≤ i ≤ n0 and m ∈ Z. As expected, this group is not finitely generated.

For r = 1, the relations (1.1) for (k, i) = (0, 1) allow to conclude that α1,j;m does not depend

on m. The relations (1.1) for ℓ = 1 imply that

(1.2) α0,i;m = α
αm
1,j;0

0,i;0 , 2 ≤ i ≤ n0, m ∈ Z, 1 ≤ j ≤ n1.

Using j = 1 in (1.2) allows one to show that the group is generated by α0,i;0, α1,j;0 for 2 ≤ i ≤ n0

and 1 ≤ j ≤ n1; for simplicity, we drop the index 0. The remaining relations in (1.2) are

rewritten as:

(1.3) [α0,i, α
m
1,jα

−m
1,1 ] = 1, 2 ≤ i ≤ n0, 2 ≤ j ≤ n1, m ∈ Z.

This infinite set of relators cannot be reduced.
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For r ≥ 2 we proceed as above; the set

(1.4) {α0,i;0}
n0

i=2,∪
r
⋃

k=1

{αk,j;0}
nk

j=1

is a generator system for NΓ; as before, we will drop the subindex 0.

To the relations (1.3) we add the relations (1.1) for 1 ≤ k ≤ ℓ:

(1.5) [αk,i, αℓ,j ] = 1, 1 ≤ k < ℓ ≤ r, 1 ≤ i ≤ nk, 1 ≤ j ≤ nℓ,

We add now the relations (1.1) for k = 0 and ℓ ≥ 2 and we obtain:

(1.6) [α0,i, α
m
ℓ,jα

−m
1,1 ] = 1, 2 ≤ ℓ ≤ r, 2 ≤ i ≤ n0, 1 ≤ j ≤ nℓ, m ∈ Z.

For ℓ ≥ 2, one has αm
ℓ,jα

−m
1,1 = (αℓ,jα

−1
1,1)

m and hence (1.3) and (1.6) are consequences of

(1.7) [α0,i, αk,jα
−1
1,1] = 1, 1 < i ≤ n0, (k = 1, 2 < j ≤ n1) and (2 ≤ k ≤ r, 1 ≤ j ≤ nk) .

A finite presentation of NΓ is given by
〈

(1.4)
∣

∣

∣(1.5), (1.7)
〉

1.6. Finite presentations of Nχ. We now consider presentations for Nχ = Nd
n̄ , where r ≥ 2

and n0, . . . , nr ≥ 2. Fix ak ∈ Z so that
∑r

k=0 akdk = 1 and define τ :=
∏r

k=0 σ
ak
k,1; note that

χ(τ) = 1. Since σk,1, σℓ,1 commute whenever k 6= ℓ, note that τm :=
∏r

k=0 σ
mak
k,1 , m ∈ Z. We

can add τ to the generators of AK̄n̄
, adding the following relations (some of them are redundant

but useful):

(1.8) τ =
r
∏

k=0

σak
k,1, [τ, σk,1] = 1, k = 0, . . . , r.

Applying the Reidemeister-Schreier method, a set of generators of Nχ is given by

αk,i;m := τmσk,iτ
−m−dk , 0 ≤ k ≤ r, 1 ≤ i ≤ nk, m ∈ Z.

The commutativity relations in (1.8) imply that αk,1;m does not depend on m and hence we

denote them by βk. The remaining relation in (1.8) gives the following one for Nχ:

(1.9)

r
∏

k=0

βak
k = 1.

The relations [σk,i, σℓ,j] = 1, k 6= ℓ give the following ones in the kernel Nχ

(1.10) αk,i;mαℓ,j;m+dk = αℓ,j;mαk,i;m+dℓ, if k 6= ℓ.

If i = j = 1, (1.10) simplifies as:

(1.11) [βk, βℓ] = 1, k 6= ℓ.

If i = 1 < j, (1.10) simplifies as:

(1.12) αℓ,j;m+dk = β−1
k αℓ,j;mβk, ∀m ∈ Z, k ∈ {0, . . . , r}, ℓ 6= k, j ∈ {2, . . . , nℓ}.
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Let us denote eℓ := gcd{dk | k 6= ℓ} and choose integers ak,ℓ, ak,k := 0, such that

eℓ =
r

∑

k=0

ak,ℓdk.

Clearly, using relations (1.12), we can reduce the infinite set of generators {αk,i;,m | m ∈ Z, k ∈

{0, . . . , r}, 1 ≤ i ≤ nk} to the finite subset

(1.13) {βk | 1 ≤ k ≤ r} ∪ {αk,j;p | 0 ≤ p < ek, 0 ≤ k ≤ r, 1 < j ≤ nk}.

Let us denote γℓ :=
∏r

k=0 β
ak,ℓ
k . Then, we obtain:

(1.14) αℓ,j;m+eℓ = γ−1
ℓ αℓ,j;mγℓ, ∀m ∈ Z, ℓ ∈ {1, . . . , r}, j ∈ {2, . . . , nℓ}.

Denote fk,ℓ :=
dk
eℓ
, k 6= ℓ. Combining (1.12)-(1.14), we obtain:

(1.15) [αℓ,j;m, γ
fk,ℓ
ℓ β−1

k ] = 1 k ∈ {0, . . . , r}, ℓ 6= k, j ∈ {2, . . . , nℓ}, m ∈ {0, . . . , ek − 1}.

Consider now the relations (1.10) for i, j > 1:

(1.16) αk,i;mβ
−1
k αℓ,j;mβk = αℓ,j;mβ

−1
ℓ αk,i;mβℓ, if k 6= ℓ.

Given k 6= ℓ, fix m 6= k, ℓ such that dm is minimal; this is possible since r ≥ 2. Then it is enough

to consider relations (1.16) for m ∈ {0, . . . , dm − 1}.

The presentation of Nχ admits (1.13) as a system of generators and (1.9), (1.11), (1.15),

and (1.16) as a system of relators.

Example 1.7. If d0 = 1, we can choose τ = σ0,1, i.e. a0 = 1 and ak = 0 if k > 0. We get β0 = 1,

ek = 1 if k > 0, and hence γk = 1 if k > 0. Then Nχ is generated by αk,i;m = σm
0,1σk,iσ

−m−dk
0,1 ,

for

{(0, i;m) | 1 < i ≤ n0, 0 ≤ m < e0} ∪ {(k, i; 0) | 0 < k ≤ r, 1 ≤ i ≤ nk}.

Let us denote µi,m := α0,i;m and νk,i := αk,i;0 (k > 0). Note also that if k 6= ℓ and both are

different from 0 then, we can choose m = 1. The relations are:

[νk,1, νℓ,1] = 1, 0 < k < ℓ,

[µi,m, γ
dk
e0

0 ν−1
k,1] = 1, 1 < i ≤ n0, 0 ≤ m < e0, 0 < k ≤ r,

[νk,i, νℓ,j] = 1, 0 < k, ℓ ≤ r, k 6= ℓ, 1 ≤ i ≤ nk, 1 ≤ j ≤ nℓ,

[µj,m, νk,iν
−1
k,1] = 1 0 < k ≤ r, 1 ≤ i ≤ nk, 1 < j ≤ n0, 0 ≤ m < d0,

where µj,m+e1 := γ−1
0 µj,mγ0.



10 E. ARTAL, J.I. COGOLLUDO, AND D. MATEI

2. Hypersurface arrangements and their complements

In this section we introduce the arrangements of hypersurfaces that will be needed in the

sequel. We will consider two classes: hyperplane arrangements and toric arrangements. In each

case, we will explain how the homology of complements to such arrangements may be computed

in terms of their combinatorics. We will end with computations of the Poincaré polynomial for

the arrangements that we will later relate with Artin kernels.

2.1. Hyperplane arrangements.

An arrangement of hyperplanes is a collection A of hyperplanes in a projective, or affine

space. An arrangement A in P
r may be viewed as a central arrangement in C

r+1. If M is the

complement of A in P
r, and M ′ the complement in C

r+1, we have that M ′ is homeomorphic to

M × C
∗. It follows that P (M ′, t) = (1 + t)P (M, t), and π1(M

′) = π1(M)× Z.

The Poincaré polynomial of a complement to a hyperplane arrangement A is completely

determined by its intersection poset L(A), which consists of all non-empty intersections among

hyperplanes in A ordered by reversed inclusion and ranked by codimension.

More precisely, if A is an affine hyperplane arrangement, the characteristic polynomial of the

intersection poset L(A) is defined by

χ(A, q) :=
∑

S∈L(A)

µ(S)qdimS ,

where µ : L(A) → Z is the Möbius function of the ranked poset L(A), see [25].

Proposition 2.1. Let A be a hyperplane arrangement in C
r+1 with complement M . We then

have

P (M, t) = tr+1χ(A,−t−1).

The best understood arrangements are those of supersolvable type, see [25]. The complement

M of such an arrangement seats at the top of a tower of linear fiber bundles with fiber a

punctured complex plane. In particular M is a K(G, 1) space for G := π1(M). A more general

class, comprising both supersolvable and generic arrangements, is that of the hypersolvable

arrangements, see [19]. The group G of a hypersolvable arrangement A is still of type F, as it

is also a group of supersolvable arrangement Â to which A deforms.

A class of arrangements that contains both hypersolvable and non-hypersolvable examples is

that of graphic arrangements. We refer to [26, 27] for the details of the discussion. One associates

to a graph G = (V, E) on a set of vertices V := {0, . . . , r}, the arrangement AG in C
r+1 of all

hyperplanes Hi,j = {wi = wj} for {i, j} ∈ E an edge of G. Any AG is a sub-arrangement of the

braid arrangement, which corresponds to the complete graph Kr+1. Denote by cp the number of

complete subgraphs Kp+1 of G. Thus c1 is the number of edges and c2 is the number of triangles

of G.
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An arrangement AG is supersolvable if and only if G is a chordal graph (i.e. every circuit of

length ≥ 4 in G has a chord). For example, an arrangement AG with c2 = 0 is hypersolvable.

Suppose G contains no complete graph K4 as a subgraph, that is c3 = 0. A sufficient condition

for such an arrangement AG to be non-hypersolvable is that 0 < c1 ≤ 2c2.

Example 2.2. Let G = Wr be the (wheel) graph on r+1 vertices obtained by coning an r-cycle,

hence AWr is defined, after the linear change of coordinates z0 = w0, zi = wi − w0, 1 ≤ i ≤ r by

z1 . . . zr(z1 − z2) . . . (zr−1 − zr)(zr − z1).

Then c1 = 2r, c2 = r, and c3 = 0, if r > 3. Thus c1 = 2c2, and so AWr is decomposable and

non-hypersolvable. We shall see that the group of the arrangement AWr is not of type Fr.

2.2. Toric arrangements.

Let ν be a character of the torus T
r+1 = (C∗)r+1 and a ∈ C

∗. The pair (ν, a) defines a

translated 1-codimensional subtorus Hν,a = {x ∈ T
r+1 | ν(x) = a}. Note that if ν(x) =

xd00 · . . . · xdrr , then Hν,a has d := gcd(d0, . . . , dr) connected components.

A finite set A of such hypertori in T
r+1 is called a toric arrangement. Much of the combina-

torial and topological theory of such arrangements parallels that of hyperplane arrangements,

see [10]. The de Rham cohomology ring of the complement was determined in [9]. Moreover,

under certain conditions the de Rham algebra is formal and generated by logarithmic 1-forms.

Furthermore, the Poincaré polynomial of the complement M = T
r+1 \ V (A) essentially coin-

cides with the characteristic polynomial of the intersection poset L(A) of A, as shown in [23].

Proposition 2.3. Let A be a toric arrangement in a (r + 1)-torus with complement M . We

then have

P (M, t) = (−t)r+1χ(A,−t−1 − 1).

Here L(A) consists of all connected components of all non-empty intersections among hy-

pertori in A ordered by reversed inclusion and ranked by codimension. As before, χ(A, q) :=
∑

S∈L(A) µ(S)q
dimS .

Remark 2.4. Let T be a toric arrangement in T
r+1 which is obtained by the restriction a

hyperplane arrangement H in C
r+1 defined by equations of the form zi − azj = 0, with a ∈ C

∗.

Then the complement of T in T
r+1 may be seen as the complement in C

r+1 to the hyperplane

arrangement A obtained by adding the coordinate hyperplanes to H. The equality of Poincaré

polynomials gives the following relation between characteristic polynomials

χ(A, q) = (−1)r+1χ(T , q − 1).

Remark 2.5. Note that the formula of Proposition 2.3 can be as well applied to an arrangement

of subtori in an r-torus Tν,a ⊂ T
r+1 defined as Tν,a = {ν(x) = a} for some a ∈ C

∗ and some

character ν of Tr+1 with gcd{d0, . . . , dr} = 1.
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2.3. General position toric arrangements.

We focus now on a particular class of toric arrangements, which consists of general position

toric arrangements and some mild deformations of them. Our goal is to compute the Poincaré

polynomials of such arrangements.

We start by analyzing an example illustrating all the features of the general case.

Example 2.6. Let Aa = {H0,a,H1, . . . ,Hr} be the toric arrangement in T
r defined by the

hypertori H0 = H0,a = {x1 · . . . · xr = a} and Hi = {xi = 1}, 1 ≤ i ≤ r, for some a ∈ C
∗.

Note that the hypertori in Aa intersect in general position, except maybe if we consider the

intersection of all r+1 of them. Indeed, if HI denotes the intersection ∩i∈IHi, and I is a proper

subset of {0, . . . , r}, then HI is a connected torus of codimension |I|. Now
⋂r

i=0Hi is either

empty if a 6= 1, or the point (1, . . . , 1) ∈ T. It follows that the intersection poset L(Aa) is either

the truncation of the lattice of subsets of {0, . . . , r + 1} (maximal element removed), if a 6= 1,

or the obvious collapsing of this truncation for a = 1. More precisely, the poset L(Aa6=1) differs

from L(A1) only in the maximal elements: there are r + 1 of them, if a 6= 1, each with Möbius

function µ = (−1)r, respectively only one, if a = 1, with µ = (−1)rr.

The calculation of the characteristic polynomial of Aa is then immediate:

χ(Aa, q) =







∑r
k=0(−1)k

(

r+1
k

)

qr−k if a 6= 1,
∑r

k=0(−1)k
(

r+1
k

)

qr−k − (−1)r+1 if a = 1.

After evaluating at q = −1+t
t
, we obtain the Poincaré polynomials

P (M(Aa), t) =























(2t+ 1)r+1 − tr+1

t+ 1
if a 6= 1,

(2t+ 1)
(2t + 1)r − tr

t+ 1
if a = 1.

Note that the complements M(Aa6=1) differ from M(A1) only in their top Betti number br,

as P (M(Aa), t) − P (M(A1), t) = tr. In fact the complements M(Aa) are all homeomorphic if

a 6= 1, and, as we shall see later, they share their (r−1)-skeleton, up to homotopy, with M(A1).

We now treat the general case. We work in T
r+1 and fix a character ν such that ν(x) =

xd00 · . . . · xdrr with gcd(d0, . . . , dr) = 1. Consider the connected r-torus Tν,a = {ν(x) = a} in

T
r+1 for a ∈ C

∗. Let n := (n0, n1, . . . , nr) and mi := ni − 1 as before. We want to compute

the Poincaré polynomial of the complement in Tν,a of the arrangement An
ν,a(α) consisting of the

hypertori Hj
i = {xi = αi,j}, 0 ≤ i ≤ r, 1 ≤ j ≤ mi. As we shall see, An

ν,a(α) depends on the

data α := (αi,j). Denote by Λ := {ν(α0,j0 , . . . , αr,jr) | 1 ≤ ji ≤ mi, 0 ≤ i ≤ r}.
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Proposition 2.7. Let Ma := M(An
ν,a(α)) be the complement of An

ν,a(α) in Tν,a. Suppose a 6∈ Λ.

Then the Poincaré polynomial of the complement is equal to

P (Ma, t) =

r
∑

k=0

tk(1 + t)r−k
∑

I⊆[r],|I|=k

dĪmI .

In particular, the i-th Betti number of Ma is

bi(Ma) =
r

∑

l=r−i

(

l

r − i

)

∑

|I|=r−l

dĪmI .

Furthermore, if λ ∈ Λ then P (Mλ, t) 6= P (Ma, t). More precisely, we have

bi(Ma) = bi(Mλ) ∀i < r, and br(Ma) > br(Mλ).

Proof. We compute the characteristic polynomial χ(A, q) of the toric arrangement A = An
ν,a(α).

We claim that the hypertori Hj
i intersect in general position, except maybe if we consider

intersections of r + 1 of them.

First note that Hj′

i and Hj′′

i never intersect if j′ 6= j′′. Then denote by Hj
I the intersection

H j
I = Tν,a ∩

⋂

i∈I

Hji
i , for I ⊆ [r], j ∈

∏

i∈I

[mi],

where [r] := {0, . . . , r}. If |I| ≤ r, then it can be easily seen that HJ
I is non-empty and of

codimension r − |I|, and it consists of dĪ connected components. Indeed, if I = {i1, . . . , ik},

j = (j1, . . . , jk) then H j
I has dĪ connected components

H j
I =







∏

i 6∈I

xdii = a

k
∏

p=1

α
−dip
ip,jp

, xip = αip,jp, 1 ≤ p ≤ k







.

If a 6∈ Λ, then H j

[r] is empty for all j, and so it does not appear in L(A). Moreover, the Möbius

function is readily computed as µ(H j
I) = (−1)|I|.

Now if we fix k = |I| then clearly there are
∑

I,|I|=kmI intersections H j
I , and all these

are mutually disjoint. Summing up the Möbius function contributions for all the connected

components of H j
I gives the coefficient of qr−k in the characteristic polynomial χ(A, q), and we

obtain:

χ(A, q) =

r
∑

k=0

(−1)kqr−k
∑

I⊆[r],|I|=k

dĪmI .

Which, after the substitution q = −t−1 − 1, gives the Poincaré polynomial of the Ma.

The formula for the Betti numbers follows after a routine rearrangement of the sum. More

precisely, if

χ(q) =
r

∑

k=0

(−1)kcr−kq
r−k, P (t) =

r
∑

i=0

bit
i, and P (t) = (−t)rχ(−t−1 − 1)
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then bi =
∑r

l=r−i

(

l
r−i

)

cl. Note that br =
∑r

l=0 cl and that bi does not depend on c0 if i < r.

Consider now the case λ ∈ Λ. It is readily seen that positive dimensional intersections HJ
I

have the same description as in the generic case. Thus the coefficient of qr−k in χ(A, q) will stay

the same if k < r. The only difference may appear in the free term. To that coefficient only Hj
I

with |I| equals r or r + 1 may contribute.

Let us start with the case |I| = r; let p ∈ [r]\I. We distinguish two types for the intersections

H j
I . In the first type there exists jp ∈ {1, . . . ,mp} such that λ = ν(α0,j0 , . . . , αr,jr). In the

second type, ∀jp ∈ {1, . . . ,mp} we have λ 6= ν(α0,j0 , . . . , αr,jr). Then, we have

H j
I =







{

x
dp
p = α

dp
p,jp

, xs = αs,js, s 6= p
}

in the first type,
{

x
dp
p = a

∏

s 6=p α
−ds
s,js

, xs = αs,js, s 6= p
}

in the second one.

Both types consist of dp distinct points. The conditions on the value of ν immediately imply

that intersections of the first and second type are disjoint. Moreover two different intersections

of the second type are disjoint. Finally if in the second type we choose j′ such that ji = j′i if

and only if i 6= p, then H j′

[r] is empty. It remains to consider what happens with the intersection

of two pairs of the first type.

We fix notations. Let H j
I , H

j′

I′ be two intersections of the first type (|I| = |I ′| = r, p ∈ [r] \ I,

p′ ∈ [r] \ I ′). Let jp, jp′ be such that ν(α0,j0 , . . . , αr,jr) = λ = ν(α0,j′0
, . . . , αr,j′r

) Then H j
I and

H j′

I′ will intersect if and only if either

p = p′, js = j′s for s 6= p, and α
dp
p,jp

= α
dp
p,j′p

,

or

p 6= p′, js = j′s for s 6= p, p′, and α
dp
p,jp

= α
dp
p,j′p

, α
dp′

p′,j′p
= α

dp′

p′,j′
p′
.

We add an additional hypothesis: for any p ∈ [r] and 1 ≤ jp < j′p then

(2.1) α
dp
p,jp

6= α
dp
p,j′p

.

Under this hypothesis H j
I and H j′

I′ are disjoint.

Now we consider the case |I| = r + 1, i.e. I = [r]. Let j such that H j

[r] 6= ∅, i.e. it consists of

a single point {xs = αs,js , 0 ≤ s ≤ r}. For any p ∈ [r], this point lies also in H jp

p̄ (where jp is the

r-tuple obtained by forgetting jp. Note also that the other (dp − 1) points in H jp

p̄ only belong

to this set. Hence, for the point in Hj

[r] 6= ∅ it follows that µ = (−1)r while for the other points,

we have µ = r(−1)r.

Now if we sum up the contributions of all connected components of zero-dimensional inter-

sections, grouping them into the two types, we obtain a free term contribution with sign (−1)r

and whose absolute value is at most
∑

p∈[0,r] dpmp̄, the free term in the generic case. Indeed,
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the free term writes as (−1)r times

∑

J type 1





r
∑

p=0

(dp − 1) + r



+
∑

K type 2





r
∑

p=0

dp



 =
r

∑

p=0

dpmp̄ −#{J type 1}.

Finally, in case condition (2.1) is not satisfied, then the free term clearly drops even more in

absolute value. �

Let us fix n := (n0, n1, . . . , nr). We denote mi := ni − 1. For 0 ≤ i ≤ r, fix arbitrary sets

of mi non-zero complex numbers {αi,j}
mi

j=1. Let us denote Hj
i = {xi = αi,j}, if i > 0, and

Hj
ν,a = {ν(x) = aα−1

0,j}, for some a ∈ C
∗. Fix a ∈ C

∗ and denote Hj
0 := Hj

ν,a. We will consider

the following toric arrangement An
ν,a :=

⋃r
k=0{H

j
k}

mk

j=1.

3. Main Theorems

In this section we collect the main results of the paper. The proofs will be given in the last

two sections. The quasi-projective Bestvina-Brady groups were determined in [12].

Theorem 3.1 ([12]). Let Γ be a finite graph. Suppose the Bestvina-Brady group NΓ associated

to Γ is quasi-projective. Then Γ is either a tree, or a complete multipartite graph Kn0,...,nr , with

either some ni = 1 or all ni ≥ 2 and r ≥ 2.

We shall make this statement more precise, by showing that all quasi-projective groups NΓ

are in fact fundamental groups of hyperplane arrangement complements in P
r.

Theorem 3.2. Any quasi-projective Bestvina-Brady group NΓ is a hyperplane arrangement

group for an arrangement in P
r.

In the first case, NΓ is simply a free group of rank v − 1 (v is the number of vertices of the

tree) , which is known to be the fundamental group of the complement in P
1 of v points.

The second case will interest us most. Let Γ = Kn, with n := (n0, . . . , nr). The first part is

again easy. Assume ni = 1 for 0 ≤ i ≤ s and ni > 1 for s < i ≤ r. Then it is readily seen that

NKn
∼= Z

s × Fns+1
× · · · × Fnr . This group is clearly the fundamental group of the complement

of a hyperplane arrangement in C
r = P

r \ {z0 = 0} with equation

zi = αi, 1 ≤ i ≤ s, zi = αi,j, s+ 1 ≤ i ≤ r, 1 ≤ j ≤ ni,

for generic choices of αi, αi,j . Taking a generic plane section it can be seen as the fundamental

group of the complement of a line arrangement: Consider r − s distinct directions in C
2 and

take ni lines parallel to the s+ ith direction, and s other lines in general position.

So only the case NKn , with all ni ≥ 2 and r ≥ 2, is left. We will show in the next section

that NKn is the fundamental group of the complement in P
r to the hyperplane arrangement An

a
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defined by the polynomial

z0 · . . . · zr ·
n0−1
∏

j=1

(az0 − α0,jz1) ·





r−1
∏

i=1

ni−1
∏

j=1

(zi − αi,jzi+1)



 ·
nr−1
∏

j=1

(zr − αr,jz0),

A generic plane section provides a line arrangement with a precise combinatorics.

Corollary 3.3. The group NKn can be realized as π1(P
2 \An), where An is a line arrangement

in P
2 consisting of (n0 +1) · . . . · (nr +1) lines, formed by r lines in general position cutting out

a polygon with r+1 sides which have at vertex i another ni− 1 lines that intersect transversally

among themselves.

If Γ = Kn0,...,nr then the right-angled Artin group AΓ is the product of free groups Fn0
×· · ·×

Fnr . Using the same arguments, one can extend this result to other subgroups of AΓ, namely

to the generalized Bestvina-Brady group Nd
n , where n = (n0, . . . , nr), and d = (d0, . . . , dr) with

gcd(di) = 1.

Theorem 3.4. Any generalized Bestvina-Brady group Nd
n is the fundamental group of the com-

plement to an algebraic hypersurface in the weighted projective space P
r(d).

In fact, it is more convenient to view this complement space as obtained from an algebraic r-

torus by removing
∑r

i=0(ni−1) hypertori. More precisely, we will consider the toric arrangement

Ad
n,a(α) from Section 2. In certain cases, as we shall see later, it is still possible to realize

this toric arrangement complement as a hypersurface complement in P
r, but in general this

hypersurface is not the union of hyperplanes. Now recall that a K(π, 1) space for Nd
n may be

chosen to be the infinite cyclic cover Tχd

Kn
of the product TKn of tori. Then, by putting together

the geometric realizability of Nd
n from Section 4 and its higher dimensional consequences from

Section 5, we obtain the following.

Theorem 3.5. Let M = M(Ad
n,a(α)) be the toric arrangement complement, where r ≥ 2,

ni > 1, and a 6∈ Λ. Then we have the following

(1) the r-skeleton of Tχd

Kn
has the homotopy type of M .

(2) the Artin kernel Nd
n is isomorphic to π1(M).

(3) the homotopy groups πi(M) vanish in the range 1 < i < r.

(4) the homology groups Hi(M) and Hi(N
d
n ) are isomorphic for i ≤ r.

4. A geometric construction

Suppose T
r+1 \ D is a hypersurface complement in a complex torus of dimension r + 1. If

f : Tr+1 \D → C
∗ is a polynomial function then let Λf ⊂ C

∗ be the bifurcation set of f , that is

the smallest set Λ such that f is a locally trivial fibration over the complement of Λ.

In this section we will determine the bifurcation set Λf for certain monomial maps defined on

T
r+1 \D for which D is a union of hypertori of Tr+1, that is a toric arrangement complement.
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More precisely, given (r + 1)-tuples n := (ni)
r
i=0 and d := (di)

r
i=0 of positive integers, with

gcdd = 1, let p := pd denote the multiplication map:

p : Tr+1 → C
∗, p(x0, . . . , xr) := xd00 · . . . · xdrr .

Now, let f := fd
n : X → C

∗ denote the restriction of p to the complement X := T
r+1 \ D of

the hypersurface D :=
⋃

(i,j)∈B Di,j in the torus Tr+1, where Di,j := {xi = αi,j}, αi,j ∈ C
∗ and

B := {(i, j) | 1 ≤ j < ni, 0 ≤ i ≤ r}. Note that X is homeomorphic to C
∗
n0

× · · · × C
∗
nr
, the

toric complex TKn associated to the complete multipartite graph Kn; the analytic structure of

X depend on the sets of ni−1 points removed from each C
∗ factor. In fact, f = fd

n also depends

on them, but they are omitted for notational simplicity.

Lemma 4.1. The map f = fd
n : X → C

∗ induces the group homomorphism χ := χd
n : Nχ → Z.

Let a ∈ C
∗. Then the fiber p−1(a) = {xd00 · . . . · xdrr = a} is a connected hypertorus ambient

isomorphic to the hypertorus {y0 = a}, via a monomial automorphism xj 7→
∏r

j=0 y
aij
i , deter-

mined by a unimodular integer matrix A = (aij)0≤i,j≤r. Clearly the map p is a trivial fiber

bundle with fiber a connected torus. Let C := {j = (j0, . . . , jr) | 1 ≤ ji < ni, 0 ≤ i ≤ r}.

Proposition 4.2. The bifurcation set Λf consists of the values {aj := α0,j0 · . . . · αr,jr}j∈C .

For generic points {αi,j} the map f has exactly m := (n0 − 1) · . . . · (nr − 1) distinct special

fibers f−1(aj).

Proof. The hypersurface D determines a stratification of the ambient torus Tr+1 as follows. For

each I ⊂ B consider the intersection DI =
⋂

(i,j)∈I Di,j; the strata are defined as differences of

these closed sets. Then the top stratum is X itself and the positive codimension strata are the

intersections DI away from lower dimensional DI′ .

Now f : X → C
∗ is a restriction of p which is a trivial fiber bundle. In order to apply the

Thom Isotopy Lemma, it is enough to compactify X as a subspace of (normalization of)

Z := {([x0 : · · · : xr : y], t) ∈ P
r+1 × C

∗ | xd00 · . . . · xdrr = tydr+1}, dr+1 =
∑

di,

and extend p to a proper map of Z → C
∗. Note that p defines a trivial fibration at the strata

at infinity.

In order to make f into a fiber bundle we only have to remove those values a ∈ C
∗ (and their

preimages from X) such that p−1(a) does not intersect transversally at least one stratum of the

above stratification of Tr+1. It is immediate that the fibers p−1(a) intersect DI transversally

away from lower dimensional DI′ , unless DI are already zero-dimensional. In that case, the

stratum is simply a point which may lie or not on p−1(a). More precisely, DI is a point if

and only if I = I(j0,...,jr) = {(0, j0), . . . , (r, jr)} for (j0, . . . , jr) ∈ C. Note that I(j0,...,jr) ⊂

f−1(α0,j0 · . . . · αr,jr) and hence, Λf is determined.

Finally, if {αi,j}(i,j)∈B are generic, then the values a = α0,j0 ·. . .·αr,jr are pairwise distinct. �
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For the sake of simplicity, we will first treat the situation where di = 1 for all i. In that case

we just write f = fn and p : Tr+1 → C
∗, p(x) = x0 · . . . · xr. The fibers p−1(a) = {x ∈ T

r+1 |

x0 · . . . · xr = a} of the product map are isomorphic to the r-torus Tr under the identifications

(4.1) (x0, . . . , xr) 7→ (x1, . . . , xr), (x1, . . . , xr) 7→

(

a

x1 · . . . · xr
, x1, . . . , xr

)

.

Moreover one can identify T
r with P

r \ {z0 · . . . · zr = 0}, via

(4.2) (x1, . . . , xr) 7→



1 :
r
∏

j=1

xj :
r
∏

j=2

xj : · · · : xr−1xr : xr



 , [z0 : · · · : zr] 7→

(

z1
z2

, . . . ,
zr
z0

)

.

Thus, composing the inverse of the identifications (4.1)-(4.2), we obtain a diffeomorphism from

P
r \ {z0 · . . . · zr = 0} to p−1(a) provided by

(4.3) [z0 : · · · : zr] 7→

(

a
z0
z1

,
z1
z2

, . . . ,
zr
z0

)

.

Lemma 4.3. Consider the map f = fn : X → C
∗ as defined above. The fiber F = f−1(a) over

a ∈ C
∗ is homeomorphic to the complement in P

r of the hyperplane arrangement Aa defined by

the polynomial

z0 · . . . · zr ·
n0−1
∏

j=1

(az0 − α0,jz1) ·





r−1
∏

i=1

ni−1
∏

j=1

(zi − αi,jzi+1)



 ·
nr−1
∏

j=1

(zr − αr,jz0),

Proof. Under the identification {x ∈ T
r+1 | x0 · . . . · xr = a} → P

r \ {x0 · . . . · xr = 0} described

in (4.3) the fiber F = f−1(a) = {x ∈ T
r+1 | x0 · . . . · xr = a, xi 6= αi,j} is sent to

{[z0 : z1 : · · · : zr] ∈ P
r | zi 6= 0, az0 6= α0,jz1, zi 6= αi,jzi+1, zr 6= αr,jz0}. �

Remark 4.4. Because of Proposition 4.2, we know m =
∏r

i=0(ni − 1) ≥ m′ := #Λf . Let us

denote

C
∗
m′+1 = C

∗ \ Λ∗
f , E =

r
∏

i=0

C
∗
ni

\ f−1(Λ∗
f ).

The restriction f = fn : E → C
∗
m′+1 is a locally trivial fibration. For generic values, m = m′ as

stated in Proposition 4.2. For non-generic values of the αi,j ’s the bifurcation set could very well

have smaller cardinality than m.

For example the map f = f3,...,3 : (C∗ \ {±1})r+1 → C
∗ will have Λf = {±1}, thus m′ = 2 <

2r+1 = m. More generally, one may take the set of {αi,j}1≤j<ni
to consist of the subgroup µni−1

of roots of unity of order ni − 1 in C
∗.

We assume from now that m = m′. The exact sequence in homotopy of the fibration f = fn :

E → C
∗
m+1 gives a short exact sequence of groups

(4.4) 1 → π1(F ) → π1(E) → π1(C
∗
m+1) → 1.
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Identify π1(C
∗
m+1) with the free group of rank m + 1 written as Z ∗ Fm, where Z is generated

by the class t of a meridian around the origin, and Fm is the free group on aj (coming from

meridians around the points in Λf ), j ∈ C.

Note that π1(E) surjects onto the Artin group A =
∏r

i=0 Fni
, and the epimorphism is in-

duced by the inclusion E →֒
∏r

i=0C
∗
ni−1. The inclusion C

∗ \ Λf →֒ C
∗ induces the obvious

epimorphism Z ∗ Fm → Z. Comparing the short exact sequence of the fiber bundle with the

one defining Bestvina-Brady group, we obtain a commutative diagram whose vertical arrows are

epimorphisms. In fact we have the following.

Lemma 4.5. The arrangement group π1(F ) is isomorphic to the Bestvina-Brady group N = Nn.

Remark 4.6. The particular case f = f2,...,2 : (C
∗\{1})r+1 → C

∗ leads to interesting hyperplane

arrangements. The fiber F = f−1(a) over a 6= 1 is homeomorphic to the complement of the

hyperplane arrangement Aa in P
r defined by z0z1 . . . zr(az0− z1)(z1− z2) . . . (zr−1− zr)(zr− z0).

The bifurcation set Λf is just λ = 1. If r > 2 then it is readily seen that the fundamental group

of the complement to Aa does not change even when a = 1. Lemma 4.5 will imply that N2,...,2 is

the group of the graphic arrangement z0z1 . . . zr(z0 − z1)(z1 − z2) . . . (zr−1 − zr)(zr − z0), r > 2.

Proof of Lemma 4.5. We have the following commutative diagram, where the rows are exact and

the vertical arrows are surjective:

0 → π1(F ) → π1(E) → π1(C
∗
m+1) ≡ Z ∗ Fm → 0

↓ ↓ ↓

0 → N → A → π1(C
∗) ≡ Z → 0

Let us fix j := (j0, . . . , jr) ∈ C. Let γj be a lift of aj to π1(E) that becomes trivial in the Artin

group A. Let G be the subgroup of π1(E) normally generated by γj, j ∈ C. If we identify π1(F )

as a subgroup of π1(E), then K := ker(π1(F ) → N) = G ∩ π1(F ). It can be easily checked that

K is normally generated by [g, γj], g ∈ π1(F ), j ∈ C. The goal is to prove that K is trivial and

this fact holds if gγj = g for all g in π1(F ) and j ∈ C.

The crucial observation is that the conjugation by γj is obtained by means of the monodromy

action of aj on π1(F ); this is due to the choice of the lift γj to be trivial in A. In order to

understand the action, we need to understand the behavior of f near the bifurcation value αj.

The only stratum not transversal to f−1(αj) is the stratum Ij which consists of a point pj :=

(α0,j0 , . . . , αr,jr). Let Dj be a small closed disk around αj and let us denote D
∗
j := Dj \ {αj}.

The disk is chosen in order to ensure the following facts:

• There is a small Milnor ball Bj ⊂ p−1(Dj) for p around pj.

• Xj := φ−1(Dj) \ Bj fibers trivially over Dj.

We have realized a decomposition f−1(D∗
j ) = X∗

j ∪ B̌j for X
∗
j := Xj ∩ E and B̌j := Bj ∩ E. The

intersections Yj := Xj ∩ B̌j Y
∗
j := X∗

j ∩ B̌j are arcwise connected.
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Since the statement deals with a conjugation equality, we may choose as F any non-special

fiber. Let us fix α̃j ∈ ∂Dj and fix F := f−1(α̃j); for later use, let us denote Fj := f−1(αj), which

is a special fiber. Let us denote M := F ∩ B̌j, Mj := F ∩ B̌j, F̌ := F ∩ Xj, F̌j := Fj ∩ Xj,

F ∂ = M ∩ F̌ and F ∂
j = Mj ∩ F̌j.

By the above construction:

Xj
∼= F̌ ×Dj

∼= F̌j × Dj, X∗
j
∼= F̌ × D

∗
j

and these homeomorphisms restrict to:

Yj
∼= F ∂ × Dj∗ ∼= F ∂

j × Dj, Y ∗
j
∼= F ∂ × D

∗
j ;

moreover the pairs (F̌ , F ∂) and (F̌j, F
∂
j ) are isotopic in Xj. We can choose a representative of

γj in Y ∗
j ; the above homeomorphism imply that the action of γj by conjugation on π1(F̌ ) is

trivial. Hence, applying Seifert-van Kampen theorem, it is enough to check that the action of

γj by conjugation on π1(M) is also trivial.

This is done as follows. Using the Taylor expansion of p around pj we can choose ana-

lytic coordinates t for Dj (centered at αj) and (y0, . . . , yr) for Bj (centered at pj) such that

p(y0, . . . , yr) = y0 + · · · + yr.

Then, M has the homotopy type of the complement of the arrangement of equation z1 · . . . ·

zr · (z1 + · · · + zr − b) = 0 in C
r, for some b ∈ C

∗. This group is generated by the meridians of

the hyperplanes and it is abelian (since r ≥ 2). Let µ be the meridian of one of the hyperplanes;

the element µγj is constructed geometrically using the monodromy around aj and it is again

a meridian of the same hyperplane. Since the group is abelian we obtain that µγj = µ; since

the group π1(M) is generated by these meridians we obtain that γj acts trivially on π1(M) as

required. �

Proof of Theorem 3.2. It is an immediate consequence of Lemmas 4.3 and 4.5. �

Proof of Corollary 3.3. In order to obtain the arrangement An in P
2 we only need to take a

generic 2-dimensional slice of the hyperplane arrangement Aa in P
r. �

We now look at the general case of f = fd
n , where di ≥ 1 are integers whose greatest common

divisor is 1. The fibers of the product map p = pd : Tr+1 → C
∗ are still tori isomorphic to T

r,

but the identification map does not have an explicit form in terms of the di’s. In fact, the torus

T
r naturally lives as Pr(d)\{z0 · · · zr = 0} inside the weighted projective space Pr(d). Therefore

the fibers of f can be identified with complements of hypersurfaces in P
r(d).

Remark 4.7. In case one of the di’s is equal to 1, say d0 = 1, we can still realize the fibers of f

as complements of hypersurfaces in P
r. Indeed, the fiber p−1(a) = {x0 ·x

d1
1 · . . . ·xdrr = a} ⊂ T

r+1

is homeomorphic to P
r \ {z0 · . . . · zr = 0} via the mapping: xi = ziz

−1
i+1 for 1 ≤ i ≤ r, and

x0 = azdr0 z−d1
1 zd1−d2

2 · · · z
dr−1−dr
r .



ARRANGEMENTS OF HYPERSURFACES AND BESTVINA-BRADY GROUPS 21

Example 4.8. Consider the map f = fd
2,...,2 : (C∗ \ {1})r+1 → C

∗ and assume d0 = 1. The

bifurcation set is Λf = {1}. The fiber F = f−1(a) is homeomorphic to the complement of the

arrangement of hypersurfaces Aa in P
r defined by the polynomial

z0 · · · zr ·
r
∏

i=1

(zi − zi+1) ·
n0−1
∏

j=1

(azdr0 − zd11 zd2−d1
2 · · · zdr−dr−1

r ).

Proof of Theorem 3.4. The proof follows the same ideas as the proof of Theorem 3.2. We have

seen above that the generic fibers of f are in a natural way hypersurfaces of in some weighted

projective space. The special fibers are obtained as in Proposition 4.2; they correspond to

some 0-dimensional non-zero strata. If we take out the special fibers we obtained a short exact

sequence like (4.4). The local behavior around the bad 0-dimensional strata are like in the proof

of Lemma 4.5 and the result follows. �

5. Fibrations and homotopy groups

We will show here that the map f : X = T
r+1 \D → C

∗ considered in the previous section is

in fact like a fibration in codimension 1. Also, in order to investigate the homology of the Artin

kernels Nχ
Γ , we construct geometric approximations of their K(π, 1) complexes.

Recall that f : f−1(B) = XΛ → C
∗ \ Λ = B is a fiber bundle. The bifurcation set Λ consists

of the a ∈ C
∗ for which the fiber Fa = f−1(a) is not transverse to all the strata of the divisor D.

Also recall from the proof of Proposition 4.2 that the union Σ of those non-transversal strata is

a finite set of points.

5.1. Quasifibrations.

In order to describe the objects and concepts mentioned above we need some definitions. In

what follows we will consider f : X → C surjective maps where C is path-connected.

Definition 5.1 ([14]). A map f : X → C is a quasifibration (resp. up to dimension n) if

it induces a weak homotopy equivalence (resp. n-equivalence) f : (X,Fc) → (C, c) for all

c ∈ C,Fc = f−1(c), that is, if for any x ∈ Fc the morphism

f∗ : πi(X,Fc, x) → πi(C, c)

is an isomorphism for all i ≥ 0 (resp. for all i < n and a surjection for i = n). We call a

quasifibration up to dimension n an n-quasifibration for short.

A characterization of n-quasifibrations is the following (cf. [21, 16]): A map f : X → C is an

n-quasifibration if and only if the inclusion Fc → Hc of any fiber Fc = f−1(c) into the homotopy

theoretic fiber Hc is a (weak) homotopy n-equivalence.

As a consequence of this, all the fibers of an n-quasifibration have the same weak homotopy

type up to dimension n.
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5.2. Monomial quasifibrations.

We will show that the monomial maps f : X = T
r+1 \ D → C

∗ considered in the previous

section have a quasifibration structure. For the rest of the section we assume r ≥ 3 unless

otherwise stated.

Proposition 5.2. The map f : X = T
r+1 \ D → C

∗ defined by f(x) = xd00 · . . . · xdrr is an

r-quasifibration.

Proof. The proof will use the tools for quasifibrations devised in the proof of the Dold-Thom

theorem as outlined in Hatcher [17, Chapter 4, Section 4.K]. The restriction f : XΛ → C
∗\Λ = B

is a fiber bundle, and thus a fibration and a quasifibration. Choose neighborhoods Bj of the

points qj in the finite set Λ so that B ∪
⋃

j Bj is a cover of C∗. The result will follow from the

gluing theorem in [17, Lemma 4K.3] (see also [16, Theorem 2.3]) as soon as we prove that the

restrictions f : f−1(Bj) → Bj are r-quasifibrations.

Recall that to each qj ∈ Λ it corresponds a non-transversality point pj in the intersection of

D with the fiber f−1(λ) of f : Tr+1 → C
∗. Using [17, Corollary 4K.2], it is enough to show the

following local statement: For any qj ∈ Λ, there exist neighborhoods Uj of pj in T
r+1 and Vj of

qj in C
∗ such that f : Xj = Uj ∩X → Vj is an r-quasifibration.

As in Lemma 4.5, in local coordinates centered at pj, respectively qj, we have to consider the

map f : Tr+1 → C given by f(z) = d0z0 + · · · + drzr. The fibers of this map Fc = f−1(c) are

complements to hyperplane arrangements:

Fc = C
r \ {z1 . . . zr(d1z1 + · · · + drzr − c) = 0}.

The arrangements involved are in general position as in the work of Hattori [18]. The results

there give that Fc has the following homotopy type

Fc ≃







(T r)(r) if c 6= 0,

(T r−1)(r−1) if c = 0,

where T k is the real k-dimensional torus, and (T k)(l) is its l-skeleton. That yields π1(Fc) = Z
r

and

πi(Fc) = 0 if







1 < i < r and c 6= 0,

1 < i < r − 1 and c = 0.

The long exact sequence of the pair (Tr+1, Fc) provides the vanishing and surjection needed to

obtain that the map f : (Tr+1, Fc) → (C, c) is an r-equivalence. Hence f : Tr+1 → C is an

r-quasifibration, and the local statement is proved. �

Corollary 5.3. Let F be any fiber of the map f : X = T
r+1 \ D → C

∗. Then πi(F ) = 0 for

1 < i < r − 1.
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Proof. The result follows from the long exact sequence of f which is an r-quasifibration with

aspherical base and total space. �

Proposition 5.4. Let F be the general fiber of the map f : X = T
r+1 \D → C

∗, r ≥ 2. Then

πr−1(F ) = 0.

Proof. Note that f : E → B is a fiber bundle with fiber F and aspherical base B = C
∗ \Λ. Thus

we are done if we show that πr−1(E) = 0.

Suppose the map f : X = T
r+1 \D → C

∗ defined by f(x) = xd00 · . . . · xdrr has m special fibers

Λ = {a1, . . . , am} (see Proposition 4.2), thus E = X \
⋃m

j=1{x
d0
0 · . . . · xdrr = aj}.

Consider now the divisor D = D ∪
⋃m

j=1{xr+1 − aa−1
j = 0} in T

r+2, for some a ∈ C
∗.

It is readily seen that E can be identified with the special fiber F a = f̄−1(a) of the map

f̄ : X = T
r+2 \ D → C

∗ given by f̄(x, xr+1) = xd00 · . . . · xdrr xr+1. But πr−1(F a) = 0 from

Corollary 5.3. �

Let F be the general fiber of the map f : X = T
r+1 \D → C

∗ defined by f(x) = xd00 · . . . ·xdrr ,

where D =
⋃r

i=0

⋃ni−1
j=1 {xi = αi,j}. Then X is clearly homotopy equivalent to TΓ ⊂ T r+1 the

toric complex associated with the complete graph Γ = Kn. Let Tχ
Γ be the infinite cyclic cover

of TΓ associated with the epimorphism χ : AΓ → Z defined by χ(σi,j) = di. The multiplication

map f : TΓ → S
1, now seen in the real context, is a fibration with fiber Tχ

Γ . Recall that Tχ
Γ is

an Eilenberg-MacLane space for the Artin kernel Nχ
Γ = kerχ.

Corollary 5.5. For r ≥ 2, the general fiber F is a smooth quasi-projective variety of dimension r

that has the homotopy type of an r-dimensional CW-complex. The r-skeleton of the infinite cyclic

cover Tχ
Γ has the homotopy type of F . In particular

Hi(N
χ
Γ )

∼=







Hi(F ) for i ≤ r,

π∗
r(F ), for i = r + 1,

where π∗
i are the coinvariants of πi under the π1-action.

Proof. We know that π1(F ) = Nχ
Γ . From Corollary 5.3 and Proposition 5.4 we have that

πi(F ) = 0 for 1 < i < r. That ensures (Tχ
Γ )

(r) = F . �

We obtain that the first non-vanishing homotopy group of the general fiber πr(F ) is of infinite

rank, as π∗
r(F ) is so.

All the special fibers Fs are smooth r-dimensional quasi-projective varieties sharing the ho-

motopy type of an r-dimensional CW-complex. If r ≥ 3, the (r − 1)-skeletons of Fs and of the

general fiber F have the same homotopy type.
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Corollary 5.6. The special fiber Fs is a smooth r-dimensional quasi-projective variety. If r = 2,

the special fiber Fs is aspherical and π1(Fs) is not isomorphic to Nχ
Γ . If r ≥ 3, we have that

πi(Fs)















= Nχ
Γ , if i = 1,

= 0, if 1 < i < r − 1,

6= 0 if i = r − 1,

Hi(N
χ
Γ )

∼= Hi(Fs) for i < r

and an exact sequence

(5.1) Hr(Fs) → Hr(N
χ
Γ ) → π∗

r−1(Fs) → 0.

In other words, if r ≥ 3, then π∗
r−1(Fs) is a finitely generated abelian group of rank br(Fs)−br(F ).

Proof. We know that π1(Fs) = Nχ
Γ , if r ≥ 3. From Corollary 5.3 we have that πi(Fs) = 0 for

1 < i < r. That ensures F
(r−1)
s = F (r−1) = (Tχ

Γ )
(r−1). The exact sequence (5.1) comes from the

long exact sequence in homology obtained from the classifying map Fs → Tχ
Γ = K(Nχ

Γ , 1). �
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