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COHOMOLOGY ALGEBRA OF PLANE CURVES, WEAK

COMBINATORIAL TYPE, AND FORMALITY

J. I. COGOLLUDO AGUSTÍN AND D. MATEI

Abstract. We determine an explicit presentation by generators and relations
of the cohomology algebra H∗(P2 \ C,C) of the complement to an algebraic
curve C in the complex projective plane P2 via the study of log-resolution log-
arithmic forms on P2. As a first consequence, we derive that H∗(P2 \ C,C)
depends only on the following finite pieces of data: the number of irreducible
components of C together with their degrees and genera, the number of lo-
cal branches of each component at each singular point, and the intersection
numbers of every two distinct local branches at each singular point of C. This
finite set of data is referred to as the weak combinatorial type of C. A further
corollary is that the twisted cohomology jumping loci of H∗(P2 \ C,C) con-
taining the trivial character also depend on the weak combinatorial type of
C. Finally, the explicit construction of the generators and relations allows us
to prove that complements of plane projective curves are formal spaces in the
sense of Sullivan.

1. Introduction

The combinatorial type KC of a complex projective curve C ⊂ P
2 consists of the

following list of data: the set of irreducible components C1, . . . , Cr of C together
with their degrees d̄ := (d1, . . . , dr), the set of singular points Sing(C) of C together
with their topological types Σ(C), and, for every P ∈ Sing(C), the correspondence
φP that associates to each local branch at P the global irreducible component it
belongs to.

The combinatorial type of C determines the abstract topology of C itself. This
is not the case for the topology of the embedding C ⊂ P2, as shown by Zariski’s
classical work where he established that the fundamental group π1(P

2 \ C) is not
determined by KC .

In this paper, we consider a topological invariant of C, called the weak com-
binatorial type WC of C, which is coarser than KC , and yet it contains enough
information to determine the cohomology algebra H∗(P2 \ C,C). Roughly speak-
ing, WC consists of the following pieces of data: the set of irreducible components
C1, . . . , Cr of C together with their degrees d̄ := (d1, . . . , dr) and genera, the set of
singular points Sing(C) of C, the correspondence φP as above, and the intersection
numbers of every two distinct local branches at each singular point of C. Note that
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the Betti numbers of SC depend only on the number, degrees, and genera of the
irreducible components of C.

In [5], the first author proves that H∗(SC,C) depends only on WC , in the case
where C is an arrangement of rational curves. Here we extend that result to arbi-
trary curves. The result follows from an explicit presentation of the cohomology
algebra H∗(SC ,C) which is obtained by means of the Poincaré residue operators
of [12, 11]. For other interesting attempts to describe a presentation of H∗(SC ,C)
via differential forms, see [16].

An outline of the construction proceeds as follows. Fix a resolution π : S̄ → P2

of the singular locus of C in P2 such that C̄, the reduced divisor associated with π∗C,
is a simple normal crossing divisor in S̄. Denote by C̄[k], k = 0, 1, 2, the disjoint

union of the codimension k intersections of the components of C̄. Let W [m]
� be

the weight filtration on the sheaf of logarithmic forms on C̄[m] with respect to the

divisor C̄[m+1]. Consider �R
[k]
m as the residue operator on W [m]

� . Note that these

filtrations are compatible with the exterior differential d and that the residues �R̃
[k]
m

defined on W [m]
� /W [m]

�−1 induce isomorphisms in d-cohomology. In particular, for

k = 1, 2 one has the residue operators R[k] := kR
[k]
0 mapping the sheaf Wk := W [0]

k

of logarithmic forms of weight k on S̄ with respect to the divisor C̄ to the sheaf

of differential forms W [k]
0 . Considering the complexes (Wk, d), the exact sequence

0 → Wi−1 → Wi → Wi/Wi−1 → 0, and using the resolution π and deRham
isomorphisms, we can construct from the coboundary maps the following residue
maps:

Res[i] : Hi(SC ,C) → H0(C̄[i]), i = 1, 2.

They are key to our approach in understanding the cohomology groups Hi(SC,C),
i = 1, 2.

First of all, Res[1] : H1(SC,C) → H0(C̄[1]) turns out to be an injection. Then a
basis for H1(SC ,C) can be chosen to be the cohomology classes of the logarithmic
1-forms σi = d(log Ci

C
di
0

), 1 ≤ i ≤ r, where Ci are the irreducible components of C
and C0 is a transversal line at infinity. This condition is not strictly necessary, but
we use it for technical reasons. For a general description see Remark 3.30.

The map Res[2] : H2(SC,C) → H0(C̄[2]) will not be an injection in general, unless
all the components of C are rational. Nevertheless, we can find a decomposition

of H2(SC ,C) of the form V2
C ⊕ KC ⊕ KC , where kerRes[2] = KC ⊕ KC , with KC

a g-dimensional vector space of classes of holomorphic 2-forms of weight 1 such

that 1R̃
[1]
0 KC exhausts the holomorphic 1-forms on C̄[1] and KC is the conjugate

of KC. Note that KC will necessarily consist of classes having non-holomorphic
representatives. The vector space V2

C will be generated by the classes of certain log-
resolution logarithmic 2-forms which are constructed by the same method employed
in [5] for the rational arrangements case. The basic ingredients are logarithmic
ideals associated with the resolution trees appearing in the construction of π and
ideal sheaves associated to pairs of branches at the singular points of C. The
choice of the log-resolution logarithmic 2-forms is made by imposing appropriate
normalizing conditions.

An important feature of the decomposition H2(SC ,C) = V2
C ⊕ KC ⊕ KC is that

V2
C ⊃ H1(SC ,C) ∪H1(SC ,C), the cup product of 1-forms. Moreover, by a residue

computation we determine the map H1(SC,C) ×H1(SC ,C)
∪→ V2

C in terms of the
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above constructed generators and see that it depends only on the degrees of the
components of C and the intersection numbers of the local branches at the singular
points of C. By another residue computation, we determine the relations among the
generators of V2

C . Finally, adding the trivial relations H1(SC ,C) ∪H2(SC ,C) = 0,
we obtain a presentation for the cohomology algebra H∗(SC,C).

After normalizing the generators in V2
C appropriately, the relations imposed by

H1(SC ,C) ∪H1(SC ,C) ⊂ V2
C will be satisfied as differential forms. We thus derive

an analogue of the Brieskorn lemma in the theory of hyperplane arrangements,
thereby obtaining an embedding of the algebra of differential forms on SC into the
cohomology algebra H∗(SC ,C). This immediately implies the formality of SC .

The implications of this description of the cohomology algebra H∗(SC,C) and
the cohomology jumping loci of the space of local systems on C (along the lines
of [8]) will be addressed in an upcoming paper.

2. Settings

2.1. C∞ log complex of quasi-projective algebraic varieties. For the sake of
completeness, in this section we will describe an appropriate setting for the study
of the cohomology ring of the complement to plane algebraic curves. This includes
definitions and basic properties of logarithmic sheaves and the definition of a very
useful operator on these sheaves: the Poincaré residue operator. The basic ideas in
this section follow from [11, Chapter 5], but we present a slight generalization of
their results which will be necessary for the rest of the paper.

Let X be a smooth, quasi-projective algebraic variety of dimension n over C and
X be a smooth compactification of X. We will assume X to be a smooth projective
variety such that X = X \D, where D is a simple normal crossing divisor, that is, a
union D1 ∪ · · · ∪DN of smooth divisors on X with normal crossings. The condition
of normal crossing on D means that locally at P ∈ X, the divisor D is given by

{(z1, . . . , zn) | zi1 · . . . · zim = 0} = {(z1, . . . , zn) | zIP = 0},

where IP = {i1, . . . , im} ⊂ {1, . . . , n}. Each coordinate of IP must correspond
locally to a different global component of D (since each component Di is smooth).

We will use a tilde, as in ĨP , to indicate the ordered set of such subindices, that is,
ĨP ⊂ {1, . . . , N}.

Definition 2.1. Let AX be the sheaf of C∞-forms on X. Denote by A0
X

the sheaf

of C∞ functions on X. Note that AX is a sheaf of graded algebras over A0
X
. The

sheaf of C∞ log forms AX(log〈D〉) can be defined locally at a point P ∈ X as the
graded algebra over (A0

X
)P of C∞-forms ϕ ∈ (AX)P such that

zIPϕ and zIP dϕ

are C∞-forms in (AX)P .

A form ϕ on U ⊂ X shall be called logarithmic on U (with respect to D) if
ϕ ∈ AX(log〈D〉)(U).

The sheaf AX(log〈D〉) is a locally free and finitely generated A0
X
-algebra, as

follows from

Lemma 2.2 ([11, Lemma 5.7]). AX(log〈D〉)(UP ) ∼= AX(UP ){dzi
zi

}i∈IP .
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By definition, AX(log〈D〉) is closed under the exterior derivation d. This lemma
shows that it is in fact closed under the exterior product and generated by
A1

X
(log〈D〉).
In what follows, a weight filtration is defined in this sheaf of graded algebras

that is compatible with the differential d.

Definition 2.3. If � ≥ 0 we shall define the sheaf of C∞ log forms of weight � as
the subsheaf of AX(log〈D〉) given locally as the (AX)0

P
-submodule of AX(log〈D〉)P

of those forms ϕ such that

ϕ ∈
∑

I⊂IP ,
|I|≤�

AX

{
dzi
zi

}
i∈I

.

Such a sheaf will be denoted by W� := W�

(
AX(log〈D〉)

)
. If � < 0, we will

assume W� := {0}.

Remark 2.4. Note that W� ⊂ W�+1, dW� ⊂ W�, and W�∧W�′ ⊂ W�+�′ are obvious
consequences of Definition 2.3.

Notation 2.5.

(1) Let us denote by D[k]
the disjoint union of the codimension k intersections

of components of D, that is;

D[k]
:=

⊔
|I|=k

DI ,

where DI =
⋂

i∈I Di.

(2) There is a natural inclusion DI
iI
↪→ X for each DI ∈ D[k]

. Denoting by ik

the corresponding map on D[k]
, one has the following sheaf on X:

A∗
D[k] = (ik)∗

⊕
|I|=k

A∗
DI

.

Definition 2.6. Under the notation above, the Poincaré residue operator

R[k] : Wk

(
A∗

X
(log〈D〉)

)
−→ A∗−k

D[k]

can be defined locally by

R[k]

(
αP ∧ dzI

zI

)
= (−1)σ(Ĩ)αP |DI

,

where:

i) dzI
zI

denotes
dzi1
zi1

∧ · · · ∧ dzik
zik

, and

ii) if Ĩ = {̃i1, . . . , ĩk} ⊂ {1, . . . , N}, then σ(Ĩ) := sign(̃ik+1, . . . , ĩN , ĩ1, . . . , ĩk),

where ĩk+1 < · · · < ĩN are the ordered elements of {1, . . . , N} \ Ĩ.

Remark 2.7. Note that for any DI′ and DI with |I ′| = k + 1 and |I| = k, one can
define a smooth divisor on DI as follows:

DI |DI′
:=

{
DI′ if I ⊂ I ′,
∅ otherwise.

Moreover, the union

DI |D[k+1] :=
∑

|I′|=k+1

DI |DI′
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provides a simple normal crossing divisor in DI ⊂ D[k]
. Hence, D[k]

can be re-
garded as a disjoint union of smooth compact algebraic varieties, each component
containing a divisor with normal crossings. Therefore, one can consider the sheaf
of C∞ log forms on each smooth algebraic variety DI with respect to DI |D[k+1] ,

denoted by ADI
(log〈D[k+1]〉).

Definition 2.8. By means of the inclusions DI
ik
↪→ X, one can also define log

sheaves on D[k]
relative to D[k+1]

as subsheaves of the direct sum of log sheaves,
for each component satisfying certain compatibility relations. That is,

AD[k](log〈D[k+1]〉) ⊂
⊕
|I|=k

ADI
(log〈D[k+1]〉),

defined by the following natural local condition: for any strings I1, I2, I
′
1, I

′
2 such

that |Ii| = |I ′i| = ki, i = 1, 2, and {I1 + I2} = {I ′1 + I ′2}, and for any pair of forms

αP
dzI2
zI2

∈
(
A∗

DI1

(log〈D[k1+1]〉)
)
P

and βP

dzI′
2

zI′
2

∈
(
A∗

DI′1
(log〈D[k1+1]〉)

)
P

,

one has

(1) (−1)σ(Ĩ1)(−1)σ(Ĩ2+I1)αP |DI1
= (−1)σ(Ĩ

′
1)(−1)σ(Ĩ

′
2+I′

1)βP |DI′1
,

where Ĩi and Ĩ ′i are as in Definition 2.6 and I + I ′ denotes juxtaposition of strings.
For simplicity, this sheaf will be denoted by A∗

k(log〈D〉) and its restriction to DI

(for |I| = k) by A∗
k,I(log〈D〉).

There also exists an obvious weight filtration on Ak(log〈D〉), denoted by W [k]
� .

Note that W [0]
� = W�(AX(log〈D〉)) and W [k]

0 = AD[k] . The compatibility relations

described in (1) allow for a generalization of the Poincaré residue operator to all
the log sheaves relative to D, namely

(2) �R[k]
m : W [m]

� −→ W [m+k]
�−k .

In order to give a local description of �R
[k]
m let us consider a point P ∈ X and a

form ϕ ∈
(
A∗

k(log〈D〉)
)
P
. Let us denote by

(
�R

[k]
m ϕ

)
I
the coordinate of �R

[k]
m ϕ on

A∗−k
k+m,I(log〈D〉)P , where |I| = m + k. In order to calculate this coordinate take

two disjoint strings I1 and I2 such that |I1| = m and DI = {zI1zI2 = 0}, and hence
|I2| = k. The form ϕ can be written as

α
dzI2
zI2

∈
(
A∗

k,I1(log〈D〉)
)
P
.

Thus one can define(
�R[k]

m ϕ
)
I
:= (−1)σ(Ĩ1)(−1)σ(Ĩ2+I1)α |DI

.

Again by (1) the definition of
(
�R

[k]
m ϕ

)
I
does not depend on the choice of I1 and

I2.
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The main result about these generalized residue maps, which will be intensively
used throughout the paper, is the following:

Theorem 2.9 ([11, Theorem 5.15] and [5, Theorem 1.28]). Any generalized residue
mapping

�R̃[k]
m : (W

[m],∗
� /W

[m],∗
�−1 ) −→ (W

[m+k],∗−k
�−k /W

[m+k],∗−k
�−k−1 )

on the complex of global sections induces an isomorphism on d-cohomology. More-
over,

�−k1R̃
[k2]
m+k1

◦ �R̃[k1]
m = �R̃[k1+k2]

m .

2.2. The spaces Hk(P2 \ C;C) and the residue maps. As a general setting, let
S be a smooth compact surface, C ⊂ S a reduced divisor. Let us denote by SC the
complement of C in S. Consider a resolution π : SC → S of C in S such that SC
is a compactification of SC by a simple normal crossing divisor, and let C be the
reduced structure of π∗C. Note that SC is isomorphic to SC \ C via π.

Definition 2.10. A log-resolution logarithmic form on C at P ∈ S is a differential
form ϕ ∈ (A∗

SC
)P such that π∗(ϕ)P ∈ A∗(log〈C〉)P , that is, ϕ ∈ π∗A∗

SC
. The sheaf

of log-resolution logarithmic forms on C will be denoted by Alog
S (C) = π∗A∗

SC
.

Remark 2.11. Consider C ⊂ S a simple normal crossing divisor, P ∈ S, and ϕ ∈
A∗(log〈C〉)P a differential logarithmic form. Denote by π : S̄ → S the blow-up of P
in S. Note that π∗ϕ is also a logarithmic form on π−1C at any point Q ∈ π−1(P ).
This, together with the fact that any two sequences of blow-ups of S are dominated
by a third one, implies that the notion of a log-resolution logarithmic form on C is
independent of the given embedded resolution of C.

Note that Alog
S (C) ⊂ AS(C), where AS(C) is the classical sheaf of logarithmic

differential forms on C locally defined as

(AS(C))P := {ϕ ∈ (A∗
SC)P | CPϕ ∈ (A∗

SC
)P , CPdϕ ∈ (A∗

SC
)P },

where CP is a reduced equation of C at P .

In fact, Alog
S (C) is the largest subsheaf of AS(C) that is stable under blow-ups.

Moreover, by Lemma 2.2, Alog
S (C) is locally free.

Construction 2.12. Let C ⊂ P2 be an algebraic curve with irreducible components
C0, C1, . . . , Cr. Fix π : SC −→ P

2 as a resolution of the singularities of C so that
the reduced divisor C = (π∗(C))red is a simple normal crossing divisor on SC , as
described in section 2.1.

Consider the following short exact sequence of complexes 0 → Wi−1 → Wi →
Wi/Wi−1 → 0, where Wi denotes the complex (W

[0],∗
i ASC

(log〈C〉), d). Let us con-
sider its corresponding long exact sequence of d-cohomology

(3)
. . . → Hk−1(Wi/Wi−1) → Hk(Wi−1) → Hk(Wi)

δki−→ Hk(Wi/Wi−1)

→ Hk+1(Wi−1) → . . . .

Using the de Rham Theorem and Theorem 2.9, one can define the residue map

Res[i] : Hi(SC ;C) → H0(C[i]
;C) as the following composition:

(4) Hi(SC;C)
π−1∼= Hi(SC \ C;C)

DR∼=Hi(SC ,Wi)
δii−→Hi(SC ,Wi/Wi−1)

R[i]∼= H0(C[i]
;C).
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Proposition 2.13 ([5, Proposition 2.2]). If C is an algebraic plane curve with
complement SC, then

H2(SC;C) ∼= H1(C;C), and H1(SC ;C) ∼= H2(C;C)/C.

Notation 2.14. Let Y be a topological space. In what follows, we will denote by
hi(Y ) (resp. hi(Y )) the dimension of the vector space Hi(Y ;C) (resp. Hi(Y ;C)).
Note that, by the Universal Coefficient Theorem, hi(Y ) = hi(Y ).

One has the following result.

Proposition 2.15. The first residue map H1(SC)
Res[1]−→H0(C[1]

) is injective. On the
other hand,

ker
(
H2(SC)

Res[2]−→H0(C[2]
)
)
⊂ H2(W1)

has dimension 2g, where g =
∑r

i=1 g(Ci) is the sum of the genera of the irreducible
components of C.

Proof. The injectivity of Res[1] follows immediately from (3) for the case i = k = 1,
and H1(W0, d) = 0. Let us now consider (3) for k = 2, i = 1.
(5)

H1(W0) → H1(W1) → H1(W1/W0) → H2(W0) → H2(W1) → H2(W1/W0) → H3(W0)
‖ ‖ ‖ ‖ ‖ ‖

H1(SC) H1(SC) H0(C[1]
) H2(SC) H1(C[1]

) H3(SC)
‖ ‖ ‖ ‖ ‖ ‖
0 Cr Cr+e+1 Ce+1 C2g 0

where e is the number of exceptional components in the resolution of C. The
equalities in the second column are a consequence of de Rham and Proposition 2.13.
The others are a consequence of Hk(W0) = Hk(SC), de Rham, and Theorem 2.9.

Computing the Euler characteristic of this long exact sequence, one obtains that
H2(W1, d) ∼= C2g, and therefore, using (3) for the case i = k = 2, one obtains

0 → H2(W1) = C
2g → H2(W2) = H2(SC)

Res[2]−→H0(C[2]
) → H3(W1) → . . . ,

which proves that ker
(
H2(SC)

Res[2]−→H0(C[2]
)
)
= H2(SC ;W1) ∼= C

2g. Finally, by the

Leray spectral sequence, since all these sheaves are flasque, one has the projection
formula H2(SC ;W1) ∼= H2(P2;π∗W1). �

2.3. Classical combinatorics. In this paragraph we just want to give a general
outline of the classical concept of a combinatorial type of a curve. This concept
is generally accepted and used, but is seldom explicitly defined. In [2] there is a
detailed explanation of the matter. For the sake of completeness, we summarize
the main ideas.

Definition 2.16. Let C ⊂ P2 be a plane projective curve. The combinatorial type
of C is given by a sextuplet

KC := (r, d̄, S,Σ, σ,Δ, φ),

where:

(i) The elements of r are in bijection with the irreducible components of C,
(ii) d̄ : r → N is the degree map that assigns to each irreducible component of C

its degree,
(iii) S := Sing(C), the set of singular points of C,
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(iv) Σ is the set of topological types of the points in S,
(v) σ : S → Σ assigns to each singular point its topological type,
(vi) Δ := {ΔP }P∈S , where ΔP is the set of local branches of C at P ∈ S (a local

branch can be seen as an arrow in the dual graph of the minimal resolution of C
at P ; see [10, Chapter II.8] for details), and φ := {φP }P∈S , where φP : Δ → r
assigns to each local branch the global irreducible component that contains
it.

We say that two curves C1 and C2 have the same combinatorial type (or simply the
same combinatorics) if their combinatorial data KC1

and KC2
are equivalent. That

is, if Σ1 = Σ2, and there exist bijections:

(1) ϕr : r1 → r2,
(2) ϕS : S1 → S2, and
(3) ϕP : Δ1,P → Δ2,ϕS(P ) (the restriction of a bijection of dual graphs) for

each P ∈ S1

such that:

(1) d̄1 = d̄2 ◦ ϕr,
(2) σ1 = σ2 ◦ ϕS, and
(3) ϕr ◦ φ1,P = φ2,ϕS(P ) ◦ ϕP .

In the irreducible case, two curves have the same combinatorial type if they have
the same degree and the same topological types for local singularities. On the other
extreme, for line arrangements combinatorial type is determined by the incidence
graph. In higher dimensions, the concept of combinatorics still makes sense but
becomes much harder to describe, except for the case of hyperplane (or in general
linear) arrangements where the incidence relations are enough to determine the
combinatorial type.

The main interest in (and motivation for) considering combinatorial types of
curves is due to the following (see [2]).

Proposition 2.17. Consider two curves C1, C2 ⊂ P2, and T (C1), T (C2) as their
regular neighborhoods with boundary. Then the pairs (T (C1), C1) and (T (C2), C2)
are homeomorphic if and only if C1 and C2 have the same combinatorial type.

Proof. In one direction, the self intersections of the components of Ci and the topo-
logical types of the singularities of Ci are well defined and preserved under home-
omorphisms of pairs (T (Ci), Ci). This determines degrees and topological types of
singularities, as well as the incidence of local branches. Therefore their combina-
torial types coincide. Conversely, the coincidence of the combinatorial type allows
one to recover the minimal resolutions of the singularities, together with a homeo-
morphism between them. Since the self intersections coincide, one can extend this
to a homeomorphism of the tubular neighborhoods of each component (including
exceptional components) and glue them along the intersections as prescribed by the
multiplicities of the components. By contracting the exceptional components one
can define a homeomorphism of pairs between (T (C1), C1) and (T (C2), C2). �

A pair of plane curves (C1, C2), such that (T (C1), C1) and (T (C2), C2) are home-
omorphic but (P2, C1) and (P2, C2) are not (that is, whose embeddings in P2 are
not homeomorphic), is called a Zariski pair. The existence of Zariski pairs and the
search for invariants of the embedding of a curve that can tell two combinatorially-
equivalent curves apart has been a very productive field of research started by

Licensed to University de Science & Technology de Lille I. Prepared on Thu Mar  7 12:53:13 EST 2013 for download from IP 134.206.80.217.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



COHOMOLOGY ALGEBRA OF PLANE CURVES... 5773

O. Zariski in [21, 22] (see [2] and the references therein for an extended survey on
Zariski pairs).

Alternatively, one can also define a weaker concept of combinatorics as follows.

Definition 2.18. Let C ⊂ P2 be a plane projective curve. The weak combinatorial
type of C is given by a septuplet

WC := (r, S,Δ, φ, μ, d̄, ḡ),

where r, d̄, S, Δ, and φ are defined as above, ḡ : r → N is the list of genera,

(μ := {μP }P∈S), where μP : Σ2
φP

ΔP → N, Σ2
φP

ΔP :=
(ΔP×ΔP )\(ΔP×φP

ΔP )

S2
is

the symmetric product of ΔP outside the φP -diagonal (that is, the fibered product
{(δ1, δ2) | φP (δ1) = φP (δ2)}), and μP (δ1, δ2) represents the intersection multiplicity
of δ1 and δ2 at P .

We say that two curves C1 and C2 have the same weak combinatorial data (or
simply the same combinatorics) if their weak combinatorial types WC1

and WC2
are

equivalent, that is, if there exist bijections:

(1) ϕr : r1 → r2,
(2) ϕS : S1 → S2, and
(3) ϕP : Δ1,P → Δ2,ϕS(P ) (restriction of a bijection of dual graphs) for each

P ∈ S1

such that:

(1) d̄1 = d̄2 ◦ ϕr,
(2) ϕr ◦ φ1 = φ2 ◦ ϕP , and
(3) μ1(δ1, δ2) = μ2(ϕP (δ1), ϕP (δ2)).

It is obvious that KC determines WC using the intersection multiplicity formula.
The converse is also true for smooth arrangements (a curve whose irreducible com-
ponents are smooth), but not true in general, as Example 5.1 shows.

The question immediately arises as to what extent the combinatorial type of a
curve determines well-known invariants of its embedding in P2. We will refer to
such invariants as combinatorial. Fundamental groups of complements of curves are
known not to be combinatorial, as first shown by Zariski in [21]. The cohomology
ring of the complement of a curve was only known to be combinatorial when the
curve was a line arrangement [1, 3] or, more generally, a rational arrangement [5].
The purpose of the upcoming section is to prove that the cohomology ring of the
complement of a curve is a combinatorial invariant.

3. Cohomology ring structure

In what follows we will describe generators for H∗(SC). For simplicity, we will
assume C0 is a transversal line. We will consider coordinates [X : Y : Z] in P2 such
that C0 := {Z = 0}, and define ω := XdY ∧ dZ + Y dZ ∧ dX + ZdX ∧ dY as the
contraction of the volume form in the affine space A3 by the Euler vector field.

As in the classical cases, the subspace H1(SC) is generated by the log-resolution
logarithmic 1-forms σi := d log Ci

C
di
0

, i = 1, . . . , r, where Ci is an equation for the

component Ci.

Theorem 3.1 ([5, Theorems 2.10 and 2.11]). The 1-forms σi, i = 1, . . . , r, defined
above verify the following properties:

(i) σi ∈ W 1Alog
P2 (C),
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(ii) Σ := {σ1, . . . , σr} generate H1(SC) as a vector space, and

(iii)
(
Res[1]σi

)
C̃j

=

⎧⎪⎨
⎪⎩
(−1)r−i if i = j,

0 if i �= j �= 0,

(−1)r+1di if j = 0.

Moreover, 〈Σ〉C = H1(SC) = W 1
1 = W 1.

In order to obtain generators for H2(SC) we will define special 2-forms as global
forms of ideal sheaves. Such ideal sheaves are supported on the singular points
of C. Their definition will be given in terms of the logarithmic trees, which are
isomorphic (as directed trees) to multiplicity trees but whose weights are different.

3.1. Logarithmic trees. Local setting. Let us first recall the concept of multi-
plicity trees.

Let f ∈ C{x, y} be a germ of a holomorphic function at P whose set of zeroes
is a curve germ Vf ⊂ S0 with an isolated singularity at the point P . Consider the
sequence of blow-ups

S0
ε1←− S1

ε2←− S2
ε3←− . . .

εm←− Sm = S

in the resolution of S0 at P , and denote by πk the composition of the first k blow-

ups πk = εk◦· · ·◦ε1. The curve germ Ṽf,k = π−1
k (Vf \ {P}) shall be called the strict

transform of Vf in Sk and its equation denoted by f̃k. The divisor π∗
k(Vf ) shall be

denoted by V f,k and called the total transform of Vf in Sk. For simplicity, let us

write Ṽf := Ṽf,m and V f := V f,m. The exceptional divisor in Sk resulting from the

blow-up of a point in Sk−1 shall be denoted by Ek, and the points P 1
k , . . . , P

Nk

k in

Ek ∩ Ṽf,k will be called the infinitely near points to P in Ek. For convenience, the
point P is also considered to be infinitely near to itself. Finally, the multiplicity of
Ṽf,k ⊂ Sk at the point P �

k shall be denoted by νP �
k
(f), i.e.

νP �
k
(f) := multP �

k
(Ṽf,k).

To each resolution of singularities π one can assign the multiplicity tree of π at
P – denoted by TP (f, π) or simply by TP (f) if the resolution π of S0 is fixed. TP (f)
is a tree with weights at each vertex and is defined as follows:

(a) The vertices of TP (f) are in bijection with the infinitely near points to P .
(b) Two vertices of TP (f), say Q1 and Q2, are joined by an edge if and only if

one of the points, say Q2, belongs to Sk for some k, and the other point, Q1,
belongs to Sk−1 and Q2 ∈ ε−1

k (Q1).
(c) For convenience, this tree is considered to simply be a vertex if P is not a

singular point of f . If f(P ) �= 0, then TP (f) := ∅.
(d) The weight w(TP (f), Q) of a vertex Q is νQ(f).

Example 3.2. Let f = (x3 − y5)(x− y2)(y2 − x3)y. The tree given in Figure 1 is
the multiplicity tree T0(f) of the minimal resolution of {f = 0} at 0.

The set of vertices |TP (f)| of a multiplicity tree TP (f) is endowed with a partial
order as follows. Consider P as the root of the tree and direct the edges of the tree
towards P . In this directed tree, a point Q2 is said to be greater than Q1 – denoted
Q2 ≥ Q1 – if there is a directed path from Q2 to Q1. In graph theory this situation
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Figure 1. Multiplicity tree of (f, 0).

is commonly described by calling Q2 an ancestor of Q1 or Q1 a descendant of Q2.
Given a set of points {P1, . . . , Pn} ⊂ TP (f) one can define

Asc(P1, . . . , Pn) = {Q ∈ TP (f) | Q ≥ Pi i = 1, . . . , n}

and

Desc(P1, . . . , Pn) = {Q ∈ TP (f) | Q ≤ Pi i = 1, . . . , n}.
Multiplicity trees are quasi-strongly connected trees, which means that the set of
common descendants Desc(P1, . . . , Pn) is non-empty and inherits a linear order from
TP (f). The maximal element in Desc(P1, . . . , Pn) is called the greatest common
descendant and is denoted by gcd(P1, . . . , Pn).

The degree of a weighted tree T shall be defined as

(6) deg(T ) :=
∑

Q∈|T |

(
w(T , Q) + 1

2

)
,

where w(T , Q) denotes the weight of T at Q.
Note that if T = TP (f), then deg(T ) is the δ-invariant of the singularity of f at

P .
In order to simplify, we shall write T ∼= T ′ for two weighted trees that are iso-

morphic as trees, and T = T ′ (resp. ≥, ≤, < or >) if T ∼= T ′ and ŵ(T , Q) =
ŵ(T ′, Q) (resp. ≥, ≤, < or >) for any Q ∈ |T | = |T ′|, where ŵ(T , Q) :=∑

Q′∈Desc(Q)w(T , Q′) (we are using the isomorphism of trees to identify the ver-

tices). Note that ŵ(T , Q) is the multiplicity of the total transform of f at Q. Also,
T − k will denote a tree T ′ ∼= T so that w(T ′, Q) = max{w(T , Q) − k, 0} for any
Q ∈ |T |. Particularly useful will be the tree

(7) T n
P (f) := TP (f)− 1.

Sometimes it will be necessary to compare empty trees. In this case, the conditions
=,≤,≥ are vacuous and hence always satisfied.

Let g ∈ C{x, y} be another germ at P . Then one can consider the restriction
of g to a weighted tree T (e.g. TP (f)) – denoted by T |g – as a weighted graph
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5776 J. I. COGOLLUDO AGUSTÍN AND D.MATEI

isomorphic to T whose weight at each vertex Q is νQ(g). One can check that the
set I := {g ∈ C{x, y} | T |g ≥ T } defines an ideal. Note that dimC

(
C{x, y}/mk

)
=(

k+1
2

)
. Hence

(8) deg(T ) = dimC

C{x, y}
I

.

Let C be a plane projective curve and P ∈ Sing C. Note that its multiplicity tree
does not depend on the equation of D, hence it can be denoted as TP (C) or TP (C, π)
in case we want to specify the underlying resolution.

In case C is irreducible and has degree d, from (6) and (7) one can rewrite the
Noether formula for the genus [4, p. 614] as follows:

(9) g(C) = (d− 1)(d− 2)

2
−

∑
P∈Sing C

deg(T n
P (C)).

Now consider π as a resolution of singularities for the plane curve C. We define
the basic ideal sheaf of C with respect to π as follows:

(10) (In
C,π)P := {h ∈ OP | TP (C, π)|h ≥ T n

P (C, π)}.

If no possible confusion results from the underlying resolution, the sheaf In
C,π will

be denoted simply by In
C .

Remark 3.3. Since π also induces a log resolution of the ideal C = I(C) at any point
P , one can also see In

C as the multiplier ideal sheaf of C, that is, π∗OS̄C (KS̄C/P2−F ),

where C · OS̄C = OS̄C(−F ). Analogously, In
C corresponds to the special ideal of

quasi-adjunction A0(C) as defined in [14, 15].

This leads naturally to the idea of a logarithmic ideal of a germ. Let f ∈ C{x, y}
be a holomorphic germ at P and π a resolution of Vf . We can define an ideal
I ⊂ C{x, y} satisfying that for any germ h ∈ I the 2-form

(11) h
dx ∧ dy

f

is log-resolution logarithmic at P –with respect to Vf and the resolution π. Such
an ideal will be called a logarithmic ideal for f at P .

Remark 3.4. Using Remark 2.11, it is easy to see that the set of logarithmic ideals
associated with a singularity is independent of the resolution. Hence, from now on,
when referring to logarithmic ideals any reference to a resolution will be omitted.

A very useful way to encode the information required to construct logarithmic
ideals is given by weighted trees.

Definition 3.5. Let (f, 0) be a germ and T (f) its multiplicity tree. A weighted
tree T is said to be a logarithmic tree for (f, 0) if it satisfies the following properties:

(i) T ∼= T (f) and
(ii) the ideal I := {h ∈ O0 | T (f)|h ≥ T } is logarithmic.

In addition, if δ1 and δ2 are local branches of (f, 0), we say that T is a logarithmic
tree (for (f, 0)) relative to δ1 and δ2 if T satisfies (i), (ii) above and
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(iii) if ϕ ∈ MI , where MI := {h ∈ O0 | T (f)|h = T } ⊂ I, then(
Res[2]ϕ

dx ∧ dy

f

)
Q

�= 0

if and only if Q is a vertex of the unique subtree γ(δ1, δ2) ⊂ T joining δ1
and δ2.

Example 3.6. Note that T n
P (f) is a logarithmic tree for f , but it is not relative

to any two branches δ1, δ2. One can check that properties (i) and (ii) are satisfied
but T n

P (f) does not satisfy property (iii). Moreover, if ϕ ∈ C{x, y} is a germ at P

such that ψ := ϕdx∧dy
f with TP (f)|ϕ ≥ T n

P (f), then one can check that ψ ∈ π∗W
2
1 ,

that is, it has weight one, and hence
(
Res[2]ψ

)
Q
= 0 for any vertex Q of TP (f).

The main result of this part is the existence of logarithmic trees relative to any
two local branches of any reduced germ f .

Theorem 3.7 ([5, Lemma 2.34]). For any given two local branches δ1 and δ2 of f
at P , there exists a logarithmic tree for (f, P ) relative to δ1 and δ2.

Theorem 3.7 is constructive. We will denote such a tree by T δ1,δ2
P , and it will be

referred to as the basic logarithmic tree relative to δ1 and δ2.

3.2. Logarithmic ideal sheaves. Global setting. Let us return to the situation
presented at the beginning of this section, where C is a plane projective curve and π
is a resolution of singularities. The concept of logarithmic ideal translates globally
as follows:

Definition 3.8. We call an ideal sheaf I on P2 a logarithmic ideal sheaf for C if
its stalks IP are logarithmic ideals for the germs CP of C at any P ∈ P

2.

Remark 3.9. By Example 3.6, the basic ideal sheaf of C denoted by In
C defined

in (10) is a logarithmic ideal sheaf for C.
Also note that by Remark 3.4, such sheaves are independent of the given reso-

lution.

Let Cij := Ci∪Cj , dij := deg Cij , and gij := g(Cij). We denote by Cij an equation
of Cij (which is Ci if i = j and CiCj if i �= j). We will first check that the basic
ideal sheaf of Cij has non-trivial sections of degree dij − 2 except for the obvious
case of lines.

Proposition 3.10. dimH0(P2, In
Cij

(dij − 2)) ≥ dij + gij −#{i, j}.

Proof. To ease the notation let us write I for In
Cij

. From the exact sequence

0 → I(dij − 2) → OP2(dij − 2) → O/I(dij − 2) → 0

and the fact that H�(O(k)) = 0 for any k and � > 0, one obtains that

(12) h0(P2, I(dij − 2)) ≥
(
dij
2

)
− h0(P2,O/I).

In what follows, we will assume i �= j. The case i = j is analogous. First, we will
calculate h0(P2,O/I). Note that, by (8), one has

h0(P2,O/I) =
∑

P∈Sing Cij

deg T n
P (Cij) =

∑
P∈Sing Cij

∑
Q∈|TP (Cij)|

(
νQ(Cij)

2

)
.
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Since νQ(Cij) = νQ(Ci) + νQ(Cj) and
(
a+b
2

)
=

(
a
2

)
+
(
b
2

)
+ ab, one obtains that

h0(P2,O/I) =
∑

P∈Sing Cij

∑
Q∈|TP (Cij)|

(
νQ(Ci)

2

)
+

(
νQ(Cj)

2

)
+ νQ(Ci)νQ(Cj),

and finally, using (9), one obtains

(13) h0(P2,O/I) =
(
di − 1

2

)
+

(
dj − 1

2

)
− gij + didj .

Therefore (12) becomes

h0(P2, I(dij − 2)) ≥
[(

dij
2

)
−
(
di − 1

2

)
−
(
dj − 1

2

)
− didj

]
+ gij

= (di − 1) + (dj − 1) + gij .

�

In order to construct global forms we will proceed as follows. First, for each
irreducible component Ci of C, we will order the di = deg Ci points of Ci at infinity
Ci ∩ C0 = {P i

1, . . . , P
i
di
}.

Definition 3.11. Let P ∈ Cij , and let δ1 (resp. δ2) be a local branch of the

irreducible component Ci (resp. Cj) at P . The ideal sheaf Iδ1,δ2
Cij

associated with δ1
and δ2 shall be defined as

(Iδ1,δ2
Cij

)Q :=

⎧⎨
⎩h ∈ OQ

∣∣∣∣∣∣
TQ(Cij)|h ≥ T δ1,δ2

P (Cij) if Q = P,

TQ(Cij)|h ≥ TQ(Cij)− 2 if Q ∈ {P i
1, P

j
1 },

TQ(Cij)|h ≥ T n
Q (Cij) otherwise

⎫⎬
⎭ .

A global section s of Iδ1,δ2
Cij

(d) shall be called essential if sQ ∈ MIQ for every

Q ∈ P
2, where sQ is the section s localized at Q, IQ = (Iδ1,δ2

Cij
)Q and MIQ is as in

Definition 3.5.

Analogously to [5, Lemma 3.35] one can prove the following.

Proposition 3.12. deg Iδ1,δ2
Cij

= deg In
Cij

+ dij −#{i, j} − 1.

Therefore Propositions 3.10 and 3.12 imply the following.

Proposition 3.13. dimH0(P2, Iδ1,δ2
Cij

(dij − 2)) > gij.

One can give a description of a section in such sheaf ideals. In order to do
so, let us denote by γP (δ1, δ2) the minimal subtree in TP (Cij) (see Definition 3.5)
containing δ1 and δ2. We can consider γP (δ1, δ2) as a subset of the total transform

C of C (in particular it should contain C̃i and C̃j). We also denote by v(γP (δ1, δ2))
the set of vertices of γP (δ1, δ2).

Proposition 3.14. Let ϕ be a section in H0(P2, Iδ1,δ2
Cij

(dij − 2)). Consider the

2-form ϕ ω
C0Cij

. One has the following basic properties:

(1) (
Res[2]ϕ

ω

C0Cij

)
Q

=

⎧⎪⎨
⎪⎩
±λ if Q ∈ v(γP (δ1, δ2)),

±εijλ if Q ∈ {P i
1, P

j
1 },

0 otherwise,
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where

εij =

{
1 if i �= j,

0 otherwise.

Moreover, λ �= 0 if and only if ϕ ∈ MIδ1,δ2
Cij

is essential (as in Definition 3.5).

(2) The signs of the residues described in (1) are such that if D ⊂ γP (δ1, δ2)∪C0 ⊂
C[1]

is an irreducible component, then

(
2R̃

[1]
0 ϕ

ω

C0Cij

)
F

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 if F /∈ D,

λω1 if F ∈ D, F �= C̃0, C̃i, C̃j ,
εijλω1 if F = C̃0,
ηδ1,δ2i if F = C̃i,
ηδ1,δ2j if F = C̃j ,

where ω1 := XdY+Y dX
XY is the Euler 1-form on P1 ∼= F that has poles on [0 :

1], [1 : 0] and whose residues are λ and −λ respectively, and where ηi, ηj are

1-forms on C̃i (resp. C̃j) with only two poles. Moreover, the poles are at the

point on C̃i (resp. C̃j) determined by δ1 (resp. δ2) and at the point determined

by the branch of C̃i (resp. C̃j) at P i
1 (resp. P j

1 ).

Proof. Since the proof of Theorem 3.7 is constructive, one can use such a con-
struction to check part (1). Part (2) is a consequence of the commutativity of the
generalized residue maps (Theorem 2.9) and the fact that the residues of a mero-
morphic function on a compact Riemann surface add up to zero and the difference
between the number of zeroes and poles is the Euler characteristic 2g − 2, where g
is the genus. �

By Theorem 2.9 and the exact sequence (5) note that

(14) H2(W1) ∼= H2(W1/W0)
1R̃

[1]
0∼= H1(W

[1]
0 ) = H1(C[1]

).

Using the inclusion Ω∗ i∗

↪→W ∗
0 , from the complex of global holomorphic forms on C[1]

to the complex of global differential forms, one has a map H1(C[1]
,Ω1)

i1→ H1(C[1]
).

Also note that dimH1(C[1]
,Ω1) = g. In the following, we will describe generators

for H1(C[1]
,Ω1).

Proposition 3.15. Let Ki := {ψ = ϕ ω
Ci

| ϕ ∈ H0(P2,O(di − 3)), TP (Ci)|ϕ ≥
T n
P (Ci)} and KC =

∑r
i=1 Ki. One has the following properties:

(1) Ki ⊂ W 2
1

(
Alog

P2 (C)
)
,

(2) KC ⊂ ker
(
H2(SC)

Res[2]−→H0(C[2]
)
)
, where KC is the projection of KC on H2(W1)

⊂ H2(SC),
(3) KC =

⊕r
i=1 Ki and KC =

⊕r
i=1 Ki,

(4) 1R̃
[1]
0 KC = i1H1(C[1]

,Ω1).

Moreover, if KC denotes the conjugate of KC, then

KC ⊕KC = ker
(
H2(SC)

Res[2]−→H0(C[2]
)
)
.
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Proof. Let us start with parts (1) and (2). The result is local, and according to
Example 3.6, it is enough to check it at the points at infinity {P i

1, . . . , P
i
di
} = C0∩Ci.

Since such points are smooth on Ci by hypothesis, the condition TP i
k
(Ci)|ϕ ≥ T n

P i
k
(Ci)

is vacuous. Hence the local equation of ψ at P i
k is

ϕ(u, v)
du ∧ dv

v
,

up to a unit, where {v = 0} (resp. {u = 0}) is the local equation of Ci (resp. of
C0). Hence part (1) follows, as well as the first statement of part (2). On the one
hand note that

dimKi ≥
(
di − 1

2

)
−

∑
P∈Sing(Ci)

deg T n
P (Ci) = gi.

In order to prove the first statement of part (3), note that if ψ1 + · · · + ψr = 0,
ψi ∈ Ki, then multiplying by C, one has

(15) ϕ1C2 · . . . · Cr + C1ϕ2 · . . . · Cr + · · ·+ C1C2 · . . . · ϕr = 0.

Consider {Q1, . . . , Qd1−2} ⊂ C1 \ (C2 ∪ · · · ∪ Cr) and evaluate such points in (15).
One obtains that ϕ1(Q1) = · · · = ϕ1(Qd1−2) = 0. Since C1 is irreducible and
degϕ1 = d1 − 3, one obtains that ϕ1 = 0. Proceeding analogously for every ϕi,

one obtains that KC = K1 ⊕K2 ⊕ · · · ⊕Kr. This same idea shows that 1R̃
[1]
0 ψ = 0

if and only if ψ = 0. Therefore dim 1R̃
[1]
0 KC ≥ g = h1(C[1]

,Ω1). The inclusion
1R̃

[1]
0 KC ⊂ i1H1(C[1]

,Ω1) forces i1 to be an injection, and thus the second statement
of part (3) and part (4) follow for dimension reasons.

The moreover statement is a consequence of Proposition 2.15. �

Remark 3.16. Note that Proposition 3.15(4) implies in particular that cohomology
classes outside KC do not have holomorphic representatives.

Notation 3.17. One can normalize any log-resolution logarithmic 2-form ϕ ω
C0Cij

as

in Proposition 3.14 in such a way that
(
Res[2]ϕ ω

C0Cij

)
P i

1

= 1.

Note that if ψij ∈ Kij = Ki ⊕Kj , then
(
Res[2]ϕ ω

C0Cij
+ ψij

)
P i

1

= 1. The set of

classes of such normalized 2-forms will be denoted by v1 := {ψδ1,δ2
P +Kij}P,δ1,δ2 .

Analogously, one needs to consider certain 2-forms with residues on the line at
infinity.

Definition 3.18. For any P i
k ∈ C0∩Ci, k = 2, . . . , di, the ideal sheaf IP i

k

Ci
associated

with P i
k shall be defined as

(IP i
k

Ci
)Q :=

{
h ∈ OQ | TQ(Ci)|h ≥ TQ(Ci)− 2 if Q ∈ {P i

1, P
i
k},

TQ(Ci)|h ≥ T n
Q (Ci) otherwise

}
.

As above, a global section s of IP i
k

Ci
(d) shall be called essential if TQ(Ci)|sQ =

TQ(Ci)− 2 for every Q ∈ {P i
1, P

i
k}, where sQ is the section s localized at Q.

One can also describe such sections in terms of their residues as in Proposi-
tion 3.14. Its analogue reads as follows.
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Proposition 3.19. Let ϕ be a section in H0(P2, IP i
k

Ci
(di−2)). Consider the 2-form

ψi,k
∞ := ϕ ω

C0Ci
. One has the following basic properties:

(1) (
Res[2]ψi,k

∞

)
Q
=

{
±λ if Q ∈ {P i

1, P
i
k},

0 otherwise.

(2) λ �= 0 if and only if ϕ ∈ M
I
Pi
k

Ci

is essential (as defined in Definition 3.18).

(3) The signs of the residues described in (1) are such that if D ∈ {Ci, C0} ⊂ C[1]
,

then 2R̃
[1]
0 ψi,k

∞ has exactly two poles along D whose residues are λ and −λ so
that they add up to zero.

Proof. The proof follows immediately from Example 3.6 and the fact that the singu-
larities at infinity are always nodes. Hence the local trees are as shown in Figure 2.
Therefore TP i

1
(Ci)− 2 imposes no conditions on ϕ; and thus(

Res[2]ψi,k
∞

)
P i

1

= ±ϕ(P i
1) = ±λ.

The same argument works for P i
k, and hence (1)-(2) follow. Finally, part (3) follows

from the same ideas as in Proposition 3.14(2). �

2

1 1

Figure 2. Multiplicity tree of a node.

Notation 3.20. For any P i
k ∈ C0 ∩ Ci, k = 2, . . . , di, let ψi,k

∞ be a log-resolution
logarithmic 2-form as constructed in Proposition 3.19, again, with the extra nor-

malizing condition that
(
Res[2]ψi,k

∞

)
P i

1

= 1. Again, as in Notation 3.17, the set of

all classes of such normalized 2-forms will be denoted by v∞ := {ψi,k
∞ +Ki}i,k.

Note that in the line arrangement case, v∞ is trivial and each class in v1 contains

exactly one representative, which is the form
d�i∧d�j
�i�j

described by Brieskorn [3] and

Orlik-Solomon [19]. Note that their cohomology classes are not linearly indepen-
dent. In particular, if �i, �j , and �k intersect at P , then the 2-form

(16)
d�i ∧ d�j

�i�j
+

d�j ∧ d�k
�j�k

+
d�k ∧ d�i

�k�i

is not only cohomologically trivial, but even 0 as a 2-form, as one can easily see
as follows: by the concurrence condition we can assume �i = x, �j = y, and
�k = αx+βy. Hence d�i∧d�j = dx∧dy, d�j∧d�k = −αdx∧dy, and d�k∧d�i = −β.
Thus, after removing denominators (16) becomes (�k − αx − βy)dx ∧ dy, which is
zero.

The following results will be used as a tool to come up with the relations amongst
cohomology classes. Additionally, we will prove that such relations also hold for
the 2-forms in v1 and not just for their cohomology classes.
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Lemma 3.21. Let ψ := ϕ ω
qCi

∈ W 2
1 . If

(
1R̃

[1]
0 (ψ)

)
C̃i

= 0, then ϕ = pCi for

some function p. Moreover, if ϕ, q, and Ci are homogeneous polynomials, then
p ∈ C[X,Y, Z] is a homogeneous polynomial.

Proof. Note that for any P ∈ Ci \Sing C, one has that
(
1R

[1]
0 (ψ)

)
C̃i

|P = ϕP
dzi
qP

= 0

(that is, at the level of forms, and not only at the level of cohomology classes
by (14)), where zi is a local system of coordinates around P (note that there is no
anti-holomorphic component). Since Ci is irreducible one has ϕ = pCi. �

Analogously to the rational case, consider P ∈ Sing C and three local branches
δi, δj , and δk belonging to the global components Ci, Cj , and Ck, respectively.

Proposition 3.22. Let us assume that ψ := ϕ ω
C0CiCjCk

is trivial in H2(SC) for ϕ =

ϕiCi+ϕjCj+ϕkCk, where ϕ is a homogeneous polynomial of degree di+dj+dk−1.
In this case ϕ = 0.

Proof. Since Res[2]ψ = 0, one has that ψ ∈ W 2
1 . Furthermore, 1R̃

[1]
0 (ψ) = 0, and

hence, by Lemma 3.21, ϕ = fCiCjCk, which, by the degree condition, implies
f = 0. �

Finally, one can prove that there is a choice of forms satisfying the desired
relations.

Theorem 3.23. There is a choice of representatives {ψδ1,δ2
P }P,δ1,δ2 in v1 and

{ψi,k
∞ }i,k in v∞ such that the following equalities of 2-forms hold:

(17) ψδ1,δ2
P + ψδ2,δ3

P + ψδ3,δ1
P = 0

for any P ∈ Ci∩Cj ∩Ck, δ1, δ2, and δ3 local branches of Ci, Cj, and Ck, respectively,
and

(18) σi ∧ σj =
∑

P ∈ Sing(Cij)
δ1 ∈ ΔP (Ci)
δ2 ∈ ΔP (Cj).

μP (δ1, δ2)ψ
δ1,δ2
P + dj

di∑
k=2

ψi,k
∞ − di

dj∑
k=2

ψj,k
∞ ,

where δ1 (resp. δ2) runs over the local branches of Ci (resp. Cj) at P and μP (δ1, δ2)
denotes the intersection number.

Proof. For any P ∈ Sing C, one can order the set ΔP of local branches and denote
by δP the first local branch under such ordering. Fixing arbitrary representatives

ψδP ,δ
P in v1 for any δ ∈ ΔP one can complete the choices of representatives as

follows: ψδ1,δ2
P := ψδP ,δ2

P − ψδP ,δ1
P for any δ1, δ2 ∈ ΔP .

As a consequence of this, if δ1, δ2, and δ3 are local branches of Ci, Cj , and Ck at
P , respectively, then one has

ψδ1,δ2
P +ψδ2,δ3

P +ψδ3,δ1
P = (ψδP ,δ2

P −ψδP ,δ1
P )+(ψδP ,δ3

P −ψδP ,δ2
P )+(ψδP ,δ1

P −ψδP ,δ3
P ) = 0.

In order to prove the second equality we only have freedom on the choice of ψδP ,δ
P

and ψj,k
∞ .

First of all, note that

σi ∧ σj = Jac(Ci, Cj , C0)
ω

C0CiCj
=

∣∣∣∣∣∣
Ci,X Ci,Y Ci,Z

Cj,X Cj,Y Cj,Z

C0,X C0,Y C0,Z

∣∣∣∣∣∣
ω

C0CiCj
.
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Denoting by ψij the right-hand side of (18), it is easy to check that Res[2]σi∧σj =

Res[2]ψij (see [5, Theorem 2.47] for details). As a consequence of this, σi∧σj−ψij ∈
Kij ⊂ W 2

1 .
By Lemma 3.21 and Proposition 3.22, one only needs to find representatives

ψδP ,δ
P verifying 1R

[1]
0 (σi ∧ σj − ψij) = 0.

One can proceed as follows: choose arbitrary representatives ψ̇δP ,δ
P and ψ̇i,k

∞ . We

are looking for 2-forms ψδP ,δ
P := ψ̇δP ,δ

P +ϕi,δ
P

ω
Ci

and ψi,k
∞ := ψ̇i,k

∞ +ϕi,k
∞

ω
Ci

for certain

ϕi,δ
P , ϕj,δ

P , and ϕi,k
∞ satisfying equation (18).

Since the projection of W0(log〈C̄〉)
1R

[1]
0−→W

[1]
0 →

⊕
OC̄i

(C̄i) is injective (because
it is constant when restricted to the exceptional divisors), one only needs to make
sure that, for a certain choice of representatives, such projections are zero.

This gives rise to an affine system of equations on the vector space
⊕

Ki, where

the variables are ϕi,δ
P and ϕi,k

∞ mentioned above. All there is left to do is to check
that such a system is compatible.

Using the relations in (17) one obtains that

Eij ≡ σi ∧ σj − ψ̇ij =
∑

P ∈ Sing(Cij)
δ1 ∈ ΔP (Ci)
δ2 ∈ ΔP (Cj).

μP (δ1, δ2)

(
ϕj,δ2
P

ω

Cj
− ϕi,δ1

P

ω

Ci

)
(19)

+ dj

di∑
k=2

ϕi,k
∞

ω

Ci
− di

dj∑
k=2

ϕj,k
∞

ω

Cj
,

where

(20) ψ̇ij :=
∑

P ∈ Sing(Cij)
δ1 ∈ ΔP (Ci)
δ2 ∈ ΔP (Cj).

μP (δ1, δ2)(ψ̇
δP ,δ2
P − ψ̇δP ,δ1

P ) + dj

di∑
k=2

ψ̇i,k
∞ − di

dj∑
k=2

ψ̇j,k
∞ .

Therefore, the given system is compatible, if for any linear combination of σi∧σj −
ψ̇ij that maps to zero, then σi ∧ σj − ψ̇ij = 0.

After a more careful study of (19), one can prove that a combination of such equa-
tions is zero on the right-hand side if and only if it can be written as a linear combi-
nation of equations of the form Eī,j̄ +Ej̄,k̄ +Ek̄,̄i, where Eī,j̄ =

∑
i∗∈ī

∑
j∗∈j̄ Ei∗,j∗

and where Cī, Cj̄ , Ck̄ form a combinatorial pencil.
All there is left to do is to check that the left-hand side of (19) is also zero. By

the definition given in (20) it is immediate that ψ̇ī,j̄ + ψ̇j̄,k̄ + ψ̇k̄,̄i = 0.
In order to check σī ∧ σj̄ + σj̄ ∧ σk̄ + σk̄ ∧ σī = 0 one can proceed as follows. By

the Combinatorial Noether Theorem [6] we can assume that αCī + βCj̄ = Ck̄. In
that case,

C0CīCj̄Ck̄ · (σj̄ ∧ σk̄) = C0Cī · Jac(C0, Cj̄ , Ck̄)ω

= C0Cī · Jac(C0, Cj̄ , αCī + βCj̄)ω = −αC0Cī · Jac(C0, Cī, Cj̄)ω.

Analogously,

C0CīCj̄Ck̄ · (σk̄ ∧ σī) = −βC0Cj̄ · Jac(C0, Cī, Cj̄)ω.
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Hence

C0CīCj̄Ck̄ · (σī ∧ σj̄ + σj̄ ∧ σk̄ + σk̄ ∧ σī) = 0,

which ends the proof. �

We will denote by V1 (resp. V∞) the subspace of W 2
(
Alog

P2 (C)
)
generated by

the 2-forms in v1 (resp. v∞) described in Theorem 3.23 and by V1 (resp. V∞)
their projection on H2(SC) = W 2/d(W 1). Now we are in the position to give a
decomposition of H2(SC).

Corollary 3.24. Under the above conditions

H2(SC) = V2
C ⊕KC ⊕KC .

Proof. By Proposition 3.15, it is enough to check that

H2(SC)/(KC ⊕KC) ∼= H2(SC)/ kerRes
[2]

is isomorphic to V2
C := V1 ⊕ V∞. Notice that the residue map Res[2] is injective on

the quotient. Let us consider ψ ∈ V1. By Proposition 3.14
(
Res[2]ψ

)
P i

k

= 0 for any

i = 1, . . . , r and any k = 2, . . . , di. On the other hand, by Proposition 3.19 it is

immediate that any 2-form ψ ∈ V∞ satisfies the fact that
∑di

k=1

(
Res[2]ψ

)
P i

k

= 0.

Therefore, if ψ ∈ V1 ∩ V∞,
(
Res[2]ψ

)
P i

k

= 0, k = 1, . . . , di, and thus ψ = 0. �

As a consequence of the previous results one obtains a description of the coho-
mology ring of the complement of a projective plane curve H∗(SC).

Theorem 3.25. The cohomology ring H∗(SC) of SC can be decomposed as follows:

VC ⊕KC ⊕KC ,

where H∗(SC) is trivial in degree ≥ 3, KC and KC are homogeneous subrings of
degree 2 and dimension g each, and VC can be described as:

• Generated in degrees 1 and 2 by
(G1) (Generators of V1

C) σ1, . . . , σr,
(G2) (Generators of V2

C = V1 ⊕ V∞) v1 ∪ v∞ from Theorem 3.23.
• The relations given in (18), (17), and

(21) ψδ1,δ2
P + ψδ2,δ1

P = 0

is a complete system of relations. �

Note that the ring structure depends on some local and global data which will be
described in what follows. Because of the general condition about the transversal
line we will repeat Definition 2.18 with a slight change in notation.

Let C̃ = C1 ∪ · · · ∪ Cr ⊂ P2, C0 a transversal line, and C := C0 ∪ C̃. Analogously
to Definition 2.18 consider the following.

Definition 3.26. The family WC := (r, S,Δ, φ, d̄, ḡ) is called the weak combinato-
rial type of C with respect to C0 or simply the weak combinatorial type of C if no
ambiguity seems likely to arise.

Corollary 3.27. The cohomology ring H∗(SC) of SC only depends on WC being
the weak combinatorial type of C. �
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Remark 3.28. Corollary 3.27 is also true in the case where the curve does not
contain a transversal line – as we have assumed throughout section 3. In this case
one can add a transversal line and consider C = C̃ ∪ C0. The ring H∗(SC̃) fits in the
following exact sequence:

0 → H∗(SC̃) → H∗(SC)
πC0

◦Res[1]

−−−−−−−→ CC0
→ 0,

where Res[1] is the residue defined in Proposition 2.15 and πC0
is the projection of

H0((C̃0 ∪ C)[1]) on the coordinate corresponding to C0.

Example 3.29. Consider the two conics C1 := {y(y − z) + (x + y)2 = 0}, C2 :=
{y(y − z) + (x − y)2 = 0} and the line C3 := {y = 0} (see Figure 3). The weak

combinatorial type of C̃ := C1 ∪ C2 ∪ C3 is

WC̃ := ({1, 2, 3}, S, {ΔP , φP , (•, •)P }P∈S , (2, 2, 1), (0, 0, 0)),

where S := {P1, P2, P
′
2, P3}, ΔP1

:= {δ11 , δ12}, ΔP2
:= {δ22 , δ23}, ΔP ′

2
:= {δ′21 , δ′23 },

ΔP2
:= {δ31 , δ32}, φPi

(δij) := j, and (δij , δ
i
k)Pi

= i. The ring H∗(SC̃) is generated by

the 1-forms ωi := 2σ3 − σi, i = 1, 2, and the 2-forms ψ1 := ψ
δ31 ,δ

3
2

P3
+ψ

δ22 ,δ
2
3

P2
−ψ

δ′21 ,δ′23
P ′

2

and ψ2 := ψ
δ11 ,δ

1
2

P1
+ψ

δ22 ,δ
2
3

P2
−ψ

δ′21 ,δ′23
P ′

2
. The only relation is given by ω1∧ω2 = 3ψ1+ψ2.

Hence

H∗(SC̃) = 〈ω1, ω2, ψ1, ψ2 | ω1 ∧ ω2 = 3ψ1 + ψ2〉.

C1 C2

C3

P3

3

P1

2

P2

2

P ′
2

Figure 3. Projective realization of C and multiplicities of intersection.

Remark 3.30. As in Definition 3.26, the curve C̃ ⊂ P2 will not be assumed to have
a transversal line, and usually we will denote by C the union of C̃ and a transversal
line. In the future, we will always consider this situation unless otherwise stated.

4. Formality of complements to projective plane curves

All the basic definitions of minimal algebras, minimal models, homotopy, etc.
required in the definition of formality and in the theory of homotopy theory of
algebras can be found for instance in any of the foundational papers [7, 18, 20].

Definition 4.1. Two graded differential algebras (A, dA) and (B, dB) are called
quasi-isomorphic if there exists a morphism of graded algebras f : A → B such
that the induced morphism f∗ : H∗(A, dA) → H∗(B, dB) is an isomorphism. Note
that “being quasi-isomorphic” is not an equivalence relation. We will refer to the
quasi-isomorphism class of a graded differential algebra as the minimal equivalence
class generated by the quasi-isomorphism relation.

Licensed to University de Science & Technology de Lille I. Prepared on Thu Mar  7 12:53:13 EST 2013 for download from IP 134.206.80.217.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



5786 J. I. COGOLLUDO AGUSTÍN AND D.MATEI

A minimal differential graded algebra is called formal if it is quasi-isomorphic
to its cohomology algebra using a zero differential. A differential graded algebra is
called formal if its minimal model is formal. Finally, a complex space X is called
formal if the algebra of differential forms (E(X), d) is formal.

The concept of formal algebra is well defined since any differential graded al-
gebra has a unique (up to homotopy) minimal model (cf. [20, Section §5]). Also
note that a minimal model for (A, dA) consists of a minimal algebra (M(A), dM(A))
plus a quasi-isomorphism M(A) → A. Therefore, if one finds a quasi-isomorphism
between (E(X), d) and (H(X), 0), then X is formal. Moreover, if X is a smooth
complex variety and X is a completion of X by a simple normal crossing divi-
sor, then the minimal model of E(X) and the minimal model of AX(log〈D〉) are
isomorphic (cf. [18, Section §6]).

Theorem 4.2. There is a well-defined quasi-isomorphism H∗(SC) → A∗
SC

(log〈C〉).

Proof. According to Theorem 3.25 H∗(SC) admits a decomposition

C⊕ V1
C ⊕ V2

C ⊕KC ⊕KC ,

where V1
C is generated by 1-forms V 1

C ⊂ W 1 and V2
C (resp. KC, KC) is generated by

2-forms V 2
C ⊂ W 2

2 (resp. KC ⊂ W 2
1 , KC ⊂ W 2

1 ). Each cohomology class ϕ ∈ H∗(SC)
can be thus described as the cohomology class of a combination of forms as follows:
ϕ = [z + ψ1 + ψ2

1 + ψ2
2 ]. The map is defined by ϕ �→ z + ψ1 + ψ2

1 + ψ2
2 . By

Theorem 3.23 this map is well defined and is obviously a quasi-isomorphism. �

As a consequence of the discussion at the beginning of this section one has the
following.

Theorem 4.3. The complement of a plane projective curve SC is a formal space.

Remark 4.4. Theorem 4.3 is the global version of the formality of algebraic links
proved by Durfee-Hain in [9]. The result is a consequence of a more general fact
proved paper by A. Macinic in [17]: a 2-complex X which is 1-formal is also a
formal space.

The 1-minimal model M1(A) of a differential graded algebra (A, dA) is the sub-
algebra generated by the degree 1 part in M(A). Then a space X is 1-formal if
M1(E(X), d) is quasi-isomorphic to M1(H

∗(X), 0). This condition can be restated
in terms of the fundamental group as follows. A finitely presented group G is 1-
formal if its Malcev completion is filtered isomorphic to its holonomy Lie algebra,
completed with respect to bracket length. Fundamental groups of complements to
algebraic plane curves are known to be 1-formal (see [13] and [18]).

5. Examples

5.1. Weak combinatorics do not determine classical combinatorics. Let
�0 := {x = 0}, �1 := {y = 0}, and �2 := {z = 0} be three lines in general position
and consider:

(1) C̃1 := {(x−y)2− (x+y)z = 0} a conic tangent to �2 at (1, 1, 0) and passing
through �0 ∩ �1,

(2) C̃(1)
2 := {x− y + z = 0} the line passing through �0 ∩ C̃1 and �2 ∩ C̃1, and

(3) C̃(2)
2 := {3x− y + z = 0} the line tangent to C̃1 at �0 ∩ C̃1.
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The Cremona transformation based on �0, �1, and �2 transforms C̃(k) := C̃1 ∪ C̃(k)
2

into C(k), a union of a cuspidal cubic C1 and a conic C(k)
2 . Note that C(k) has

three singular points {P1, P2, P3}, where ΔC(k),Pi
:= {δ1i , δ

2,k
i }, φC(k),Pi

(δ1i ) = C1,
φC(k),Pi

(δ2,ki ) = C(k)
2 , (δ1i , δ

2,1
i )C(1),Pi

= i, and (δ1i , δ
2,2
i )C(2),Pi

= σ(2,3)(i) (where
σ(2,3)(i) represents the permutation (2, 3) applied to i). Figure 4 represents the

singular points of C(k), the local branches at those points (a solid line for C1 and

a broken line for C(k)
2 ), and the multiplicity of intersection in brackets. Note that

the bijection ϕ of singular points that permutes P2 and P3 induces an equivalence
between WC(1) and WC(2) , since ϕrC(1)

and ϕPi
are forced by their compatibility

with the degrees and with ϕ. The combinatorial types KC(1) and KC(2) cannot be
equivalent since the topological types of their singularities do not coincide.

P2

(2)

P1
(1)

P3
(3)

C(1)

P2

(3)

P1
(1)

P3
(2)

C(2)

Figure 4. Singularities of C(1) and C(2), respectively.

5.2. An explicit computation of the cohomology ring in the non-rational
case. We will present a simple example of a non-rational arrangement of curves in
order to show how to compute the forms described in section 3. Let C := C0 ∪ C1 ∪
C2 ∪ C3, where C0 := {x+ y + z = 0}, C1 := {y − z = 0}, C2 := {xy+ xz + yz = 0},
and C3 := {x2(y + z) + y2(x+ z) + z2(x+ y) = 0}. In this case, for simplicity it is
more convenient to consider the line at infinity C0 with an equation different from
{z = 0}. Consider ξ a primitive third root of unity (a root of t2 + t + 1 = 0) and
denote C0 ∩ C1 = {P01 = [−2 : 1 : 1]}, C0 ∩ C2 = {R1 = [−ξ̄ − 1 : ξ̄ : 1], R2 =
[−1 − ξ : ξ : 1]}, C0 ∩ C3 = {Q1 = [0 : 1 : −1], Q2 = [−1 : 0 : 1], Q3 = [−1 : 1 : 0]},
C1∩C2 = {P1, P12 = [1 : −2 : −2]}, C1∩C3 = {P1, P13 = [ξ : 1 : 1], P̄13 = [ξ̄ : 1 : 1]},
and C2 ∩ C3 = {P1 = [1 : 0 : 0], P2 = [0 : 1 : 0], P3 = [0 : 0 : 1]},

Since all the local branches of the irreducible components at any singular point
are irreducible, we will denote by ψi,j

P the 2-form associated with the singular point
P and the local branches at P of Ci and Cj . For example, in order to compute

ψ2,3
P1

= ϕ2,3
P1

ω
C0C2C3

, one needs a section of H0(P2, I2,3
P1

(3)). Note that

(
I2,3
P1

)
P
:=

⎧⎪⎨
⎪⎩
{ϕ ∈ OP | TP (C2,3)|ϕ ≥ TA3

} = mP if P = P1,

{ϕ ∈ OP | TP (C2,3)|ϕ ≥ T n
A3
} if P = P2, P3,

OP otherwise,

where Figure 5 describes the local conditions at the tacnodes Pi.
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1, 1

1, 0

0, 0 0, 0

Figure 5. Description of T n
A3

and TA3
, respectively.

Therefore ϕ2,3
P1

is the equation of a cubic α(xz + x2 + (1− ξ)xy+ yz)z + βC0C2.

In order to obtain a normal form one has to require the different residues of ψ2,3
P1

at P1 and at an exceptional divisor E joining δ2 and δ3 to be equal to ±1. It is a
simple computation that

Res
[2]
P1
ψ2,3
P1

=
α

3
and that (

1R
[1]
0 ψ2,3

P1

)
E
=

1

3
(β − ξ).

Since
(
1R

[1]
0

dC2

C2
∧ dC3

C3

)
E
= − 2

3 and (δ2, δ3)P1
= 2, one concludes that

ϕ2,3
P1

= 3(xz + x2 + (1− ξ)xy + yz)z + (ξ − 1)C0C2.

Analogously one can proceed with ψ1,2
P1

= ϕ1,2
P

ω
C0C1C2

and ψ3,1
P1

= ϕ3,1
P1

ω
C0C3C1

obtaining ϕ1,2
P1

:= 2x− ξy + (1 + ξ)z and ϕ1,3
P1

:= 2(x2 + xz + 2yz − y2) + C0C1.

Note that ϕ1,2
P1

C3 + ϕ2,3
P1

C1 − ϕ1,3
P1

C2 = 0 and hence ψ1,2
P1

+ ψ2,3
P1

+ ψ3,1
P1

= 0
(equation (17) of Theorem 3.23).

The following list describes the polynomials ϕi,j
P for the generating 2-forms

ψi,j
P := ϕi,j

P
ω

C0CiCj
:

ϕ2,3
P1

:= (ξ + 2)(zx2 + ξyx2 + xz2 + ξy2x+ z2y + ξzy2),

ϕ2,3
P2

:= (ξ + 2)(y2x+ xz2 + yx2 + zx2 + z2y + (1− ξ)zxy + ξzy2),

ϕ2,3
P3

:= (ξ − 1)(y2x+ xz2 + yx2 + zx2 + y2z + (ξ + 2)zxy − (1 + ξ)z2y),

ϕ1,2
P1

:= 2x− ξy + (1 + ξ)z,

ϕ1,2
P12

:= (ξ − 1)((ξ + 1)y + z),

ϕ1,3
P1

:= 2x2 + xz + xy − z2 + 4yz − y2,

ϕ1,3
P13

:= −(ξ + 2)(xz + xy + z2 + 2ξzy + y2),

ϕ1,3
P̄13

:= (ξ − 1)(xz + xy + z2 − 2(ξ + 1)yz + y2).

Finally we also describe the polynomials ϕi,k
∞ for the generating 2-forms ψi,k

∞ :=
ϕi,k
∞

ω
C0Ci

:

ϕ3,Q2
∞ := −3(x+ y),

ϕ3,Q3
∞ := 3(x+ z),

ϕ2,R2
∞ := −(2ξ + 1).
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One can then easily verify that

Jac(C2, C3, C0) = 2ϕ2,3
P1

+ 2ϕ2,3
P2

+ 2ϕ2,3
P3

+ 3ϕ2,R2
∞ C3 − 2ϕ3,Q2

∞ C2 − 2ϕ3,Q3
∞ C2,

and hence

σ2 ∧ σ3 = 2ψ2,3
P1

+ 2ψ2,3
P2

+ 2ψ2,3
P3

+ 3ψ2,R2
∞ − 2ψ3,Q2

∞ − 2ψ3,Q3
∞ ,

which corresponds to equation (18) of Theorem 3.23.
The same can be checked for Jac(C1, C2, C0) and Jac(C1, C3, C0).
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