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Introduction 

Let L be a tame link in the 3-sphere 8 3 consisting of n knots K 1, • • · , Kn and 
let GL be the link group 11"1(XL),XL = 8 3 \ L. For a prime number p, let fJ;. 
denote the pro-p completion of the group GL, fJ;. = lJ;mGL/N where N runs over 
normal subgroups of GL having p-power indices. By a theorem of J. Milnor [Mi], 
it is shown that fJ;. has the following simple presentation as a pro-p group 

fJ;. = (x1, · · · , Xn I [x1, Y1] = · · · = [xn, Yn] = 1) 

where Xi and Yi represent the meridian and longitude around Ki respectively (The-
orem 1.1.4). The purpose of this paper is to use the pro-p link group fJ;. and 
the associated group-theoretic invariants for the study of the p-homology groups 
of pm-fold cyclic branched covers of 8 3 along L, following the analogies between 
link theory and number theory [Mo1,...,4],[Rez1,2]. The invariants we derive from 
fJ;. are the p-adic Milnor invariants and the completed Alexander module over the 
formal power series ring A;, = Zp[[Xt, · · · , Xn]] with coefficients in the ring Zp 
of p-adic integers. The tool involved here is the Fox differential calculus on a free 
pro-p group [Ih]. Although these invariants are simply p-adic analogues of the usual 
Milnor invariants and Alexander modules, it is natural to work over A;, since the 
completed Alexander module can be presented over A;, by a sort of universal p-
adic higher linking matrix T;., called the p-adic Traldi matrix. This is defined in 
terms of the p-adic Milnor numbers and we can derive from f2 systematically the 
"p-primary" information on the homology of pm-fold branched covers of L. This 
is an idea analogous to Iwasawa theory [Iw] which may also be regared as a p-adic 
strengthening of the method employed by W. Massey [Mas] and L. Traldi [T]. We 
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122 HILLMAN, MATE! AND MORISHITA 

note that the method using the truncated Traldi matrices was considered in (Mat] 
to study the homology of unbranched covers. 

The homology of cyclic branched covers of a link L is one of the basic invariants 
of L and has been extensively investigated by many authors. The Betti number and 
the order have been determined in terms of the Alexander (Hosokawa) polynomial 
([HK],(MM],(Sl] etc) and further the (Galois) module structure has been studied 
((Da],(HS],(S2] etc), however most results are concerned mainly with the part which 
is prime to the covering degree. In (Rez1,2], A. Reznikov studied the p-homology 
of p-fold branched covers after the model of the classical problem on p-ideal class 
groups in number theory (see also (Mol]). In this paper, we push this line of study 
in arithmetic topology further and determine the Galois module structure of the p-
homology of a p-fold branched cover along a link completely in terms of the p-adic 
higher linking matrices. To be precise, let M be the p-fold cyclic branched cover of 
83 along L obtained from the completion of the p-fold total linking cover of XL and 
let a denote a generator of the Galois group of M over 83 • The homology group 
H1(M, Zp) ~ H1(M, Z)®zZp is then a module over the complete discrete valuation 
ring 8 := Zp[(a)]/(aP-1 +···+a+ 1) = Zp[(], ( :=a mod (aP-1 +···+a+ 1). 
Assume that H1 (M, Z) is finite. Then the p-primary part H1 (M, Zp) has the p-rank 
n- 1 ((Mol],(Rez2]) so that it has form 

n-1 
H1(M,Zp) = E98jpa• (ai;:::: 1) 

i=1 

as 8-module where p := (( -1) is the maximal ideal of 8. Hence the determination 
of the Galois module structure of H1 (N, Zp) is equivalent to that of the pk-rank 

ek := #{i I ai;:::: k} (k;:::: 1). 

Our main result is to give formulas for ek 's in terms of the higher linking matrices 
obtained by specializing the truncated p-adic Traldi matrices at X1 = · · · = Tn = 
(- 1 (Theorem 4.1.3). For the simplest case of k = 2, our formula reads 

e2 = n - 1 - rankF P ( C mod p) 

where C = (Cij) is the linking matrix defined by Cii = lk(Ki, Ki) fori :f:. j and 
Cii = - E#i lk(Ki, Kj)· In view of the analogy between the linking number and 
the power residue symbols (Mo2,3], this is seen as a link-theoretic analog of L. 
Redei's formula for the 4-rank of the class group of a quadratic field ((Redl]), and 
our general result was partly suggested by the relation between Redei's triple sym-
bol and the 8-rank of a class group (Red2]. In fact, the whole argument here can 
be translated into arithmetic (Mo5]. In the last section, we study the asymptotic 
behavior of the order IH1(Mm, Zp)l for the pm-fold cyclic branched cover Mm as 
m ---t oo, following Iwasawa theory on Zp-extensions (Iw]. Though our results ob-
tained in this paper are rather elementary, they seem to indicate further possibilities 
of our arithmetic approach to link theory. 

Acknowledgement. We would like to thank K. Murasugi for helpful communication. 

Notation. Throughout this paper, we fix a prime number p. We denote by F P the 
field with p elements and by Zp the ring of p-adic integers. Let ordp denote the 
additive p-adic valuation extended on the algebraic closure Qp of the p-adic field 
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PRO-p LINK GROUPS AND p-HOMOLOGY GROUPS 123 

Qp with ordp(P) = 1 and set lxlp = p-ordp(x), x E Qp. We use the letter q to denote 
p or 0. For a topological (possibly discrete) group G, we denote by G(k,q) the k-th 
term of lower central q-series defined by G(1,q) = G, Q(k+1 ,q) = (G(k,q))q[G(k,q), G) 
where for closed subgroups A, B of G, [A, B] stands for the closed subgroup of G 
generated by [a, b] = aba-1b-1, a E A, bE B. We simply write Q(k) for Q(k,O), the 
k-th term of the lower central series of G. For a pro-finite group G and a complete 
local ring R, we denote by R([G]] the completed group ring of Gover R [Ko,§7]. 

1. Pro-p completion of a link group 

1.1. The pro-p completion of a link group. Let L be a tame link in the 3-sphere 
8 3 consisting of n component knots K 1, · · · , Kn and let GL be the link group 
?r1(XL), XL = 83 \ L. After the work of K.T. Chen, J. Milnor (Mi] derived the 
following information about the presentation of the nilpotent quotient GL/G~,q). 
Let F be the free group on the n words x1, · · · , Xn where Xi represents the meridian 
mi around Ki and let 1r : F ~ G L be the meridiana! homomorphism defined by 
1r(xi) = mi (1 ::::; i ::::; n). 

Theorem 1.1.1 ((Mi]). For each k 2: 1 and i (1::::; i::::; n), there is a word y~k) in 

XI,··· , Xn representing the image of the i-th longitude in the quotient G L/G~,q) 
such that 

(1.1.2) 

and such that 1r : F ~ G L induces the isomorphism 

(1.1.3) 

where Nk is the subgroup ofF generated normally by [xi, y~k)] (1::::; i::::; n). 

Let G;, be the pro-p completion of GL, namely the inverse limit ijmGL/N of 
the tower of quotients GL/N which are finite p-groups. Since the quotients by the 
lower central p-series of G L are co final in this tower, we have 

G- ];,..... c ;c<k.p) 
L = ~ L L · 

k 

Since {y~k) p(k,p)h:?:1 forms an inverse system in {F/ p(k,p)}k:?: 1 by (1.1.2), we define 
the pro-p word Yi to be (y~k) p(k,p)) in the free pro-p group F := ijmF/F(k,p) which 
represents the i-th "longitude" in G;, under the map 7? : F ~ G;, induced by ?r. 

By taking the inverse limit with respect to k in the isomorphism (1.1.3) of finite 
p-groups for q = p, we have the following 

Theorem 1.1.4. The map 7? induces the isomorphism of pro-p groups 

F/N ~ Gi 
where N is the closed subgroup ofF generated normally by [xi, Yi] (1 ::::; i::::; n). In 

particular, we have G; ~ Zp for a knot K. 

Remark 1.1.5. (1) By the construction above, we note Yi = y~k) mod p(k,q) (F 

is embedded in F). 
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124 HILLMAN, MATEI AND MORISHITA 

(2) In view of the analogy between knots and primes, the pro-p link group Ch is 
regarded as an analog of the maximal pro-p Galois group over the rational number 
field Q unramified outside prime numbers p1 , · · · ,pn, Pi= 1 mod p [Mo2]. 

Theorem 1.1.4 tells us that from the group-theoretic point of view, any link of 
n components looks like a pure braid link with n strings after the pro-p completion. 
In particular, by applying the method of D. Anick [A] to determine the graded 
quotients of the lower central series of a pure braid link group to our pro-p link 
group Ch, we see that the pro-p analog of Murasugi's conjecture holds ( cf. [L]). We 
define the mod p linking diagram of L to be the graph with vertices the components 
of L and an edge joining Ki and Kj if and only if the linking number lk( Ki, Kj) ¢. 0 
modp. 

Theorem 1.1.6. If the mod p linking diagram of L is connected, we have the 
isomorphisms 

a (q);c (q+ 1) ~ f;;Cql;f;;Cq+ 1) F_(q) ;F.Cq+1) for q >_ 1, 
L L - 1 1 X n-1 n-1 

where Fr denotes the free pro-p group of rank r. 

1.2. The p-goodness of a link group. Let G be a group and G be the pro-p completion 
of G. We then call G p-good if the natural map G--+ G induces the isomorphisms 
on cohomology Hq(G, M) __::. Hq(G, M) for all q ~ 0 for any finite p-primary 
G-modules M (cf. [Se]). 

Theorem 1.2.1. A link group GL is p-good. 

Proof. We shall say that a subgroup G of ~ite index inGLis open if [GL: G] is a 
power of p. Let M be a finite p-primary GL-module. We shall show by induction 
on the length of M that if G is an open subgroup of G L then there is a smaller 
open subgroup G1 such that restriction from H 2 (G,M) to H 2 (G1,M) is trivial. 

Suppose first that M = F P with trivial G L -action and let H* (G) denote 
H*(G,Fp) for ease of reading. Since [GL : G] is finite and GL/G~) ~ zn there 
is an epimorphism T : G --+ C = ZjpZ. Then K = Ker(T) is another open 
subgroup of G L. The Hochschild-Serre spectral sequence for G as an extension 
of C by K has E2 term Eg•q = HP ( C, Hq ( K)), rth differential dr of bidegree 
(r, 1- r) and converges to H*(G). Since HP(K) = 0 for p > 2 there are only 
three nonzero rows, and since H* (G) = 0 for * > 2 we see that d~' 2 is an 
isomorphism for all p ~ 1. The spectral sequence is an algebra over the ring 
H* (C) = E;•0 . Since C has cohomological period 2, the cup product with a 
generator of H 2 (C) ~ F P induces isomorphisms 'Yg,q : Eg·q ~ Eg+2 ,q such that 
d~+ 2 ,q'Yg,q = 'Yg+ 2 ,q- 1 d~,q for all p, q ~ 0. Therefore we have the isomorphisms 
Ker(d~'q) ~ Ker(d~+ 2 ,q), Im(d~'q) ~ Im(d~+ 2 ,q) for anyp, q ~ 0. In particu-
lar we have the isomorphisms 1'~' 2 : E~· 2 = Ker(~' 2 ) ~ E~· 2 = Ker(d;•2 ) and 
1'~' 0 : E~· 0 = E1•0 jim( d~' 1 ) ~ E~· 0 = E~· 0 /Im( d~' 1 ) with d~' 2 o 1'~' 2 = 1'~' 1 o d~' 2 . 
It follows that d~' 2 is also an isomorphism, and so E~? = 0. But the edge homo-
morphism from H 2 (G) to H 2 (K) factors through Efj;} S E~· 2 = H 2 (K)c, and so 
is 0. 

In general, M has a finite composition series whose factors are copies of the 
simple module F p· Suppose that M1 is a maximal proper submodule of M, with 
quotient M/M1 ~ Fp. Restriction from G to K induces a homomorphism from 
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PRO-p LINK GROUPS AND p-HOMOLOGY GROUPS 125 

the exact sequences of cohomology corresponding to the coefficient sequence 0 -+ 
M1 -+ M -+ F P -+ 0. The result for F P implies that the image of H 2 ( G; M) lies in 
the image of H 2 (K, M 1). By the hypothesis of induction we may assume the result 
is true for M 1 , and so there is an open subgroup K 1 < K such that restriction 
from H 2 (K,M1 ) to H 2 (K1 ,Ml) is trivial. Hence restriction from H 2 (G,M) to 
H 2 (K1 , M) is also trivial. This establishes the inductive step. 

In particular, restriction from H 2 ( G L, M) to H 2 ( J, M) is trivial, for some open 
subgroup J, and so the result follows, as in Exercise 1 of Chapter 1.§2.6 of [Se]. 
(This exercise is stated in terms of profinite completions, but extends easily to the 
pro-p case). 0 

Since the cohomological dimension cd( G L) :::; 2, with equality if and only if L is 
~ntrivial, Theorem 1.2.1 gives the corresponding bound for the pro-p completion 
G£. 

Corollary 1.2.2. The cohomological p-dimension cdp((h) :::; 2. 

If the Milnor invariants of L are all 0 mod p ( cf. Section 2), then fh is a free pro-p 

group and so cdp ( fh) may be strictly less than cd( G L). In particular, this is so if 
Lis a nontrivial knot. 

2. p-adic Milnor invariants 

2.1. The pro-p Fox differential calculus. Let F be the pro-p completion of the free 
group F on n generators x 1, · · · , Xn. Y. Ihara [Ih] extended the Fox differential 
calculus on the abstract free group F ([F]) to that on F. The basic result is stated 
as the following 

Theorem 2.1.1 ([Ih]). There is a unique continuous Zp-homomorphism 

f) ~ ~ 
Oi = OXi : Zp[[F]] ~ Zp[[F]] 

for each i (1 :::; i :::; n) such that any element a E Zp[[F]] is expressed uniquely in 
the form 

n 

a= E(a)1 + L ai(a)(xi- 1) 
i=l 

where E is the augmentation map Zp[[F]] -+ Zp· 

The higher order derivatives are defined inductively by 

>:1. • •• o· (a) = {). (8 ... a (a)) U-z,l 'tr ZI 22 'l.r " 

Here are some basic rules (cf. [Ih,2]). 
(2.1.2) 1. If one restricts ai to Z[F] .under the natural embedding Z[F] -+ Zp[[F]], 
we get the usual Fox derivative on Z[F] ([F]). 
2. oi(Xj) = Oij (Kronecker delta). 
3. 8i(a{3) = Oi(a)E({3) + a8i(f3) (a, {3 E Zp[[F]]). 
4. ai(f-1 ) =-f- 1ai(f) u E F). 
5. For f E F and a E Zp, oi(r) = boi(f), where b is any element of Zp[[F]] such 
that b(f - 1) = r - 1. 
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6. Let P be another free pro-p group on x~, · · · , x~ and let <p : F - P be a contin-
n 

uous surjective homomorphism. Then one has a~(<p(a)) = L<p(Oj(a))o~(<p(Xj)), 
j=1 

' a ~ where oi = ax~, a E Zp[[FJ]. 
7. For f E F, ~(8[(!)) = (~) where a= f(Oi(f)) and (~) = a(a-1) .. t-r+l) E Zp. 

Let Zp ((X 1, · · · , Xn)) be the formal power series ring over Zp in non-commuting 
variables X 1, · · · , Xn which is compact in the topology taking the ideals I ( r) of 
power series with homogeneous components of degree ;?: r as the system of neigh-
borhood of 0. The pro-p Magnus embedding M ofF into Zp((X1.··· ,Xn))x is 
defined by 

M(xi) = 1 +xi, M(xi 1 ) == 1- xi+ x'f + · · · 
and it is extended to the isomorphism Zp[[F]] ~ Zp((X1, · · · ,Xn)) of compact 
Zp-algebras. The resulting expansion of a E Zp[[F]] is given by the Fox derivatives: 

(2.1.3) M(a) = f(a) + fr(a)X. ···X 'tl 'tr' 

fr(a) = f(Oi1 · · ·Oir(a)), I= (i1· · ·ir)· 

Finally, we recall the following fact ([Ko],7.14): Let ~ be the two-sided ideal of 
Zp[[F]] generated by q and the augmentation ideal Izp[[F]]" Then for f E F and 
k;?: 1, we have 

(2.1.4) 
f E p(k,q) ~ f - 1 E ~ 

~ M(f) = 1 +(term of degree;?: k) (for case q = 0). 

2.2. p-adic Milnor invariants. We keep the same notation as in Section 1. Let F 
be the free pro-p group on x1, · · · , Xn where each Xi represents the i-th meridian. 
For a multi-index I= (i1 · · · ir), r;?: 1, we define the p-adic Milnor number p,(I) by 

(2.2.1) p,(IJ := fl'{yiJ I' = ( i1 · · · ir-1) 
= f(oi1 · · · oir-1 (Yir)) 

where Yi E F represents the j-th "longitude" in 6';_ (cf. Section 1.1). By conven-
tion, we set P,(J) = 0 for III = r = 1. We let ~(I) denote the ideal of Zp generated 
by p,(J) where J runs over all cyclic permutations of proper subsequences of I. We 
then define the p-adic Milnor invariant lJ,(I) by 

(2.2.2) lJ,(I) := p,(I) mod ~(I). 

Since the usual Milnor number f..L(J), I= (i1 · · · ir) is defined by f(Oi1 · · · Oir-1 (Yi:))) 
by (2.1.2),1, Remark 1.1.5, (1) and (2.2.1) yield 

(2.2.3) P,(I) = f..L(I) and ~(I) = ~(I) 
as elements in Zp. Hence, we have 
(2.2.4) lJ,(J)'s are isotopy invariants of L and satisfy the same properties such as 
the cycle symmetry and Shuffle relations Ji(I)'s enjoy ([Mi]). 
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Theorem 1.1.4 and (2.1.4) implies the following: 

(2.2.5) All Ji,(I) = 0 for III < r if and only if 1? : F ---+ Ch induces an isomorphism 
F I p(r,q) ~ChiCh (r,q). In particular, if all p-adic Milnor invariants of L are zero, 
one has Ch ~F. This is the case for boundary links. 
Finally, we remark that (2.1.2), 7 implies 

(2.2.6) '(· .. ) (lk(Ki,Kj)) £ . .../.. . ll z · · · z J = or z r J . .._,_, r 
r 

The Milnor invariant is also given by the Massey products in the cohomology 
of G;,. For the normalized Massey system in profinite group cohomology and sign 
convention, we refer to [Mo3]. Let 6,··· ,~n be the Zp-basis of H 1 (Ch,Zp) dual 
to the meridians m/s, and let 'r}j E H 2 (Ch, Zp) be the image of [x1, y1] under the 
transgression H1(N,Zp)-a;;---+ H2(Ch,Zp)· Then for I= (i1· ··ir),r ~ 2, there is 
a normalized Massey system M for the product (~ip · · · , ~iJ E H2(Ch, Zpl ~(I)) 
so that 

(2.2. 7) 
j=ir#il, 

j = i1 =/; ir, 

otherwise. 

3. Completed Alexander modules 

3.1. The Alexander module of {h. The Alexander module of a finitely presented 
pro-p group was introduced in several modes in [Mo2]. As a particular case, the 
Alexander module of the pro-p link group Ch is defined using the pro-p Fox free 
differential calculus as follows. We keep the same notation as in Section 1 and 2. 

~ ~ ~ ~ ~(2) 
Let'¢ be the abelianization map GL ---+ H := GLIGL = z; and denote by the 
same :(f the continuous Zp-homomorphism Zp[[Ch]] ---+ Zp[[H]] on the completed 
group rings. We identify Zp[[H]] with the commutative formal power series ring 
A;. := Zp[[X1, · · · , XnlJ over Zp by setting ti := :(f o ??(xi) = 1 +Xi. By Theorem 
1.1.4, we call the matrix over A;. 
(3.1.1) 

the Alexander matrix of {h. We then define the Alexander module .A;, of Ch by 
the compact An-module presented by?;_: 

(3.1.2) - -n PL -n 
AL := Coker(An --+ An ) 

and call .A;, the completed Alexander module of L over A;.. Let A = Zp[[X]], the 
Iwasawa algebra and T : An ---+ A the reducing homomorphism defined by T(Xi) = X 

...-red 
(1 ::::; i::::; n). Then the reduced completed Alexander module AL is defined by the 
compact A-module 

(3.1.3) 
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which is presented by r(fi;,) 
matrix) and so we have 

(3.1.4) 

P";,(X, · · · , X). For a knot K, ?;, 

- -red .......... 
AL = AL =A. 

On (zero 

We also define the i-th completed Alexander ideal Ff;(L) of L by the i-th elementary 
ideal Ei(k) of k and i-th p-adic Alexander series ;s:(L) of L by the greatest 
common divisor b.i(E;(L)) of generators of the ideal E;(L): 

(3.1.5) 

The relation with the usual Alexander module is given as follows. Let 'lj; : G L ---... 

H = H 1(XL, Z) be the abelianization map which induces the ring homomorphism 
'lj; : Z[GL] ---... Z[H] on the group rings where Z[H] is identified with the Laurent 
polynomial ring An= Z[ti=\ · · · , t;;= 1J, ti = 'lj; o 1r(xi)· Given a presentation GL = 
(x1, · · · , Xm I r1 = · .. rt = 1) (m 2:: n), the Alexander module of L is given as 
the An-module presented by the Alexander matrix ('lj; o 1r(a1(ri))). By Theorem 
1.1.1, we can take m = n and the relators to be [xi, Yik+l)] (1 ::; i ::; n) and 
some finite number of generators fi(k+l) of p(k+l,p) (k 2:: 1). We let Jp = Jp n 
Z[F] and hn,P = 'lj; o 1r(Jp)· Since a}(fi(k+l)) E J/ by (2.1.4), passing to the 
quotients modulo (hn,P)k, AL/(JAn,P)k AL = AL ~An An/(hn,P)k is presented by 
the matrix ('l/Jo7r(8j([xi,Yik+l)])) mod (JAn,P)k). Here we see by Remark 1.1.5, 

(1) that the elements {'lj; o 1r(a1([xi, Yik+l)])) mod (hn,P)k} form an inverse system 
with respect to k and its limit is given as ~o1T(8j([xi,Yi])) under the identification 
!imAn/(JAn,P)k =An defined by ti = 1 +Xi. Hence by (3.1.2) we have 

k 

(3.1.6) 

-red 
Similarly, AL is related with the usual reduced Alexander module A£ed = r(AL) 
by 

(3.1.7) 

where A= Z[t±1] is embedded into A by t = 1 +X. 

3.2. The p-adic Traldi matrix. The Alexander matrix?;, of {;i2 (3.1.1) is computed 
explicitly as a universal p-adic higher linking matrix in terms of p-adic Milnor 
numbers. This is regarded as a p-adic strengthening of the work by L. Ttaldi [Tt]. 

Definition 3.2.1. The p-adic Traldi matrix TL = (T';,(i,j)) of Lover A;, is defined 
by 

i=j 

i -1= j. 
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.-red """ 
and we also define the reduced p-adic Traldi matrix TL of L over A by 

..-red .- .....-.... 
TL := T(h) = TL(X, 0 0 0 'X). 

Our theorem is then stated as 

Theorem 3.2.2. The p-adic Traldi matrix f2 gives a presentation matrix for 
the completed Alexander module A;, over A;,, and the reduced p-adic Traldi matrix 
..-red -red 
TL gives a presentation matrix for the reduced completed Alexander module AL 
over A. 
Proof. By (3.1.1),(3.1.2) and (3.1.3), it suffices to show ~o7?(8j([xi, Yi])) = T;,(i,j). 
By the rules 2 "'4 of (2.1.2), we have 

o1([xi, Yi]) = (1- xiyixi 1 )<5ij + xi(1- Yixi 1Yi 1 )oj(Yi)· 

Hereyi = 1+ L P(i1 · · · iri)(xi, - 1) · · · (xir- 1) by (2.1.3) and (2.2.1). 
r;::11:=;i,,. .. ,ir:=;n 

Hence we get 

(3) 

+ P(ji)Xi + L 
which yields the assertion. 

The following is an extension of (3.1.4). 

ti.(i1 .•• i i)X ... X r r t1 'lr 

D 

Corollary 3.2.3. For a link whose p-adic Milnor invariants are all zero, we have 

- -n -red -. 
AL ~An , AL ~An. 

This is the case for boundary links. 

Finally, we introduce the truncated p-adic Traldi matrices. 

-(k) 
Definition 3.2.4. For k 2': 2, the k-th truncated p-adic Traldi matrix TL 

(T;,(k) (i,j)) is defined by 

T-(k)(. ") 
L Z,J = 

k-1 

-I: 
r=ll::=;il ,··· ,ir::;n 

ir#i 
k-2 

P(ji)Xi + L 

t..(i1 ... i i)X ... X r r 1.1 Zr i=j 

t,(i1 ... i J.i)XX ... X r r t t1 tr i-:f=j 

-red,(k) 
and we also define the k-th truncated reduced p-adic Traldi matrix TL by 

-red,(k) -(k) -(k) 
TL := T(TL ) = h (X, 0 0 0 ,X). 

We note that f;,red,( 2) is the linking matrix multiplied by X, where the linking 
matrix c = (Cij) is defined by cii =- Lj#ilk(Ki,Kj) and Cij = lk(Ki,Kj) for 
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-i :/- j. Thus the p-adic Traldi matrix TL is regarded as a universal higher linking 
matrix over A;, which contains all information on the completed Alexander module. 
In the following section, we derive from f;_ the information on the p-homology 
groups of pm-fold cyclic branched covers along L. 

4. Galois module structure for the p-homology 
group of a p-fold cyclic branched cover 

4.1. Galois module structure of the p-homology of a p-fold cover. Let Xoo be the 
infinite cyclic cover of XL associated to the kernel of the homomorphism G L --> (t) 
sending each meridian to t. Let M be the the completion of the p-fold subcover 
of X 00 over XL so that M is a p-fold cyclic cover of 8 3 branched along L. We 
set vd(t) = td-1 + · · · + t + 1 for d ;::: 1. Let ¢ : M --> 83 be the covering 
map and a a generator of its Galois group. Since llp(a) = tr o ¢* = 0 where 
tr: H1(83 ,Z)--> H1(M,Z) is the transfer, we can regard H1(M,Z) as a module 
over the Dedekind ring 0 = Z[(a) ]/(vp(a)) = Z[(], (=a mod (vp(a)) is a primitive 
p-th root of 1. Hence H 1 (M, Zp) = H 1 (M, Z) 0z Zp is regarded as a module over 
the complete discrete valuation ring 8 = 0 0z Zp = Zp[(]. Note that 8 is the 
completion of 0 with respect to the maximal ideal j3 generated by the prime element 
1r := (- 1 and the residue field 0/t:> is Fp. By Theorem 2.2.1, we can derive the 
following information on a presentation matrix for the 8-module H 1 (M, Zp)· Note 
that the evaluation of a power series F(X) E Zp[[X]] at s = 1r makes sense in the 
j3 = (n)-adically complete ring 8. 

Theorem 4.1.1. A presentation matrix for H1(M, Zp) EB 8 over 8 is given by 
-red 
TL (n). Further, for any integer k;::: 2, a presentation matrix for (H1(M, Zp)00 
~ ~ ~ -red,(k) -red -red,(k) 
Ojpk) EB Ojpk over Ojpk is given by TL (n). Here TL (resp. TL ) is 
the reduced (resp. reduced truncated) 'I'raldi matrix defined in Section 3.2. 

Proof. Note that the well-known relation ([S1,Theorem 6]) 

H1(M, Z) ~ H1(X00 , Z)jvp(t)Hl(X00 , Z) 

is an 0-isomorphism since a acts on the r.h.s by t. Hence we have the following 
isomorphisms over 8 

H1(M, Zp) ~ (H1(X00 , Z)jvp(t)Hl(X00 , Z)) 0z Zp 

~ H1(Xoo, Z) 0A (A 0z Zp)j(vp(t))) 

~ H1(Xoo, Z) 0A (A/(vp(1 +X))) 

~ H1(X00 , Z) 0A 0. 
Since A£ed ~ H1(X00 , Z) EB A as A-module ([H, 5.4]), tensoring with 8 over A, we 
have an isomorphism of 8-modules 

A£ed 0A 0 ~ H1(M, Zp) EB 0. 
-red .-. 

Since the l.h.s is same as AL 0A 0, the first assertion follows from Theorem 3.2.4. 
The second assertion is obtained from the first one by taking modulo pk. 0 
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Now, we asuume that H1 (M, Z) is finite so that H1 (M, Zp) is the p-primary part of 
H1(M, Z). Using Theorem 3.1.1, we will see the 8-module structure of H1(M, Zp) 
more precisely. First, we recall the following result on the p-rank of H1(M, Zp) (cf. 
[Mol],[Rez]). 

Lemma 4.1.2. H1(M, Zp) ®0 Fp has dimension n- 1 over Fp. 

Proof. By [Mol], the map <P: H1(M,Z)--+ F; defined by 

<P(c) := (lk(¢.(c), K1) modp) 

induces an isomorphism 
n 

H1(M,Z)/(a -l)H1(M,Z) ~ {(ei) E F; 1 L:ei = o} ~ F;-1 

i=1 

where the l.h.s is H1 (M, Z) ®o 0 jp = H1 (M, Zp) ®0 F P• and hence we are done. 
D 

By Lemma 4.1.2, H1(M, Zp) has the form 

n-1 

H1(M,Zp) = ffi8jpa• (ai ~ 1) 
i=1 

as 6-module. Hence, the determination of 8-module structure of H1 (M, Zp) is 
equivalent to the determination of the pk-rank 

ek := #{i I ai ~ k} (k ~ 1). 
-red,(k) 

By Theorem 4.1.1, we can describe the pk-rank ek in terms of TL (1r). 

Theorem 4.1.3. Fork~ 2, let c~k), · · · , c~k2 1 , c~k) = 0 be the elementary divisors 
-red,(k) (k) (k) 

ofTL (1r), where ci lci+l (1 :::; i:::; n- 1). Then we have 

ek = #{i I c~k) = Omodpk} -1. 

Here we may call f£red,(k) (1r) the k-th higher linking matrix in view of the following 

Corollary 4.1.4. Fork= 2, we have 

e2 = n- 1- rankFp(C mod p) 

where C = (Cii) is the linking matrix of L defined by Cii =- L:#i lk(Ki, Ki) 
and Cij = lk(Ki, Kj) fori =I j. 
Proof. In fact, we have, by definition, 

-red,(2)( ) 
TL 7r = 7rC 

and hence e2 = n -1- rankFp(C modp) by Theorem 4.1.3. D 

4.2. 2-component case. We suppose n = 2 and keep to assume H1 (M, Z) is finite. 
By Lemma 4.1.2, H1 (M, Zp) has the p-rank 1 so that we have 

H1(M, Zp) = 8jpa, a~ 1. 
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Hence ek = 0 or 1 for k 2 2, and by Theorem 4.1.3 we have 
~red,(k) k 

ek = 1-¢===} TL (1r) = 02 mod 1r . 
~red,(k) ~red,(k) ~red,(k) ~red,(k) 

As TL (1, 2)(1r) = -TL (1, 1)(1r), TL (2, 2)(1r) = -TL (2, 1)(1r), 
we have the following 

Theorem 4.2.1. Suppose n = 2. For each k 2 1, assuming ek = 1, we have 

k 

L 
r=l h,··· ,ir-1=1,2 

k 

L L 
We give the condition in Theorem 4.2.1 in more concise forms for lower k. In the 
following computation, we use simply the usual Milnor number J-L(I) instead of fl(I) 
by (2.2.3). 

Example 4.2.2. e2 : Since e1 = 1, we have by Theorem 4.2.1 

(4.2.2.1) 

e3 : Assume lk(K1, K 2 ) = 0 mod p. By Theorem 4.2.1, we have 

{ J-L(21)7r+(J-L(121)+J-L(221))7r2 = Omod1r3 , 
e3 = 1 -¢===} 

J-L(12)7r + (J-L(l12) + J-L(212) )1r2 = 0 mod 1r3 . 

By cycle symmetry, J-L(121) = J-L(l12), J-L(221) = J-L(212) mod J-L(12). Here J-L(l12) = 
J-L(221) = ('-'(~ 2 )) mod J-L(12) by (2.2.6). Thus we have J-L(121) + J-L(221) = J-L(l12) + 
J-L(212) = J-L(12) = 0 mod p. Hence, we have 

(4.2.2.2) 

As one easily sees, this condition is also equivalent to 

(4.2.2.3) J-L(l12) = J-L(221) = 0 mod p. 

e4: Assume lk(K1, K 2 ) = 0 mod p2 • By Theorem 4.2.1, we have 

{ 

J-L(21 )7r + (J-L(121) + J-L(221) )7r2 

+(J-L(l121) + J-L(1221) + J-L(2121) + J-L(2221))7r3 = 0 mod 1r4 , 
e4 = 1 -¢===} 

J-L(12)7r + (J-L(l12) + J-L(212) )7r2 

+(J-L(1112) + J-L(1212) + J-L(2112) + J-L(2212))7r3 = 0 mod 1r4 . 

As in case of e3 , we have J-L(121) + J-L(221) = J-L(12) = 0 mod p2 . Similarly, J-L(1121) = 
J-L(l112) = (~-'(~ 2 )) mod ~(1121) and J-L(2221) = (~"(~ 2 )) mod ~(2221) by (2.2.6). 
Since ~(1121) = ~(2221) = 0 mod p, J-L(l121) + J-L(2221) = J-L(12)/3 = 0 mod p. 
Finally, by shuffie relation, J-L(1221) + J-L(2121) + J-L(2211) = J-L(2121) + 2J-L(2211) = 0 
mod p. Thus the first condition is equivalent to J-L(21)7r- J-L(2211)7r3 = 0 mod 1r4 . 

Similarly, we see that the second condition is equivalent to J-L(12)7r- J-L(l122)7r3 = 0 
mod 1r4 which is same as the first one. Hence, we obtain 

e4 = 1-¢===} lk(K1, K2)- J-L(ll22)7r2 = 0 mod 1r3 . 
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For case p = 2, this is equivalent to the following condition* 

{ 
lk(K1, K 2 ) = 0 mod 8, M(1122) = 0 mod 2 

(4.2.2.4) or 
lk(K1, Kz) = 0 mod 4, lk(K1, Kz) ¢. 0 mod 8, f-L(l122) = 1 mod 2. 

For example, the Whitehead link L = K1 U Kz satisfies lk(K1, K 2 ) = 0, f-L(l122) = 1 
and so e3 = 1, e4 = 0, hence H1(M, Zp) = Ojp3 . For the 2-bridge link of type 
(48,37), the latter condition of (4.2.2.4) is satisfied and so H1(M, Z2 ) = Zj2kz, 
k ~ 4. 

5. lwasawa type formulas for the p-homology 
groups of pm-fold cyclic branched covers 

5.1. Asymptotic formula for the p-homology of pm-fold covers. Form~ 1, let Mm 
be the completion of the pm-fold subcover of X 00 over XL so that Mm is a pm-fold 
cyclic cover of S 3 branched along L. In this last Section, we are concerned with 
the asymptotic behavior of the order of H1 (Mm, Zp) as m ~ oo using the standard 
argument in Iwasawa theory. As in Section 4, we start again with the following 
isomorphisms 

(5.1.1) 

(5.1.2) 

From these, we get immediately an extension of a theorem of M. Dellomo [D] for a 
knot. 

Proposition 5.1.3 For a link L whose p-adic Milnor invariants are all zero, for 
example a boundary link, we have H1(Mm, Zp) = z?"'-1)(n-1) form ~ 1. In 
particular, H1(Mm, Zp) = 0 form~ 1 if L is a knot. 

-red ~ 
Proof. In fact, AL =An for such a link L by Corollary 3.2.5. Hence H1 (X00 , Z)0A 
A~ A~n- 1 b ( ) d H (M Z ) z(p"'-1)(n-1) b ( ) 0 = y 5.1.1 an so 1 m, P = p y 5.1.2 . 

In the following, we assume that n ~ 2. By (5.1.1), the 0-th elementary ideal 
E 0 (H1 (X00 , Z) 0A A) over A is same as the 1st completed Alexander ideal E 1(L) 
(3.1.5). Note that the 1st p-adic Alexander series £(£) is given as the greatest 
common divisors of all n - 1 minors of the reduced p-adic Traldi matrix and so it 
is written by the form 

~1(L) = xn-1 · fh 

where we call V' L the p-adic Hosokawa series of L. Then by (5.1.2), we have the 
following formula on the order IH1(Mm, Zp)l which is seen as the p-primary part 
of the well known formula by S. Kinoshita and F. Hosokawa [KT] (See also [MM]). 
Here we interpret IH1(Mm, Zp)l = 0 to mean H1(Mm, Zp) is infinite. 

Proposition 5.1.4. IH1(Mm, Zp)l = pm(n- 1) IJ lfh(( -1)1;1. 
(P"'=1 

(#1 

*K. Murasugi informed us of this condition and examples which are obtained by the relation 
between the Alexander polynomial and Milnor invariants [Mu]. 
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Now, we assume H 1 (Mm, Zp) is finite for any m and see the asymptotic be-
haviour of the order IH1 (Mm, Zp)l as m ____. oo. For this, we recall the following 
standard facts from Iwasawa theory. We call a polynomial g(X) E Zp[X] distin-
guished if g(X) = Xd + ad_ 1xd- 1 + · · · + a0 , ai = 0 mod p for 0 ::; i ::; d- 1. 

Lemma 5.1.5 (p-adic Weierstrass preparation theorem [W, Theorem 7.3]). A non-

zero element f(X) E A is written uniquely as 

f(X) = pflg(X)u(X) 

where J.L is a non-negative integer, g(X) is a distinguished polynomial and u(X) E 
J\x. 

Lemma 5.1.6 ([W,Theorem 7.14]). Let f(X) E A and assume f((- 1) =/= 0 for 
any primitive pm-th root ( of 1 fork ;:::: 1. Write f(X) = pflg(X)u(X) according 
to Lemma 5.5 and define ..\ by the degree of g(X). Then there is an integer v 
independent of k such that we have the equality 

ordp( IT f((- 1)) =.Am+ J.LPm + v 
<7"'=1 

(#1 

for sufficiently large m. 

For the convenience of the reader, we include herewith a proof of Lemma 5.1.6. 

Proof of Lemma 5.1.6. Since u(x) E .Ax, we have 

ordp( IT f((- 1)) = (pm- 1)p + ordp( IT g((- 1)). 

Write g(X) = x>.. + a>.._ 1x>..- 1 + · · · + a0 , ai = 0 mod p (0 ::; i ::; ..\- 1). For 
a primitive p1- th root ( of 1 ( 1 ::; l ::; k), one has the equality (p) = ( ( - 1) ¢(P1) 

of ideals of Z [ (] and so ordp ( ( ( - 1) >..) = ¢(;1) where ¢( x) is the Euler function. 
Therefore, if lis large enough, ordp(((- 1)>..) < ordp(ai((- 1)i) for 0::; i :S ,\- 1 
and so ordp(g((- 1)) = ordp(((- 1)>..). Hence, there is a constant C independent 
of k such that for sufficiently large m, we have 

To apply Lemma 5.1.6 to ii;_, write 

ii;_ = pfl(L;p)g(L;p)u(L;p) 

where p( L; p) is a nonnegative integer, g( L; p) is a distinguished polynomial and 
u(L,p) E .Ax according to Lemma 5.1.5 and set ..\(L;p) = deg(g(L;p)). Then 
Proposition 5.1.4 and Lemma 5.1.6 yield the following 

Theorem 5 .1. 7. Notation and assumption being as above, there is a constant 
v( L; p) depending only on L and p such that we have 
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for sufficiently large m. 

We call the invariants >..(L;p), J.L(L;p) the Iwasawa >.., J.L-invariants of L with respect 
top respectively after the model of the Iwasawa invariants in the theory of Zp-
extensions [Iw]. 

5.2. Examples. 

1. Let L be the Whitehead link. We then have 

T _ (x1x~ 
L- XfX2 

and V";_ = X 2 • Hence, we have 

>..(L;p) = 2, J.L(L;p) = 0 and ordp(Hl(Mm, Zp)) =3m form~ 1. 

2. Let L = K1 U K2 U K3 be the Borromean rings so that we can take Y1 = 
[x3, x2], Y2 = [x3, x1], Y3 = [x1, x2]. Then we can compute all Milnor number needed 
to get the reduced Traldi matrix 

-.red (X +X2 
TL = -X 

-X2 

and so V";_ = 1 + X + X 2 • Hence, we have 

>..(L;p) = J.L(L;p) = 0 and ordp(Hl(Mm, Zp)) =2m form~ 1. 
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