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CAN THE NOTION OF A HOMOGENEOUS GRAVITATIONAL FIELD

BE TRANSFERRED FROM CLASSICAL MECHANICS TO THE

RELATIVISTIC THEORY OF GRAVITY?

D. Ionescu1

Bogorodskii generalized the classical mechanical concept of a homogeneous gravitational field to the case

of Einstein’s general relativity. We seek such a generalization to the case of the relativistic theory of

gravity. The corresponding solutions in these two theories differ substantially. The solution obtained in

accordance with the relativistic theory of gravity does not satisfy the causality principle in that theory.

The problem of constructing a generalization of the classical notion of a homogeneous gravitational field

in the framework of the relativistic theory of gravity therefore remains open.

1. Introduction

The homogeneous gravitational field in Newton’s classical mechanics is a field with the same potential
gradient at all points. Such a field can be generated by an infinite material plane with constant surface
mass density (see Sec. 3).

Can the classical notion of a homogeneous gravitational field be preserved in the relativistic theory
of gravity (RTG)? The starting point for discussing this problem is the monograph by Bogorodskii (see
Sec. 17 in [1]), where the author addressed the problem of finding the gravitational field generated by a
system of mass homogeneously distributed on a plane in the framework of Einstein’s general relativity
(GR). In Sec. 4, we describe what Bogorodskii understood by a homogeneous gravitational field in GR. We
demonstrate that its solution contains an irremovable singularity, which has no physical explanation.

The problem of a homogeneous gravitational field in the RTG was briefly addressed in [2]. In Sec. 5,
we analyze this problem in detail. The solution of the complete system of RTG equations for the problem
under investigation differs from that obtained by Bogorodskii. Although our solution is regular in the entire
domain of definition, it is unacceptable as a physically meaningful gravitational field because it does not
satisfy the causality principle in the RTG. The problem of finding such a field in the RTG therefore remains
open.

In Sec. 6, we show that if the constructed solution is used, then the speed of some free test particles in
this field can exceed the speed of light in a vacuum.

2. Equations of the RTG and the causality principle in the RTG

The RTG was constructed by Logunov and collaborators (see [3], [4]) as a field theory of gravitation
based on special relativity (SR). The Minkowski space–time is the fundamental space, which contains all
physical fields including the gravitational field. The element of length in this space is

dσ2 = γmn(x) dxm dxn, (2.1)
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where xm, m = 1, 2, 3, 4, are admissible coordinates in the Minkowski space–time and γmn(x) are the
components of the Minkowski metric in the chosen coordinate system.

The gravitational field is described by the symmetric second-rank tensor φmn(x), which determines the
effective Riemannian space–time. A basic RTG assumption is that the behavior of matter in the Minkowski
space–time with the metric γmn(x) under the action of the gravitational field φmn(x) is equivalent to its
behavior in the effective Riemannian space–time with the metric gmn(x) determined by the relation

g̃mn =
√
−ggmn =

√
−γγmn +

√
−γφmn, g = det(gmn), γ = det(γmn). (2.2)

Such an interaction between the gravitational field and matter was called the geometrization principle of

the RTG.

The RTG dynamics of the gravitational field is governed by the differential equations

Rm
n − 1

2
δm
n R +

m2
g

2

(
δm
n + gmkγkn − 1

2
δm
n gklγkl

)
= 8πTm

n , (2.3)

Dmg̃mn = 0, m, n, k, l = 1, 2, 3, 4, (2.4)

where Rm
n is the Ricci tensor corresponding to the metric gmn, R = Rm

m is the scalar curvature, δm
n is the

Kronecker symbol, mg is the graviton mass, and Tm
n is the energy–momentum tensor of the gravitational field

sources. In Eq. (2.4), Dm is the operator of covariant differentiation w.r.t. the metric γmn. Equations (2.3)
and (2.4) are covariant under arbitrary coordinate transformations with a nonzero Jacobian. All the field
variables in the RTG depend on universal space–time coordinates of the Minkowski space. The presence
of mass terms in Eq. (2.3) allows unambiguously determining the space–time geometry and the density of
the gravitational field energy–momentum tensor in the absence of matter. It follows from Eq. (2.4) that
the gravitational field only has states with the spins 0 and 2. In [4], this equation, which determines the
field polarization, was obtained based on the gravitational field source being a universal conserved density
of the energy–momentum tensor of the total matter including the gravitational field. The graviton mass
essentially affects the Universe’s evolution and changes the character of the gravitational collapse.

In the present paper, because the graviton mass is negligibly small (mg � 10−66 g), we analyze the
problem of finding the homogeneous gravitational field in the RTG omitting the mass terms in Eq. (2.3).
Hereafter, we use the relativistic system of units. Equation (2.4) can be written in the form (see Appendix 1
in [3])

Dmg̃mn = g̃mn,m +γn
mpg̃

mp = 0, (2.5)

where γn
mp are the components of the metric connection generated by the metric γmn and the comma in (2.5)

denotes differentiation w.r.t. the corresponding coordinate.
The causality principle in the RTG was proposed and analyzed by Logunov in Chap. 6 in [4]. According

to this principle, each motion of a pointlike test body must occur inside the causality light cone in the
Minkowski space–time. Following Logunov, the causality principle holds if and only if for any isotropic
Minkowski vector um, i.e., for any vector satisfying the condition

γmnu
mun = 0, (2.6)

the metric of the effective Riemannian space–time satisfies the restriction

gmnu
mun ≤ 0. (2.7)

288



Following the causality principle in the RTG, only those solutions of system (2.3), (2.4) that satisfy this
restriction are physically meaningful.

We stress that the above causality principle can be formulated only in the RTG because it is only in
RTG that the space–time is the Minkowski space–time and the gravitational field is described by the field
of the symmetric second-rank tensor φmn(x), where xm are the admissible coordinates in the Minkowski
space–time, x1, x2, and x3 are the spacelike variables, and x4 is the timelike variable.

3. A homogeneous gravitational field in classical mechanics

A gravitational field is said to be homogeneous in classical mechanics if its intensity is constant or
piecewise constant. Such a field can be generated by a system of masses homogeneously distributed over a
plane. The relation between the surface mass density σ and the acceleration G caused by the gravitational
field is

G = 2πσk > 0, (3.1)

where k is the Newton gravitational constant.
Choosing the x and y axes of the rectangular system of coordinates in the plane of the mass distribution

and the z axis orthogonal to this plane, we find that the motion of a free test particle in this gravitational
field is governed by the equations

d2x

dt2
= 0,

d2y

dt2
= 0, (3.2)

d2z

dt2
+ G = 0 for z > 0,

d2z

dt2
− G = 0 for z < 0, (3.3)

where t is the Newtonian time. In a noninertial reference frame that propagates with the constant proper
acceleration G, the equations of motion of a free test particle are

d2x

dt2
= 0,

d2y

dt2
= 0,

d2z

dt2
+ G = 0 for any z, (3.4)

where x, y, and z are particle coordinates in the noninertial reference frame.
Although system of equations (3.2), (3.3) is formally similar to system of equations (3.4), these two

systems are not equivalent. To see this, it suffices to compare Eqs. (3.3) and (3.4). Whereas laws (3.4) can
be transformed into the form

d2X

dt2
= 0,

d2Y

dt2
= 0,

d2Z

dt2
= 0 for any Z (3.5)

by a coordinate transformation, this is impossible for laws (3.2), (3.3). The two cases are nonequivalent
because we deal with a real gravitational field in the first case, but we have only an inertial force in the
second case. This example demonstrates that the difference between a real gravitational force caused by
a mass distribution and an inertia force acting in a noninertial reference frame exists even in classical
mechanics.

4. A homogeneous gravitational force in GR

In his monograph, Bogorodskii (see Chap. 17 in [1]) tried to answer the following questions: Does a
homogeneous gravitational field exist in GR? In GR, which Riemannian metric corresponds to a gravita-
tional field generated by an infinite material plane with a constant surface mass density? We present his
answers to these questions below.

289



Using classic results, Bogorodskii sought a solution of the Einstein equations in the form

ds2 = −Adx2 −Ady2 − C dz2 + Ddt2, (4.1)

where A, C, and D are positive-definite functions depending only on z. The energy–momentum tensor of
sources homogeneously distributed over the plane z = 0 is

Tmn ≡ 0 for all z �= 0. (4.2)

Bogorodskii concluded that the Einstein field equations for metric (4.1) with energy–momentum ten-
sor (4.2) are satisfied for arbitrary functions A, C, and D that satisfy the equations

2
(
A′

A

)′
− A′C′

AC
+

A′

A

(
2A′

A
+

D′

D

)
= 0,

2
(
D′

D

)′
− C′D′

CD
+

D′

D

(
2A′

A
+

D′

D

)
= 0,

A′

A

(
A′

A
+

2D′

D

)
= 0,

(4.3)

where the prime denotes differentiation w.r.t. the z coordinate. In accordance with the last equation, we
have two possibilities:

A′ = 0 or
(
A′

A
+

2D′

D

)
= 0. (4.4)

In the first case, we can set A = 1 because the functions A, C, and D are determined up to a constant.
In this case, the first equation of system (4.3) is obviously satisfied, and the second equation in (4.3) becomes

(
D′

D

)′
− 1

2
C′D′

CD
+

1
2

(
D′

D

)2

= 0. (4.5)

From (4.5), we obtain C = aD−1D′ 2, where a is the real constant of integration. In this case, the solution
of the Einstein equations has the form

A = 1, C = aD−1D′ 2, (4.6)

where D is an arbitrary function of z.
For the second case in (4.4), we can choose A = D−2, and the first two equations of system (4.3) then

give (
D′

D

)′
− 1

2
C′D′

CD
− 3

2

(
D′

D

)2

= 0. (4.7)

From (4.7), we obtain C = bD−5D′ 2, where b is the constant of integration. The solution of the Einstein
equations in the second case is therefore

A = D−2, C = bD−5D′ 2, (4.8)

where D is an arbitrary function of z.
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To determine D(z), Bogorodskii then found that the motion of the free test particle in the obtained
gravitational field is governed by the geodesic equations

d2x

dt2
+

(
A′

A
− D′

D

)
dx

dt

dz

dt
= 0,

d2y

dt2
+

(
A′

A
− D′

D

)
dy

dt

dz

dt
= 0, (4.9)

d2z

dt2
− A′

2C

[(
dx

dt

)2

+
(
dy

dt

)2]
+

(
C′

2C
− D′

D

)(
dz

dt

)2

+
D′

2C
= 0. (4.10)

For this system, we find that vertical motion with the initial speed zero is described by the system of
equations

d2x

dt2
= 0,

d2y

dt2
= 0, (4.11)

d2z

dt2
+

(
C′

2C
− D′

D

)(
dz

dt

)2

+
D′

2C
= 0. (4.12)

The term containing the speed must be dropped in the case of slow motion; Eq. (4.12) then becomes

d2z

dt2
+

D′

2C
= 0. (4.13)

Comparing the system of equations (4.11) and (4.13) with the classical system, Bogorodskii imposed the
restriction

D′

2C
= G. (4.14)

We discuss this restriction below.
Eventually, setting the constants a and b equal to 1/(4G2) and using relation (4.14), Bogorodskii

obtained the following two solutions from (4.6) and (4.8):

A = 1, C = e2Gz , D = e2Gz (4.15)

and

A = (1 − 8Gz)1/2, C = (1 − 8Gz)−5/4, D = (1 − 8Gz)−1/4. (4.16)

The Riemann–Christoffel curvature tensor vanishes for the first solution (Eqs. (4.15)). Bogorodskii
therefore concluded that solution (4.15) does not correspond to a real gravitational field. Using the trans-
formations

X = x, Y = y, Z =
1
G

[
eGz cosh(Gt) − 1

]
, T =

1
G eGz sinh(Gt), (4.17)

it is easy to see that fundamental invariant (4.1) becomes the Minkowski metric element

dσ2 = −dX2 − dY 2 − dZ2 + dT 2. (4.18)

(A detailed description of properties and singularities of a noninertial system described by relations (4.17)
is given in Chap. 15 in [5].)

We thus find that the first solution (Eq. (4.15)) corresponds to a noninertial system of reference whose
origin moves with the constant proper acceleration G in the positive direction of the Z axis of the inertial
system. The Riemann–Christoffel curvature tensor corresponding to the second solution (Eq. (4.16)) is
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nonzero. According to Bogorodskii, this solution describes a real homogeneous gravitational field generated
in GR by the mass distribution under consideration.

We first note that solution (4.16) has a singularity at z = 1/(8G) that is difficult to explain. We now
turn to Bogorodskii’s condition (4.14). We noted in Sec. 3 that the motion of a free test particle in an
actual gravitational field is described by the system of equations (3.2) and (3.3) in classical mechanics, not
by system (3.4). Bogorodskii’s condition (4.14) must therefore be replaced with the relation

D′

2C
=

{
G, z > 0,

−G, z < 0.
(4.19)

Bogorodskii’s solution (4.16) must then be replaced with

A = (1 ∓ 8Gz)1/2, C = (1 ∓ 8Gz)−5/4, D = (1 ∓ 8Gz)−1/4, (4.20)

where the plus and minus signs correspond to the respective cases z < 0 and z > 0. Solution (4.20) can
exist only in the range −1/(8G) < z < 1/(8G), and the singularities at z = ±1/(8G) have no physical
explanation.

5. A homogeneous gravitational field in the RTG

Solving a problem in the RTG framework relates to solving Eqs. (2.3) and (2.4) w.r.t. the coordinates
of the underlying Minkowski space–time. Only solutions that satisfy the causality principle can correspond
to physically meaningful gravitational fields. We keep the same starting point as Bogorodskii and seek the
solution for a homogeneous gravitational field in the RTG in form (4.1). We can then proceed in two ways;
we consider both alternatives below.

We first use already obtained solutions (4.15) and (4.20) satisfying Eqs. (2.3) (without the mass terms).
We now check whether these solutions satisfy Eqs. (2.4). The components of the initial Minkowski metric
and the components of the effective Riemannian metric coincide for solution (4.15) because this solution
appears when passing from an inertial reference frame to an accelerated reference frame in the Minkowski
space–time. Equations (2.4) are therefore obviously satisfied, and Dm is the operator of the covariant
differentiation w.r.t. the Minkowski metric.

For solution (4.20), we must first find the reference frame in the underlying Minkowski space–time.
This reference frame can be obtained under the assumption of a vanishing gravitational field. In the above
reference frame, metric (4.1) for σ = 0 and hence for G=0 then becomes

dσ2 = −dx2 − dy2 − dz2 + dt2. (5.1)

In the coordinate system thus chosen, the components of the metric connection γn
mp vanish, and Eq. (2.5)

becomes merely

g̃mn,m = 0. (5.2)

Taking relations (2.2), (4.1), and (4.20) into account, we find that Eq. (5.2) is not satisfied. Solu-
tion (4.20) is therefore not an RTG admissible solution. To find an RTG admissible solution, we use the
procedure in Chap. 13 in [3], namely, we seek a coordinate system {ηi} = {X,Y, Z, T} in which Eq. (2.3)
(without mass terms) is satisfied and Eq. (2.4) establishes a one-to-one correspondence between the sets of
coordinates {ηi} and {ξi} = {x, y, z, t} in the Minkowski space–time. This coordinate replacement is such
that when the gravitational field switched off, we obtain the Minkowski space–time with the metric

dσ2 = −dX2 − dY 2 − dZ2 + dT 2. (5.3)
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The components of the tensor γn
mp must therefore be identically zero in this coordinate system. Because

the components of metric (4.1) depend only on z, we can pass from the variables {ξi} to the variables {ηi}
assuming that

X = x, Y = y, Z = Z(z), T = t. (5.4)

In this reference frame, we can write Eqs. (2.4) in the form (see also relations (13.17) and (13.22) in [3])

∂

∂ξm

(√
−g(ξ)gmn(ξ)

∂ηp

∂ξn

)
= 0. (5.5)

By virtue of relations (4.1) and (4.20), Eq. (5.5) for transformations (5.4) becomes

d

dz

(
(1 ∓ 8Gz)

dZ

dz

)
= 0. (5.6)

Integrating this equation and choosing the integration constant such that the variable Z tends to z as G
tends to zero, we obtain

Z = ∓ 1
8G log(1 ∓ 8Gz). (5.7)

We can find components of metric (4.1) in coordinate system (5.4), (5.7) using the transformation law
for tensors. The result is

A = e−4GZ , C = e−6GZ , D = e2GZ for Z > 0,

A = e4GZ , C = e6GZ , D = e−2GZ for Z < 0.
(5.8)

Solution (5.8) satisfies the total system comprising Eqs. (2.3) (without mass terms) and (2.4). This solution
is regular for all Z �= 0 and is nondifferentiable at Z = 0; the derivatives of the functions A, C, and D

have finite jumps when passing through this plane. This singularity concentrated in the plane Z = 0
obviously results from the source of the actual gravitational field being the system of mass distributed over
this plane. We also see that condition (4.19) can be satisfied only approximately because, for example, it
follows from (5.8) that

D′

2C
= Ge8GZ for any Z > 0. (5.9)

At the same time, we note that this approximation is sufficiently correct. Indeed, using the standard system
of units, we obtain

D′

2C
=

G
c2

e8GZ/c2
for any Z > 0, (5.10)

where c is the speed of light in a vacuum in the inertial system. Therefore, for positive Z, the relation
D′/2C can be considered approximately constant if

Z � c2

G . (5.11)

The RTG analysis is still incomplete because we must verify that the obtained solutions satisfy the
causality principle. First solution (4.15) obviously satisfies the causality principle because the Minkowski
metric and the Riemannian metric coincide in this case, as already mentioned. Solution (4.15) is therefore
RTG admissible; its physical meaning was already clarified.
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Taking formula (5.3) for the initial Minkowski space–time into account, we find that the vector u =
(1, 0, 0, 1) is an isotropic vector of the Minkowski space for the second solution (Eq. (5.8)). Condition (2.7)
is therefore satisfied if

e2GZ ≤ e−4GZ for Z > 0 and e−2GZ ≤ e4GZ for Z < 0. (5.12)

These conditions are not satisfied for any Z > 0 or Z < 0 if the acceleration G is nonzero, and we conclude
that a generalization of a homogeneous gravitational field in Bogorodskii’s sense cannot be in agreement
with the RTG.

We can find an RTG solution of the problem under consideration using an alternative approach. From
Eq. (2.3) (without mass terms) in the case where Tm

n ≡ 0 for z �= 0, we obtain solutions (4.6) and (4.8). We
stress that the function D(z) is arbitrary in (4.6) and (4.8). This clearly demonstrates that the Einstein
field equations are insufficient for finding a unique gravitational field generated by the mass distribution
under consideration. We can determine the unknown function D(z) using Eqs. (2.4).

We now consider the Galilean coordinates x, y, z, and t of the inertial system. Equations (2.4) then
become merely (5.2). Taking (2.2), (4.1), (4.6), and (4.8) into account, we obtain

D(z) = peqz (5.13)

from (5.2), where p and q are real constants. Therefore, substituting (5.13) in (4.6), we obtain the first
RTG solution

A = 1, C = apeqz, D = peqz. (5.14)

From (4.8), we find the second RTG solution

A = p−2e−2qz, C = bp−3e−3qz , D = peqz. (5.15)

The Riemann–Christoffel curvature tensor is identically zero for solution (5.14) and is nonzero for solu-
tion (5.15).

The constants a, b, p, and q must be determined from the correspondence principle: when the gravi-
tational field is switched off, the space curvature must vanish, and we obtain the Minkowski space–time in
the chosen reference frame. The equations of motion then become classical in the chosen reference frame.
The geometrization principle in the RTG then claims that the equations of motion in the gravitational field
under consideration are given by Eqs. (4.9) and (4.10). In the case of slow vertical motion, this system of
equations becomes system (4.11), (4.13). It thus follows from the correspondence principle that we must
obtain relation (4.14) for solution (5.14) and relation (4.19) for solution (5.15).

Following the same principle, the metric must tend to the Galilean metric as G → 0. We thus obtain
solution (4.15) in the first case and solution (5.8) in the second case. As mentioned above, relation (4.19)
is satisfied only approximately for the second solution.

We have thus obtained the same result using two different approaches: solution (4.15) represents
inertial forces, whereas solution (5.8) is inadmissible as an actual gravitational field generated by the mass
distribution under consideration because it fails to satisfy the causality principle (see (5.12)).

6. The importance of the causality principle in the RTG

The example in this section clearly demonstrates that the causality principle is crucial when we conclude
that solution (5.8) is RTG inadmissible. We show that there are free test particles in the constructed space–
time that move faster than light in a vacuum.
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We choose a free test particle, which is situated at the distance h > 0 from the mass distribution plane
z = 0 at the initial moment t = 0. For simplicity, we consider the problem in the plane xOz. At the initial
instant t = 0, when the particle occupies the initial position,

x(0) = 0, (6.1)

z(0) = h > 0, (6.2)

we release it. The geometrization principle claims that if we want to study the behavior of this particle
under the action of the homogeneous gravitational field under consideration, we can study its motion in
the effective Riemannian space–time (see (5.8))

ds2 = −e−4Gz dx2 − e−6Gz dz2 + e2Gz dt2. (6.3)

By virtue of geodesic equations (4.9) and (4.10) and Riemannian metric (6.3), we find that the particle
trajectory is described by the equations

d2x

dt2
− 6G dx

dt

dz

dt
= 0, (6.4)

d2z

dt2
+ 2Ge2Gz

(
dx

dt

)2

− 5G
(
dz

dt

)2

+ Ge8Gz = 0. (6.5)

We also assume that at the initial instant t = 0,

ẋ(0) = a > 0, (6.6)

ż(0) = b > 0, (6.7)

where a and b are real constants.
Solving Eq. (6.4) and taking relations (6.2) and (6.6) into account, we obtain

ẋ(t) = ae6G(z−h). (6.8)

Also solving Eq. (6.5) and taking Eqs. (6.2), (6.6), and (6.7) into account, we obtain

ż(t) = e4Gz
√

1 + Le2Gz − a2e−12Ghe6Gz , (6.9)

where L is the real constant

L = b2e−10Gh + a2e−8Gh − e−2Gh. (6.10)

We now segregate the timelike and spacelike components in (6.3),

ds2 = dσ2 − dl2, (6.11)

where

dσ2 = e2Gz dt2, (6.12)

dl2 = e−4Gz dx2 + e−6Gz dz2. (6.13)
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Therefore, if one local event has the coordinates (x, 0, z, t) and another local event has the coordinates
(x+dx, 0, z+dz, t+dt), then an observer situated at the point (x, 0, z, t) and moving with the four-velocity
(dx/ds, 0, dz/ds, dt/ds) measures the space interval dl and the proper time interval dσ between the two
events.

The particle velocity v(v1 = dx/dt, 0, v3 = dz/dt) in the effective Riemannian space–time under con-
sideration has the absolute value

v2 =
dl2

dt2
= e−4Gzẋ2 + e−6Gz ż2. (6.14)

It is natural to require the initial speed of the test particle to be less than the speed of light in a
vacuum. We therefore obtain the inequality

e−4Gha2 + e−6Ghb2 < 1 (6.15)

from (6.2), (6.6), (6.7), and (6.14). Taking expressions (6.10) and (6.15) into account, we find the restriction
on the constant L:

L < e−4Gh − e−2Gh. (6.16)

Because we assume that h > 0, formula (6.16) implies

L < 0. (6.17)

We now demonstrate that in the given case, there exist certain coordinates z where the particle speed
exceeds the speed of light in a vacuum, i.e., that we can find a value of z such that

v2(z) > 1. (6.18)

Substituting (6.8) and (6.9) in (6.14), we find that inequality (6.18) is equivalent to the inequality

e2Gz + Le4Gz > 1. (6.19)

Taking (6.17) into account, we find that for

−1
4
< L < 0, (6.20)

i.e., under some conditions imposed on the initial particle velocity, inequality (6.19) is satisfied for any z

satisfying the inequality

1
2G log

(
−1 +

√
1 + 4L

2L

)
< z <

1
2G log

(
−1 −

√
1 + 4L

2L

)
. (6.21)

For example, restrictions (6.20) hold for

a = ρe2Gh cos θ, b = ρe3Gh sin θ

for θ ∈
(

0,
π

2

)
, 0 < ρ < 1, ρ2 > 1 − (e

2Gh − 2)2

4
.

Hence, if we consider a free test particle moving in the effective Riemannian space–time (5.8) from posi-
tion (6.1), (6.2) with the velocity (6.6), (6.7) at the initial instant, then it follows from (6.10) that the real
constants a and b satisfy restrictions (6.20), and this particle moves faster than light in a vacuum.
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7. Conclusion

As we have seen, in classical mechanics, GR, and the RTG, if a reference frame propagates with a
constant acceleration w.r.t. an inertial reference frame, then the inertial field generated by the inertial force
is a constant field. The expressions for Minkowski length element (4.15) coincide in GR and the RTG. In
the classical mechanics approach, this constant field is said to be indistinguishable from a homogeneous
gravitational field generated by an infinite material plane. But expressions (3.2), (3.3), and (3.4) imply that
these two fields differ, even in the classical mechanics approach. This is because the gravitational force is an
attraction force. The difference between a constant field generated by an inertial force and a homogeneous
gravitational field generated by masses is essential in both GR and the RTG. As mentioned, Bogorodskii’s
solution (4.16) for a homogeneous gravitational field in GR contains an irremovable singularity. The RTG
solution has form (5.8). Unfortunately, this solution fails to satisfy the RTG causality principle and must be
rejected. Indeed, in obtained space–time (5.8), the speed of a free test particle can exceed the speed of light
in a vacuum. To conclude our analysis, we note that the interesting problem of finding the gravitational
field generated in the RTG by homogeneously distributed masses on an infinite plane remains open.
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