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Abstract

In the framework of Einstein’s General Relativity Theory and of the Relativistic Theory of Gravitation, the equations
governing the trajectories of charged particles in the 2eld created by a charged mass point are given. An analysis of the shape
of the trajectories in both theories is presented. The 2rst and the second order approximate solutions of the electrogravitational
Kepler problem are found in the two theories and the results are compared with each other. I have pointed out the di6erences
between the predictions in the two theories.
? 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In this paper, I study the motion of a charged mass
point P having mass m and electric charge q, in the
electrogravitational 2eld produced by a charged mass
point S having mass M and electric charge Q. The
electrogravitational Kepler problem constitutes an
analogue to the problem of the motion of a planet
about a 2xed sun, under Newtonian attraction. This
problem will be considered, in turn, in the frame-
work of Newton’s Classical Mechanics (CM), of
Einstein’s General Relativity Theory (GRT) and of
the Relativistic Theory of Gravitation (RTG).
For the sake of comparison with the relativistic

versions of the considered problem, in Section 2, I
present, the description of the motion in the elec-
togravitational 2eld according to CM.
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The development of RTG and the di6erences be-
tween this and GRT are described in detail in [1,2].
A very important test for a theory of gravitation is
to con2rm the astronomical predictions. The predic-
tions of RTG for the gravitational e6ects are unique
and consistent with the available experimental data.
If the accuracy of the astronomical measurements
could be raised to a level at which the e6ects of or-
der velocity4=c4, with velocity�c, come into play,
it will be possible to verify the di6erences between
the predictions of the two theories. Besides, in total
contradiction with GRT, static spherically symmet-
ric bodies in RTG cannot have dimensions less than
Schwarzschild radius. Therefore, the absence of black
holes and gravitational collapse in RTG has been
con2rmed (see, [1–3]).
In the framework of GRT, a spherically symmetric

solution of the coupled system of Einstein’s equations
and Maxwell’s equations is that of Nordstr>om and
Je6rey (see Ref. [4, Section 56]). The gravitational
radius of the source point S, as a function depending
on Q2 and M 2, has a discontinuity in Q2 = kM 2. In
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Section 3, I present equations of motion of the charged
mass point P in the Nordstr>om metric. In this section, I
also present the analysis of the shape of the orbits in the
equatorial plane. What happens in the vicinity of the
gravitational radius is not presented in detail. For this,
see [5] and for a complete bibliography of papers on
the geodesics in the Nordstr>om metric see [6]. In this
section, an approximate solution of order velocity2=c2,
with velocity�c, for the considered problem is given.
The problem of 2nding the electrogravitational 2eld

produced by the charged mass point S in RTG, was
2rst analyzed by Karabut and Chugreev [7], but as-
suming only that kM 2¿Q2. SoKos and I have reana-
lyzed the problem in RTG (see [8]) considering also
the possibility Q2 ¿kM 2. It is important to analyze
this case because the variant is true for the electron.
The analytical form of the solution we found, as well
as its domain of de2nition, i.e. the gravitational radius
rg, depend essentially on the relation existing between
Q2 and kM 2. But, in [14] it is shown that this solution
does not ful2ll the Causality Principle in RTG. There-
fore, this solution cannot be an acceptable solution for
this theory. In [14], I have determined the unique solu-
tion of electrogravitational 2eld produced by a charged
mass point according to RTG. The obtained solution
has the same analytical form for all order relations be-
tween Q2 and kM 2. The gravitational radius depends
on this relation, but it is a continuous function depend-
ing on Q2 and M 2. In Section 4, I present equations
of motion of the charged mass point P in the electro-
gravitational metric according to RTG. I also analyze
the shape of the orbits in the equatorial plane. I do not
analyze in detail what happens in the vicinity of the
gravitational radius. This problem will be treated in a
future paper. In this section, I also write an approxi-
mate solution of order velocity2=c2, with velocity�c,
for the considered problem and I compare it with the
one obtained in the framework of GRT in Section 3.
In Section 5, I write solutions to order velocity4=c4,

with velocity�c, in both theories and then I compare
the predictions of the two theories.

2. Orbits in the electrogravitational �eld in CM

To study the problem of motion of the charged mass
point P having mass m and electric charge q, in the
2eld produced by the charged mass point S having

massM and electric chargeQ, we consider a system of
coordinates centered in S. The position of P is denoted
by the position vector r= SP.
When P moves in the 2eld produced by S, it is

acting on the electrostatic force Fe due to Q and the
gravitational force Fg due to M . The motion of P is
governed by

ma = Fe + Fg; (2.1)

a representing the acceleration of P.
The expression of the electrostatic force Fe is given

by Coulomb’s law:

Fe =
qQ
r3
r; (2.2)

where r denotes the length of r. The fact that like
charges repel and unlike charges attract each other is
reMected by the direction of the force Fe. When q; Q
have the opposite signs, Fe has the inverse direction
with r. When they have the same sign, Fe has the same
direction with r.
The expression of the gravitational force Fg is given

by Newton’s law:

Fg =−k
mM
r3

r; (2.3)

k being the gravitational constant with the empirical
value k=6; 673×10−8 g−1 cm3 s−2. Theminus sign in
(2.3) indicates that particles attract each other because
of the gravitation.
Introducing (2.2) and (2.3) in (2.1), equation of the

motion for P takes the form

ma =
dv
dt

=
d2r
dt2

=−k
mM
r3

r+
qQ
r3
r; (2.4)

v representing the velocity of P. Then

r× mv = const = C: (2.5)

Multiplying scalar (2.5) by the vector r we obtain

r · C= 0: (2.6)

So the trajectory of P under the action of Fe and Fg is
situated in a 2xed plane which includes S.
We choose the trajectory plane Sxy. We can de-

scribe in this plane the motion of P using the polar
coordinates r and �, where x= r cos �, y= r sin �. For
any position of P in the plane Sxy, there is a positive
value r and an in2nity of values � which di6er by an
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integer multiple of 2�. If P coincides with S, then r=0
and � is inde2nite.
In the polar coordinates, Eq. (2.1) takes the form

m

(
d2r
dt2

− r
(
d�
dt

)2)
=−k

mM
r2

+
qQ
r2

; (2.7)

m
(
2
dr
dt

d�
dt

+ r
d2�
dt2

)
= 0: (2.8)

Eq. (2.8) shows that during the motion

r2
d�
dt

= const = J: (2.9)

The value of the constant J , which denotes the angular
momentum of P per unit mass, can be determined from
the initial conditions. We denote by r0, �0 the polar
coordinates of P at the initial moment t0, by v0 the
magnitude of the initial velocity and by � the angle
between r0 and v0. Knowing the expression of the
velocity in polar coordinates we can write

dr
dt

(0) = v0 cos �; r0
d�
dt

(0) = v0 sin �: (2.10)

From (2.9) and (2.10), for the constant of the motion
J , we get the value

J = r0v0 sin �: (2.11)

As in Kepler’s classical problem (see for example [9,
Chapter XV]), we can simplify matters by considering
r as a function of � instead of t. Any functional relation
r=r(�) de2nes a curve in the polar coordinates system.
Assume J �=0, so r and d�=dt are never 0. Then, the

substitution u= 1=r transforms Eq. (2.7) into Binet’s
di6erential equation for the orbit of P:

d2u
d � 2 + u=

kM
J 2 − qQ

mJ 2 : (2.12)

This equation has the general solution:

u=
(
kM
J 2 − qQ

mJ 2

)
+A cos(�−  ); (2.13)

where A and  are constants determined from the
initial conditions. By rotating the coordinates we can
make  = 0.

So, if J �=0, the orbit of P is the conic:

1
r
=
(
kM
J 2 − qQ

mJ 2

)
+A cos �; (2.14)

S being situated in a focus of this conic.
If the gravitational force Fg and the electrostatic

force Fe have opposite directions and the same mag-
nitude, kmM − qQ = 0, than, from (2.14), P moves
along the line:

1
r
=A cos �: (2.15)

Now, we want to see how the nature of the conic (2.14)
depends on the sign of the expression kmM − qQ and
on the initial conditions.
Multiplying Eq. (2.12) by 2(du=d�), then integrat-

ing, replacing u = 1=r and taking into account (2.9),
we obtain the energy equation:(

dr
dt

)2
=−J 2

r2
+

2
m

(kmM − qQ)
1
r
+ 2E; (2.16)

E being the total energy of P per unit mass. This con-
stant of the motion is also determined from the initial
conditions.
Allowing for (2.10) and (2.11), we obtain

2E = v20 −
2

mr0
(kmM − qQ): (2.17)

Since (dr=dt)2¿ 0, (2.16) yields E¿ 1
2 ((J

2=r2) −
(2=m)(kmM − qQ)(1=r)).
The sign of the expression kmM−qQ and the value

of E determine the range of r and implicitly the shape
of the orbit described by P. We denote the right mem-
ber of Eq. (2.16) by F(1=r).

Case (I): E¡ 0. This case happens only when
kmM − qQ¿ 0. Hence, Eq. F(1=r) = 0 has two pos-
itive roots, so r oscillates between 2nite endpoints.
We get an ellipse as the trajectory of P. If F(1=r) = 0
has a double root, then we get a circular orbit. By
virtue of (2.17), if

v20 −
2

mr0
(kmM − qQ)¡ 0; the orbit is an ellipse:

Case (II): E¿ 0. If kmM−qQ¡ 0 then E¿ 0, but
this can also happen if kmM −qQ¿ 0. Eq. F(1=r)=0
has one positive root and one negative root. Hence,
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0¡ 1=r6 a positive root. We obtain a hyperbola as
the trajectory of P. So, by virtue of (2.17), if

v20 −
2

mr0
(kmM − qQ)¿ 0; the orbit is a hyperbola:

Case (III): E = 0. This case happens only when
kmM − qQ¿ 0. Eq. F(1=r) = 0 has a root zero and
the other root is positive. Hence, 06 1=r6 positive
root. We obtain a parabola as the trajectory of P. So,
by virtue of (2.17), if

v20 −
2

mr0
(kmM − qQ) = 0; the orbit is a parabola:

In conclusion, if the gravitational force Fg and the
electrostatic force Fe have the same direction or they
have opposite directions, but the magnitude of Fg is
greater than the magnitude of Fe, then the orbit de-
scribed by P in the 2eld produced by S is an ellipse
or a hyperbola or a parabola, all depending on the ini-
tial position and velocity of P. Finally, if Fg and Fe
have opposite direction s and the magnitude of Fg is
smaller than the magnitude of Fe, then P moves on a
hyperbola.

3. Orbits in the electrogravitational �eld in GRT

Because the basic concepts of Einstein’s GRT are
so di6erent from those of Newton’s CM, we want to
know more about the di6erences between the predic-
tions of the two theories in the considered problem.
The study of classical Kepler’s problem in GRT is
well known (see for example [10, Chapter VI, Section
3] and [11, Chapter VII, Section 8]). In [12], SoKos has
revealed that this problem was one of the main ques-
tions taken into account by Einstein. The capacity of
obtaining the correct value for the perihelion rotation
of Mercury has represented a permanent test for the
successively elaborated Einstein’s theories of gravita-
tion during the period 1907–1915.
Let us study the electrogravitational Kepler prob-

lem in GRT. The electrogravitational 2eld produced
by S, having mass M and electric charge Q, is de-
scribed by the following metric (see [4, Section 56]):

ds2 = gij dxi dxj

=
(
1− 2kM

c2r
+

kQ2

c4r2

)
(dx4)2

− 1
1− (2kM=c2r) + (kQ2=c4r2)

dr2

− r2 d’2 − r2 sin2 ’ d� 2; (3.1)

c = 3 × 1010 cm s−1 being the velocity of light in
vacuum.
The metric (3.1) is written in the system of co-

ordinates (xi)i=1;4 = (r; ’; �; ct) centered in S. The
coordinates (r; ’; �) are the spherical coordinates of
any point situated in this 2eld. The domains of def-
inition for these coordinates are: 06 rg ¡r¡∞,
06’6 �, 06 �6 2�, −∞¡t¡∞; rg represent-
ing the gravitational radius of the point source S.
According to GRT, the value of this gravitational
radius depends on the relation between Q2 and M 2 in
the following manner (see [4, Section 56]):

rg =




kM=c2 + (1=c2) for Q26 kM 2;√
k2M 2 − kQ2

0 for Q2 ¿kM 2:

(3.2)

The motion of P in the 2eld created by S
follows a timelike geodesic line (xj(s))j=1;4 =
(r(s); ’(s); �(s); ct(s)). The parameter s of this curve
is such that ds2 is given by (3.1). Equation of motion
of the charged particle P of mass m and charge q,
moving in the 2eld of gravitation (gij) and electro-
magnetism (Fij), a 2eld which is not inMuenced by
the particle itself, is (see [13, Section 103]):

m
(
d2xi

ds2
+ �i

jk
dxj

ds
dxk

ds

)
+

q
c2

Fi
j
dxj

ds
= 0;

i = 1; 2; 3; 4: (3.3)

In (3.3), �i
jk are the components of the metric connec-

tion generated by the metric (3.1): �i
jk =

1
2 g

il(@jglk +
@kglj−@lgjk) and Fi

j=gilFlj are the mixed components
of the electromagnetic tensor (Fij). For our problem,
the non-zero components of the electromagnetic ten-
sor are (see [4, Section 56]):

F14 =−F41 = F41 =−F14 =
Q
r2

: (3.4)

Allowing for (3.1), the non-zero components of Fi
j are

F4
1 =−f2 Q

r2
; F1

4 =− 1
f2

Q
r2

; (3.5)
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where

f2 =
1

1− (2kM=c2r) + (kQ2=c4r2)
: (3.6)

Taking into account (3.1), the non-zero components
�2

jk ; �
3
jk , �

4
jk of the metric connection, which will be

used in (3.3), are

�2
12 = �2

21 = �3
13 = �3

31 =
1
r
; �2

33 =−sin’ cos’;

�3
23 = �3

32 = cot’;

�4
14 = �4

41 =− 1
f

df
dr

: (3.7)

Thus, allowing for (3.7) and setting i=2 in (3.3), we
get

d2’
ds2

+
2
r
d’
ds

dr
ds

− sin’ cos’
(
d�
ds

)2
= 0: (3.8)

By an appropriate orientation of the axes, we can ini-
tially have ’(s0) = �=2 and d’=ds(s0) = 0. Thus the
solution of Eq. (3.8) is

’(s) =
�
2
: (3.9)

So we can see that as in the classical case, the orbit
lies in a plane.
Considering i = 3 in (3.3) and taking into account

(3.7) and (3.9) we obtain

d2�
ds2

+
2
r
dr
ds

d�
ds

= 0: (3.10)

Integrating this equation, we 2nd

r2
d�
ds

= const = L: (3.11)

This equation is similar to Eq. (2.9), hence we can
call L the angular momentum of P per unit mass.
We set i = 4 in (3.3) and from (3.5) and (3.7), we

get

d2x4

ds2
− 2

1
f

df
ds

dx4

ds
= f2 qQ

mc2r2
dr
ds

: (3.12)

Eq. (3.12) integrates to

dx4

ds
=
(
E − qQ

mc2
1
r

)
f2; (3.13)

E being a constant. To obtain dr=ds we can consider
i = 1 in (3.3) but it is more convenient to divide the
line element (3.1) by ds2. Allowing for (3.9), (3.11)
and (3.13), we 2nd equation

f2
(
dr
ds

)2
+

L2

r2
− f2

(
E − qQ

mc2
1
r

)2
+ 1

=0; (3.14)

which is analogous to the classical energy Eq. (2.16).
As in the problem considered in the framework of

CM, well consider r as a function of � instead of s.
Thus, taking into account (3.11), we have

dr
ds

=
dr
d�

d�
ds

=
L
r2

dr
d�

: (3.15)

Putting

u=
1
r

(3.16)

and considering the case when L �=0, Eq. (3.14) be-
comes(

du
d�

)2
=−kQ2

c4
u4 +

2kM
c2

u3

−
[
1 +

Q2

L2m2c4
(km2 − q2)

]
u2

+
(
2kM
L2c2

− E
2qQ
mL2c2

)
u− 1− E2

L2 :

(3.17)

Eq. (3.17) governs the geometry of the orbits de-
scribed by P in the plane ’= �=2.
We denote the right member of Eq. (3.17) by F(u).

It is also clear that the disposition of the roots of equa-
tion F(u) = 0 will determine the shape of the orbit.
By (3.17), F(u)¿ 0 throughout the orbit and F(u)
tends to −∞ for very large values of u. It follows
that F(u)= 0 has four real roots or two real roots and
a complex conjugate pair. A root signi2es a turning
point where du=d� changes the sign. A negative root
has no physical meaning, so at least one positive root
should occur.
The consideration of Eq. (3.17) is conveniently sep-

arated into the following parts: E2 ¡ 1; E2 ¿ 1; E2=
1. These distinctions determine whether the orbits
are bound or unbound (i.e. whether along the orbit r
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remains bounded or not). These classes of orbits are
characterized by total energies (exclusive of the rest
energy) which are negative, positive or zero.
We denote u1; u2; u3; u4 the zeros of F(u), with

u1 ¡u2 ¡u3 ¡u4 if they are all real. We have

u1 + u2 + u3 + u4 =
2Mc2

Q2 ¿ 0; (3.18)

u1u2u3u4 =
1− E2

L2

c4

kQ2 : (3.19)

Case (I): E2 ¡ 1. In this case, from (3.18) and
(3.19), if there are only two real roots, they must be
positive. If all the roots are real, then two of them
or all four must be positive. We also have F(u)¡ 0
for u tends to 0. Thus, we get an orbit of elliptic
type with u oscillating in the range u16 u6 u2 or
u36 u6 u4 (u1 or u3, corresponds to aphelion, u2 or
u4 corresponds to perihelion).

Case (II): E2 ¿ 1. In this case, by virtue of (3.18)
and (3.19), one (for example u4) or three roots (for
example u2; u3; u4) must be positive. We also have
F(u)¿ 0 for u tends to 0. Thus, we get an orbit of
hyperbolic type restricted to the interval 0¡u6 u4
or 0¡u6 u2 or an orbit of elliptic type restricted to
the interval u36 u6 u4.

Case (III): E2=1. In this case, one of the solutions is
zero. Thus, we get an orbit of parabolic type restricted
to the interval 06 u6 u2 or an orbit of elliptic type
restricted to the interval u36 u6 u4.
In the special case of double roots, we get a circular

orbit.
From (3.2), if Q2 ¿kM 2, then rg = 0. The

biggest positive solution of the equation F(u) = 0
can take any large value and the non-capture or-
bits occur. But if Q26 kM 2, then from (3.2),
rg = (kM=c2) + (1=c2)

√
k2M 2 − kQ2, so it will be

possible that the biggest positive solution of F(u)= 0
overpasses 1=rg. From the viewpoint of GRT (for a
complete bibliography of papers on the geodesics in
the Nordstr>om metric (3.1) see Sharp [6]; see also
Chandrasekhar [5], Chapter 5), the particle will cross
the horizon r = rg in this case only in the inside
direction and its trajectory will formally terminate
at this turning point. In addition, from (3.14), at
this turning point 1 − (2kM=c2r) + (kQ2=c4r2) must
be positive, so this turning point is in the interval
(0; (kM=c2) − (1=c2)

√
k2M 2 − kQ2). For an external

observer, P will take an in2nite time to reach the hori-
zon r = rg, but the falling observer with P will cross
the horizon r = rg and reach the turning point in a
2nite time which is its own proper time.
Let us now explore Eq. (3.17) with the view to

2nd a solution. The exact solution of this equation ex-
presses the angle � as an elliptic integral of u = 1=r
and conversely it gives u as an implicit function of �.
Unfortunately, this implicit form of the solution does
not make evident the approximate classical form of the
trajectory. To establish a closer connection with the
classical problem, we di6erentiate Eq. (3.17) with re-
spect to �. One possible solution is obtained by setting
the common factor du=d� equal to zero. This yields
u=const, so r=const. Thus the circular motion occurs
also in GRT. Removing the common factor 2 du=d�,
we obtain

d2u
d� 2 + u=−2kQ2

c4
u3 +

3kM
c2

u2

+
Q2

L2c4m2 (q
2 − km2)u

+
kM
L2c2

− E
qQ

mL2c2
: (3.20)

In the case of slow motion in weak gravitational 2elds,
Eq. (3.20) must reduce to the classical Eq. (2.12).
Indeed, for a slowly moving particle in a weak 2eld,
we have dx4=ds � 1 and E � 1 + E=c2, where E is
the total energy of P per unit mass, given by (2.16).
Thus, from (2.9) and (3.11), we get

1
L2c2

=
1

r2(d�=ds)2c2
=

1
r2(d�=dt)2(dt=ds)2c2

=
1

J 2(dx4=ds)2
� 1

J 2 : (3.21)

and taking E � 1, Eq. (3.20) reduces to Eq. (2.12) in
the case of slow motion in weak gravitational 2elds.
We notice that relativistic Eq. (3.20) di6ers from the

classical Eq. (2.12) through the addition of three terms
containing u, and it has a slightly di6erent constant
term.
For the sake of simplicity, in the view of (3.21) and

for E � 1, let us now investigate the orbital equation:

d2u
d� 2 + u=

kM
J 2 − qQ

mJ 2



D. Ionescu / International Journal of Non-Linear Mechanics 38 (2003) 1251–1268 1257

+
Q2

J 2c2m2 (q
2 − km2)u+

3kM
c2

u2

−2kQ2

c4
u3: (3.22)

Let us evaluate the order of magnitude of the three
terms containing u from the right side of Eq. (3.22).
The order of magnitude of u is 1=l, where l is a length.
The order of magnitude of kMu is v21; v1 being con-
sidered a velocity much smaller than the velocity of
light in vacuum. Thus the term of second order in u
has the magnitude (v21=c

2)(1=l). The order of magni-
tude of (Q2=J 2m2)(q2 − km2) is also the square of a
velocity v2, considered much smaller than the veloc-
ity of light in vacuum. Thus, the term of the 2rst order
in u has the order of magnitude (v22=c

2)(1=l). Finally,
kQ2u2 has the order of magnitude v43, where v3 is con-
sidered a velocity much smaller than the velocity of
light in vacuum. So, the term of the third order in u
has the order of magnitude (v43=c

4)(1=l). The term of
order v43=c

4 is very small compared with the unity, so,
if we want to 2nd a solution of Eq. (3.22) to order
velocity2=c2, velocity�c, we neglect the last term in
Eq. (3.22). We de2ne the small dimensionless quan-
tities:

#=
Q2

J 2m2 (q
2 − km2)

1
c2

; $=
k2M 2

J 2c2
: (3.23)

Thus, Eq. (3.22) becomes

d2u
d� 2 + u(1− #) =

kM
J 2 − qQ

mJ 2 + 3$
J 2

kM
u2: (3.24)

Let us 2nd an approximate solution of this
non-linear equation by a perturbation approach.
To solve this, we assume a solution of the form

u(�) = u0(�) + #V (�) + $W (�) + O(#2)

+O($2) + O(#$): (3.25)

Substituting this form for u in the di6erential Eq.
(3.24) and keeping only the terms of order 0 and 1 in
# and $, we 2nd

d2u0
d� 2 + #

d2V
d� 2 + $

d2W
d� 2 + u0 + #V + $W − #u0

=
kM
J 2 − qQ

mJ 2 + 3$
J 2

kM
u20: (3.26)

Equating the zeroth-order terms in # and $ we get

d2u0
d� 2 + u0 =

kM
J 2 − qQ

mJ 2 ; (3.27)

which is the classical Eq. (2.12). The solution of this
equation is given by (2.14).
Equating the 2rst-order terms in # and taking into

account (2.14), we get

d2V
d� 2 + V =

kM
J 2 − qQ

mJ 2 +A cos �: (3.28)

We need only a non-homogeneous solution to this
equation, since the zeroth-order solution already con-
tains a term A cos �, which is the general solution to
the homogeneous equation. Thus, we 2nd

V (�) = V1(�) + V2(�); (3.29)

where

V1(�) =
kM
J 2 − qQ

mJ 2 ; V2(�) =
A

2
� sin �: (3.30)

Similarly, equating the 2rst-order terms in $ and by
virtue of (2.14), we obtain

d2W
d� 2 +W = 3

J 2

kM

(
kM
J 2 − qQ

mJ 2

)2
+

3
2

J 2

kM
A2

+ 6
J 2

kM

(
kM
J 2 − qQ

mJ 2

)
A cos �

+
3
2

J 2

kM
A2 cos 2�: (3.31)

With the non-homogeneous solution:

W (�) =W1(�) +W2(�) +W3(�); (3.32)

where

W1(�) = 3
J 2

kM

(
kM
J 2 − qQ

mJ 2

)2
+

3
2

J 2

kM
A2;

W2(�) = 3
J 2

kM

(
kM
J 2 − qQ

mJ 2

)
A� sin �;

W3(�) =−1
2

J 2

kM
A2 cos 2�: (3.33)

Introducing (2.14), (3.29), (3.32) into (3.25), we 2nd
the solution for the orbit to 2rst order in # and $:

u(�) =
[
kM
J 2 − qQ

mJ 2 + #
(
kM
J 2 − qQ

mJ 2

)
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+ $
3J 2

kM

((
kM
J 2 − qQ

mJ 2

)2
+

A2

2

)]

+
[
A cos �− $

J 2A2

2kM
cos 2�

]

+
[
#
2
+ $

3J 2

kM

(
kM
J 2 − qQ

mJ 2

)]
×A� sin �: (3.34)

In the solution (3.34), only the last term is non-
periodic. To clarify further the e6ect of this
non-periodic term, we note that, to the 2rst order in #
and $,

cos
(
�−

(
#
2
+ $

3J 2

kM

(
kM
J 2 − qQ

mJ 2

))
�
)

=cos �+
(

#
2
+ $

3J 2

kM

(
kM
J 2 − qQ

mJ 2

))
×� sin �; (3.35)

so the solution may be written as

u(�) =
kM
J 2 − qQ

mJ 2 +A cos(�

−
(

#
2
+ $

3J 2

kM

(
kM
J 2 − qQ

mJ 2

))
�
)

+(periodic terms of order # and $): (3.36)

The e6ect of the last term is to introduce small periodic
variations in the radial distance of P.
In the case of an orbit of elliptic type, the e6ect of

the second term can be clari2ed. The small di6erences
between relativistic orbit and the Newtonian ellipse
(kM=J 2) − (qQ=mJ 2) + A cos � are due to this term
which inMuences the perihelion position of P. The per-
ihelion of P is the point of closest approach to S. This
occurs when u is maximum. From (3.36) we see that
u is maximum when

�
(
1−

(
#
2
+ $

3J 2

kM

(
kM
J 2 − qQ

mJ 2

)))
=2�n: (3.37)

Keeping the terms to the 2rst order in # and $, the
interval between successive perihelia is

��

=2�
(
1 +

#
2
+ $

3J 2

kM

(
kM
J 2 − qQ

mJ 2

))
; (3.38)

instead of 2� like in periodic motion. So, according
to the notations (3.23), the shift of the perihelion is
approximately

� �− 2�= 6�
k2M 2

c2J 2 − 6�
qQkM
mJ 2c2

+�
Q2(q2 − km2)

J 2m2c2
: (3.39)

Therefore, the orbit of P is to be regarded as an ellipse
which rotates slowly. We see that if Q, q are zero, we
2nd the known formula for the advance of perihelion
per revolution, which is one of the famous formulas
of GRT. From (3.39), we see that when the charges
of P and S are taken into account, if

6kmM (kmM − qQ) + Q2(q2 − km2)¿ 0 (3.40)

then the ellipse rotates in the direction in which it is
described and if

6kmM (kmM − qQ) + Q2(q2 − km2)¡ 0 (3.41)

then the ellipse rotates in the opposite direction in
which it is described.

4. Orbits in the electrogravitational �eld in RTG

GRT encounters serious diRculties with the evalua-
tion of the physical characteristics of the gravitational
2eld and the formulation of the energy–momentum
conservation laws. Combining PoincarKe’s idea of the
gravitational 2eld as a Faraday–Maxwell physical 2eld
with Einstein’s idea of a Riemannian space–time ge-
ometry, Logunov and his co-workers have elaborated
a new relativistic theory of gravitation, named RTG
(see [1,2]), in the framework of the Special Theory
of Relativity (SRT). In this theory, the Minkowski
space–time is a fundamental space that incorporates
all physical 2elds, including gravitation. The gravita-
tional 2eld is described by a second-order symmetric
tensor (ij, possessing energy–momentum density, rest
mass and polarization states corresponding to spin 2
and 0. Owing to the action of this 2eld, an e6ective
Riemannian space–time gij arises. GRT characterizes
the gravitational 2eld by the metric tensor gij, whereas
in RTG it is determined by the tensor value (ij, the
e6ective Riemannian space–time being constructed



D. Ionescu / International Journal of Non-Linear Mechanics 38 (2003) 1251–1268 1259

with the help of the 2eld (ij and of the Minkowski
metric tensor to 2x the choice of the coordinate system.
The construction rule is the following: g̃ ij=

√−ggij=√−))ij +
√−)(ij; g= det(gij); )= det()ij). Metric

properties are determined by the e6ective Riemannian
space–time tensor gij in the presence of a gravitational
2eld and by the Minkowski space–time tensor )ij in
the absence of this 2eld. The interaction between ten-
sor gravitational 2eld and matter can be introduced as
though it deformed theMinkowski space, changing the
metric properties without a6ecting the causality. The
Causality Principle in RTG aRrms that the light cone
in the e6ective Riemannian space–time does not go
beyond the causality cone of the Minkowskian space–
time. For the di6erential laws of RTG and the ana-
lytic formulation of the Causality Principle in RTG
see [1,2].
The problem of 2nding the 2eld of an electrically

charged mass point having massM and electric charge
Q, was 2rst analyzed by Karabut and Chugreev in [7],
but only assuming kM 2¿Q2. SoKos and I have reana-
lyzed this problem in RTG in [8], considering also the
possibility Q2 ¿kM 2. It is important to analyze this
case because the variant is true for the electron. The
analytical form of the solution we found, as well as its
domain of de2nition, i.e. the gravitational radius rg,
depend essentially on the relation existing between Q2

and kM 2. But in [14] I have shown that the solution
obtained by us does not ful2ll the Causality Princi-
ple in RTG. So, this solution cannot be an acceptable
solution in this theory. I have determined in [14] the
unique solution of electrogravitational 2eld produced
by a charged mass point according to RTG. The ob-
tained solution has the same analytical form for all or-
der relations between Q2 and kM 2. The gravitational
radius depends on this relation but it is a continuous
function depending on Q2 and kM 2.
Solving the coupled system of RTG’s and

Maxwell’s equations, and taking into account the
Causality Principle in RTG, we get the following
e6ective Riemannian space–time due to the elecro-
gravitational 2eld produced by a charged mass point
with mass M and charge Q:

ds2 = gij dx
i dxj

=
(
1− 2kM

c2(r + (kM=c2))
+

kQ2

c4(r + (kM=c2))2

)
(dx4)2

− 1
1−(2kM=c2(r+(kM=c2)))+(kQ2=c4(r+(kM=c2))2)

dr2

−
(
r +

kM
c2

)2 (
d’2 + sin2 ’ d� 2

)
: (4.1)

The metric (4.1) is written in the Minkowskian sys-
tem of coordinates (xi)i=1;4 = (r; ’; �; ct) centered
in S. The domains of de2nition for these coordi-
nates are: 06 rg ¡r¡∞, 06’6 �, 06 �6 2�,
−∞¡t¡∞; rg representing the gravitational ra-
dius of the point source S. According to RTG, the
value of this gravitational radius depends on the re-
lation between Q2 and kM 2 in the following manner
(see [14]):

rg =


1=c2
√

k2M 2 − kQ2 for Q26 kM 2;

0 for kM 2 ¡Q2

¡ 2kM 2;

1=2c2M (Q2 − 2kM 2) for Q2¿ 2kM 2:

(4.2)

We notice in (4.2), that the function rg depending on
Q2 and kM 2 is a continuous one, which is not the case
for GRT’s function rg from (3.2).

The metric of the Minkowski space–time in which
we happen to be when the gravitational 2eld is
switched o6 is

d*2 = )ij dxi dxj

= c2 dt2 − dr2 − r2 d� 2 − r2 sin2 � d’2: (4.3)

According to the principles of RTG, the motion of
matter under the action of a gravitational 2eld in the
Minkowski space–time is identical to its motion in the
e6ective Riemannian space–time with the metric gij.
Thus, the equation of motion of the charged particle P
of mass m and charge q, moving in the 2eld produced
by S, is

m
(
d2xi

ds2
+ �i

jk
dxj

ds
dxk

ds

)
+

q
c2

Fi
j
dxj

ds
= 0;

i = 1; 2; 3; 4: (4.4)

Eqs. (4.4) are similar to Einstein’s Eqs. (3.3), the one
important di6erence being that in RTG all 2eld vari-
ables depend on the universal spatial–temporal co-
ordinates in the Minkowski space–time. �i

jk are the
components of the metric connection generated by
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the e6ective Riemannian metric (4.1) and Fi
j = gilFlj

are the mixed components of the electromagnetic ten-
sor (Fij). For our problem, the non-zero components
of the electromagnetic tensor are (see [14])

F14 =−F41 = F41 =−F14 =
Q

(r + (kM=c2))2
: (4.5)

Allowing for (4.1), the non-zero components of Fi
j are

F4
1 =−f2

Q
(r + (kM=c2))2

;

F1
4 =− 1

f2
Q

(r + (kM=c2))2
; (4.6)

where

f2 =

1
1− (2kM=c2(r + (kM=c2))) + (kQ2=c4(r + (kM=c2))2)

:

(4.7)

Taking into account (4.1), the non-zero components
�2

jk ; �
3
jk ; �

4
jk of the metric connection, which will be

used in (4.4), are

�2
12 = �2

21 = �3
13 = �3

31 =
1

(r + (kM=c2))
;

�2
33 =−sin’ cos’;

�3
23 = �3

32 = cot’; �4
14 = �4

41 =−1
f

df
dr

: (4.8)

Using the same procedures as in Section 3, we 2nd

’(s) =
�
2
: (4.9)

So we can see that like in CM and GRT, the orbit lies
in a plane.
Integrating Eq. (4.4) for i=3 and taking into account

(4.8) and (4.9) we obtain(
r +

kM
c2

)2 d�
ds

= const =L: (4.10)

Allowing for (4.6) and (4.8), Eq. (4.4) for i=4 inte-
grates to

dx4

ds
=
(

E − qQ
mc2

1
(r + (kM=c2))

)
f2 (4.11)

E being a constant.

Dividing the line element (4.1) by ds2 and allow-
ing for (4.9)–(4.11), we 2nd the following equation,
which is analogous to the classical energy Eq. (2.16),
according to RTG:

f2
(
dr
ds

)2
+

L2

(r + (kM=c2))2

− f2
(

E − qQ
mc2

1
(r + (kM=c2))

)2
+ 1 = 0: (4.12)

As in the problem considered in the framework of CM
or GRT, we will consider r as a function of � instead
of s. Thus, taking into account (4.10):

dr
ds

=
dr
d�

d�
ds

=
L

(r + (kM=c2))2
dr
d�

(4.13)

and putting

Z =
1

r + (kM=c2)
; (4.14)

for the case when L �=0, Eq. (4.12) becomes(
dZ
d�

)2

=− kQ2

c4
Z4 +

2kM
c2

Z3

−
[
1 +

Q2

L2m2c4
(km2 − q2)

]
Z2

+
(

2kM
L2c2

− E
2qQ

mL2c2

)
Z − 1− E2

L2 : (4.15)

Eq. (4.15) governs, according to RTG, the geometry
of the orbits described by P in the plane ’= �=2. As
in GRT, denoting by F(Z) the right member of this
equation, the range for r and the shape of the orbit are
determined by the disposition of the roots of equation
F(Z)=0 and by the value of E2. Equation F(Z)=0
has the same roots as equation F(u) = 0 from (3.17),
so the discussion concerning the disposition of these
roots depending on the value of E2, rests the same as
in Section 3. Thus, if E2 ¡ 1 we obtain elliptic type
orbits, if E2 ¿ 1 we get hyperbolic or elliptic type
orbits and if E2 = 1 we get parabolic or elliptic
type orbits. For these orbits, Z oscillates in the same
range as u, so the range of r is moved back with
kM=c2.
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The substantial di6erence between the solution in
GRT and RTG is established in the region close to the
gravitational radius rg, given by (4.2). This case must
be treated as Logunov and Mestvirishvili have made
in [3] for the case of Schwarzschild metric. For this
purpose, we must consider the solution of the system
of RTG’s equations with a non-zero gravitation mass
and Maxwell’s equations. All details concerning this
problem will be treated in a future paper. For now, the
following remark can be made here. The particle can-
not continue its trajectory beyond the horizon r = rg.
We introduce for P the co-moving variables (,i)i=1;4=
(R(r; t); ’; �; c.(r; t)), where . is the proper time of P,
these coordinates forming, according to RTG, another
coordinate system in Minkowski space–time. In the
co-moving reference system ,i, the metric tensor )ij
of the Minkowski space–time has not the form (4.3)
it is determined from the tensor transformation law.
In principle, the one-to-one transformation between
the system of coordinates xi and ,i can be established
using the fact that the metric coeRcients gij(,) must
satisfy the general covariant equations of RTG which
tell us that a gravitational 2eld can have only spin
states 0 and 2, i.e. equations Dig̃

ij =0; i; j=1; 4. The
connection between the proper time interval d. and
dt is d. = (1 − (2kM=c2)(1=r) + (kQ2=c4)(1=r2)) dt.
Thus, P cannot continue the trajectory beyond the
horizon r = rg because in this region, the expression
1−(2kM=c2)(1=r)+(kQ2=c4)(1=r2) takes negative val-
ues and therefore the proper time . cannot be a time
which P measures on its own clock.
As in Section 3, let us now explore equation (4.15)

with to 2nd its solution.
Di6erentiating this equation with respect to �

and then removing the common factor 2 dZ=d�, we
obtain

d2Z
d� 2 + Z

= − 2kQ2

c4
Z3 +

3kM
c2

Z2

+
Q2

L2c4m2 (q
2 − km2)Z

+
kM
L2c2

− E
qQ

mL2c2
: (4.16)

Let us now 2nd a solution of order velocity2=c2 for
this relativistic equation.

Allowing for the notations (3.16) and (4.14), the
expression of Z depending on u is

Z =
u

1 + u(kM=c2)
: (4.17)

As we have already discussed in the Section 3, we
assume that the order of magnitude of kMu is v21, where
v1 is a velocity much smaller than the velocity of light
in vacuum. Keeping only to the terms of order v21=c

2

in (4.17), we get for Z :

Z = u− kM
c2

u2: (4.18)

From (4.18), we get to terms of order v21=c
2,

d2Z
d� 2 =

(
1− 2kM

c2
u
)

d2u
d� 2 − 2kM

c2

(
du
d�

)2
: (4.19)

Thus, by virtue of (4.18) and (4.19), in an approxi-
mation of order velocity2=c2, Eq. (4.16) becomes(
1− 2kM

c2
u
)

d2u
d� 2 + u

=
kM
L2c2

− E
qQ

mL2c2
+

Q2

L2c4m2 (q
2 − km2)u

+4
kM
c2

u2 +
2kM
c2

(
du
d�

)2
: (4.20)

In the case of slow motion in weak gravitational 2elds,
Eq. (4.20) must reduce to the classical Eq. (2.12). As
in Section 3, this happens for E � 1 and 1=L2c2 �
1=J 2. Taking also into account the notations (3.23)
for the small dimensionless quantities, let us 2nd an
approximate solution to order velocity2=c2 for equa-
tion

d2u
d� 2

(
1− 2$

J 2

kM
u
)
+ u(1− #)

=
kM
J 2 − qQ

mJ 2 + 4$
J 2

kM
u2

+ 2$
J 2

kM

(
du
d�

)2
: (4.21)

To solve this we assume a solution of the form:

u(�) = u0(�) + #V (�) + $(�)

+O(#2) + O($2) + O(#$): (4.22)
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Substituting this form for u in the di6erential Eq.
(4.21) and keeping only the terms of order 0 and 1 in
# and $, we 2nd

d2u0
d� 2 + #

d2V
d� 2 + $

d2W
d� 2 − 2$

J 2

kM
d2u0
d� 2 u0

+ u0 + #V + $W − #u0 =
kM
J 2 − qQ

mJ 2

+ 4$
J 2

kM
u20 + 2$

J 2

kM

(
du0
d�

)2
: (4.23)

Equating the zeroth-order terms in # and $ we get
Eq. (2.12) with the solution (2.14). Equating the
2rst-order terms in # and taking into account (2.14),
we get Eq. (3.28) with the non-homogeneous solu-
tions (3.29) and (3.30).
Similarly, equating the 2rst-order terms in $ and by

virtue of (2.14), we obtain

d2W
d� 2 +W= 4

J 2

kM

(
kM
J 2 − qQ

mJ 2

)2
+ 2

J 2

kM
A2

+ 6
J 2

kM

(
kM
J 2 − qQ

mJ 2

)
A cos �

(4.24)

with the non-homogeneous solution:

W(�) =W1(�) +W2(�); (4.25)

where

W1(�) = 4
J 2

kM

(
kM
J 2 − qQ

mJ 2

)2
+ 2

J 2

kM
A2

W2(�) = 3
J 2

kM

(
kM
J 2 − qQ

mJ 2

)
A� sin �: (4.26)

Introducing (2.14), (3.29), (4.25) into (4.22), we ob-
tain the solution for the orbit to 2rst order in # and $:

u(�) =
[
kM
J 2 − qQ

mJ 2 + #
(
kM
J 2 − qQ

mJ 2

)

+ $
4J 2

kM

((
kM
J 2 − qQ

mJ 2

)2
+

A2

2

)]

+A cos �+
[
#
2
+ $

3J 2

kM

(
kM
J 2 − qQ

mJ 2

)]

×A� sin �: (4.27)

As in the framework of GRT, in the solution (4.27)
only the last term is non-periodic. In fact, this last
term is exactly as in (3.34). Therefore, using (3.35)
the solution (4.27) may by written in the form (3.36).
The only small di6erence between GRT’s solution and
RTG’s solution is in the periodic term of order $. But
the e6ect of these terms is to introduce small periodic
variations in the radial distance of P and it is diRcult
to be detected. For an orbit of elliptic type, keeping
the terms to 2rst order in # and $, the interval between
successive perihelia is given by (3.38).
In conclusion, the predictions of RTG in the con-

sidered problem are the same as in GRT in the ap-
proximation of order velocity2=c2.

5. Second-order approximation of the solution in
GRT and RTG

Let us see if the solutions in GRT and RTG remain
the same if we consider them in an approximation of
order velocity4=c4.
Let us return to Section 3 at Eq. (3.22). If we

want to 2nd a solution of Eq. (3.22) to order
velocity4=c4; velocity�c, we will not neglect the last
term from this equation. We de2ne the small dimen-
sionless quantity #, $ as in (3.23) and in addition:

0=
k3Q2M 2

J 4c4
: (5.1)

Thus Eq. (3.22) becomes

d2u
d� 2 + u(1− #) =

kM
J 2 − qQ

mJ 2 + 3$
J 2

kM
u2

− 20
(

J 2

kM

)2
u3: (5.2)

To 2nd a solution of this non-linear equation to order
velocity4=c4, we assume a solution of the form:

u(�) = u0(�) + #V (�) + $W (�) + 0T(�)

+ #2S(�) + $2X (�) + #$Y (�)

+O(#3) + O($3) + O(02) + O(0#)

+O(0$) + O(#2$) + O(#$2): (5.3)

Substituting this form for u in the di6erential Eq. (5.2)
and keeping only the terms to order 2 in # and $ and
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to order 1 in 0, we 2nd

d2u0
d� 2 + #

d2V
d� 2 + $

d2W
d� 2 + 0

d2T
d� 2 + #2

d2S
d� 2

+ $2
d2X
d� 2 + #$

d2Y
d� 2 + u0 + #V + $W + 0T

+ #2S + $2X + #$Y − #u0 − #2V − #$W =
kM
J 2

− qQ
mJ 2 + 3$

J 2

kM
u20 + 6#$

J 2

kM
u0V

+6$2
J 2

kM
u0W − 20

(
J 2

kM

)2
u30: (5.4)

Equating the zeroth-order terms in #, $ and 0 we
get Eq. (2.12) with the solution (2.14). Equating the
2rst-order terms in # and $, and taking into account
(2.14), we get Eq. (3.28), respectively (3.31) with
the non-homogeneous solution (3.29), (3.30), respec-
tively (3.32), (3.33). Similarly, taking into account
(2.14), for the terms of order 0 we obtain

d2T
d� 2 + T=−2

(
J 2

kM

)2 [(
kM
J 2 − qQ

mJ 2

)3

+
3A2

2

(
kM
J 2 − qQ

mJ 2

)]
− 2

(
J 2

kM

)2

×
(
3
(
kM
J 2 − qQ

mJ 2

)2
+

3A2

4

)
A cos �

− 3
(

J 2

kM

)2(
kM
J 2 − qQ

mJ 2

)
A2 cos 2�

− 1
2

(
J 2

kM

)2
A3 cos 3� (5.5)

with the non-homogeneous solution

T(�) = T1(�) + T2(�) + T3(�) + T4(�); (5.6)

where

T1(�) =−2
(

J 2

kM

)2 [(
kM
J 2 − qQ

mJ 2

)3

+
3A2

2

(
kM
J 2 − qQ

mJ 2

)]
;

T2(�) =−
(

J 2

kM

)2(
3
(
kM
J 2 − qQ

mJ 2

)2
+

3A2

4

)

×A� sin �;

T3(�) =
(

J 2

kM

)2(
kM
J 2 − qQ

mJ 2

)
A2 cos 2�;

T4(�) =
1
16

(
J 2

kM

)2
A3 cos 3�: (5.7)

Identifying the second-order terms in #2 and allowing
for (3.29) and (3.30), it results in:
d2S
d� 2 + S =

kM
J 2 − qQ

mJ 2 +
A

2
� sin � (5.8)

with the non-homogeneous solution:

S(�) = S1(�) + S2(�); (5.9)

where

S1(�) =
kM
J 2 − qQ

mJ 2 ;

S2(�) =
A

8
(� sin �− � 2cos �): (5.10)

Equating the second-order terms in $2, by virtue of
(2.14) and (3.32), (3.33), we get

d2X
d� 2 + X = 18

(
J 2

kM

)2(
kM
J 2 − qQ

mJ 2

)

×
[(

kM
J 2 − qQ

mJ 2

)2
+

A2

2

]

+18
(

J 2

kM

)2(
kM
J 2 − qQ

mJ 2

)2
A� sin �

+18
(

J 2

kM

)2((
kM
J 2 − qQ

mJ 2

)2

+
5
12

A2
)
A cos �

+9
(

J 2

kM

)2(
kM
J 2 − qQ

mJ 2

)
A2� sin 2�

− 3
(

J 2

kM

)2(
kM
J 2 − qQ

mJ 2

)
A2 cos 2�

− 3
2

(
J 2

kM

)2
A3 cos 3�: (5.11)
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The non-homogeneous solution of (5.11) can be easily
checked:

X (�) = X1(�) + X2(�) + X3(�) + X4(�)

+X5(�) + X6(�); (5.12)

where

X1(�) = 18
(

J 2

kM

)2(
kM
J 2 − qQ

mJ 2

)

×
[(

kM
J 2 − qQ

mJ 2

)2
+

A2

2

]
;

X2(�) =
9
2

(
J 2

kM

)2(
kM
J 2 − qQ

mJ 2

)2
×A(� sin �− � 2 cos �);

X3(�) = 9
(

J 2

kM

)2((
kM
J 2 − qQ

mJ 2

)2
+

5
12

A2

)

×A� sin �;

X4(�) =
(

J 2

kM

)2(
kM
J 2 − qQ

mJ 2

)

×A2(−3� sin 2�− 4 cos 2�);

X5(�) =
(

J 2

kM

)2(
kM
J 2 − qQ

mJ 2

)
A2 cos 2�;

X6(�) =
3
16

(
J 2

kM

)2
A3 cos 3�: (5.13)

Equating the terms in #$ and by virtue of (2.14),
(3.29), (3.30), (3.32), (3.33), we get

d2Y
d� 2 + Y =

J 2

kM

[
9
(
kM
J 2 − qQ

mJ 2

)2
+

3
2
A2

]

+6
J 2

kM

(
kM
J 2 − qQ

mJ 2

)
A� sin �

− 1
2

J 2

kM
A2 cos 2�

+6
J 2

kM

(
kM
J 2 − qQ

mJ 2

)
A cos �

+
3
2

J 2

kM
A2� sin 2�: (5.14)

Having the following non-homogeneous solution:

Y (�) = Y1(�) + Y2(�) + Y3(�)

+Y4(�) + Y5(�); (5.15)

where

Y1(�) =
J 2

kM

[
9
(
kM
J 2 − qQ

mJ 2

)2
+

3
2
A2

]
;

Y2(�) =
3
2

J 2

kM

(
kM
J 2 − qQ

mJ 2

)

×A
(
� sin �− � 2 cos �

)
;

Y3(�) =
1
6

J 2

kM
A2cos 2 �;

Y4(�) = 3
J 2

kM

(
kM
J 2 − qQ

mJ 2

)
A cos �;

Y5(�) =
J 2

kM
A2
(
−1
2
� sin 2�− 2

3
cos 2�

)
: (5.16)

Introducing (2.14), (3.29), (3.32), (5.6), (5.9), (5.12),
(5.15) into (5.4), we 2nd the non-periodic term of the
solution[
#
2
+ $

3J 2

kM

(
kM
J 2 − qQ

mJ 2

)
− 0

(
J 2

kM

)2

×
(
3
(
kM
J 2 − qQ

mJ 2

)2
+

3A2

4

)]
A� sin �+

[
#2

8

+ $2
(

J 2

kM

)2(
27
2

(
kM
J 2 − qQ

mJ 2

)2
+

15
4

A2

)

+ #$
3
2

J 2

kM

(
kM
J 2 − qQ

mJ 2

)]
A� sin �

−
[
#2

8
+ $2

9
2

(
J 2

kM

)2(
kM
J 2 − qQ

mJ 2

)2

+ #$
3
2

J 2

kM

(
kM
J 2 − qQ

mJ 2

)]
A� 2 cos �

−
[
3$2
(

J 2

kM

)2(
kM
J 2 − qQ

mJ 2

)
+ #$

1
2

J 2

kM

]

×A2� sin 2�: (5.17)
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We note that to the second order in # and $, and to the
2rst order in 0, the following expression:

cos
(
�− �

[
#
2
+ $

3J 2

kM

(
kM
J 2 − qQ

mJ 2

)

− 0
(

J 2

kM

)2(
3
(
kM
J 2 − qQ

mJ 2

)2
+

3A2

4

)
+

#2

8

+ $2
(

J 2

kM

)2(
27
2

(
kM
J 2 − qQ

mJ 2

)2
+

15
4

A2

)

+ #$
3
2

J 2

kM

(
kM
J 2 − qQ

mJ 2

)
−
(
6$2
(

J 2

kM

)2

×
(
kM
J 2 − qQ

mJ 2

)
+ #$

J 2

kM

)
A cos �

])
; (5.18)

reduces to cos � plus the expression written in (5.17).
Therefore, the solution is an approximation of order
velocity4=c4 for the electrogravitational Kepler prob-
lem in the framework of GRT and may be written as

u(�) =
kM
J 2 − qQ

mJ 2

+A cos
(
�− �

[
#
2
+ $

3J 2

kM

(
kM
J 2 − qQ

mJ 2

)

− 0
(

J 2

kM

)2(
3
(
kM
J 2 − qQ

mJ 2

)2
+

3A2

4

)

+
#2

8
+ $2

(
J 2

kM

)2(
27
2

(
kM
J 2 − qQ

mJ 2

)2

+
15
4

A2

)
+ #$

3
2

J 2

kM

(
kM
J 2 − qQ

mJ 2

)

−
(
6$2
(

J 2

kM

)2(
kM
J 2 − qQ

mJ 2

)

+ #$
J 2

kM

)
A cos �

])

+(periodic terms of order #; $; #2; $2; 0):
(5.19)

Let us now see how this approximation of order
velocity4=c4 for the electrogravitational Kepler prob-
lem looks in the framework of RTG.

We return to Eq. (4.16). Keeping in (4.17) to terms
of order velocity4=c4, we get for Z :

Z = u− kM
c2

u2 +
k2M 2

c4
u3: (5.20)

From (5.20) we get to terms of order velocity4=c4:

d2Z
d� 2 =

(
1− 2kM

c2
u+

3k2M 2

c4
u2
)

d2u
d� 2

+
(
−2kM

c2
+

6k2M 2

c4
u
)(

du
d�

)2
: (5.21)

Thus, by virtue of (5.20), (5.21), for E � 1 and
1=L2c2 � 1

J 2 , Eq. (4.16) becomes, in an approxima-
tion of order velocity4=c4:

d2u
d� 2

(
1− 2$

J 2

kM
u+ 3$2

(
J 2

kM

)2
u2
)

+ u(1− #)

=
kM
J 2 − qQ

mJ 2 + 4$
J 2

kM
u2 − #$

J 2

kM
u2

− 7$2
(

J 2

kM

)2
u3 − 20

(
J 2

kM

)2
u3

+
(
2$− 6$2

J 2

kM
u
)

J 2

kM

(
du
d�

)2
: (5.22)

To 2nd a solution of this non-linear equation to order
velocity4=c4, we assume a solution of the form:

u(�) = u0(�) + #V (�) + $W(�) + 0T(�) + #2S(�)

+ $2X(�) + #$Y(�) + O(#3) + O($3)

+O(02) + O(0#) + O(0$)

+O(#2$) + O(#$2): (5.23)

Substituting this form for u in the di6erential Eq.
(5.22) and keeping only the terms to the order 2 in #
and $ and to the order 1 in 0, we 2nd

d2u0
d� 2 + #

d2V
d� 2 + $

d2W
d� 2 + 0

d2T
d� 2 + #2

d2S
d� 2

+ $2
d2X
d� 2 + #$

d2Y
d� 2 − $

2J 2

kM
u0

d2u0
d� 2

− #$
2J 2

kM
V

d2u0
d� 2 − $2

2J 2

kM
W

d2u0
d� 2
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− #$
2J 2

kM
u0

d2V
d� 2 − $2

2J 2

kM
u0

d2W
d� 2

+ 3$2
(

J 2

kM

)2
u20

d2u0
d� 2 + u0 + #V + $W + 0T

+ #2S + $2X + #$Y − #u0 − #2V − #$W

=
kM
J 2 − qQ

mJ 2 + $
4J 2

kM
u20 + #$

8J 2

kM
u0V

+ $2
8J 2

kM
u0W − #$

J 2

kM
u20

− 7$2
(

J 2

kM

)2
u30 − 20

(
J 2

kM

)2
u30

+ $
2J 2

kM

(
du0
d�

)2
+ #$

4J 2

kM
du0
d�

dV
d�

+ $2
4J 2

kM
du0
d�

dW
d�

− 6$2
(

J 2

kM

)2
u0

(
du0
d�

)2
: (5.24)

Equating the zeroth-order terms in #, $ and 0 we
get Eq. (2.12) with the solution (2.14). Equating the
2rst-order terms in # and $, and taking into account
(2.14), we get Eq. (3.28), respectively (4.24) with
the non-homogeneous solution (3.29), (3.30), respec-
tively (4.25), (4.26). For the terms of order 0 we ob-
tain (5.5), with the non-homogeneous solution (5.6),
(5.7). Identifying the second-order terms in #2 and al-
lowing for (3.29), (3.30), it results Eq. (5.8), having
the non-homogeneous solution (5.9), (5.10).
Equating the second-order terms in $2, we get

d2X
d� 2 +X

=
(

J 2

kM

)2(
kM
J 2 − qQ

mJ 2

)

×
[
25
(
kM
J 2 − qQ

mJ 2

)2
+

11
2

A2

]

+18
(

J 2

kM

)2(
kM
J 2 − qQ

mJ 2

)2
A� sin �

+
(

J 2

kM

)2(
18
(
kM
J 2 − qQ

mJ 2

)2
+

15
2

A2

)
Acos�

+
15
2

(
J 2

kM

)2(
kM
J 2 − qQ

mJ 2

)
A2cos2�

+
1
2

(
J 2

kM

)2
A3 cos 3�: (5.25)

The non-homogeneous solution of (5.25) can be easily
checked:

X(�) =X1(�) +X2(�) +X3(�)

+X4(�) +X5(�); (5.26)

where

X1(�) =
(

J 2

kM

)2(
kM
J 2 − qQ

mJ 2

)

×
[
25
(
kM
J 2 − qQ

mJ 2

)2
+

11
2

A2

]
;

X2(�) =
9
2

(
J 2

kM

)2(
kM
J 2 − qQ

mJ 2

)2
×A(� sin �− � 2 cos �);

X3(�) =
(

J 2

kM

)2(
9
(
kM
J 2 − qQ

mJ 2

)2
+

15
4

A2

)

×A� sin �;

X4(�) =−5
2

(
J 2

kM

)2(
kM
J 2 − qQ

mJ 2

)
A2 cos 2�;

X5(�) =− 1
16

(
J 2

kM

)2
A3 cos 3�: (5.27)

Equating the terms in #$ and by virtue of (2.14),
(3.29), (3.30), (4.25), (4.26), we get

d2Y
d� 2 +Y=

J 2

kM

[
11
(
kM
J 2 − qQ

mJ 2

)2
+

3
2
A2

]

+6
J 2

kM

(
kM
J 2 − qQ

mJ 2

)
A� sin �

+
J 2

kM
A2 cos 2�

+6
J 2

kM

(
kM
J 2 − qQ

mJ 2

)
A cos �

+
1
2

J 2

kM
A2� sin 2�: (5.28)
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With the following non-homogeneous solution:

Y(�) =Y1(�) +Y2(�) +Y3(�)

+Y4(�) +Y5(�); (5.29)

where

Y1(�) =
J 2

kM

[
11
(
kM
J 2 − qQ

mJ 2

)2
+

3
2
A2

]
;

Y2(�) =
3
2

J 2

kM

(
kM
J 2 − qQ

mJ 2

)

×A(� sin �− � 2 cos �);

Y3(�) =−1
3

J 2

kM
A2 cos 2�;

Y4(�) = 3
J 2

kM

(
kM
J 2 − qQ

mJ 2

)
A cos �;

Y5(�) =
J 2

kM
A2
(
−1
6
� sin 2�− 2

9
cos 2�

)
: (5.30)

Introducing (2.14), (3.29), (4.25), (5.6), (5.9), (5.26),
(5.29) into (5.23), we 2nd the non-periodic term of
this solution:[
#
2
+ $

3J 2

kM

(
kM
J 2 − qQ

mJ 2

)
− 0

(
J 2

kM

)2
(
3
(
kM
J 2 − qQ

mJ 2

)2
+

3A2

4

)]
A� sin �

+

[
#2

8
+ $2

(
J 2

kM

)2(
27
2

(
kM
J 2 − qQ

mJ 2

)2

+
15
4

A2

)
+ #$

3
2

J 2

kM

(
kM
J 2 − qQ

mJ 2

)]
A� sin �

−
[
#2

1
8
+ $2

9
2

(
J 2

kM

)2(
kM
J 2 − qQ

mJ 2

)2

+ #$
3
2

J 2

kM

(
kM
J 2 − qQ

mJ 2

)]
A� 2 cos �

− #$
1
6

J 2

kM
A2� sin 2�: (5.31)

We note that to the second order in # and $, and to the
2rst order in 0, the following expression:

cos
(
�− �

[
#
2
+ $

3J 2

kM

(
kM
J 2 − qQ

mJ 2

)

− 0
(

J 2

kM

)2(
3
(
kM
J 2 − qQ

mJ 2

)2
+

3A2

4

)
+

#2

8

+ $2
(

J 2

kM

)2(
27
2

(
kM
J 2 − qQ

mJ 2

)2
+

15
4

A2

)

+#$
3
2

J 2

kM

(
kM
J 2 − qQ

mJ 2

)

− #$
1
3

J 2

kM
A cos �

])
; (5.32)

reduces to cos � plus the expression written in (5.31).
Therefore, the solution in an approximation of order
velocity4=c4 for the electrogravitational Kepler prob-
lem and in the framework of RTG may be written
as

u(�)

=
kM
J 2 − qQ

mJ 2

+A cos
(
�− �

[
#
2
+ $

3J 2

kM

(
kM
J 2 − qQ

mJ 2

)

− 0
(

J 2

kM

)2(
3
(
kM
J 2 − qQ

mJ 2

)2
+

3A2

4

)
+

#2

8

+ $2
(

J 2

kM

)2(
27
2

(
kM
J 2 − qQ

mJ 2

)2
+

15
4

A2

)

+ #$
3
2

J 2

kM

(
kM
J 2 − qQ

mJ 2

)

− #$
1
3

J 2

kM
A cos �

])

+(periodic terms of order #; $; #2; $2; 0):
(5.33)

This solution must be compared with the solution
(5.19) obtained in the framework of GRT. As we
can see, considering approximate solutions to order
velocity4=c4, velocity�c, the shift of the perihelion
has di6erent values in the two theories.
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6. Conclusions

We can conclude that the orbits described by the
charged mass point with mass m and electric charge
q, in the electrogravitational 2eld produced by the
charged mass point with M and electric charge Q,
have the same shape in GRT and RTG. In RTG, the
range of variable r is moved back, with respect to the
one in GRT, with kM=c2.

The substantial di6erence between the solution in
GRT and RTG is established in the region close to the
gravitational radius, rg. From the viewpoint of GRT, P
crosses the horizon r= rg only in the inside direction.
This trajectory does not reach the singularity r = 0;
it ends at some point inside the region with r in the
interval (0; (kM=c2)−(1=c2)

√
k2M 2 − kQ2). From the

viewpoint of RTG, the trajectory of P cannot continue
beyond the horizon r = rg.
The orbits of elliptic type of P, rotate slowly in the

same direction or in the opposite directions in which
they are described.
In an approximation of the solution for the electro-

gravitational Kepler problem to the 2rst order, the ad-
vance of perihelion per revolution is the same in GRT
and RTG. In an approximation of the solution to the
second order this advance of perihelion di6ers in the
two theories.
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