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1 Every graph is a cut locus
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Abstract We prove that every connected graph can be realized as the cut locus

of some point on some riemannian surface S which, in some cases, has constant

curvature. We also study the stability of such realisations, and their generic be-

haviour.
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1 Introduction

Unless explicitly stated otherwise, by a riemannian manifold here we always
mean a complete, compact and connected manifold without boundary. We
shall work most of the time with surfaces (2-dimensional manifolds) S, and
let M denote manifolds of arbitrary dimension d.

All graphs we consider in the following are finite, connected and may
have loops and multiple edges. For the simplicity of our exposition, we see
every graph G as a 1-dimensional simplicial complex. The cyclic part of
G is the minimal (with respect to inclusion) subgraph Gcp of G, to which
G is contractible; i.e., the minimal subgraph of G obtained by repeatedly
contracting external edges, and for each vertex remaining of degree two (if
any) merging its incident edges. A graph is called cyclic if it it equal to its
cyclic part, and it is called of constant order if all its vertices have the same
degree.

The notion of cut locus was introduced by H. Poincaré [20] in 1905, and
gained since then an important place in global riemannian geometry. The
cut locus C(x) of the point x in the riemannian manifold M is the set of all
extremities (different from x) of maximal (with respect to inclusion) segments
(i.e., shortest geodesics) starting at x; for basic properties and equivalent
definitions refer, for example, to [18] or [21].
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For riemannian surfaces S is known that C(x), if not a single point, is a
local tree (i.e., each of its points z has a neighbourhood V in S such that the
component Kz(V ) of z in C(x)∩V is a tree), even a tree if S is homeomorphic
to the sphere. A tree is a set T any two points of which can be joined by a
unique Jordan arc included in T . The degree of a point y of a local tree is
the number of components of Ky(V ) \ {y} if V is chosen such that Ky(V ) is
a tree. A tree is finite if it has finitely many points of degree ≥ 3, each of
which has finite degree.

S. B. Myers [19] for d = 2, and M. Buchner [3] for general d, established
that the cut locus of a real analytic riemannian manifold of dimension d is
homeomorphic to a finite (d−1)-dimensional simplicial complex. For a class
of Liouville manifolds, in particular for hyperellipsoids in the euclidean space
IRd, the cut locus is reduced to a disc of dimension of most (d− 1), see [10]
and [11].

For riemannian metrics of S non-analytic, cut loci may be quite large sets.
J. Hebda [6] showed, for any C∞ metric on S, that the Hausdorff 1-measure
of any compact subset of the cut locus of any point is finite. Independently
and using different techniques, J. Itoh [9] proved the same result under the
weaker assumption of C2 metric. The differentiability of the metric cannot
be lowered more; for example, the main result in [25] states that on most (in
the sense of Baire category) convex surfaces (which are C1 \ C2), most points
are extremities of any cut locus.

The problem of constructing a riemannian metric with preassigned cut
locus on a given manifold also received a certain interest. H. Gluck and
D. Singer [5] constructed a riemannian metric such that a non triangulable
set, consisting of infinitely many arcs with a common extremity, becomes
a cut locus. Another example of infinite length cut locus was provided by
J. Hebda [7], while the case of a submanifold as preassigned cut locus was
considered by L. Bérard-Bergery [1]. J. Itoh [8] showed that for any Morse
function on a differentiable surface S, with only one critical point of index 0
and no saddle connection, there exists a riemannian metric on S with respect
to which Cf , the union of all unstable manifolds of critical points of f with
positive index, becomes a cut locus. All these results assume the manifold
be given, and search for a metric with respect to which some subset of the
manifold becomes a cut locus.

A different approach was considered in [13], where the authors showed
that any combinatorial type of finite tree can be realized as a cut locus on
some, initially unknown, doubly covered convex polygon.
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Our results here give this approach much more generality, by showing
(see Theorem 2.6) that every connected graph can be realized as a cut locus;
i.e., there exist a riemannian surface SG = (SG, h) and a point x ∈ SG such
that C(x) is isometric to G. This is a partial converse to Myers’ theorem
mentioned above. If moreover G is cyclic of constant order, then it can be
realized on a surface of constant curvature (Theorem 3.1). At the end of this
paper we show that –roughly speaking– stability is a generic property of cut
locus realizations.

In a forthcoming paper [15] we are concerned about the orientability of
the surfaces SG realizing the graph G as a cut locus.

2 Every graph is a cut locus

Recall that a segment between a point x and a closed set K not containing x
is a segment from x to a point in K, not longer than any other such segment;
the cut locus C(K) of the closed set K ⊂ S is the set of all points y ∈ S such
that there is a segment from y to K not extendable as a segment beyond y.

A graph is metric if each of its edges is endowed with a positive number,
called length.

Definition 2.1 Let G be a graph. A G-strip is a topological surface PG with
boundary, such that:
(i) the boundary of PG is homeomorphic to a circle, and
(ii) PG contains (a graph isometric to) G and is contractible to G

A riemannian G-strip is a G-strip PG endowed with a riemannian metric
such that the cut locus of bd(PG) in PG is precisely G.

If the graph G is metric, we ask in addition that the induced metric on G
by the metric of PG coincides to the original metric of G.

Basic examples show that a topological surface with boundary is not
contractible to each graph it contains.

Definition 2.2 We say that a graph (or a metric graph) G can be realized
as a cut locus if there exist a riemannian surface SG = (SG, h) and a point
x in SG such that G is isometric to C(x).

A. D. Weinstein (Proposition C in [26]) proved the following.
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Lemma 2.3 Let M be a d-dimensional riemannian manifold and D an d-
disc embedded in M . There exists a new metric on M agreeing with the
original metric on a neighbourhood of M \ (interior of D) such that, for some
point p in D, the exponential mapping at p is a diffeomorphism of the unit
disc about the origin in the tangent space at p to M , onto D.

Proposition 2.4 The following statements are equivalent:
i) the metric graph G can be realized as a cut locus;
ii) there exists a G-strip;
iii) there exists a riemannian G-strip.

Proof: (i) → (ii) Consider a point x on a riemannian surface (S, g), and
a segment γ : [0, lγ] → S parametrized by arclength, with γ(0) = x and
γ(lγ) ∈ C(x). For ε > 0 strictly smaller than the injectivity radius inj(x)
at x, the point γ(lγ − ε) is well defined because inj(x) ≤ lγ. Since S \ C(x)
is constractible to x along geodesic segments, and thus homeomorphic to an
open disk, the union over all γs of those points γ(lγ − ε) is homeomorphic to
the unit circle.

(ii) → (iii) An explicit construction of a riemannian G-strip from a given
G-strip was provided by the first author in [8].

(iii) → (i) A. D. Weinstein’s result above (Lemma 2.3) shows that, given
a riemannian G-strip PG, one can glue it to a disk to obtain a surface SG,
and there exists a metric g on SG agreeing with the original metric on PG,
and a point x in SG with C(x) = G. ✷

We need one more result, well known in the graph theory.

Lemma 2.5 For every graph with m edges, n vertices, and q generating
cycles holds q = m− n + 1.

Theorem 2.6 Every metric graph can be realized as a cut locus.

Proof: By Proposition 2.4, it suffices to provide, for every metric graph G,
at least one G-strip.

We notice first that we can reduce our problem to the cyclic part Gcp of
G. Assume G \ Gcp consists of finitely many finite trees, say T1, T2, ..., Tm.
Since every tree T has a “leaf”-type T -strip, one can attach (in a natural
way) all the Ti-strips to a Gcp-strip to obtain a G-strip.

We proceed by induction over the number k of generating cycles of G.

4



For k = 0 and G = Gcp the strip is elementary.
For k = 1 and G = Gcp our strip is the flat compact Möbius band.
Assume now that there exist strips for all graphs with k generating cycles,

for some k ≥ 1.
Let Gk+1 = Gcp

k+1
be a metric graph with k + 1 generating cycles, and e

an edge of Gk+1 in some generating cycle of Gk+1.

Figure 1: Induction reduction: edge e joins distinct vertices v 6= w.

Detach e from Gk+1 at one extremity, say v; Figure 1(a)-(b) presents the
case when e joins distinct vertices v 6= w, while Figure 2(a)-(b) presents the
case v = w. Denote by Gk the resulting metric graph, and by v1, v2 the
images of v in Gk.

Figure 2: Induction reduction: edge e is a loop at v.

Since Gk has one vertex more than Gk+1, it has k generating cycles (see
Lemma 2.5), and by the induction assumption there exists aGk-strip PGk

(see
Figures 1(c) and 2(c)). Consider a planar representation of the boundary of
PGk

as a simple closed curve (illustrated in Figures 1(d) and 2(d)), and attach
to it a switched e-strip, see Figures 1(e) and 2(e), to obtain a Gk+1-strip. ✷

Remark 2.7 Our results are also related to the cycle double cover conjecture,
proposed by G. Szekeres [24] and P. Seymour [23], which states that every
bridgeless graph G has a cycle double cover; i.e., a collection of cycles in G
such that each edge is contained in exactly two of the cycles.

The equivalent statement of this conjecture in terms of graph embeddings
is known as the circular embedding conjecture: every biconnected graph has
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a circular embedding onto a manifold; i.e., every face of the embedding is a
simple cycle in the graph.

A stronger version of the circular embedding conjecture asks about circular
embeddings on orientable manifolds; in terms of cycle double covers, this is
equivalent to the conjecture that there exists a cycle double cover, and an
orientation for each of the cycles in the cover, such that for every edge e the
two cycles that cover e are oriented in opposite directions through e [17].

In the language of graph theory, Theorem 2.6 shows that, for every con-
nected graph G, there exists a 2-cell embedding with just one face, onto some
surface SG. In particular, for every such G there exists a closed path D in
G containing all edges of G precisely twice, no edge in the cyclic part of G
having consecutive appearances in D.

Question 2.8 Several open questions naturally arise from Theorem 2.6.
i) Can the metric of the surfaces SG, realizing G as a cut locus, be chosen

analytic? See the result of S. B. Myers [19] mentined in the introduction.
ii) Cut loci on riemannian surfaces may be quite large sets, see the intro-

duction. Can Theorem 2.6 be extended to infinite graphs?
iii) Can Theorem 2.6 be extended to higher dimensions?

There usually are many strips on the same graph; we formalized this by
two concepts [13].

Definition 2.9 A cut locus structure (shortly, a CL-structure) on the graph
G is a strip on the cyclic part Gcp of G.

Definition 2.10 Consider, for a point x on a riemannian surface (S, g) and
for 0 < ε < inj(x), the C(x)-strip obtained as the union, over all segments γ
starting at x and parametrized by arclength, of the points γ(lγ−ε) (see Prop.
2.4). We call the CL-structure constructed in this way the cut locus natural
structure defined by x, and denote it by CLNS(x), or by CLNS(x, g) if to
point out (the dependence on) the metric g.

With these definitions, Theorem 2.6, Proposition 2.4 and Lemma 2.3 can
rephrased as that each graph posess at least one CL-structure, and each CL-
structure can be realized in a natural way. They also allow us, whenever
we consider surfaces realizing the graph G as a cut locus, to actually think
about CL-structures on G.

The next two sections are related to the following.
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Question 2.11 What can be said about the riemannian surface S if, for
every point x in S, CLNS(x) does not depend on x?

3 Constant curvature realizations

In this short section we present a direct way to realize some graphs as cut
loci, different from that provided by Theorem 2.6.

Theorem 3.1 Every CL-structure on a graph of constant order can be real-
ized on a surface of constant curvature.

Proof: Denote by G a cyclic graph of constant order k, and by C a CL-
structure on G.

If G is a point then the unique CL-structure on G can be realized as
CLNS(x) for any point x on the unit 2-dimensional sphere.

Assume now that G is a cycle. Then again we have a unique CL-structure
on G, and it can be realized as CLNS(x) for any point x on the standard
projective plane.

Consider now a graph G with q ≥ 2 generating cycles; by Lemma 2.5, we
get m ≥ 2.

For m = 2, let F2m = F4 denote the square in the Euclidean plane Π.
For m = 3, let F2m = F6 denote the regular hexagon in Π.
For m ≥ 4, consider a regular 2m-gon F2m = z̄1...z̄2m in the hyperbolic

plane IH2 of constant curvature −1, such that ∠z̄iz̄i+1z̄i+2 = 2π/k (all indices
are taken (mod 2m)).

We view now the CL-structure C on G as a closed path D in G containing
all edges of G precisely twice, hence every vertex of G appears precisely k
times in D.

We identify now the path D with (the boundary of) F2m, such that each
image in D of an edge of G corresponds to precisely one edge in F2m, each
image in D of a vertex of G corresponds to precisely one vertex in F2m, and
the order of edges and vertices alongD is preserved. It remains to identify, for
every edge e in G, its two images in F2m, to obtain a differentiable surface SG

of constant curvature −1. By construction, the natural cut locus structure
of the image x in SG of the center of F2m is precisely C. ✷

Remark 3.2 With a similar proof, one can show than every CL-structure
on an arbitrary graph can be realized on a surface of constant curvature with
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at most (n−p)-singular points (i.e., on an Alexandrov surface with curvature
bounded below, see [22] for the definition). Here, p is the number of vertices
in G of maximal degree.

Example 3.3 The complete graphs Kr, the multipartite graphs Kp1,...,pr, as
well as the graph of Petersen, can be realized as cut loci in constant curvature
(r, p1, ..., pr ∈ IN).

4 Stability

In this section we propose a notion of stability for cut locus structures, while
in the next section we show that –roughly speaking– stability is a generic
property of CL-structures. For our goal, we need to further investigate cut
loci.

The cyclic part of the cut locus was introduced and first studied by J.
Itoh and T. Zamfirescu [16].

Proposition 4.1 The cyclic part of the cut locus depends continuously on
the point.

Proof: The upper semi-continuity of cut loci, as the reference point varies
on the riemannian surface S, is well known and follows from the upper semi-
continuity of geodesic segments.

The number q of generating cycles in the cyclic part of a cut locus does
not depend on the point in S, hence it is constant on S. Therefore, if a
new edge would appear in the cyclic part of a cut locus, it would produce
a new cycle, hence another edge would have to disappear (see Lemma 2.5),
contradicting the upper semi-continuity. ✷

Definition 4.2 Consider a CL-structure C on the graph G, a riemannian
surface (S, g) and a point x ∈ S. C is called stable with respect to x in S if
(i) CLNS(x) = C, and
(ii) there exists a neighbourhood of x in S, for all points y of which holds
CLNS(y) = C.

Definition 4.3 The CL-structure C is called globally stable if it is stable on
all surfaces where it can be realized as a CLNS.
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Figure 3: Unstable cut locus structure.

Remark 4.4 Assume we have distinct pairs (S, x) and (S ′, x′) of riemannian
surfaces S, S ′ and points x ∈ S, x′ ∈ S ′ such that CLNS(x) = CLNS(x′) =
C. If C is stable with respect to (S, x), it is not necessarily stable with respect
to (S ′, x′), as the following example shows.

Example 4.5 i) Any CL-structure on a graph of constant order k > 3 is
stable with respect to the natural realization given by Theorem 3.1.

ii) We roughly explain here how to produce unstable CL-structures from
those stable CL-structures at (i).

Consider, for example, a square fundamental domain of a flat torus T
with a bump, see Figure 3 left. The cut locus of the point x ∈ T represented
at the corners of the square, is the 4-graph with one vertex y, as indicated by
the dashed line. The four segments from x to y are also indicated, and are
not affected by the bump. We choose x such that one segment is tangent to
the bump’s boundary.

Now consider a point x′ arbitrarily close to x: slightly move x to “the
right”, for example, to x′, see Figure 3 right. There remain three segments
from x′ to y, those in the upper-left half-domain; they are all shorter than the
geodesic joining x′ to y that crosses the bump, so y is a vertex of degree three
in C(x′). There is another vertex of degree three in C(x′), also indicated in
the figure together with the segments joining it to x′. In this case, C(x′) is
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a 3-graph with two vertices and two generating cycles. J. Itoh and T. Sakai
describe into details a similar procedure, see Remark 2.7 in [12].

In conclusion, the 4-graph with one vertex is not stable with respect to x
in T .

Theorem 4.6 A cut locus structure on the graph G is globally stable if and
only if G is a 3-graph.

Proof: Let C be a locus structure on G.
Assume first that G is a 3-graph; then its cyclic part is itself a 3-graph.

Assume, moreover, that C is realized as C = CLNS(x), for some point x
on some riemannian surface S. If the point x′ in S is a close to x then, by
Proposition 4.1, the cyclic parts of C(x) and C(x′) are homeomorphic, and
we obtain the conclusion.

Assume now that G has a vertex y of degree strictly larger than 3, and
consider a point x in the riemannian surface S such that C = CLNS(x).
Then, by “putting” a bump tangent to one of the segment from x to y (i.e.,
modifying the metric on S accordingly) we obtain a new metric on S with
respect to which we still have C = CLNS(x), but we have points x′ arbitrarily
close to x such that CLNS(x′) 6= C, see Example 4.5 or Theorem 5.2. ✷

The following is, in some sense, opposite to Question 2.11.

Question 4.7 How many stable CL-structures can exist on a given surface?

5 Generic behaviour

We shall make use of the main result in [4], given in the following as a lemma.
For, denote by G the space of all Riemannian metrics on the surface S; i.e., it
is viewed as the space of sections of the bundle of positive definite symmetric
matrices over S, endowed with the C∞ Whitney topology [4].

Recall that a metric g on the surface S is called cut locus stable [4] if
for any h close to g there is a diffeomorphism φ of the surface, depending
continuously on h, such that φ(C(x, g)) = C(x, h); here, C(x, g) denotes the
cut locus of x with respect to g.

10



Lemma 5.1 [4] For every point x in S there exists a set Bx of C(x) stable
metrics on S, open and dense in G. Moreover, for any g in Bx, every rami-
fication point of the cut locus of x with respect to g is joined to x by precisely
three segments.

Theorem 5.2 There exists an open and dense set B ⊂ G, every metric of
which is stable with respect to the cyclic part Ccp of the cut loci, and realizes
Ccp as a 3-graph.

Proof: By Lemma 5.1 and Theorem 4.1, every C(x) stable metric is also
Ccp(y) stable, for all points y close to x. Therefore, for every point x in S,
there exists a neighbourhood Ux ⊂ S all points y of which have the same set
Bx of Ccp(y) stable metrics (given by Lemma 5.1), open and dense in G.

From the covering of S with the open sets Ux we can extract a finite sub-
covering, say {Ui}i=1,...,f = {Uxi

}i=1,...,f . It has the property that the sets of
metrics Bi = Bxi

given by Lemma 5.1 are constant on each Ui. Therefore,
the set

⋂
Bi is still open and dense in G, and consists of Ccp stable metrics.

✷

The final result of this section follows directly from Theorem 4.6 and
Theorem 5.2.

Theorem 5.3 There exists an open and dense set O ⊂ S×G, for every pair
(x, g) of which the naturally defined cut locus structure CLNS(x, g) is cubic
and locally constant.

The following result is well-known.

Lemma 5.4 Every graph can be obtained from some cubic graph by edge
contractions.

Remark 5.5 Passing from a stable CL-structure to another stable CL-struc-
ture is realized via a non-stable CL-structure, one that –in particular– lives
on a non-cubic graph (see Theorem 5.3 4.6 and Lemma 5.4). This is realized
in the first step by contracting one or several edge-strip(s), and in the second
step by an operation, that we can think about as a “blowing up” all vertices
of degree larger than 3 to trees of order 3. (A formal description of this is
given in [14].)
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Remark 5.6 Non-isometric surfaces realizing the same graph G as a cut
locus (Theorem 2.6) are homeomorphic to each other, since topologically they
can be distinguished only by their genus, which is a function on the number of
generating cycles of G. Therefore, all distinct CL-structures on G “live” on
homeomorphic surfaces. On the other hand, Theorem 5.3 shows in particular
that “equivalent” CL-structures on G (the precise definition is given in [14])
can be realized on non-isometric surfaces.
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