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We provide a sharp, sufficient condition to decide if a point y on a convex surface S is a farthest point (i.e., is
at maximal intrinsic distance from some point) on S, involving a lower bound π on the total curvature ωy at y,
ωy ≥ π. Further consequences are obtained when ωy > π, and sufficient conditions are derived to guarantee
that a convex cap contains at least one farthest point. A connection between simple closed quasigeodesics O of
S, points y ∈ S \ O with ωy ≥ π, and the set F of all farthest points on S, is also investigated.
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1 Introduction

A convex surface S is the boundary of a convex body (compact convex set with interior points) in Euclidean space
R

3, or a doubly covered planar convex body.
The metric ρ of the convex surface S is defined, for any points x, y in S, as the length ρ(x, y) of a segment

(i.e., shortest path on S) from x to y. For any point x in S, let ρx denote the distance function from x given
by ρx(y) = ρ(x, y), Fx the set of all farthest points from x (i.e., global maxima of ρx), and F the induced
multivalued mapping. For simplicity, we shall denote by F the set of all farthest points on S, F =

⋃
x∈S Fx, and

often make no distinction between a set Fx = {y} and the point y.
Chapter A35 of the book [4] of H. Croft, K. Falconer and R. Guy details several questions of H. Steinhaus,

who asked for characterizations of the sets of farthest points.
Despite the simplicity of the notion, few examples of completely determined sets of farthest points seem to

be known (see [8], [9], [15], [17], [20]), a possible reason being the difficulty to determine by direct computa-
tion these sets on general surfaces. This “quasi-poverty” constitutes a first motivation for presenting criteria to
recognize farthest points, or caps to which they belong, on convex surfaces.

Denote by S the space of all convex surfaces, endowed with the usual Pompeiu–Hausdorff metric. Another
motivation for our work comes from the conjecture of T. Zamfirescu [23], that the set S2, of all surfaces S ∈ S
on which there exists a point x with disconnected set of relative maxima, is dense in S. In view of Theorems
6 and 7 in [21], for proving this conjecture it would be sufficient to show that densely many surfaces have the
mapping F properly multivalued. Our Corollaries 2.2 and 3.2 give two sufficient conditions to decide this.

The survey [18] presents general properties of farthest points on convex surfaces.
The space Ty of all unit tangent directions at y ∈ S is a topological circle in the unit sphere S2. The complete

angle at y, denoted by θy , is the length of Ty, while the total curvature ωy at y is defined by ωy = 2π − θy .
An interesting criterion was obtained by J. Rouyer [16]: if y is a point in a polyhedral convex surface such

that F−1
y = {x} and ωy > N−2

N−1π, where N > 1 is the number of segments from x to y, then F is properly
multivalued. Here, F−1

y = {x ∈ S : y ∈ Fx}.
We provide a sufficient condition, ωy ≥ π, to conclude that y is a farthest point, and derive more consequences

if ωy > π (Theorem 2.1). In the case of strict inequality, intF−1
y �= ∅ and y is an isolated point of F in S. Both
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1538 Itoh and Vı̂lcu: Criteria for farthest points on convex surfaces

conclusions of Theorem 2.1 are optimal. Theorem 2.1 may be compared to the mentioned result of J. Rouyer
[16]; we use a stronger lower bound for ωy , but drop off all other hypotheses and obtain improved results. It
may also be compared to Theorems 3 and 10 in [9], where it is obtained, under much more restrictive conditions
(doubly covered polygons two of whose vertices have large curvatures), that F has very few points.

Another criterion, settled in [6], locates—roughly speaking—F around points at maximal distance to a simple
closed quasigeodesic O (see § 4 for the definition).

Our Theorem 3.1 complements this result, by showing that ωy ≥ π is also sufficient for y ∈ S \ O to be
at maximal distance to O, and thus a “central point” of F. Its Corollary 3.2 states that, if O is a simple closed
quasigeodesic of length λ(O) on a convex surface S, y ∈ S \ O a point with ωy ≥ π, and ρ(y, O) > λO, then
the mapping F is properly multivalued. Theorem 3.1 is also optimal.

While ωy > π easily implies y is a strict local maximum for the distance function from any point in S \ {y},
the passage from local to global involves nontrivial arguments. The proofs of Theorems 2.1 and 3.1 are rather
lengthy, and therefore are left for the last part of the corresponding sections. We shall employ methods of
A. D. Alexandrov [2], [3], and often refer precisely to the results we use. Nevertheless, knowledge of large parts
of [2] or [3] would be of considerable help for the reader.

In the final part of the paper, by the use of Theorem 2.1, we derive in Theorem 4.2 a criterion to conclude that
a small cap C of a convex surface (see §4 for the definition) contains at least one farthest point. For example (see
Corollary 4.4), this happens if the boundary length of C is at most π times the height h of C, and 7h is not larger
than the distance between supporting planes to S parallel to bdC.

Among all farthest points, those realizing the diameter of the surface received a special interest. A comple-
mentary paper [10] will complete these results by presenting criteria to recognize diameter points.

Finally we set some notation. λ(C) will always denote the length of the curve C, while V will stand for the
vertex set of a polyhedral surface. B(x, r) will denote the closed intrinsic ball of radius r around x, and S(x, r)
its boundary.

2 Total curvature and farthest points

The goal of this section is to provide a criterion to recognize a farthest point, and to present remarks and examples
concerning this criterion.

Theorem 2.1 For any point y in any convex surface S with ωy ≥ π, the set F−1
y is nonempty and arcwise

connected. If moreover ωy > π, then y is an isolated point of F in S and F−1
y has interior points.

Being quite long, the proof of Theorem 2.1 is left for the last part of this section, and it is given as a sequence
of several lemmas.

The next result follows easily from Theorem 2.1, the upper semicontinuity of F , and Brouwer’s fixed point
theorem. Another application of Theorem 2.1 is presented in Section 4.

Corollary 2.2 If there exists a point y in a convex surface S with ωy > π then the mapping F is properly
multivalued.

Remark 2.3 The first part of Theorem 2.1 is tight, as follows from the example of Dε’s, doubly-covered
isosceles triangles xyεz with ||x − yε|| = ||z − yε|| and ∠xyεz = π/2 + ε/2 > π/2. Indeed, yε �∈ F but
Dε → D0 as ε → 0 (x, z fixed), yε → y0 with π − ε = ωyε → ωy0 = π, and y0 ∈ F in D0.

Remark 2.4 The second part of Theorem 2.1 is also tight best possible. J. Rouyer [15] determined explicitly
the set F for (the boundary of ) a regular tetrahedron T ; in particular, each vertex v of T has curvature π, belongs
to F, F−1

v is a tree with three leaves, and F is arcwise connected.

Example 2.5 Theorem 2.1 directly applies to tetrahedra. Since the total curvature of any convex surface is
4π, at least one vertex of any tetrahedron and all vertices of isosceles tetrahedra are farthest points.

The remainder of this section is devoted to the proof of Theorem 2.1.
A triangle in a convex surface is a collection of three segments γ1, γ2, γ3 such that γi, γi+1 have the common

endpoint ai+2 (i = 1, 2, 3 modulo 3). We shall denote the triangle by γ1γ2γ3 or, if the segments are clear from
he context, by a1a2a3.

The following comparison result can be found in [2, p. 215].
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Lemma 2.6 Let γ1γ2γ3 be a triangle in a convex surface S and γ1γ2γ3 a planar triangle with λγi = λγi.
Then ∠γiγi+1 ≤ ∠γiγi+1, i = 1, 2, 3 (mod 3), and equality holds if and only if γ1γ2γ3 is isometric to γ1γ2γ3.

Two segments joining the points x and y are called consecutive if their union bounds a domain no point of
which is interior to another segment from x to y.

Lemma 2.7 Consider points x, y in a convex surface S such that ωy > π. Then all points z in S \{y} (if any)
with ρ(x, z) ≥ ρ(x, y) belong to the interior of only one of the digons bounded by consecutive segments from x
to y.

P r o o f. Assume, for simplicity, that there are only two segments joining x to y, say γ1
xy and γ2

xy. Suppose
the conclusion is false and take points v, w in S outside intB(x, ρ(x, y)), separated by the closed curve Λ =
γ1

xy ∪ γ2
xy. Choose segments γvx, γwx and γyv, γyw. The interiors of any two of the following four geodesic

triangles on S, T1 = γ1
xyγyvγvx, T2 = γ1

xyγywγwx, T3 = γ2
xyγyvγvx and T4 = γ2

xyγywγwx, are disjoint (see
Fig. 1 left).

Fig. 1 If ρ(x, v) ≥ ρ(x, y) and ρ(x, w) ≥ ρ(x, y) then ωy ≤ π

Construct four nonoverlapping planar triangles T i, respectively isometric to Ti (i = 1, . . . , 4), T 1 = x̄ȳ1v̄1,
T 2 = x̄ȳ1w1, T 3 = x̄ȳ2v̄2 and T 4 = x̄ȳ2w2, such that ∠ȳ1x̄ȳ2 = ∠γ1

xyγ2
xy. Moreover, the circular order of T i

around x̄ is the circular order of Ti around x, i = 1, . . . , 4. By Lemma 2.6, the angles of each T i are at most
equal to the corresponding angles of Ti. Then, by our initial assumption, v̄1, v̄2, w1 and w2 are at Euclidean
distance from x larger than ρ(x, y) = ||x̄ − ȳ1|| = ||x̄ − ȳ2||. Choose points v∗, w∗ on the circle S(x̄, ρ(x, y))
on the same side of ȳ1ȳ2 as v̄1, v̄2 and respectively w1, w2, such that ∠v∗ȳj x̄ ≤ ∠v̄j ȳj x̄, ∠w∗ȳj x̄ ≤ ∠w̄j ȳj x̄
(for j = 1, 2) and the quadrilateral v∗ȳ1w

∗ȳ2 is convex (see Fig. 2 right). Then ∠v∗ȳjw
∗ ≤ ∠v̄j ȳjx̄ + ∠x̄ȳjwj

(j = 1, 2), and we obtain by addition

π ≤ ∠v∗ȳ1w
∗ + ∠v∗ȳ2w

∗ ≤ ∠v̄1ȳ1w̄1 + ∠v̄2ȳ2w̄2 = 2π − ωy < π,

a contradiction which establishes the lemma.

For any point x ∈ S, the cut locus C(x) of x is the set of all endpoints (different from x) of maximal (by
inclusion) segments starting at x; it is known to be a tree.

Recall that a tree is a set T any two points of which can be joined by a unique arc included in T . A point
y ∈ T is called a leaf of T if T \ {y} is connected, and a junction point of T if T \ {y} has at least 3 components.
A tree is finite if it has finitely many leaves.

Lemma 2.8 If S is a polyhedral convex surface and y a point in S such that ωy > π then there exists a point
x in S having y as farthest point.

P r o o f. The cut locus C(y) of y is a finite tree whose edges are segments, because S is polyhedral (see [1]).
Moreover, the points of S joined to y by more than two segments are precisely the junction points of C(y), and
the leaves of C(y) are vertices of S and are joined to y by precisely one segment.

Choose a leaf of C(y), say x0, and assume y �∈ Fx0 .

www.mn-journal.com c© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Move a point x = xt at constant speed along C(y), starting from x0 (t ≥ 0). Assume that, at all times t,
y �∈ Fxt (otherwise there is nothing to prove). At each time t1 > 0 we define the direction to follow by x (in the
future) starting from the (present) position xt1 , and a digon S≤t1 .

Define S≤0 to be the unique (by the choice of x0) segment γx0y .
If x1 = xt1 is joined to y by precisely two segments, say γ1

x1y and γ2
x1y , then S≤t1 is the digon of S bounded

by γ1
x1y ∪ γ2

x1y which contains x0. The variable point xt will move from the position x1 along the edge of C(y)
containing x1, to locally increase the distance from S≤t1 .

Assume now that x1 is joined to y by N > 2 segments, say γ1
x1y , . . . , γN

x1y , and let Si denote the digon of S

bounded by the (consecutive) segments γi
x1y and γi+1

x1y (for i = 1, . . . , N (modN + 1)), with the indices such
that S1 ⊃ γx0y . Then, by Lemma 2.7, all points z in S at distance to x1 ρ(x1, z) ≥ ρ(x1, y) belong to the interior
of only one such digon, say Si1 . Put S≤t1 = cl (S \ Si1). Here again, the direction of motion from x1 should
locally increase the distance from S≤t1 .

Finally, when x arrives at a leaf xT of C(y) (and this certainly happens at some time T ), it stops there. In
this case, clearly limt↑T xt = xT and, for t close to T and xt on the same edge of C(y) as xT , the unique
segment γxT y is the limit of precisely two segments γ1

xty , γ2
xty , bounding S≤t. Define in the obvious way

S≤T = limt↑T S≤t.
We claim that, at any time t,

Fxt ⊂ S>t = S \ S≤t . (2.1)

For t = 0, (2.1) is clear from the assumption y �∈ Fx0 .
Assume that, at some time t1, the point x1 = xt1 is not a junction point of C(y) and Fx1 ⊂ S>t1 . Suppose

there exists a time t2 > t1 such that x2 = xt2 belongs to the same edge of C(y) as x1, and Fx2 ⊂ S≤t2 .
Move continuously from x1 to x2 and observe that S≤t1 increases continuously to S≤t2 . Then, by the upper
semicontinuity of the mapping F and by Lemma 2.7, there exists some time t∗, t1 < t∗ < t2, such that Fx∗ ∩
bdS≤t2 �= ∅ (x∗ = xt∗), hence y ∈ Fx∗ , a contradiction with y �∈ Fxt for all t. Therefore, Fx2 ⊂ S>t2 for all
points x2 = xt2 on the same edge of C(y) as x1, provided Fx1 ⊂ S>t1 .

Assume finally that the point x1 = xt1 is a junction point of C(y). Then limt↑t1 S≤t ⊂ S≤t1 and, by the
definition of S≤t1 , if Fxt ⊂ S \ S≤t for all t < t1 then also Fx1 ⊂ S \ S≤t1 , so the claim is established.

Since the boundary of S≤t consists of segments starting at y, C(y) intersects it only at xt. Therefore, from
limt↑t1 S≤t ⊂ S≤t1 , at the time T > 0 when xT reaches a leaf of C(y) the set S≤T will completely contain
C(y), so S>T = S \ S≤T = ∅, because xT is joined to y by precisely one segment.

But, by the claim that Fxt ⊂ S>t at all times t, this is also true for t = T , ∅ �= FxT ⊂ S>T = ∅ and a
contradiction is reached.

We are now in the position to prove the first part of Theorem 2.1.

Lemma 2.9 For any point y in any convex surface S with ωy ≥ π, the set F−1
y is nonempty and arcwise

connected.

P r o o f. The general arcwise connectedness of the set F−1
y is proven in [19].

To show that F−1
y �= ∅, consider a sequence of polyhedral convex surfaces Sn converging to S such that

y = yn ∈ Sn and ωyn > π (n ≥ 1). This is possible, for example, by choosing sets Vn = {v1
n, . . . , vmn

n } ⊂
Vn+1 ⊂ S, with mn integers such that m1 ≥ 4 and mn+1 = 2mn. Then Sn = bd(convVn) → S provided Vn

becomes dense in S, and the curvature condition is fulfilled if Sn �= S around y.
By Lemma 2.8, there exist points xn ∈ Sn with yn ∈ Fxn . Possibly passing to a subsequence, we can assume

xn → x ∈ S. By the upper semicontinuity of the mapping F , the limit set of Fxn is included in Fx, so y ∈ Fx

and we are finished.

Lemma 2.10 Let x, y be two points in S. The set {αi}i∈I , consisting of all angles formed at y by pairs of
consecutive segments from y to x, is at most countable, and if it is not void then supi∈I αi is attained.

P r o o f. Fix a homeomorphism f : Ty → S1. The interiors of any two angles, determined by distinct pairs of
consecutive segments, are disjoint. Therefore, the set {αi}i∈I is at most countable. Suppose that supi∈I αi is not
attained. Then there exists a sequence of angles {αin}n≥1 converging to supi∈I αi > 0, whence

∑∞
n=1 αin = ∞.

But this contradicts the fact that Σi∈Iαi ≤ θy ≤ 2π.
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Aside from its concrete estimation, the conclusion of the next lemma follows directly from the first variation
formula ([13, Theorem 3.5]).

Lemma 2.11 Let x, y be points in a convex surface S, and αi the angles at y between consecutive segments
to x, i ∈ I �= ∅. If maxi∈I αi < π then y is a strict maximum for the restriction of the distance function ρx to
B (y, 2ρ(x, y) cos (maxi∈I αi/2)).

P r o o f. To prove y is a strict local maximum for ρx, it suffices to show that, for some neighbourhood Vy of
y, ρx(y) > ρx(z) holds for all z ∈ Vy ∩ C(x). Take Vy = B (y, 2l cos (maxi∈I αi/2)), where l = ρ(x, y).

For any point z ∈ C(x) \ {y}, there exists a digon D bounded by two consecutive segments from x to y, such
that z ∈ D. Let α1 be the angle of D at y. Since α1 ≤ maxi∈I αi < π, we get

0 < ρ(y, z) < 2l cos
(

max
i∈I

αi/2
)
≤ 2l cos(α1/2).

One of the two angles formed at y by a segment from z to y, with the two segments bounding D, is at most
α1/2; denote it by β. Consider a planar triangle x̄ȳz̄ with ||x̄ − ȳ|| = l, ||ȳ − z̄|| = ρ(y, z) and the angle at ȳ
equal to β. Since β ≤ α1/2 < π/2, we have

||ȳ − z̄|| = ρ(y, z) < 2l cos(α1/2) ≤ 2l cosβ,

hence the angle at z̄ is larger than β and ||x̄ − z̄|| < ||x̄ − ȳ||.
By the convexity of the metric of S (see [2] or [3]), we also have ρ(x, z) ≤ ||x̄ − z̄||, so we obtain ρ(x, z) <

ρ(x, y), i.e., y is a strict local maximum for ρx.

Lemma 2.12 ([22]) Suppose that the set Fx contains more than one point for some point x in S. Then Fx

is contained in a minimal (by inclusion) arc Jx ⊂ C(x), and any geodesic triangle on S with vertices in Fx is
obtuse or right.

Lemma 2.13 ([23], [21]) Suppose that x ∈ S and cardFx ≥ 2. Let y ∈ Fx be an endpoint of the arc Jx

defined by Lemma 2.12, and ε > 0. Then there exist an arc A starting at x and a number k > 0, such that for
any v ∈ A and any u ∈ B(v, kρ(v, x)), we have Fu ⊂ B(y, ε).

We now have all we need to prove the last part of Theorem 2.1.

Lemma 2.14 Suppose the point y in the convex surface S satisfies ωy > π. Then y is an isolated point of F

in S and F−1
y has interior points.

P r o o f. By Lemma 2.9, we can choose a point x ∈ S with y ∈ Fx. Assume Fx \ {y} �= ∅ (otherwise the
proof is slightly easier), and observe that y is an endpoint of the arc Jx defined by Lemma 2.12, as follows either
from Lemma 2.12 itself or from Lemma 2.7. Consider positive numbers

ε1 < cos(θy/2), ε2 =
cos(θy/2) − ε1

cos(θy/2) + ε1
.

Apply Lemma 2.13 for ε ≤ ε1ρ(x, y) and v such that (for k as in its statement) U = B(v, kρ(v, x)) ⊂
B(x, ε2ρ(x, y)), so we have FU ⊂ B(y, ε1ρ(x, y)). From the choice of ε2 we obtain, for any point u in U ⊂
B(x, ε2ρ(x, y)),

(cos(θy/2) + ε1)ρ(x, u) < (cos(θy/2) − ε1)ρ(x, y),

whence

(cos(θy/2) + ε1)ρ(x, u) + ε1ρ(x, y)<cos(θy/2)ρ(x, y)

≤cos(θy/2)(ρ(x, u) + ρ(u, y)).

By subtracting cos(θy/2)ρ(x, u), we further have

ε1ρ(x, y) ≤ ε1ρ(x, u) + ε1ρ(x, y)) < ρ(u, y) cos(θy/2), (2.2)

www.mn-journal.com c© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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and therefore

Fu ⊂ B(y, ε1ρ(x, y)) ⊂ B(y, ρ(u, y) cos(θy/2)).

Since the maximal angle between two consecutive segments from u to y is smaller than θy < π, and
cos |[0,π] is a strictly decreasing function, Lemma 2.11 applied to u yields ρ(u, y) > ρ(v, w), for each w ∈
B(y, ρ(u, y) cos(θy/2)). Thus Fu = y, and consequently U ⊂ F−1

y .
To see that y is an isolated point of F, assume there exists a sequence of points yn ∈ FS \ {y} converging to

y. By the upper semicontinuity of F−1 [18], the limit set of the sequence of sets
{
F−1

yn

}
n

is a subset of F−1
y .

Possibly passing to a subsequence, we may consider a sequence of points xn ∈ F−1
yn

, convergent to the point
x′ ∈ F−1

y . For n large enough, we have

xn ∈ B(x′, ε2ρ(x′, y)), yn ∈ B(y, ε1ρ(x′, y)).

By replacing x with x′ and u with xn in the inequalities (2.2), we get ε1ρ(x′, y) < ρ(xn, y) cos(θy/2), i.e.

yn ∈ B(y, ρ(xn, y) cos(θy/2)).

Now Lemma 2.11 applied to xn yields ρ(xn, yn) < ρ(xn, y), contradicting yn ∈ Fxn , and the proof is complete.

3 Farthest points from simple closed quasigeodesics

The sufficient condition ωy ≥ π to decide y is a farthest point also proves useful in the situation considered in
this section. For the reader’s convenience, we recall first the definition of a quasigeodesic.

Consider a piecewise geodesic Γ which is a Jordan arc, say Γ =
⋃n

i=0 Γaiai+1 , where Γaiai+1 is a geodesic
arc joining the points ai, ai+1 ∈ S (i = 0, . . . , n). Then a right and a left side can be consistently locally defined
along Γ \ {a0, an+1}. Denote by αi and βi the angle between Γaiai−1 and Γaiai+1 to the right and to the left of
Γ, respectively. The right and left swerve of Γ are the numbers sr(Γ) = Σn

i=1(π − αi), sl(Γ) = Σn
i=1(π − βi).

Consider now a Jordan arc A which has definite directions at its endpoints p, q, and Γ a piecewise geodesic
from p to q which is a Jordan arc and lies to the right of, or on, A. Denote by δp and δq the angles between Γ and
A at p and q. Then lim(δp + δq + sr(Γ)) exists when Γ approaches A from the right (see [2, p. 353]) and it is
called the right swerve of A ([3, p. 109]). The left swerve is defined similarly.

A quasigeodesic arc is a Jordan arc which has definite directions at each point and whose every subarc has
nonnegative right and left swerves ([3, p. 114]).

A segment connecting two points with complete angles ≤ π forms, traversed back and forth, a degenerate
closed quasigeodesic.

Any geodesic is clearly a quasigeodesic, and if S has bounded specific curvature (in particular, if it is smooth)
then the converse is also true (see [3, pp. 114 and 27]). Notice that a convex surface may have no closed geodesic
[2], [5], but it always has at least three simple closed quasigeodesics [14].

The distance from the point x in S to a closed subset K of S is given by ρ(x, K) = miny∈K ρ(x, y).
Theorem 3.1 If O is a simple closed quasigeodesic of a convex surface S and y a point in S \ O such that

ωy ≥ π, then y is at maximal distance to O in the domain of S bounded by O to which it belongs.

The following statement is a direct consequence of the previous result, Theorem 2.1 and [6, Theorem 3].

Corollary 3.2 Let O be a simple closed quasigeodesic on a convex surface S, y ∈ S \O a point with ωy ≥ π,
and S′ the subset of S bounded by O that does not contain y. Then F is included in the union of two intrinsic
balls of radius λ(O), centered at y and at a farthest point from O in S′. If moreover ρ(y, O) > λ(O) then F is
disconnected and the mapping F is properly multivalued.

Remark 3.3 Theorem 3.1 is optimal, as follows from this easy example. Consider a convex quadrilateral
Qε = abcyε such that ∠yεab = ∠abc = π/2 and ∠ayεc = π/2 + ε/2, with ε an arbitrarily small positive
number. Take points p ∈ [ab] and q ∈ [ay] such that pq ‖ ab. Then the line-segment [pq] provides a simple
closed geodesic O on the double Dε of Qε and, on the half-surface Hε of Dε bounded by O which contains yε, c
is at larger distance to O than yε. Since Dε converges to a doubly-covered rectangle D0 as ε → 0 (a, b, c fixed),
yε → y0 with π − ε = ωyε → ωy0 = π, and y0 ∈ D0 is at largest distance to O ⊂ D0 in H0 = limε→0 Hε.
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The rest of this section consists of several lemmas, each of which to be used for, or being a part of, the proof
of Theorem 3.1. The first one is an elementary result.

Lemma 3.4 Consider a convex planar n-gon xyw1 . . . wn−2 such that

∠xyw1 ≤ π/2, ∠yw1w2 = ∠xwn−2wn−3 = π/2

and all other angles are at least π/2. Then ||x − wn−2|| ≤ ||y − w1||.
P r o o f. Move continuously a point u along the line-segment [xy], from x to y. Denote by u0 the foot of u

on the curve W = w1 . . . wn−2; if several, take the closest to w1 (see Fig. 2). Observe that ∠xuu0 ≤ π/2,

Fig. 2 ||x − wn−2|| ≤ ||y − w1||

because the function f(u) = ∠xuu0 is increasing and its value at y is ≤ π/2. Therefore, the distance from u to
W increases as ||u − x|| increases, and the conclusion follows when considering the extreme positions of u.

An arc A is the image set of [0, 1] through a homeomorphism (denoted by the same letter) A : [0, 1] → S, and
its relative interior relintA is the image set of ]0, 1[.

Notice that a point x may have several projections on (i.e., points realizing the distance to) a quasigeodesic.

Lemma 3.5 ([6]) Let G be a quasigeodesic on a convex surface S, x a point in S\G and x0 ∈ G a projection
of x on G. If x0 ∈ relintG then there exists at most one segment joining x0 to x on each side of G, and it is
orthogonal to G.

Lemma 3.6 Let S be a polyhedral convex surface, O a simple closed quasigeodesic on a S, y ∈ S \O a point
with ωy ≥ π and Sy the subset of S bounded by O containing y. Then y is at maximal distance to O in Sy .

P r o o f. Assume there exists a point x in Sy at larger distance to O than y. Consider a shortest path joining x
to y in the relatively convex domain Sy , say γxy ⊂ Sy , and observe that γxy ∩ O = ∅.

Choose projections x0, y0 of x, y on O and segments γx0x, γyy0 ; then, by Lemma 3.5, γx0x ⊥ O, γyy0 ⊥ O.
The complete angle at y is 2π − ωy ≤ π, so at least one of the quasigeodesic domains of Sy determined by O

and γx0x ∪γxy ∪γyy0 , say D, has an angle at most π/2 at y. The Gauss–Bonnet theorem (see [3, p. 105]) applied
to D gives, for the angle ∠Dγxx0γxy in D between γxx0 and γxy , ∠Dγxx0γxy ≥ π/2, and equality occurs if and
only if D is a rectangle (and thus ρ(x, O) = ρ(y, O)).

Observe that no vertex in Sy , and therefore in D ⊂ Sy , has curvature strictly larger than π, because the
curvature of Sy is at most 2π and we already have ωy ≥ π.

Assume the number of vertices in VD = V ∩ intD is N + 1, and apply the following procedure. Another
application of the idea of this procedure is given in [7].

To start with, set D0 = D and O0 = O ∩ D0.

3.1 Procedure flattening

for i = 0 to N do
choose vi ∈ VD such that ρ(vi, Oi) = minv∈VD ρ(v, Oi)
choose vi

0 ∈ Oi such that ρ(vi, Oi) = ρ(vi, vi
0)

cut Di along the (uniquely determined, by Lemma 3.5) segment γvi
0vi

glue to Di a flat isosceles triangle T i whose equal sides
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have length ρ(vi, vi
0) and the angle between them is equal to ωvi ,

such that after gluing the point vi has zero curvature
define Di+1 as the result of gluing T i to Di

define Oi+1 as the polygonal chain of segments in the boundary of Di

obtained by inserting the base of T i to Oi.

Fig. 3 illustrates the Procedure flattening for the case N + 1 = 2. The projections of the vertices v0, v1 ∈ D
onto O ∩ D are denoted by v0

0 and v1
0 , and the segments joining them to their foots are dashed. The left part

of Fig. 3.1 illustrates the initial configuration, and the right part the final result. The unfolding is realized in the
plane yv0v1. The edges are thick, but the edges that allowed rotations (thus dissapearing) are thin in the right
part of Fig. 3.1. The segments joining points to their foots are medium sized. The inserted triangles T 0 and T 1

are filled with dotted, respectively dashed, lines.

Fig. 3 Procedure flattening for N + 1 = 2 vertices, v0 and v1

Since S is polyhedral, O is a union of line-segments (by the definition of a quasigeodesic), as well as Oi

(i = 1, . . . , N).
Notice that, by the first variation formula, no segment γvi

0vi cuts γx0x ∪ γy0y . Therefore, the angles of the
polygonal chain of segments ON are all at least π/2.

Also notice DN is (isometric to) a planar convex polygon, since its interior contains no vertex, so the isometric
image of Γxy in the boundary of DN is a line-segment. Finally apply Lemma 3.4 (with w1 = y0, wn−2 = x0) to
obtain ρ(y, O) ≥ ρ(x, O).

We shall need the following version of Alexandrov’s gluing theorem (see [2, p. 362]).

Lemma 3.7 If a 2-manifold M results from gluing together several quasigeodesic polygonal domains such
that the sum of the angles at vertices glued together is not larger than 2π, then M is of positive curvature.

We shall also use Pogorelov’s rigidity theorem ([14, p. 167]), which says that

Lemma 3.8 Any two isometric convex surfaces are congruent.

Lemma 3.9 Assume O is a simple closed quasigeodesic of a convex surface S and y a point in S \O such that
ωy ≥ π. Then we can approximate S with polyhedral convex surfaces Pn (n ≥ 1) with the following properties:
there exist points yn ∈ Pn with ωyn ≥ π and simple closed (quasi)geodesics On ⊂ Pn such that yn �∈ On and
yn → y, On → O as n → ∞.

P r o o f. We show how to obtain the necessary approximation in three steps. Denote by 1S the domain of S
bounded by O to which y belongs,

First, cut S along O and glue between the two pieces a right cylinder Cε of height ε and base isometric to O.
By Lemmas 3.7 and 3.8, the result Sε is (isometric to) a convex surface. Let 1Sε be the domain of Sε isometric to
1S, and yε the image of y in 1Sε. Clearly Sε → S, Cε → O and yε → y as ε → 0. Moreover, there exist simple
closed (quasi)geodesics Oε → O on Cε ⊂ Sε.

Second, approximate Cε by a right cylinder over a polygonal curve. For, consider a simple closed polygonal
curve On

ε approximating Oε, such that On
ε ⊂ conv Cε. Denote by Cn

ε the cylinder over On
ε parallel to Cε. Let

Sn
ε be the convex surface that contains Cn

ε and is isometric to Sε outside Cn
ε . It is well defined, by Lemmas 3.7

and 3.8. Clearly, Sn
ε contains simple closed (quasi)geodesics inside Cn

ε , which we may and shall assume to be
On

ε . Since y �∈ O, and consequently yε �∈ Oε, we may also assume yε ∈ Sn
ε \ Oε. Put Bn

ε = bdCn
ε ⊂ Sn

ε and
denote by 1Dn

ε , 2Dn
ε the two domains of Sn

ε determined by Bn
ε , with yε ∈ 1Dn

ε .
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At the third step, approximate iDn
ε by (locally convex) polyhedral surfaces iPn

ε such that
⋃

i bd iPn
ε = Bn

ε ,
yε ∈ 1Pn

ε and the total curvature at yε in 1Pn
ε is at least π. Denote by Pn

ε the convex surface obtained by gluing
in the obvious way iPn

ε to Cn
ε . By the construction, we have Pn

ε → Sε and On
ε → Oε as n → ∞. Moreover,

yε ∈ Pn
ε ∩ Sε.

Finally define Pn = Pn
1/n and observe that Pn → S, On

1/n → O and y1/n → y as n → ∞, because
S1/n → S. Moreover, the total curvature at y1/n ∈ Pn is always at least π.

With all these preparations, the statement of Theorem 3.1 follows easily.

P r o o f. Assume O is a simple closed quasigeodesic of a convex surface S and y a point in S \ O such that
ωy ≥ π. In order to show that y is at maximal distance to O in the domain 1S of S bounded by O to which it
belongs, we approximate S with polyhedral convex surfaces Pn (n ≥ 1) as in Lemma 3.9. Let 1Pn be the domain
of Pn bounded by On to which yn belongs (n ≥ 1). By Lemma 3.6, ρn(yn, On) ≥ ρn(z, On) for all z ∈ 1Pn,
and we reach the desired conclusion by passing to the limit.

4 Caps and farthest points

In this section we derive criteria to conclude that small caps contain farthest points.
A cap of the convex surface S is a closed subset C of S with interior points, whose boundary bdC is included

in a plane P , such that any normal to P at a point x on bdC intersects C in exactly that one point x. The height
of the cap C is the Euclidean distance between P and a plane parallel to P and supporting C.

The metric projection of a point x ∈ R
3 onto a convex body K is a point x0 ∈ K realizing the Euclidean

distance from x to K , dist(x, K) = ||x − x0||. The next result is well-known (see, for example, [3, p. 80]).

Lemma 4.1 The length of a curve in R
3 is at least as long as its metric projection onto a convex body.

The radius of the closed subset M of S is rad(M) = supx∈M ρ(x, bdM). The diameter of M ⊂ S is
diam(M) = supx,y∈M ρ(x, y).

Theorem 4.2 If the cap C of the convex surface S has diameter not larger than the radius of cl(S \ C), and
it contains a point y such that dist(y, bdC) ≥ π−1 λ (bdC), then C contains a farthest point of S.

P r o o f. Put l = minz∈bdC ||y − z||. The cone V at y over bdC is interior to S and convex, as well as the
cone Vl = {v ∈ V ; ||y − v|| ≤ l}, because bdC is a planar convex curve. Since the metric projection of bdC
onto convVl is the set Q = {v ∈ V ; ||y − v|| = l}, Lemma 4.1 yields λ (Q) ≤ λ (bdC).

The complete angle αy of V (or Vl) at y is less than π, because

αyl = λ (Q) ≤ λ (bdC) ≤ πl,

and the total curvature of y in S0 is ≥ π.
The surface S0 = (S \ C) ∪ V is clearly convex, hence we can apply Theorem 2.1 to find a point x ∈ S0,

such that the set of farthest point from x on S0 contains y. Observe that x ∈ S0 ∩ S, because otherwise, for the
centre z of some intrinsic ball of radius r ≥ diam(C), one easily obtains ||x − y|| ≤ ρ(z, bdC) < ρS0(z, x).

We have, for u ∈ S \ C,

ρ(x, y) ≥ ρS0(x, y) ≥ ρS0(x, u) = ρ(x, u),

and the conclusion follows.

Assume that the cap C of height h of the convex surface S has boundary length at most πh. If h is much
smaller than diamS, or diamC is much smaller than diam(S), then C contains at least one farthest point on
S. The meaning of “being much smaller than” can be made precise, as for example in the following corollary of
Theorem 4.2.

Let dex(M) denote the extrinsic diameter of the closed subset M of S, dex(M) = supx,y∈M ||x − y||.
N. P. Makuha [11] showed the following nice inequality.

Lemma 4.3 For any convex surface S the inequality diam(S) ≤ π
2 dex(S) holds, with equality if and only if

S is a surface of revolution having constant width.
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Corollary 4.4 Assume a cap C of a convex surface S has height h and boundary length at most πh. If the

distance between the two supporting planes of S parallel to bdC, is not smaller than h

(
1 + π

√
1 + π2

4

)
, then

C contains at least one farthest point on S.

P r o o f. Assume that the points y, z ∈ C are realizing the extrinsic diameter of C. Then at least one of them,
say z, is on the boundary of C. To see this, suppose that y, z �∈ bdC. Let P denote the plane containing bdC,
P⊥

yz the plane orthogonal to P through yz, and put {x1, x2} = P⊥
yz ∩bdC. Assume that dist(y, P ) ≥ dist(z, P ).

Then it follows from elementary considerations that ||y − z|| < max{||y − x1||, ||y − x2||}, contradicting the
choice of y and z.

Denote by y0 the orthogonal projection of y onto P . Because the length l of bdC satisfies l ≤ πh, we have

dex(C) = ||y − z|| =
√
||y − y0||2 + ||z − y0||2 ≤

√
h2 +

l2

4
≤ h

√
1 +

π2

4
. (4.1)

Denote by SC the double of C, i.e., the convex surface obtained by gluing together two isometric copies of C.
Then

diam(C) ≤ diam(SC), dex(C) ≤ dex(SC) ≤ 2dex(C), (4.2)

the last inequality following from the triangle inequality.
On the other hand, by Lemma 4.3,

dex(SC) ≤ diam(SC) ≤ π

2
dex(SC), (4.3)

and putting together (4.3), (4.2) and (4.1) we obtain

diam(C) ≤ diam(SC) ≤ π

2
dex(SC) ≤ πdex(C) ≤ πh

√
1 +

π2

4
. (4.4)

Let P ′, P ′′ denote the supporting planes of S parallel to P , and v′, v′′ their contact points with S. Assume
that v′ ∈ C, and put {z} = v′v′′ ∩ P . Then, since z ∈ conv(bd(C)),

rad(S \ C) ≥ max
x∈bdC

||v′′ − x|| > ||v′′ − z|| ≥ hC − h. (4.5)

From hC ≥ h

(
1 + π

√
1 + π2

4

)
, (4.4) and (4.5) we finally get

rad(S \ C) ≥ hC − h > πh

√
1 +

π2

4
≥ diam(C)

and Theorem 4.2 ends the proof.

Remark 4.5 Good candidates to verify the hypotheses of Theorem 4.2 or Corollary 4.4 are the caps close to
cones of complete angle > π. For example, any cap Cr of height r containing a parallel cap Cε such that ε is
“much smaller” than r and the total curvatures of Cr and Cε are “almost equal” and larger than π.

We even believe that each convex cap C ⊂ S of height h “much smaller” than diam(S) and total curvature
ω(C) > π contains a farthest point on S, but this is not proven yet.
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