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Abstract Various properties are given concerning geodesics on, and distance func-
tions from points in, typical degenerate convex surfaces; i.e., surfaces obtained by
gluing together two isometric copies of typical (in the sense of Baire category) convex
bodies, by identifying the corresponding points of their boundaries.
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1 Introduction and statement of results

1.1 Introduction

In order to provide easy examples, degenerate convex surfaces (doubles of convex
bodies) have been considered, for example, by Alexandrov [1] and, nowadays, by
Shiohama and Tanaka [22]. The aim of this paper is to study typical such surfaces; we
present properties of their geodesics and distance functions, particularly interesting
because the faces of such surfaces are Euclidean.

A convex body in the Euclidean space R
d is a compact convex set with interior

points. By a convex surface of dimension d we always mean a closed one; i.e., the
boundary of a convex body in R

d+1.
A d-dimensional degenerate convex surface D is the union of two isometric copies

B and B ′ of a convex body B0 ⊂ R
d (d ≥ 2), glued together along their boundary

by identifying the points x ∈ bdB and x ′ = ι(x) ∈ bdB ′, where ι : B → B ′ is the
isometry between B and B ′. With some abuse of notation, we shall identify B and B0
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when no confusion is possible. Call B and B ′ the faces of D, and D the double of B;
the ridge of D is rdD = B ∩ B ′. Thus, D is (seen as) limit in R

d+1 of d-dimensional
convex surfaces containing rdD.

Unless otherwise stated, we shall assume the dimension d to be arbitrary.
The geometry of degenerate convex surfaces provides a bridge between the geome-

try of convex bodies and that of convex surfaces. It also provides examples of various
metric properties on—topologically very simple—nondifferentiable, nonnegatively
curved Alexandrov spaces (see [4] for the precise definition).

Denote by K the space of all convex bodies in R
d , by S the set of their boundaries

and by D the space of all d-dimensional degenerate convex surfaces.
Endowed with the usual Pompeiu–Hausdorff metric δ, the spaces K, S and D are

Baire. Each element of K, S or D, taken with the natural metric (see Sect. 1.2), is
itself a Baire space. In any Baire space most (or typical) elements means “all except
those in a set of first category”.

We shall often mention, as term of comparison, results about typical convex sur-
faces. It seems necessary to point out, from the very beginning of this paper, that
no such result refers—at least not directly—to degenerate surfaces. This is because
the former are smooth (i.e., of differentiability class C1) and strictly convex (see
[16] or [7]), while the latter neither smooth nor strictly convex. For properties of
typical convex surfaces refer to the surveys [11,31] or, very close to our topic,
[35].

1.2 Endpoints

For any two points x, y on a (possibly degenerate) convex surface D, ρ(x, y) denotes
the intrinsic distance between them, induced by the Euclidean distance, and ρx the
distance function from x , ρx (y) = ρ(x, y).

A segment between two distinct points is a shortest path joining them, and a geodesic
is a curve which is locally a segment. With some abuse of terminology, we shall also
call a segment or a geodesic the image set of such a curve, e.g., when talking about
the intersection of geodesic arcs.

An endpoint of D is a point not interior to any segment. Of course, no such point
exists on C2-differentiable surfaces.

Zamfirescu [29] proved that most points on a typical convex surface are endpoints,
and asked if each point with infinite sectional curvature in every tangent direction is an
endpoint. Our first result answers affirmatively a stronger form of this open problem,
for typical degenerate convex surfaces.

Denote by γ τ
i (x) and γ τ

s (x) the lower and upper curvatures of the convex surface
S at the point x ∈ S in the tangent direction τ (see [3] p. 14 for the precise definition).
Then [27] for most convex surfaces S, at most points x ∈ S, γ τ

i (x) = 0 and γ τ
s (x) =

∞, for any direction τ tangent to S at x .

Theorem 1 If the point p in the ridge rdD of the typical degenerate convex surface
D is interior to a segment, then γ τ

i (p) = 0 and γ τ
s (p) < ∞ hold for any direction τ

tangent at p to rdD. Consequently, most points of rdD are endpoints of D.
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1.3 Geodesics

We are concerned next with the existence of closed geodesics. A non trivial geodesic
G : I ⊂ R → D is closed if I = R and there exists t > 0 such that G(t + s) = G(s)
for any s ∈ R; the smallest such t is the period of G.

The non-existence of closed geodesics on typical convex surfaces in R
3 was pro-

ved by Gruber [10]. One might relate his result to the existence of residually-many
endpoints on such surfaces.

Typical degenerate convex surfaces have much fewer endpoints. And, as we shall
see in Sect. 3, there are 2-dimensional typical doubles D, and convex surfaces S ⊂ R

3

arbitrarily close to D, such that each surface S contains a closed curve O most points
of which are endpoints of S, and yet S has a simple closed geodesic crossing O .

Moreover, a classical result of Birkhoff [2] states that in any planar billiard table K
there always exist trajectories of period n, for any integer n ≥ 2.

A billiard table K is a convex body in R
d , usually taken smooth (i.e., bdK is of

differentiability class C1). A billiard ball is a point which moves at unit velocity along
a straight line inside K until it hits bdK , say at p, where it is reflected in the usual
way (that is, the component of the velocity parallel to the exterior unit normal n(p) of
bdK at p changes its sign). The curve described by a billiard ball is a trajectory in K .

Birkhoff also suggested the existence of a one-to-one correspondence between
trajectories in a smooth billiard table K and geodesics on the double of K .

The mentioned theorem of Birkhoff is contrasted by the next result.

Theorem 2 Most 2-dimensional degenerate convex surfaces contain no closed geo-
desics.

We notice here that the family of all degenerate convex surfaces containing simple
closed geodesics is dense in D.

Let G : I ⊂ R → D be a maximal geodesic on a typical double D; whether
generically I is the real line, or a ray, or a (topologically closed) line-segment is
clarified in the following.

Endow the sphere bundle T1 D, associated with the degenerate convex surface D,
with the topology induced by the distance

δ1((x, τ ), (y, µ)) = ρ(x, y) + ρSd−1(τ, µ),

where ρSd−1 is the standard metric of Sd−1.
For (x, τ ) ∈ T1 D, denote by G(x, τ ) the maximal (with respect to inclusion)

geodesic starting at x in direction τ ; if there is no such geodesic put G(x, τ ) = {x}.
Then T1G(x, τ ) ⊂ T1 D is the set of all pairs (y, µ) with y ∈ G(x, τ ) and µ the
direction of G(x, τ ) at y.

Theorem 1 in [32] states that for most convex surfaces S the following holds: for
any positive number r there exists a set T dense in T1S such that, for any (x, τ ) ∈ T ,
there is a geodesic of length r , with midpoint x and with directions τ and −τ at x .
Next result improves this statement in the framework of degenerate convex surfaces; it
also contrasts, in some intriguing sense, the following result of Zamfirescu (Theorem
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2 in [29]): on most convex surfaces, at each point, most tangent directions are singular
(i.e., no segment starts in those directions).

Theorem 3 For most 2-dimensional degenerate convex surfaces D, and most pairs
(x, τ ) in T1 D, both T1G(x, τ ) and T1G(x,−τ) are dense in T1 D.

Notice that the density of T1G in T1 D implies the density of G in D, but not
conversely.

The phase space phK of a billiard table K is the set phK = {(p, v) ∈ bdK ×Sd−1 :
〈v, n(p)〉 < 0}.

We refer to the work of Gruber [9] for properties of trajectories in typical billiard
tables; Theorem 5 therein states the density, in the phase space of a typical K , of the
trajectories determined by most pairs (p, v) ∈ phK .

Choose K ∈ K and (x, τ ) ∈ T1 K . The trajectory T = T (x, τ ) in the billiard table
K and the geodesic G = G(x, τ ) on the double DK of K may appear, at first glance,
to correspond to each other via the isometries from K to the faces of DK . This is
indeed the case if bdK is a polygon or of differentiability class C2, but it is false for
most K ∈ K. By Theorem 1, if K ∈ K is typical then no geodesic goes beyond most
points of bdK =rdDK , while all trajectories do. Theorem 2 underlines the difference,
while Theorems 3 and 4 show some similarity.

With the price of the local length minimality, one might eliminate this difference
by replacing geodesics with quasigeodesics (see [1] p. 373 for the definition). Indeed,
each periodical trajectory of K yields a closed quasigeodesic on the double of K .

The first part of the next result parallels (and uses for its proof) Theorem 6 in [9].
The last part improves, in the framework of degenerate convex surfaces, the statement
of Theorem 2 in [32], that on most convex surfaces there are non-self-intersecting
geodesic arcs of arbitrary finite lengths.

The positive orientation of a planar convex curve is counter-clockwise.
Put �(rdD, ε) = {y ∈ D : ρ(y, rdD) < ε}, for ε > 0.

Theorem 4 For most 2-dimensional degenerate convex surfaces D and most pairs
(x, τ ) in T1 D, for any ε > 0 and any integer m > 0, there are geodesic arcs
G+, G−, G ′ ⊂ G(x, τ ) such that G+ circles m times in the positive direction in
�(rdD, ε), G− circles m times in the negative direction in �(rdD, ε), and G ′ is
without self-intersections and of length larger than m.

1.4 Cut loci

A segment between a point x and a closed set K not containing x is a segment from
x to a point in K , not longer than any other such segment.

The cut locus C(K ) of the closed set K ⊂ D is the set of all points y ∈ D such
that there is a segment from y to K not extendable as a segment beyond y.

The multijoined locus of K is the set M(K ) of all points y ∈ D whose distance to
K is realized by at least two segments to (not necessarily distinct) points in K .

Clearly, C(K ) includes both M(K ) and the set of all endpoints of D.
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Cut loci have been studied for long time in Riemannian geometry (see, for example,
[17] or [20]), and in the last years have been introduced for convex surfaces or Alexan-
drov spaces (see, for example, [18,22,38,39]).

Zamfirescu [29] showed that on most convex surfaces, any cut locus is residual
and thus it has infinite length. Shiohama and Tanaka [22] also provided examples of
2-dimensional convex surfaces with non-rectifiable cut loci. Other examples of cut
loci of infinite length were given by Gluck and Singer [6], and Hebda [12].

A recent result of Zamfirescu [39] proves, under very general hypotheses (see
Lemma 14), a density property of M(K ) in a compact Alexandrov space.

This paper settles a new entry in the list of such examples; in contrast to the
typical non-degenerate case, on typical doubles we have relatively few endpoints (by
Theorem 1) and still very large cut loci.

Theorem 5 For any closed set K interior to a face of a typical degenerate convex
surface D, M(K ) is dense, and C(K ) \ M(K ) is residual, in the opposite face.

Theorem 5 says, in particular, that for any point x interior to a face of a typical double
D, the set C(x) \ M(x) contains most points of the opposite face. The segments from
x to all points in C(x)\ M(x) have mutually disjoint interiors and still, by Theorem 1,
they cross the ridge of D at a set of first category in rdD.

Assume next d = 2. The set Rx of all points joined to the point x by at least three
segments (i.e., the ramification points of C(x)) was studied by Zamfirescu [34], who
proved that for each point x in a typical convex surface S, Rx is dense in S.

Theorem 6 For any point x interior to a face of a typical 2-dimensional degenerate
convex surface D, the set Rx is dense in the opposite face.

1.5 Relative maxima

Among the points in C(x), a special attention received the relative maxima of ρx . If
d = 2 then, eventhough C(x) can be residual on S ∈ S, all relative maxima of ρx

belong to some tree of C(x) with at most three extremities [37].
It was also proven in [37] that in a certain open subset S2 ⊂ S of 2-dimensional

convex surfaces, each typical element contains a point x with infinitely many relative
maxima of ρx . For typical doubles of arbitrary dimension we have a stronger result.
It is closely related to the main theorem in [30], stating that for most convex surfaces,
most points in R

d lie on infinitely many normals.

Theorem 7 For most points x on the ridge of a typical degenerate convex surface, the
distance function ρx has infinitely many relative maxima.

We propose here the following open question: can Theorem 7 be improved, at least
for smaller sets of points x , to global maxima of ρx ?

1.6 Farthest points

Let Fx denote the set of farthest points from x , i.e., global maxima of ρx . We shall
usually write, when it is the case, Fx = y instead of Fx = {y}.
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This paper also contributes to the study of the farthest point sets, which Steinhaus
had asked for (see Chap. A35 of [5]). Several of Steinhaus’ questions have been
answered for convex surfaces S in R

3 by Zamfirescu; see for example [33,36,37], or
the survey [24]. He proved that for any point x in S, any component of Fx is either
a point or a Jordan arc, and gave examples of sets Fx homeomorphic to any compact
subsets of the line [33]. For the case of Alexandrov surfaces, see [26]. It was also
shown that for any convex surface S ⊂ R

3, the farthest point mapping F is single-
valued for most and—in the sense of measure—almost all points [37]. If moreover S
is typical then most points x ∈ S are joined to their unique farthest point by precisely
three segments [34]. For doubles we have a similar result, but in arbitrary dimension.

Theorem 8 On most degenerate convex surfaces D, for most points x ∈ D there
exists a unique farthest point, joined to x by precisely d + 1 segments.

Rouyer [19] proved, for a compact manifold M endowed with a generic Rieman-
nian metric, that a generic point x admits a unique farthest point. If moreover M is
2-dimensional, then x is joined to its unique farthest point by at most three segments.

A direct consequence of Theorem 8 is the next statement, of independent interest.
It generalizes the main result in [28], about the spheres inscribed to a typical convex
body, and—in some sense—contrasts a result of Gruber [8], that the unique ellipsoid
of maximal volume inscribed to a d-dimensional typical convex body B has precisely
d(d + 3)/2 contact points with bdB.

An ellipsoid Ell is said to be inscribed to a convex body B (or to bdB) if Ell ⊂ B
and card (Ell ∩ bdB) ≥ 2.

Theorem 9 For most points x interior to a typical convex body B ⊂ R
d , there exists

a unique ellipsoid of revolution Ell inscribed to B, with a focus at x and of largest
major axis. Ell touches bdB at precisely d +1 points. Moreover, any open half-sphere
of tangent directions at the second focus y of Ell contains the direction of some line
yz, with z ∈ Ell ∩ bdB.

Notice that the ellipsoid inscribed to B and of largest possible major axis, obtained
above if the point x moves freely in B, is a line-segment with extremities in bdB, by
a direct consequence of Theorem 11.

The multivalued mapping F is called injective if Fx ∩ Fy = ∅, for any distinct
points x, y ∈ D; it is called totally disconnected if, for any point x , each component
of Fx is a point.

The upper semicontinuity of F is a well-known fact. Motivated by a conjecture
of Steinhaus (see Sect. A35 in [5]), aiming to characterize the spheres by the use
of F , several classes of examples were recently provided, with the mapping F a(n
involutive) homeomorphism or even an isometry [13,15,23,25]. Thus it appeared the
open question of an alternative description for the set S1 ⊂ S of all surfaces with
single-valued bijective F . By our Theorem 10, typical doubles do not belong to S1.

In R
3, on a typical convex surface S there is no point x with an arc in Fx , but there

exists an open set S2 of convex surfaces, most elements of which contain points x with
cardFx > 1 [26]. It is an open conjecture of Zamfirescu [37], that S2 is dense in S. The
next theorem solves this conjecture for degenerate surfaces of arbitrary dimension.
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The diameter of the subset M of the convex surface D is defined by diamM =
supx,y∈M ρ(x, y). Put FrdD = ⋃

x∈rdD Fx .

Theorem 10 For any typical degenerate convex surface D, F is properly multivalued
and FrdD is a subset of first category in rdD. Any point y in FrdD is an endpoint of D,
and (diamD)−1 ≤ γ τ

i (y) and γ τ
s (y) = ∞, for any direction τ tangent at y to rdD. If

moreover d = 2 then F is injective and totally disconnected.

Notice that, since most points in rdD are endpoints of D and FrdD is of first category
in rdD, there are endpoints on rdD which are not farthest points on D.

A detailed description of cut loci and farthest points for the doubles of convex
n-gons and of d-dimensional simplices is given in [14].

Call diametrally opposite any two points x, y ∈ D which verify ρ(x, y) = diamD.
For typical 2-dimensional convex surfaces, diametrally opposite points correspond to
each other via F [24], but nothing seems to be known for dimension d > 2.

Theorem 11 If the points x, y of a typical degenerate convex surface D are diame-
trally opposite then x, y ∈ rdD and they correspond to each other via F, Fx = y and
Fy = x.

A direct consequence of Theorem 11 is that, on most degenerate convex surfaces,
any two diametrally opposite points are joined by precisely two segments, whose
union is a simple closed quasigeodesic. This contrasts the following open problem
of Zamfirescu [34]: is it true, for most convex surfaces, that the points realizing the
diameter are joined by precisely five segments?

The remaining of the paper is devoted to the proofs of our results.
For B ∈ K and S ∈ S we sometimes denote by DB the double of B and use

DS = DconvS . Let λG stand for the length of the curve G, and [xv] for the line-
segment determined by the points x, v ⊂ R

d . We denote by �(p, r) the open intrinsic
ball of radius r centered at p, and by 	(p, r) the extrinsic one.

2 Proof of Theorem 1

Let us start with some lemmas we shall use later.

Lemma 1 [16,7] Most convex surfaces are strictly convex and of differentiability class
C1, but not C2.

The following result is known for a long time. For d = 3 it is a particular case
of the Cohn–Vossen–Herglotz–Pogorelov theorem, and for d > 3 it was proved by
Sen′kin [21].

Lemma 2 Let D, D′ be convex bodies in R
d , whose boundaries S and S′ are of

differentiability class C1 (d ≥ 3). If S and S′ are isometric in the induced intrinsic
metrics then D and D′ are isometric.

Lemma 3 A typical convex surface in S is the boundary of a typical convex body in
K, which corresponds to a typical double in D, and conversely.
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Proof The set of all convex surfaces not isometric to a given one is easily seen to be
open and dense in S; similarly, for convex bodies in K. This, together with Lemmas
1 and 2, completes the proof.

Lemma 4 [31] For most convex surfaces S,
(i) at each point x ∈ S, γ τ

i (x) = 0 or γ τ
s (x) = ∞ for any tangent direction τ at x;

(ii) at most points x ∈ S, γ τ
i (x) = 0 and γ τ

s (x) = ∞ for any tangent direction τ at x.

Let x be a point interior to B ∈ K, D the double of B and B ′ = ι(B). Denote by
EB,x the family of all (hyper)ellipsoids of revolution with a focus at x and inscribed to
B, and by yE the point in B ′ corresponding to the second focus of E ∈ EB,x through
the isometry ι : B → B ′. This defines a (very useful in the sequence) mapping

 : EB,x → intB ′, by 
(E) = yE .

Lemma 5 For any E ∈ EB,x , each point v in E ∩ bdB provides a segment � =
[xv] ∪ [vyE ] from x to yE , and conversely, each segment � from x to yE provides a
point in E ∩ bdB, given by � ∩ rdD.

Proof Consider points x, z ∈ intB and y ∈ intB ′ with y = ι(z). Let Ellxz ⊂ R
d

be the ellipsoid of revolution with the foci at x and z and the sum of the focal radii
equal to ρ(x, y). Then Ellxz \ B = ∅, for otherwise one could easily find points
v ∈ (int(convEllxz)) ∩ bdB, for which the length of the path [xv] ∪ [vy] ⊂ D from
x to y is shorter than ρ(x, y), which is not possible. So Ellxz ⊂ B.

Since x and y lie on different faces of D, any segment � joining them consists
of two line-segments, say � = [xv] ∪ [vy], where {v} = � ∩ rdD. Therefore, since
Ellxz ⊂ B, v ∈ Ellxz ∩ bdB.

Conversely, if E ∈ EB,x then each point v ∈ (bdB) \ E verifies

||x − v|| + ||v − yE || > ρ(x, yE ),

and the conclusion follows.

Proof of Theorem 1 By Lemmas 3 and 1, the ridge of a typical double D is isometric
to a strictly convex surface, hence it does not contain line-segments.

Let � be a segment from some point x ∈ intB to some point y ∈ intB ′, z =
ι−1(y) ∈ B, and Ellxz ⊂ R

d be the ellipsoid of revolution with foci at x and z and
the sum of the focal radii equal to ρ(x, y). Then Ellxz is inscribed to B, by Lemma 5.

Since bdB is tangent to Ellxz and B ⊃ Ellxz , bdB has finite curvatures in all
tangent directions at each contact point p with Ellxz . So for any direction τ tangent
at p to bdB = rdD, γ τ

s (p) < ∞ and γ τ
i (p) = 0, by i) of Lemma 4.

Consequently, by (ii) of Lemma 4, most points of rdD are not interior to any
segment joining points on different faces of D. Since bdB contains no line-segments,
most points of rdD are endpoints.

3 Proof of Theorem 2

The next result complements Theorem 1 and, together with the example following it,
justifies the remark accompanying Theorem 2. Its proof follows the line used to prove
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Theorem 1 in [29], and will be given elsewhere [15]. Consider next R
d ≡R

d ×{0}⊂
R

d+1.

Lemma 6 [15] For any compact right cylinder C in R
d+1 over a typical convex body

B ⊂ R
d , most points of bdB are endpoints of C.

Example There exist 2-dimensional typical degenerate convex surfaces D, and convex
surfaces S ⊂ R

3 arbitrarily close to D, such that each surface S has a closed curve
O most points of which are endpoints of S, and also has a simple closed geodesic
crossing O .

Proof Consider a right cylinder C ⊂ R
3 over a typical planar convex body B. Then,

by Lemma 6, most points of bdB are endpoints of C . Let B ′ denote the base of C
opposite to B. We can choose points x ∈ B and y ∈ C \ (B ∪ B ′) such that the angle
α made by bdB with some segment � from x to y is arbitrarily small.

Put {z} = � ∩ bdB and �B = � ∩ B. If α is small enough then there is a unique
line T tangent to bdB, parallel to �B and at smallest distance to �B . Cut B along the
normal N to bdB at T ∩bdB, and keep the part B1/2 containing the point z. Of course,
we may assume x ∈ B1/2.

Let L be the line parallel to N and tangent to bdB1/2, L �= N , and denote by M the
normal to bdB1/2 at L ∩ bdB1/2. Cut B1/2 along M and keep the part B1/4 containing
the point z. Once again, we may assume x ∈ B1/4.

Denote by B1 the convex body obtained from B1/4 by symmetries with respect to
the lines M and N . Let v ∈ B1 be the point symmetric to z with respect to M , and l
the distance in O = bdB1 from z to v.

Let C1 be a right cylinder over B1, of height h = l tan α.
Then, by the choice of B, most points of O are endpoints of C1.
Observe that the maximal geodesic G of C1 starting at x and including �B is

simple and closed. Indeed, it is orthogonal to N and, by the choice of h, is invariant
with respect to the central symmetry of C1.

Notice finally that for any ε > 0 we can construct a cylinder C1 as above, and find
a typical double D ∈ D at distance less than ε to C1. The example is complete.

The argument below is similar to that proving the main result in [10]; for the
reader’s convenience, we indicate next the main steps of the proof and the necessary
slight modifications in order to obtain our Theorem 2. We shall mostly use the same
notation as in [10], to refer easier to [10] for details and further definitions.

Proof of Theorem 2 All geodesics below are considered with standard parametriza-
tions p : T → D, where T = R/Z. Define, for any integer k ≥ 1,

Ak = {D ∈ D : D contains a closed geodesic G with properties i) − v) below}.

(i) Any subarc H of G defined on a closed interval in T of length≤1/k is a segment.
(ii) 1/k ≤ λG ≤ k.
(iii) There exists a number α ∈ T such that ρ(p(σ ), p(α)) ≥ 1/k for all σ ∈ T

with |σ − α|T > 1/k.
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(iv) There are at most k values of the parameter corresponding to multiple points of
G, say 0 ≤ σ1 < σ2 < · · · < σe < 1, where 0 ≤ e ≤ k and |σl − σm |T ≥ 1/k
for l �= m. Distinct multiple points have distance ≥ 1/k in the sense of ρ.

(v) Each component of D \ G contains an open intrinsic disk of radius 1/k.

Then (see Proposition 1 in [10])

{D ∈ D : D contains a closed geodesic} ⊂
∞⋃

k=1

Ak,

and it suffices to show that the sets Ak are nowhere dense.
The proof that Ak is closed in D is the same as for Proposition 2 in [10].
In order to see that Ak has empty interior in D, assume there exists a double DP ∈

intAk of the convex hull of an n-gon P , and consider countably many hyperplanes Hq

given by

{ω ∈ R
n : i0π = i1ω

(1) + · · · + inω(n)},

where i0, . . . , in are integers and i1, . . . , in are not all equal.
By Lemma 4 in [10], we may choose an n-gon Q close to P such that the double

DQ belongs to Ak , and the curvature vector ωDQ = (ω1
DQ

, . . . , ωn
DQ

) is not contained

in any of the hyperplanes Hq , where ωi
DQ

is the curvature of DQ at its vertex vi .
Of course, it is impossible to assume, as in [10], that any geodesic disk of radius 1/k

in DQ contains at least one vertex of DQ ; but this assumption will not be necessary
in our framework.

By the definition of Ak , there exists a closed geodesic G on DQ satisfying the
assumptions (i) through (v). Let Cl be the components of DQ \ G, l = 1, . . . , f ; each
Cl is simply connected. Let Gl be the closed geodesic polygon bounding Cl , oriented
in such a way that Cl is on the left hand side of Gl . Denote by αlm the angles (measured
in DQ) of Cl at the multiple points of G contained in Gl , m = 1, . . . , nl .

Then (see [10]) one can assign integers i(Cl) to the Cl ’s, not all of them equal, such
that the sum i(Cl) + i(Cm) is some constant i(p) depending on the multiple point p,
for any components Cl and Cm opposite with respect to p.

In addition to the proof in [10], here we need to assume that no i(Cl) is zero. This
is possible by adding, if necessary, the same (sufficiently large) positive integer to all
i(Cl)’s.

The Gauss–Bonnet theorem implies now (see [10] for details)

f∑

l=1

i(Cl)ω(Cl) =
f∑

l=1

i(Cl)(2χl − nl)π +
f∑

l=1

nl∑

m=1

i(Cl)αlm .

It follows, just as in [10], that the right hand side of the preceding equality is an integer
multiple of π , say i0π .

Notice that ω(Cl) = ∑
vi ∈Cl

ωi
DQ

. Then, since DQ is degenerate, some—but cer-
tainly not all—of ω(Cl)’s might be zero. Since i(Cl) were assumed all different from
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zero, the equality above shows that the n-tuple ωDQ belongs to one of the hyperplanes
Hq . This contradicts the choice of ωDQ , and ends the proof.

4 Proof of Theorem 3

A straightforward improvement of the next result will be essential for the following
proofs.

Lemma 7 [32] Let G P be a geodesic arc on a 2-dimensional polytopal convex surface
P. If S ∈ S and S → P then there exist geodesic arcs GS ⊂ S such that GS → G P .

Lemma 8 Let S, S0 be 2-dimensional convex surfaces, and let G0 be a geodesic arc
on S0. If S → S0 then there exist geodesic arcs GS ⊂ S such that GS → G0.

Proof Write Lemma 7 as follows

∀ε > 0 ∃η∗ > 0 : δ(P, S) < η∗/2 ⇒ ∃GS ⊂ S s.t. δ(GS, G P ) < ε/2. (1)

Here, δ stands for the Pompeiu–Hausdorff distance between surfaces in S, and also
between closed subsets of R

d :

δ(GS, G P ) < ε/2 ⇔
{ ∀xS ∈ GS ∃xP ∈ G P s.t. ||xS − xP || < ε/2,

∀xP ∈ G P ∃xS ∈ GS s.t. ||xS − xP || < ε/2.

The statement in Lemma 7 also holds when changing the places of P and S; the
proof is similar to its proof in [32] and will therefore be omitted. Thus, if S0 ∈ S and
G0 ⊂ S0 are given, with G0 a geodesic arc of S0, and if P → S0, with P convex
polytopal surfaces, then

∀ε > 0 ∃η+ > 0 : δ(S0, P) < η+/2 ⇒ ∃G P ⊂ P s.t. δ(G0, G P ) < ε/2, (2)

where G P is a geodesic arc on P . Together, (1) and (2) imply

∀ε > 0 ∃η = min{η+, η∗} : δ(S0, S) < δ(S0, P) + δ(P, S) < η

⇒ ∃GS ⊂ S s.t. δ(G0, GS) < δ(G0, G P ) + δ(GS, G P ) < ε

and we are done.

In the following, we shall implicitly assume the geodesic arcs G = G(s), s ∈
[0, L], and G0 = G0(t), t ∈ [0, L0], to be parametrized in terms of arclength. Then
T1G → T1G0 means L → L0 and (G(s), τG(s)) → (G0(t), µG0(t)) as s → t , for
any t ∈ [0, L0]; here, τG(s) and µG0(t) are the directions of G and G0 at G(s) and
G0(t), respectively.

With this convention, the next statement is a simple consequence of the fact that
each component of G \ rdD is a line-segment, in particular it has constant direction,
for any geodesic arc G on any 2-dimensional degenerate convex surface D.
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Lemma 9 Let D, D0 ∈ D be 2-dimensional and G ⊂ D, G0 ⊂ D0 be geodesic arcs.
If D → D0 and G → G0 then T1G → T1G0.

Lemma 10 [41] There is a set P of polygons which is dense in the set of all planar
convex curves, such that for each P ∈ P there is a billiard trajectory in P which
approaches any point x of P and any direction τ at x arbitrarily closely.

A geodesic arc G of D is called an ε-net if T1 D \ T1G contains no open ball of
radius ε.

Lemma 11 Most 2-dimensional degenerate convex surfaces have an ε-net for any
ε > 0.

Proof Define, for any natural q ≥ 1,

Aq = {D ∈ D : there is no q−1−net in T1 D},

and observe that a surface with no ε-net, for some ε > 0, necessarily belongs to⋃
q≥1 Aq .
We show next that Aq is closed in D. Assume the contrary be true, and consider

a sequence of doubles Dn ∈ Aq convergent to a double D ∈ D \ Aq . Then there
exists a geodesic arc G ⊂ D such that the maximal radius of a ball (if any) included in
T1 D \ T1G is r < q−1. Take ε > 0 such that r +ε < q−1. Since Dn → D, Lemmas 8
and 9 provide geodesic arcs Gn ⊂ Dn such that T1Gn → T1G. Then there exists
η > 0 such that δ(D, Dn) < η and |s − t | < η imply

δ1((G(s), τG(s)), (Gn(t), µGn(t))) < ε,

where we assumed n large enough to assure Gn(t) ∈ intB ∩ intBn , with B and Bn

faces of D and Dn , respectively. Thereby, the maximal radius of a ball included in
T1 Dn \ T1Gn is less that r + ε < q−1, and a contradiction is obtained.

Note that Aq has empty interior in D. Indeed, if not then take an open set O ⊂ Aq

and a polygonal double DP ∈ O corresponding to some polygon P as in Lemma 10.
Denote by G P a geodesic of DP corresponding to a trajectory in P described by
Lemma 10. A straightforward verification shows that T1G P is dense in T1 DP . Now,
Lemmas 8 and 9 together with the previous argument show that, if Dn ∈ O is close
enough to DP , then Dn �∈ Aq , in contradiction to the choice of O.

Since Aq is closed and has empty interior in D,
⋃

q≥1 Aq is of first category and
the proof is complete.

Proof of Theorem 3 Consider a surface D ∈ D with the property given by Lemma 11.
Let {xn : n ∈ N} be dense in R

2, and {σn : n ∈ N} be dense in S1. Define

A = {(x, τ ) ∈ T1 D : cl (T1G(x, τ )) �= T1 D},
Am,p,q = {(x, τ ) ∈ T1 D : �((xm, σp), q−1) ⊂ T1 D \ cl (T1G(x, τ ))}.
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Then clearly

A ⊂
⋃

m,p,q≥1

Am,p,q .

Observe first that Am,p,q is closed in T1 D. Indeed, if Am,p,q were not closed then
there would be a sequence of pairs (yn, τn) ∈ Am,p,q convergent to a pair (y, τ ) ∈
T1 D \ Am,p,q . By Lemmas 8 and 9, T1G(yn, τn) would converge to T1G(y, τ ).

Since (y, τ ) �∈ Am,p,q , T1G(y, τ )∩�((xm, σp), q−1) �= ∅. Then there exist s, t >

0 such that y = G(s), τ = τG(s) and, for n large enough,

δ1((Gn(t), τGn(t)), (y, τ )) < q−1 − δ1((y, τ ), (xm, σp)),

whereby

δ1((Gn(t), τGn(t)), (xm, σp)) < q−1

and consequently

T1G(yn, τn) ∩ �((xm, σp), q−1) �= ∅,

in contradiction to the choice of (yn, τn) in Am,p,q .
Assume now that the set Am,p,q ⊂ T1 D has interior points, and consider a ball �∗

of radius r < q−1 included in Am,p,q . By Lemma 11, there exists an ε-net G∗ of T1 D,
for some fixed ε < r . Since ε < r < q−1,

T1G∗ ∩ �∗ �= ∅ and T1G∗ ∩ �((xm, σp), q−1) �= ∅.

Then, for (x, τ ) ∈ T1G∗ ∩ �∗, there is a geodesic arc G ⊂ G(x, τ ) ∩ G∗ and
(y, µ) ∈ T1G ∩ �((xm, σp), q−1). This implies (x, τ ) ∈ Am,p,q and T1G(x, τ ) ∩
�((xm, σp), q−1) �= ∅, contradicting the definition of Am,p,q .

Since Am,p,q is closed and has empty interior, it is nowhere dense in D, and A ⊂
∪m,p,q≥1 Am,p,q is of first category. Therefore, the set

A− = {(x, τ ) ∈ T1 D : clT1G(x,−τ) �= T1 D}

is also of first category, as well as A ∪ A−. Then C(A ∪ A−) = CA ∩ CA− contains
most elements of D, and the proof is complete.

5 Proof of Theorem 4

For K ∈ K, define Kε = {x ∈ K : cl	(x, ε) �⊂ K }.
Lemma 12 [9] Most billiard tables K in R

2 have the following property: for most
(p, v) ∈ phK the trajectory in K starting at p in direction v circles, in a certain
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period of time, m times in the positive direction in Kε and, a later period of time, m
times in the negative direction, for any ε > 0 and any integer m > 0.

Lemma 13 On most 2-dimensional degenerate convex surfaces there are geodesic
arcs without self-intersections, of arbitrary finite lengths.

Proof The argument below is similar to that proving Theorem 2 in [32]; for the sake
of completeness, we indicate next the main steps of the proof and refer to [32] for
details.

Let An denote the set of all D ∈ D admitting only geodesic arcs without self-
intersections of length at most n.

In order to show that An is nowhere dense, let O ⊂ D be open and choose D ∈ O
typical. Let x, y ∈ rdD realize the diameter of D (see Theorem 11). Then there are
precisely two segments from x to y, orthogonal to rdD at both x and y, whose union
G decompose D into two pieces. Cut along G and insert (glue along the cuts) the
union R of two rectangles of length ρ(x, y) and width ε, with ε conveniently small.
The resulting degenerate convex surface Dε belongs to O and contains, inside R, a
geodesic arc without self-intersections and of length > n. By Lemma 8, any surface
D∗ close enough to Dε will also contain a geodesic arc without self-intersections and
of length > n, which proves that D∗ �∈ An and ends the proof.

Proof of Theorem 4 Consider K ∈ K as in Lemma 12, and such that its double D has
the property given by Theorem 3. Fix ε > 0 and an integer m > 0.

Also consider (p, v) ∈ phK such that the trajectory T starting at p in direction v

circles, in a certain period of time, m times in the positive direction in Kε/2.
Choose (x, τ ) ∈ T1 D such that cl(T1G(x, τ )) = T1 D. Then there exists a sequence

of pairs (xn, τn) ∈ T1G(x, τ ) converging to (p, v). Let zn ∈ rdD be the closest point to
p where the maximal (with respect to inclusion) line-segment of G(xn, τn) containing
xn cuts rdD. Then zn → p.

Consider the trajectory Tn in K determined by (zn, τn). The faces of D are isometric
to K , so Tn and G(zn, τn) corresponds to each other as long as G(zn, τn) does not hit
an endpoint, which is not the case because G(zn, τn) ⊂ G(x, τ ) and by our choice
of G(x, τ ) according to Theorem 3. Since (zn, τn) → (p, v) and � (v, n(p)) < 0,
Tn → T (see Lemma 1 in [9]). Therefore, in a certain period of time, Tn circles m
times in the positive direction in Kε, for n large enough. Consequently, there is a
geodesic arc G+ ⊂ G(x, τ ) such that G+ circles m times in positive direction in
�(rdD, ε).

The proof for the existence of G− is similar.
For the last part of the statement, consider D ∈ D with the properties in Lemma 13

and Theorem 3. Take a geodesic arc G0 of D without self-intersections, of length
λG0 > m, joining the points x0, y0 ∈ D. Assume (x0, τ0) ∈ T1G0. Also take (x, τ ) ∈
T1 D such that cl(T1G(x, τ )) = T1 D. Then there exists a sequence of pairs (xn, τn) ∈
T1G(x, τ ) converging to (x0, τ0). Consequently, there exist points yn ∈ G(x, τ ),
yn → y, and geodesic arcs Gn ⊂ G(xn, τn) from xn to yn , Gn → G0, such that
λGn > m. Since Gn → G0, Gn has no self-intersections if n is large enough.
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6 Proofs of Theorems 5, 6 and 7

Once again, we start the section with a lemma.

Lemma 14 [39] Let the compact Alexandrov space A be a d-dimensional topological
manifold (d ≥ 2), and A a subset of A. Assume that the set of endpoints of A is dense
in A (with respect to its relative topology), and K is a closed subset of a union U of
components of A\ A. If U is not dense in A then the multijoined locus M(K ) is dense
in the interior of A \ U.

Proof of Theorem 5 By Theorem 1, the set of endpoints of D is dense in rdD, so we
may apply Lemma 14 for K ⊂ B and A = rdD, to get the density of M(K ) in B ′,
where B and B ′ are the faces of D.

Next we easily adapt the proof of Theorem 2 in [38] to show that C(K ) \ M(K ) is
residual in B ′.

Let Em be the set of those points z ∈ B ′ interior to a segment from K to C(K ),
whose length from z to C(K ) is at least 1/m. Then Em is nowhere dense in B ′.

To see this, take y ∈ M(K ). Suppose there exists a sequence of points zk ∈ Em

converging to y, and consider a compact neighbourhood V of y, containing some
ball �(y, ε). Then, for integers m0 > m such that 1/m0 < ε/3, and k0 such that
ρ(zk, y) < ε/3 for each k ≥ k0, we have zk ∈ Em0 ∩ V for all k ≥ k0.

Denote by yk the cut point of K along the segment joining it to zk . Possibly passing
to a subsequence, we may assume that {yk}k≥k0 converges; then there exists a subse-
quence of the corresponding sequence of segments from K to yk’s, which converges
to a segment from K to y, of length

lim
k→∞(ρ(K , zk) + ρ(zk, yk)) ≥ lim

k→∞(ρ(K , zk) + m−1
0 ) = ρ(K , y) + m−1

0 ,

impossible. Thus, there exists an open neighbourhood of y in B ′ whose points are not
in Em , and so Em is nowhere dense in B ′.

Therefore, C(K ) = B ′ \ ∪m≥1 Em contains most points of B ′.
Let now Gm be the set of points in C(K ) joined to K by two segments at Pompeiu–

Hausdorff distance at least 1/m. We show that Gm is nowhere dense in B ′.
Indeed, let y ∈ C(K ), and assume that there exists a sequence of points yk ∈ Gm

which converges to y. Then, since the two sequences of segments from K to yk

converge to two segments from K to y, at Pompeiu–Hausdorff distance at least 1/m,
y ∈ Gm . Thus, Gm is closed and, since intGm ⊂ intC(K ) = ∅, Gm is nowhere dense
in B ′.

Therefore, M(K ) = ∪m≥1Gm is of first category in B ′, and the proof is complete.

Lemma 15 [26] Let S be a 2-dimensional convex surface, x ∈ S, and J ⊂ C(x) be
an arc each point of which is joined to x by precisely two segments. Let y1, y2 be the
endpoints of J . Then the domain � bounded by the segments from x to y1, y2 and
containing intJ verifies � ∩ C(x) ⊂ J .

Proof of Theorem 6 Suppose there exists, for some point x ∈ intB, an arc J ⊂
C(x) without ramification points. Possibly restricting to a subset, we may assume
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J ∩ rdD = ∅. Then the domain � provided by Lemma 15 contains no endpoints. But
the curve rdD separates x and J , so � ∩ rdD is an arc each point of which is interior
to a segment, in contradiction to Theorem 1.

Since Rx is dense in C(x), and C(x) is dense in B ′, the conclusion follows.

The proof of Lemma 16 appears inside the proof of the main theorem in [30].

Lemma 16 For any typical convex surface S ⊂ R
d , any set O open in R

d , any point
y0 in O, and any natural number k, there exist a normal N to S, a point y ∈ N ∩ O
arbitrarily close to y0, and a Euclidean ball around y for each point v of which the
function f : S → R, given by f (w) = ||v − w||, has at least k relative maxima.

Proof of Theorem 7 Consider a typical d-dimensional degenerate convex surface D
whose ridge S has the property in Lemma 16 (by Lemma 3, S is a typical convex
surface of dimension d − 1).

Let Nx denote the set of normals to S through the point x . For any natural number
n define

A = {x ∈ S : Nx is finite},
An = {x ∈ S : cardNx ≤ n}.

Then we clearly have

A ⊂
⋃

n≥1

An .

Next we show that An is nowhere dense, for any n ≥ 1. For, assume An �= ∅ and
consider a point y0 ∈ An and an open set O ⊂ R

d around y0. By Lemma 16, there
exist a normal N to S, a point y ∈ N ∩ O arbitrarily close to y0, and a Euclidean
ball 	(y, ε) around y, for each point v of which the function f : S → R, given by
f (w) = ||v − w||, has at least n + 1 relative maxima. Observe that we may take
y ∈ N ∩ O ∩ S, and consider only points v ∈ 	(y, ε) ∩ S.

Since An is nowhere dense, A is of first category and the proof is complete.

7 Proofs of Theorems 8 and 9

The next lemmas will be necessary for the proof of Theorem 8.

Lemma 17 Let D, Dn ∈ D and x, y ∈ D, xn, yn ∈ Dn with y ∈ D \ rdD. Let
�,�′ ⊂ D be segments from y to x and �n, �′

n ⊂ Dn be segments from yn to xn. If
Dn → D, xn → x, yn → y, �n → � and �′

n → �′ then the angle between �n and
�′

n at yn converges to the angle between � and �′ at y.

Proof Suppose first that the points x, y belong to the same face of D. Then, since
y �∈ rdD, � = �′ and now �n → �, �′

n → �′ directly imply the conclusion.
Suppose now that x, y belong to opposite faces of D. Put {z} = � ∩ rdD, {z′} =

�′ ∩ rdD. We can assume, for n sufficiently large, that xn, yn belong to opposite faces
of Dn . Define {zn} = �n ∩ rdDn , {z′

n} = �′
n ∩ rdDn .
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Then, since xn → x , yn → y, �n → � and �′
n → �′, we get zn → z, z′

n → z′.
Now, the convergence

� (�n, �′
n) = � zn ynz′

n → � zyz′ = � (�, �′)

simply becomes convergence of angles in the Euclidean space, and completes the
proof.

A point y ∈ S is called critical with respect to ρx , or simply critical, if for any
direction τ at y there is a segment from y to x with direction τ ′ at y, such that
� (τ, τ ′) ≤ π/2; y is called strictly critical if � (τ, τ ′) < π/2.

Lemma 18 [40] Let x, y be two points on a convex polyhedral surface P in R
d+1. If

y is a relative maximum of ρx but not a vertex of P, then y is a strictly critical point
for ρx , and there are at least d + 1 segments from x to y.

We shall also use the following variant of Lemma 18.

Lemma 19 Let x, y be two points on a convex surface S in R
d . If the point y is a

relative maximum of ρx then it is critical for ρx .

Proof Assume y ∈ S is a relative maximum, but not a critical point for ρx . Denote by
Sxy the set of all segments from y to x . Then there exists a direction τ at y making
angles > π/2 with any segment � ∈ Sxy . Since Sxy is closed, there exists ε1 > 0 such
that min�∈Sxy

� (τ, �) > π/2 + ε1 still holds.
Consider a segment �∗ starting at y in a direction µ sufficiently close to τ in order

to have, for any � ∈ Sxy , � (�∗, �) > π/2 + ε2, for some ε2 > 0. Then there exists
ε3 > 0 such that

− cos min
�∈Sxy

� (�∗, �) > ε3.

Also consider points yn ∈ �∗, yn → y. The first variation formula (Theorem 3.5
in [18]) gives now

ρ(x, yn) = ρ(x, y) − ρ(y, yn) cos min�∈Sxy
� (�∗, �) + o(ρ(y, yn))

> ρ(x, y) + ρ(y, yn)[ε3 + ρ(y, yn)−1o(ρ(y, yn))]
> ρ(x, y)

for n sufficiently large, and a contradiction is obtained.

The following reciprocal of Lemma 19 is of some independent interest.

Lemma 20 If x, y are points in a convex surface S ⊂ R
d , and y is a strictly critical

point for ρx , then y is a strict relative maximum for ρx .

Proof Denote by T the set of all directions at y of segments from y to x ; by the
hypothesis, no closed half-sphere of Sd−1 contains T . Notice that

∃ε > 0 ∀µ ∈ Sd−1 ∃τ ∈ T � (µ, τ) < π/2 − ε.
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Suppose this is false and take εn → 0. So it exists µn ∈ Sd−1 such that, for all τ ∈ T ,
� (µn, τ ) ≥ π/2 − εn . Consider a limit direction µ of {µn}n . Then for any τ ∈ T
holds � (µ, τ) ≥ π/2, which provides an closed half-sphere of Sd−1 (centered at τ )
containing T , and a contradiction is obtained.

Denote by Vy the closed intrinsic ball around y of radius 2l cos(π/2 − ε), where
l = ρ(x, y). We have to show that ρx (y) > ρx (z) holds for all z ∈ Vy .

For any point z ∈ Vy \{y} and any segment �yz from y to z in direction τz at y, there
exists some segment �yx from y to x in direction τx at y such that α = � (τz, τx ) <

π/2 − ε. We get

ρ(y, z) ≤ 2l cos(π/2 − ε) < 2l cos α.

Consider the planar triangle x̄ ȳ z̄ with ||x̄ − ȳ|| = l, ||ȳ − z̄|| = ρ(y, z) and the
angle at ȳ equal to α. We have ||ȳ − z̄|| < 2l cos α, hence the angle at z̄ is larger than
α and thus ||x̄ − z̄|| < ||x̄ − ȳ||.

By the convexity of the metric of S (see [1] or [3]), we have ρ(x, z) ≤ ||x̄ − z̄||, so
we obtain ρ(x, z) < ρ(x, y), i.e., y is a strict local maximum for ρx .

Lemma 21 If every open half-sphere of Sd−1 ⊂ R
d contains a point of the set M

then cardM ≥ d + 1.

Proof Any d points or fewer in R
d lie in a hyperplane, the intersection of which with

Sd−1 is contained in a closed half-sphere.

Lemma 22 Let D0 ∈ D and x0 ∈ D0 \ rdD0. Then there exist D ∈ D, D → D0 and
x ∈ D, x → x0 such that cardFx = 1 and there are precisely d + 1 segments from x
to its farthest point on D.

Proof We shall see that any neighbourhood O of D0 in D contains a polyhedral surface
D ∈ D with the desired properties. Moreover, we may keep x = x0.

Denote by Sxy (respectively Gxy) the set of all segments (respectively simple geo-
desic arcs) from y to the point x , and let Sx = ∪y∈Fx Sxy .

We start by choosing a (degenerate) polyhedral approximation DP of D0 in O,
where P = rdD, with a face B = convP containing the point x = x0 and such that
the unit tangent cone at each of its vertices is close to Sd−2.

For any point y ∈ DP in Fx , there are at least two segments from x to y, so y is
not a vertex of B ′ = ι(B) and thus Fx ⊂ intB ′. Then, by Lemma 18, there are at least
d + 1 segments from y to x , whose directions at y are not all of them contained in a
closed half-sphere of Sd−1.

Assume Fx has at least two points, at least one of which is joined to x by more than
d + 1 segments.

First, we find a polyhedral approximation of DP in O with cardFx = 1. The idea
is, roughly speaking, to cut small parts of B such that to keep only one maximal (with
respect to the major axis) ellipsoid of revolution inscribed to P with a focus at x ,
the second focus corresponding to the unique point in Fx (see Lemma 5). Figure 1
illustrates this idea for d = 2.
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Fig. 1 Approximation with a unique farthest point from x (d = 2)

The segments in Sx do not meet each other except at (one or both of) their extre-
mities. Of course, each of them crosses only one face of P , in a point interior to that
face, so Sx and Fx are finite sets. Define, for u ∈ Fx ,

Wu =
⋃

�∈Sxu

� ∩ P,

and notice that any two points in Wu belong to different faces of P .
Choose a point y in Fx . For each w ∈ Wy , denote by Ew the face of P containing

w. Let

W =
⋃

u∈Fx \{y}
Wu;

because Sx is finite, W ∪ Wy is also finite.
Case (i) We consider first the points w ∈ Wy such that Ew ∩ W �= ∅.
Choose a (d − 2)-dimensional polyhedral convex surface Ow in Ew homothetic to

bdEw, separating w from the points in Ew ∩ W .
Also choose a hyperplane Hw,ε in R

d parallel to Ew and separating Ew from
(W ∪ Wy) \ Ew, say at distance ε to Ew. Let R

d−(w, ε) denote the closed half-space
bounded by Hw,ε disjoint to w, and put

Pw,ε = P ∩ R
d−(w, ε), Bε = conv(Pw,ε ∪ Ow).

Then the segments joining x to y on DP remain geodesic arcs of length ρ(x, y)

on DBε and, for ε small enough, each segment joining y to x on DBε coincides to a
segment on DP . Indeed, a segment �ε joining y to x on DBε and not coinciding to
a segment on DP is close to a geodesic arc G ∈ Gxy \ Sxy , hence of length closer
to λG than ρ(x, y), a contradiction. Consequently, y is a farthest point from x on
DBε . Moreover, the segments on DBε corresponding to segments in Sx through the
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Fig. 2 Approximation with d + 1 = 3 segments to the farthest point from x

points in Ew ∩ W have smaller length than the length of their correspondents (which
is ρ(x, y) = ρ(x, Fx )).

Case (ii) We can assume now that for any w ∈ Wy , Ew ∩ W = ∅.
For each point w j ∈ W denote by Hj,ε the hyperplane in R

d parallel to the face E j

of P that w j belongs to, at distance ε to E j , and separating w j from Wy . Let R
d−( j, ε)

be the closed half-space disjoint to w j bounded by Hj,ε, and put

B j,ε = conv(P ∩ R
d−( j, ε)),

hence B j,ε ⊃ (W \ E j ) ∪ Wy .
In this case too, the argument used at Case (i) shows that the segments joining x to

y on DB j,ε are precisely those on DP and, since the segments on DB j,ε corresponding
to the segments in Sx through W ∩ E j have length smaller than ρ(x, y), y is a farthest
point from x on DB j,ε .

Because Sx is a finite set, after finitely many procedures as in Case (i) and Case
(ii), we obtain a polyhedral double Dε where Fx = y and the segments from x to y
coincide to those on DP .

Clearly, Dε → DP as ε → 0, so for ε small enough we still have Dε ∈ O.
Rename Dε = DP , where P = rdDε. We find now an approximation of DP in O

with cardSxy = d + 1. Figure 2 illustrates the idea of approximation for d = 2.
Denote by T (DP ) the set of all directions at y of segments on DP from y to x .
Assume that the set E(DP ) of all equations expressing linear dependences of at

most d directions in T (DP) is non-void (otherwise the proof is simpler). Consider an
equation in E(DP ), say

k∑

i=1

αiτi = 0, αi �= 0 ∀i = 1, . . . , k ≤ d. (3)

Also consider, in the space R
d containing P , the ellipsoid of revolution Ellxy with

foci at x and y and the sum of focal radii equal to ρ(x, y). By Lemma 5, convP ⊃
Ellxy , P is tangent to Ellxy , and the points in Ellxy ∩ P are precisely the intersection
of the segments in Sxy with the faces of P .
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Take a point z ∈ Ellxy ∩ P corresponding to the segment starting at y in direction
τ1, and denote by Ez the face of P containing z. Slightly move the point z to z′ ∈ Ellxy ,
denote by H ′ the hyperplane tangent to Ellxy at z′, by Az the union of the hyperplanes
spanned by the faces of P incident to Ez , and by E ′ the convex subset of H ′ determined
by Az . Take the convex hull of the union of E ′ with the faces of P not incident to Ez ,
and denote it by Bz′ .

On DP we have Fx = y, hence (the images of) any two points in Wy belong to
different faces of P . Consequently, if z′ is close enough to z then

Wy \ {z} ⊂ (bdBz′ ) ∩ P.

By the choice of z′, the Eq. (3) is no longer satisfied on the double DB
z
′ of Bz′ . Let

τ ′ be the direction at y of the segment joining y to z′. Of course, z′ can be taken such
that τ ′ appears in no equation in E(DB

z
′ ), so cardE(DB

z
′ ) < cardE(DP ).

Moreover, z′ can be chosen such that y is still a strictly critical point for ρx on
DB

z
′ .

By Lemma 20, there exists r > 0 such that y is a strict maximum for the restriction
of ρx to the intrinsic closed ball Vy of radius r > 0 centered at y. Now, if z′ → z then
DB

z
′ → DP and the set Fz′

x of farthest points from x in DB
z
′ converges to y = Fx ,

so from some moment on we have Fz′
x ⊂ Vy , which implies Fz′

x = y.
Moreover, the segments from x to y on DB

z
′ coincide to those on DP except for

the one through z, which now passes through z′ (see Lemma 5).
If z′ is close enough to z then clearly DB

z
′ ∈ O.

After—if necessary—such small perturbations of finitely many points in Ellxv ∩ P ,
we obtain a polyhedral approximation DR ∈ O of D0, with a face R containing the
point x , and such that Fx = y and E(DR) = ∅.

Now choose d + 1 points in Ellxy ∩ R, say z1, . . . , zd+1, such that any open half-
sphere of Sd−1 contains the direction at y of a segment from y to x through some zi ;
their existence is guaranteed by Lemmas 18 and 21.

For each point w ∈ Ellxy ∩ R \ {z1, . . . , zd+1}, take a point uw on the normal to
R at w and exterior to R. Put

Z = conv(R ∪ {uw : w ∈ Ellxy ∩ R \ {z1, . . . , zd+1}}).
If the points uw are all close enough to R then the double DZ of Z belongs to O and, on
DZ , the only segments from x to y are those through z1, . . . , zd+1. This construction
is possible because any two points in Wy belong to different faces of R.

The upper semi-continuity of F and Lemma 20 imply now (see the argument above)
that F Z

x = y provided Z is close enough to R, where F Z
x is the set of farthest points

from x on DZ . The proof is complete.

Apart the use of the preceding lemmas, the following argument is quite similar to
that proving Theorem 2 in [34].

Proof of Theorem 8 Denote by Sxy the set of all segments from the point y in Fx to
x , and let Sx = ∪y∈Fx Sxy . For any surface D ∈ D and any natural number n define
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A0(D) = {x ∈ D : cardSx < d + 1},
An(D) = {x ∈ D : there are d + 2 segments in Sx

at mutual distances at least n−1},
Bn(D) = {x ∈ D : diamFx ≥ n−1}.

The sets An(D) and Bn(D) are clearly closed in D, for any n. Define, for q, r ∈ N,
n, m ∈ {0} ∪ N and z ∈ R

d of rational coordinates,

A = {D ∈ D : {x ∈ D : cardSx �= d + 1} is of 2nd category},
An = {D ∈ D : An(D) is not nowhere dense},

Am,z,q = {D ∈ ⋃∞
n=0 An : �(z, q−1) ⊂ Am},

and respectively

B = {D ∈ D : {x ∈ D : diamFx �= 0} is of 2nd category},
Br = {D ∈ D : Bn(D) is not nowhere dense},

Br,z,q = {D ∈ ⋃∞
n=1 Bn : �(z, q−1) ⊂ Br }.

It suffices to prove that A ∪ B is of first category in D. For, notice first that

A ⊂
∞⋃

n=0

An ⊂
⋃

m,z,q

Am,z,q

and

B ⊂
∞⋃

n=1

Bn ⊂
⋃

r,z,q

Br,z,q ,

because a closed subset of D which is not nowhere dense must contain some disk
�(z, q−1).

We show next that

A0,z,q ∪ Am,z,q ∪ Bm,z,q

is nowhere dense in D. Let O be an open subset of D, and suppose there exists
D0 ∈ O ∩ (A0,z,q ∪Am,z,q ∪Bm,z,q). Take x0 ∈ �(z, q−1) ⊂ D0. By Lemma 22, we
can choose a polyhedral approximation DR of D0, DR ∈ O, with a face R containing
some point x ∈ �(z, q−1) such that x is close to x0, Fx = y and cardSx = d + 1.

Consider Dn ∈ D such that Dn → DR , xn ∈ Dn such that xn → x , and yn ∈ Fxn .
Then yn → y, and any segment from xn to yn converges to some segment from x to
y ∈ Fx . By Lemma 17, any angle at yn between segments to xn converges either to 0
or to the angle at y between some segments to x .

Because the directions at y of the segments to x of are not all contained in a closed
half-sphere (see Lemma 18), the same happens at yn ∈ Fxn , for n sufficiently large, by
Lemmas 17 and 19. Lemma 21 implies now the existence of at least d + 1 segments
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from yn to xn , if Dn is close enough to DR , so �(z, q−1) is not included in A0(Dn).
Thus, there exists a ball around DR in D disjoint from A0,z,q .

So, for n large enough, there are at least d + 1 segments of Dn from xn to each
point yn in Fxn . Since any angle at yn between segments to xn converges either to 0
or to the angle at y between some segments to x , and cardSx = d + 1, if n is large
enough then among any d + 2 segments in Sx ⊂ Dn there are two at distance at
most (m + 1)−1 < m−1, so �(z, q−1) is not included in Am(Dn). Moreover, since
yn → y, diamFxn ≤ (m + 1)−1 < m−1, so �(z, q−1) is neither included in Bm(Dn).
Therefore, there exists a ball around Dn in D disjoint to Am,z,q ∪ Bm,z,q , whereby
Am,z,q ∪ Bm,z,q is nowhere dense.

In conclusion,
⋃

m,z,q(Am,z,q ∪ Bm,z,q) is of first category in D, as well as A ∪ B,
and the proof is done.

Proof of Theorem 9 Let B be a typical planar convex body and x an interior point of
B. Then the doubly covered convex surface D determined by B is also typical, by
Lemma 3.

Assume Ell has the largest major axis among all ellipsoids of revolution with a
focus at x and tangent to bdB, and let z denote its second focus. Put B ′ = ι(B) and
y = ι(z) = 
(Ell) (see Lemma 5). Then the length a of the major axis of Ell is
equal to ρ(x, y) whereby, since a is maximal, y ∈ Fx . By Theorem 8, if x is typical
in D then it has a unique farthest point, joined to x by precisely d + 1 segments, and
the one-to-one correspondence (see Lemma 5 again) between the segments from x to
y = Fx and the points in Ell ∩ bdB ends the proof.

8 Proofs of Theorems 10 and 11

Two more lemmas will be needed.

Lemma 23 [26] Any point y in the convex surface S ⊂ R
3 with λT1 y = 2π is critical

for at most one distance function.

A loop at the point x in S ⊂ R
3 is the union of two segments from some point

y ∈ S to x , which make an angle equal to π at y.

Lemma 24 [36] Let S be a convex surface, x ∈ S, y, z ∈ C(x) and J the arc joining
y to z in C(x). If u ∈ J is a relative minimum of ρx |intJ then u is the midpoint of a
loop � at x and, excepting the subarcs of �, no other segment connects x to u.

Proof of Theorem 10 Take two points x, y in rdD such that y ∈ Fx . Then each face
B of D (considered in R

d ) is interior to the closed disk O of radius ρ(x, y) centered
at x , and moreover y ∈ O ∩ B.

Since B is interior and tangent to O , its boundary has strictly positive lower curva-
tures in all tangent direction at each contact point with O; so, for any τ ∈ T1 y,

γ τ
i (y) ≥ ρ(x, y)−1 ≥ (diamD)−1 > 0.

Therefore, by (ii) of Lemma 4, the set FrdD is of first category in rdD. Moreover, by
(i) of Lemma 4, γ τ

i (y) = ∞. Now, Theorem 1 shows that y is an endpoint of D.
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Suppose F is single-valued, whence its upper semicontinuity is actually continuity.
Then FD is closed and, since F is not surjective, there is a small open ball U in D\ FD .
Clearly, FD\U is included in D \ U . By Brouwer’s fixed point theorem, F |D\U has a
fixed point, which is impossible.

Assume, for the rest of this proof, that d = 2.
The injectivity of the mapping F follows immediately from Lemma 23.
Suppose there exists a point x ∈ D such that Fx contains an arc J of extremities

y1, y2. Each point y interior to J is a relative minimum for ρx |J so, by Lemma 24, y
is the midpoint of a loop � at x , and no other segments connect x to y except those in
�. Then each point of the domain � provided by Lemma 15 is interior to a geodesic,
in contradiction to Theorem 5.

Proof of Theorem 11 Consider a point z interior to the face B of the typical degenerate
convex surface D, v ∈ C(z) interior to B ′ = ι(B) and w = ι−1(v). Put {x, y} =
zw ∩ rdD. We have

ρ(z, v) ≤ min{||z − x || + ||x − v||, ||z − y|| + ||y − v||} ≤ ||x − y|| = ρ(x, y),

so the diameter of D is realized by points on rdD.
Let x, y ∈ rdD be diametrally opposite points. Notice first that, if we have equality

in the above inequalities, then the union G of the two line-segments from x to y, one
for each of the two faces of D, is a closed geodesic. But, since D is typical, such a
geodesic does not exist, by Theorem 2.

Because y ∈ Fx , the sphere of radius equal to ρ(x, y) centered at x is exterior and
tangent to B, so xy is normal to B at y. Similarly, since x ∈ Fy , xy is also normal to
B at x . Since rdD is smooth and xy is a double normal of it, Fx = y and Fy = x .
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Ovidius Constanţa 3, 167–173 (1995)
36. Zamfirescu, T.: Farthest points on convex surfaces. Math. Z. 226, 623–630 (1997)
37. Zamfirescu, T.: Extreme points of the distance function on convex surfaces. Trans. Amer. Math.

Soc. 350, 1395–1406 (1998)
38. Zamfirescu, T.: Dense ambiguous loci and residual cut loci. Suppl. Rend. Circ. Mat. Palermo, II.

Ser. 65, 203–208 (2000)
39. Zamfirescu, T.: On the cut locus in Alexandrov spaces and applications to convex surfaces. Pacific J.

Math. 217, 375–386 (2004)
40. Zamfirescu, T.: On the number of shortest paths between points on manifolds. Suppl. Rend. Circ. Mat.

Palermo. II. Ser. 77, 643–647 (2006)
41. Zemlyakov, A.N., Katok, A.B.: Topological transitivity of billiards in polygons. Mat. Zametki 18,

291–300 (1975) (Math. Notes 18, 760–764 (1975))

123


	On typical degenerate convex surfaces
	Abstract
	Introduction and statement of results
	Introduction
	Endpoints
	Geodesics
	Cut loci
	Relative maxima
	Farthest points
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 4
	Proofs of Theorems 5, 6 and 7
	Proofs of Theorems 8 and 9
	Proofs of Theorems 10 and 11


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


