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Abstract. A flat folding of a polyhedron is a folding by creases into
a multilayered planar shape. It is an open problem of E. Demaine et
al., that every flat folded state of a polyhedron can be reached by a
continuous folding process. Here we prove that every convex polyhedron
possesses infinitely many continuous flat folding processes. Moreover, we
give a sufficient condition under which every flat folded state of a convex
polyhedron can be reached by a continuous folding process.

1 Introduction

We use the terminology polyhedron for a closed polyhedral surface which is per-
mitted to touch itself but not self-intersect (and so a doubly covered polygon
is a polyhedron). A flat folding of a polyhedron is a folding by creases into a
multilayered planar shape.

The results presented here are related to the following problem proposed by
Erik Demaine et al. (see Open Problem 18.1 in [5]): Can every flat folded state
of a polyhedron be reached by a continuous folding process?

Notice that, if a polyhedron P is flattened by a continuous folding process
(see Definition 1) with polyhedra {Pt : 0 ≤ t ≤ 1}, then the crease pattern in
P for {Pt : 0 ≤ t ≤ 1} is an infinite set of line segments. This follows from
Cauchy’s rigidity theorem and Sabitov’s result on the volume invariance under
flexing [9]-[10].

The existence of flat folded states for polyhedra homeomorphic to the 2-
sphere was proved by the method of disk packing (see §18.3 in [5]), and for some
special classes of convex polyhedra was also proved by the method of straight
skeletons (see §18.4 in [5], and [4]).

Section 2 of this work is devoted to preliminaries. We also briefly present
there (Theorem 1) the method to continuously flatten the Platonic polyhedra
onto their original faces, proposed in [6].
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In Sect. 3 we propose a method to flatten general convex polyhedra by con-
tinuous folding processes (Theorem 2). We employ Alexandrov’s gluing theorem
and the structure of cut loci (see Definition 2) for the proofs.

In Sect. 4 we give a sufficient condition, under which every flat folded state of
a convex polyhedron can be reached by a continuous folding process (Theorem
3).

We end the paper with a few remarks and open questions (Sect. 5).

2 Preliminaries

We start with the definition of a continuous folding process for a polyhedron.

Definition 1. Let P be a polyhedron in the Euclidean space IR3. We say that a
family of polyhedra {Pt : 0 ≤ t ≤ 1} is a continuous folding process from P = P0

to P1 if it satisfies the following conditions:
(1) for each 0 ≤ t ≤ 1, there exists a polyhedron P ′t obtained from P by

subdividing some faces of P (i.e., some faces of P ′t may be included in the same
face of P , but P ′t is congruent to P ) such that Pt is combinatorially equivalent
to P ′t and the corresponding faces of P ′t and Pt are congruent,

(2) the mapping [0, 1] 3 τ 7−→ Pτ ∈ {Pt : 0 ≤ t ≤ 1} is continuous.
Moreover, if P1 is a flat folded polyhedron, we say that P is flattened by a

continuous folding process and we call P1 a flat folded polyhedron (or state) of
P .

In the case of Platonic polyhedra, two of us proved the next result [6], which
will serve as a contrast in Section 4.

Theorem 1. For the five Platonic polyhedra there are continuous flat folding
processes onto their original faces.

Figure 1 shows how to continuously flatten the cube and the regular octa-
hedron on their faces (see [6] for details or for the other Platonic polyhedra).
Theorem 1 was proved by using a key lemma: any rhombus can be folded into a
shape as showed in Fig.2 (2), with distances |f(b)f(d)| = l and |f(a)f(c| = m for
any given 0 ≤ l ≤ |bd| and 0 ≤ m ≤ |ac|, where we denote by |xy| the Euclidean
metric distance between x, y ∈ IR3.

Our main tools here are the Alexandrov’s gluing theorem (stated below) and
the cut loci, to which the remaining of this section is devoted.

Alexandrov’s gluing theorem. Consider a topological sphere S obtained by
gluing planar polygons (i.e., naturally identifying pairs of sides of the same
length) such that at most 2π angle is glued at each point. Then S, endowed
with the intrinsic metric induced by the distance in IR2, is isometric to a poly-
hedral convex surface P ⊂ IR2, possibly degenerated. Moreover, P is unique up
to rigid motion and reflection in IR3. (See [2], p.100.)
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Fig. 1. (1) The cube; (2) the flatted cube on its face; (3) the regular octahedron; (4)
the flatted octahedron on its face.
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Fig. 2. An example of a folded rhombus.

Definition 2. Let P be a convex polyhedron. The cut locus C(x) = C(x, P )
of the point x on P is defined as the set of endpoints (different from x) of all
nonextendable shortest paths (on the surface P ) starting at x.

Figure 3 provides two examples of cut loci for points on the cube.
We summarize in our first lemma various known properties of cut loci.

Lemma 1. (i) C(x) is a tree whose leaves (endpoints) are vertices of P , and
all vertices of P , excepting x (if the case), are included in C(x). Notice that we
allow vertices of degree two in C(x).

(ii) The junction points in C(x) are joined to x by as many shortest paths
as their degree in the tree.

(iii) The edges of C(x) are shortest paths on P .
(iv) Assume the shortest paths γ and γ′ from x to y ∈ C(x) are bounding a

domain D of P , which intersects no other shortest path from x to y. Then the
arc of C(x) at y towards D bisects the angle of D at y.

(v) If P has n vertices then C(x) is a tree with O(n) vertices, and it can be
constructed in time O(n2).

Proof. (i)-(ii) and (iv) These are well known.
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Fig. 3. (1) The cut locus of the vertex x = a on a cube; (2) the cut locus on a cube
with respect to the midpoint x of the edge ae.

(iii) This is Lemma 2.4 in [1].
(v) The first part is clear. For the second part, we use the algorithm of J.

Chen and Y. Han [3] (see [7] for a public implementation). ut
We will use the cube to illustrate our method. This method depends upon

shortest paths from a point x on the cube to particular points on C(x), y in Fig.
4(1), and y1 and y2 in Fig. 4(2).
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Fig. 4. (1) Shortest paths joining x = a to y = g; (2) shortest paths joining x to y1,
y2, and to the cube vertices that are interior points of C(x).

We call an edge of C(x) an leaf edge if it is incident to a leaf of C(x).

3 Continuous Flattening Processes for Convex Polyhedra

In this section we provide a method to continuously flatten any convex polyhe-
dron P , based on cut loci and Alexandrov’s gluing theorem. Toward this goal,
we further describe the structure of cut loci.
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Fig. 5. (1) The cut locus of x = a; (2) two shortest paths γ1 and γ2 joining x to g,
enclosing precisely one leaf edge E = uv = gc; (3) two parts of the cube, separated by
γ1 ∪ γ2; (4) two resulting surfaces obtained by gluing (the images of) γ1 and γ2; (5)
the resulting polyhedron from the cube after gluing γ1 to γ2; (6) the flat folded state
of the cube finally obtained.
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Fig. 6. (1) The cut locus of the midpoint x of ae; (2) two shortest paths γ1 and γ2

joining x to y1, and enclosing precisely one leaf edge E = uv = y1b; (3) the resulting
polyhedron after gluing γ1 to γ2; (4) the flat folded state of the cube finally obtained.
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We first give a high-level view of the method, presenting two different ways
to flatten the cube, illustrated in Figs. 5 and 6. We start with an arbitrary point
x on P , and determine its cut locus and all segments from x to the junction
points of C(x), see Figs 5 (1) and 6 (1). Every leaf edge E of C(x) is included in
some region T of P bounded by two consecutive segments from x to a junction
point of C(x) (E = cg in Figure 5 (2/3) and E = by1 in Figure 6 (2)). T can
be flattened to a doubly covered triangle TE , and P \ T can be “zipped” to
some convex polyhedron QE (by Alexandrov’s gluing theorem). Therefore, P is
isometric to PE = TE ∪ QE , consisting of a bent doubly covered triangle TE

(shaded in the figures) attached to some convex polyhedron QE (Lemma 2), see
Figs. 5 (4/5) and 6 (3). The cut locus C(x,QE) of x on QE is precisely the
truncation of the cut locus C(x, P ) (Lemma 3), hence we can iterate the process
until C(x) is merely a path, in which case the resulting polyhedron is already
flattened (Lemma 4), see Figs. 5 (6) and 6 (4). Lemma 5 shows the continuity
of this procedure.

Let γ1 and γ2 be shortest paths on P from x ∈ P to y ∈ C(x); cut along
γ1 ∪ γ2 and keep one half-surface P ′. By gluing γ1 to γ2 we mean to identify the
points on γ1 and respectively γ2 at equal distance to x.

Lemma 2. Let x be a point on a convex polyhedron P . Each leaf edge E = uv
of the cut locus C(x), starting at the leaf v of C(x), is bounded by two shortest
paths γ1 and γ2 from x to u, whose union encloses precisely one leaf, v, of C(x).
The region T of P , enclosed by γ1 ∪ γ2 and containing v, can be flattened to a
doubly covered triangle TE, and the remaining part of P corresponds to a convex
polyhedron QE by gluing γ1 to γ2. The original polyhedron P is isometric to the
polyhedron PE = QE ∪ TE, where we attach TE to QE, such that γ1 and γ2 are
touching each other but are included in distinct layers.

Proof. Let E = uv be any leaf edge with a leaf v of the cut locus C(x). Then
there are d shortest paths joining x to u on P , where d is the degree of the point
u in the tree C(x), and exactly two of them, say γ1 and γ2, enclose precisely
one leaf v. Figs. 5(2) and 6(2) show the regions of the cube corresponding to the
leaf edges cg and by1 in the respective cut loci. The region T of P , bounded by
γ1∪γ2 and containing v, has no other vertex of P inside, hence it consists of two
flat congruent triangles with edges xv, uv and γi (i = 1, 2). Therefore, T can be
flattened to some doubly covered triangle TE , by gluing γ1 to γ2.

The remaining part of P corresponds to a convex polyhedron QE by Alexan-
drov’s gluing theorem. Hence P is isometric to PE = QE ∪ TE , where we attach
TE to QE such that γ1 and γ2 are touching each other but are included in dis-
tinct layers in PE . Notice that, although flattened, TE may not lie in a plane. ut

For an leaf edge E of C(x, P ) we will use the notation QE and PE for the
polyhedra introduced in Lemma 2.

Lemma 3. Let x be a point in a convex polyhedron P , and let E = uv be an
leaf edge of the cut locus C(x), incident to the the leaf v of C(x). The cut locus
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C(x,QE) of x on QE is (isometric to) the truncation of the cut locus C(x, P )
with respect to the cuts along γ1 and γ2 defined in Lemma 2, and the gluing along
them.

Proof. This follows from the definition of cut locus and the property (iv) in
Lemma 1. ut
Lemma 4. If the cut locus C(x) of a point x in a convex polyhedron P is a
path, then P is a doubly covered polygon.

Proof. Since all vertices of P except possibly x are included in C(x), P is a
doubly covered polygon, by Lemmas 2 and 3. ut
Lemma 5. Let x be a point in a convex polyhedron P , whose cut locus C(x) is
not a path, and let E = uv be an leaf edge of C(x), incident to the the leaf v of
C(x). There is a continuous folding process from P to PE.

Proof. Let pt be a point moving continuously from v to u along the edge E = uv,
as t increases from 0 to 1, and denote Et = ptv. There are two shortest paths
γt,1 and γt,2 joining x to pt, enclosing precisely one leaf v of C(x). By cutting
along γt,1 ∪ γt,2 and gluing γt1 to γt2 , we obtain a doubly covered triangle Tt =
TEt and a convex polyhedron Qt = QEt , by Alexandrov’s gluing theorem. Let
Pt = PEt = Qt ∪ Tt be defined similarly to PE in Lemma 2. Here Tt is flipped
clockwise about the point x and it touches Qt, in order to avoid any conflict
later.

We establish below a property of Qt.
The structure of Qt is given to us via Alexandrov’s gluing theorem. We

know the vertices of Qt (they are x, pt, and vertices of P ), but not its edges.
Nevertheless,
(i) the edges of Qt between vertices (corresponding to vertices) of P are a subset
of the collection of all shortest paths between pairs of such vertices;
(ii) the edges of Qt from its vertex x to vertices (corresponding to vertices) of P
are a subset of the collection of all shortest paths from x to such vertices;
(iii) the edges of Qt from its vertex pt to vertices (corresponding to vertices) of
P are a subset of the collection of all shortest paths from pt to such vertices;
(iv) the edge of Qt between x and pt corresponds to γt,1 ∪ γt,2.

Denote by G the subset of P consisting of all shortest paths joining pairs of
vertices of P , or joining x to vertices of P .

Consider now a neighborhood N of u, and points y0, z0 ∈ N such that the
triangle ∆0 = 4uy0z0 intersects G ∪ C(x) only at u. This is possible, because
both G and C(x) are composed of finitely many shortest paths on P , hence
N ∩ (G ∪ C(x)) consists of finitely many shortest paths on N .

Let now G′t ⊂ P consist of all shortest paths from pt to the vertices of P ,
and define Gt = G ∪G′t ∪ γt,1 ∪ γt,2.

It follows that Gt ∩ N is the union of finitely many line-segments, hence
there exist points yt, zt ∈ N \Gt such that the triangle ∆t = 4uytzt intersects
Gt ∪ C(x) only at u (see Fig. 7).
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Fig. 7. A triangle 4uytzt such that 4uytzt ∩Gt = {u}.

We claim that there are at most finitely many values τ1, τ2, ..., τm ∈ ]0, 1[
such that, for any number t in ]τi, τi+1[ , and any vertex v of P , the number of
shortest paths from pt to v does not depend on t (i = 1, ...,m− 1). To prove the
claim, recall that each edge of C(v) is a shortest path on P , and so is uv (see
Lemma 1). Therefore, for any edge E of C(v), E ∩ uv is either ∅, or a point, or
an arc A. Moreover, all points in uv \E are joined to v by precisely one shortest
path, and if E ∩uv = A then all interior points to A are joined to v by precisely
two shortest paths.

By the above argument, the number of shortest paths from v to an exceptional
point pτi is at least equal to the number of shortest paths from v to pt, for t
sufficiently close to τi.

The above claim and the upper semi-continuity of shortest paths show that,
for any t ∈ [τi, τi+1[ , yt and zt can be choosen such that ∆t depends continuously
on t. Moreover, if t reaches an exceptional value τi, 0 < t < τi, then we may
choose yt and zt such that ∆τi ⊂ ∆t.

In conclusion, ∆t exists and depends lower semi-continuously on t ∈ [0, 1].

We show next how to realize Pt in IR3, for 0 ≤ t ≤ 1. Of course, it suffices to
show how to realize Qt.

For t = 0, we realize Q0 (and hence P0 = P ) in IR3, satisfying the conditions:
(i) u = (0, 0, 0), y0 = (y0,1, 0, 0), and z0 = (z0,1, z0,2, 0), for some real numbers
y0,1 ≥ 0, z0,1, z0,2; and (ii) Q0 is included in the half-space z ≥ 0.

For 0 < t < 1, we realize Qt in the half-space z ≥ 0 such that ∆t is realized
as the corresponding subset of N .

Assume now that t = 1. Let {tn}n≥1 be a sequence converging to 1, with
0 < tn < 1. Since the family {Qtn}n≥1 is bounded with respect to the Hausdorff
metric on the space of all compact sets in IR3, there exists a subsequence which
converges to a compact set R1, by Blashke’s convergence theorem. The unicity in
Alexandrov’s gluing theorem shows now that R1 does not depend on the choice
of the converging sequence tn → 1, hence we may realize Q1 by R1.
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Concluding, if Qt is close to Qs then their corresponding faces are close to
each other, in particular those including ∆t and ∆s, and hence their realizations
in IR3 are close to each other.

Finally, we notice that the mapping from 0 ≤ t ≤ 1 to the 1-parameter
family of compact sets {Qt : 0 ≤ t ≤ 1} is continuous with respect to the
Hausdorff metric. Let s be a real number with 0 ≤ s ≤ 1, and {sn}n≥1 a sequence
converging to s, with 0 < sn < 1. The family {Qsn

}n≥1 is bounded with respect
to the Hausdorff metric on the space of all compact sets in IR3, hence there exists
a subsequence which converges to a compact set Rs, by Blashke’s convergence
theorem, and the unicity in Alexandrov’s gluing theorem ends the proof. ut
Theorem 2. For every convex polyhedron there exist infinitely many continuous
flat folding processes.

Proof. Let P be a convex polyhedron and let x be a point in P .
Step 1. Determine the cut locus C(x), which is a tree (see Lemma 1).
Step 2. Flatten the region T of P corresponding to an leaf edge E of C(x) (see

Lemma 2). The remaining part of P , after flattening T as above, is realized as
a convex polyhedron QE , by Alexandrov’s gluing theorem. Therefore, the result
PE after this flattening is isometric to P , and consists of the polyhedron QE

attached to the doubly covered triangle TE . TE should be laid clockwise about
the point x in order to avoid conflict.

Step 3. Iterate Step 2 for QE instead of P , until C(x,QE) is reduced to
a path; i.e., until QE is a doubly covered polygon. Lemma 3 guarantees the
iterations are possible, while Lemma 4 establishes the final form of Q.

Figs. 5(6) and 6(4) show the flat folded states of the cube after flattening all
such regions corresponding to leaf edges of C(x, P ).

Since there are O(n) vertices in C(x), where n is the number of vertices of
P (see Lemma 1), we have to flatten O(n) regions of P corresponding to leaf
edges of C(x,Q) one by one, and therefore the flattening process ends after O(n)
iterations.

All folding processes corresponding to leaf edges are continuous by Lemma
5, so P is continuously folded to a flat folded state. ut

4 Continuous Flattening Processes for Simple Flat
Folded States

In this section we give a sufficient condition for a flat folded state of a convex
polyhedron, to be reached by a continuous folding process.

Definition 3. A 2-covered convex polygon consists of two copies of a convex
polygon glued along some of their corresponding edges (the other edges are “cut”).

Figure 8(3) provides examples of 2-covered convex polygons. We will always
regard such surfaces with boundary as having two congruent layers touching at
their corresponding points, but glued along only some edges.
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Fig. 8. (1) A rectangular box B; (2) a simple flat folded state of B obtained by pushing
in two side faces of B; (3) a decomposition of the flat folded state into four congruent 2-
covered trapezoids and one 2-covered rectangle; (4) the region enclosed by two shortest
paths from x to y, corresponding to the doubly covered triangle xfb.

Definition 4. A flat folded state Pf of a convex polyhedron is called simple if
it enjoys the following properties:
(i) Pf can be decomposed into a finite number of 2-covered convex polygons
{Ri : 1 ≤ i ≤ k},
(ii) for any 1 ≤ i ≤ k, if R1, R2, · · · , Ri−1 were cut off from Pf , then Ri can
also be cut off from the remaining part of Pf by precisely one cut along an edge
of Ri.

Notice that all flat folded states obtained in Theorem 2 are simple, while
Theorem 1 provides examples of non-simple flat folded states; for example, the
flat folded states shown in Figs. 1(2) and 1(4) are not simple because they do
not satisfy the condition (ii). The folded state Pf showed in Fig. 1(2) or Fig.
1(4) can be decomposed into twelve 2-covered triangles Ri, but no Ri can be cut
off from Pf by precisely one cut along an edge of Ri.

Figure 8(2) shows a flat folded state of a rectangular box B, where two side
faces of B are pushed in. It is simple, because it can be decomposed into five
2-covered convex polygons as shown in Fig. 8(3), namely four congruent cut
doubly trapezoids and one 2-covered rectangle. However, it cannot be obtained
by the cut locus method described in the previous section.

Theorem 3. Every simple flat folded state of a convex polyhedron can be reached
by a continuous folding process.
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Proof. Let Pf be a simple flat folded state of a convex polyhedron P , decomposed
into a finite collection of 2-covered convex polygons {Ri : 1 ≤ i ≤ k} by cutting
Pf along some edge of Ri, one by one. By subdividing Ri (1 ≤ i ≤ k) if necessary,
we can assume, without loss of generality, that all Ri are 2-covered triangles.

We prove the result by induction over k.
If k = 1 then P = Pf and the conclusion holds.
Suppose now that the statement is true n, and assume k = n + 1 for Pf . Let

R1 be a 2-covered triangle4xyz with the edge xy cut and edges xz and yz glued.
Consider the cut locus C(x) = C(x, P ). Then E = yz is a leaf edge of C(x). By
Lemma 5, there exists a continuous folding process from P to the polyhedron
PE = QE ∪ R1. Notice that QE has the flat folded state QE,f consisting of
2-covered convex triangles {Ri : 2 ≤ i ≤ n+1}, and QE,f satisfies the condition
(ii) in Definition 4, with the edge xy of R2 glued. By the induction’s assumption,
QE,f can reached by a continuous folding process from QE . Therefore, Pf can
reached by a continuous folding process from P . ut

5 Remarks and Open Questions

Our first result in this paper proposes an algorithmic method to continuously
flatten convex polyhedra. Here, the assumption of convexity is essential at two
points. First, for the existence of the flat folded state we used the fact that
each edge of the cut locus is a shortest path (Lemma 1 (iii)), property which is
not true on non-convex surfaces. Second, for the continuity of the process, we
used the uniqueness in Alexandrov’s gluing theorem, which fails for non-convex
surfaces. Since essentially the same argument is employed to prove our second
result, a sufficient condition for the existence of continuous flattening processes,
our proof there also fails for non-convex surfaces.

Our approach raises several questions concerning the structure of cut loci.
Our flattening procedure starts with the cut locus C(x) of the point x in P ,

and at each step it treats (more precisely, it eliminates) all leaf edges of C(x).

Question 1. For which polyhedra can one find points x whose cut locus has
precisely one ramification point (i.e., C(x) is homeomorphic to a star graph)?
Generally, what is the minimal number of steps (i.e., of ramification points in
C(x)) to end the procedure on a convex polyhedron P with n vertices, if the
point x varies on P?

Consider now the continuous flattening process. It is based on a point con-
tinuously moving along C(x). Suppose the movement is at constant speed. Then
the flattening time is proportional to the length λC(x) of C(x), so it seems of
particular interest to find lower and upper bounds on λC(x).

Question 2. Can one locate on each P a point x with minimal length cut locus?

The starting point of our investigation is the question of Erik Demaine et al.
(see Open Problem 18.1 in [5]), on the existence of continuous folding processes
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for all flat folded states of (not necessarily convex) polyhedra. This problem
remains open, and can be rephrased –and widened– in a different framework, as
follows. Consider an abstract convex polyhedron P (i.e., one obtained according
to Alexandrov’s gluing theorem). It has a unique isometric embedding in IR3 as
a convex surface, but many other non-convex realizations in IR3 (see [8] for the
precise definitions).

Question 3. Let R denote the space of all realizations of P in IR3, with the
topology induced by the Hausdorff metric on the space of all compact sets in
IR3. Is R arcwise connected?

Acknowledgement. The authors are indebted to Joseph O’Rourke for his care-
ful reading of a preliminary version of this paper and his valuable suggestions,
particularly improving the proof of Lemma 5.
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