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Abstract. We find properties of the sets M�1
y of all points on a compact

orientable Alexandrov surface S, the distance functions of which have a common

maximum at y 2 S. For example, the components of M�1
y are arcwise connected

and their number is at most maxf1; 10g� 5g, where g is the genus of S. A special

attention receives the case of local tree components of M�1
y , providing a

relationship to the unit tangent cone at y.

1. Introduction.

In this paper, by surface we always mean a compact 2-dimensional

Alexandrov space with curvature bounded below (without boundary), as defined

by Burago, Gromov and Perelman in [3]. It is well-known that our surfaces

are topological manifolds. We refer the reader to [3], [10], [11] for basic facts on

surfaces, such as convergence theorems on shortest paths or on angles, the

generalized Toponogov theorem, and a description of the structure of the cut loci.

Let A be the space of all surfaces.

For any two points x; y on the surface S, denote by �ðx; yÞ the geodesic

distance between them, and by �x the distance function from x, �xðyÞ ¼ �ðx; yÞ.
Let Mx denote the set of all relative maxima of �x, and M the naturally induced

multivalued mapping, associating to any point x 2 S the set Mx. Similarly, Fx is

the set of all farthest points from x (absolute maxima of �x), Qx the set of all

critical points with respect to �x, and F , Q, are the corresponding multivalued

mappings.

As usual, the point y 2 S is called critical with respect to �x if for any vector v

tangent to S at y there exists a segment from y to x whose direction at y makes an

angle not larger than �=2 with v. For an interesting presentation of the principles,

as well as the applications, of the critical point theory for distance functions, see

the survey [5] by K. Grove.
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Properties of the mappings M, Q and F have recently been obtained in

[1], [6] and [14]. Various results concerning the mapping F on convex surfaces

can be found in the survey [13], which also announces some results of this paper,

in the particular framework of convex surfaces.

For any surface S, the space Ty of all unit tangent directions at y 2 S is a

closed Jordan curve of length �Ty at most 2� [3]. Call the point y conical if

�Ty < 2�, and smooth otherwise.

If f is a multivalued mapping defined on S with the set fx as image of x, put

f�1
y ¼ fx 2 S : y 2 fxg.

This study focuses on the sets M�1
y and, since M�1

y � Q�1
y (see Lemma 3), it

complements properties of the sets Q�1
y obtained in [1]; for example [1], if S is

orientable of genus g and y is a smooth point in S then 1 � cardQ�1
y �

maxf1; 8g� 4g, and an easy example shows the existence of conical points y with

infinitely many ‘‘inverse critical points’’.

Our Theorem 1 is valid for orientable surfaces. Roughly speaking, it states

that the components of the sets M�1
y are arcwise connected, and further describes

these components. A main consequence of these properties is Theorem 2: for

every orientable surface S of genus g and every point y in S, M�1
y has at

most maxf1; 10g� 5g components. If moreover �Ty > � then M�1
y is a local tree

(a tree if g ¼ 0), with at most 2g generating cycles and less than
�Ty

�Ty�� extremities

outside the cycles of the cut locus of y (Theorem 5). Theorem 4 prepares a part of

Theorem 5 by proving it, slightly more generally, for the sets Q�1
y , while

Theorem 3 shows that every finite tree can be realized as the set F�1
y , for some

point y on some surface S 2 A . Finally, Theorem 6 expresses the dependence of

�Ty on M�1
y and has a nice consequence in Corollary 3: a convex surface contains

at most 7 points y such that M�1
y is a tree with at least 3 extremities. Several

examples are given to complete the presentation.

The properties of a set M�1
y are not necessarily inherited by its subsets.

Nevertheless, one can easily see, following the proofs, that F�1
y enjoys as well

these properties. (This is why Theorem 3 deals with the mapping F�1, instead of

M�1 as all other results.) Therefore, our work can also be regarded as treating

global maxima, and thus it contributes to a description of the farthest points H.

Steinhaus had asked for (see Section A35 in [4]).

Throughout this paper, by segment we mean a shortest path between its

extremities. The cut locus CðxÞ of a point x in S is the set of all endpoints

different from x, called cut points, of maximal (with respect to inclusion)

segments starting at x. It is known that CðxÞ is a local tree (that is, each of

its points z has a neighbourhood V in S where the component KzðV Þ of z is a tree),

even a tree if g ¼ 0.

There are points x on surfaces, the cut locus of which is dense in the surface.
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(A large class of examples is provided, for example, by Theorem 4 in [16].) It will

turn out that, for our study, very important is the cyclic part CcpðxÞ of CðxÞ.
It is the minimal (with respect to inclusion) subset of CðxÞ, the exclusion of which

from S provides a topological disk. For every point x in every surface S 2 A ,

CcpðxÞ is a local tree with finitely many vertices [9], and each component of

C n CcpðxÞ is a tree.

Recall that a tree is a set T any two points of which can be joined by a unique

Jordan arc included in T . The degree of a point y of a local tree is the number of

components of KyðV Þ n fyg, if V is chosen such that KyðV Þ is a tree. A point y 2 T

is called an extremity of T if it has degree 1, and a ramification point of T if it has

degree at least 3. An internal edge of T is a Jordan arc which connects

ramification points of T .

For a set M � S, clM, intM and cardM stand – as usually – for the closure,

the interior and the cardinality of M, respectively. We denote by �G the length of

the curve G, by Bðx; rÞ the open intrinsic ball of radius r centered at x 2 S and by

½xv� the line-segment determined by the points x; v � R2.

2. General properties of M�1
y .

The goal of this section is to characterize the components of M�1
y , via

Theorem 1 and its consequences. The proof of Theorem 1 makes use of several

lemmas, with which we start.

LEMMA 1. Let S 2 A and y 2 S. Suppose the points v; z 2 CðyÞ are each

joined to y by two (possibly coinciding) segments �1vy, �
2
vy and respectively �1zy, �

2
zy,

the union of which cuts off from S a closed set � contractible to a topological circle.

Then there exists a Jordan arc Jvz � CðyÞ joining v to z, every interior point of

which belongs to � and can be joined to y by two segments, the union of which

separates v from z in �.

PROOF. The existence of the Jordan arc Jvz � CðyÞ joining v to z follows

from the properties of CðyÞ (see, for example, [11]). The separability was

established, for convex surfaces, by Lemma 1 in [15]. The arguments therein also

hold under our more general assumptions, and will not be repeated here. �

Next result was implicitly established for convex surfaces within the proof of

Theorem 5 in [12], but the same arguments are valid in a more general

framework.

LEMMA 2. Let ðA; �Þ be an Alexandrov space with curvature bounded below,

and �ac, �bd be segments joining the points a; c 2 A and respectively b; d 2 A. If

�ac \ �bd ¼ feg and �ða; bÞ þ �ðc; dÞ � �ða; cÞ þ �ðb; dÞ, then a ¼ d, or b ¼ c, or
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a ¼ c, or b ¼ d.

The following statement is easily proven using Proposition 2.4 in [11].

LEMMA 3. On S 2 A , let �; �0 be (possibly coinciding) segments from x to y

and D a component of the complement of � [ �0 in an open disc around y. If the

angle of �; �0 at y toward D is smaller than � then there exists " > 0 such that y is a

strict maximum for the restriction of the distance function �x to Bðy; "�ðx; yÞÞ \D.

Conversely, if y 2 Mx then y 2 Qx; in particular, if �Ty > � then there are at least

two segments from x to y.

The next result will help to reduce the study of M�1
y to that of M�1

y \ CðyÞ.

LEMMA 4. Assume S 2 A and y 2 S. If x 2 M�1
y n CðyÞ then M�1

y contains

the whole segment from x to the cut point of y in the direction of x.

PROOF. We show that M�1
y contains, together with x, the cut point z of y

along the segment �yx, as well as the arc �xz of the segment �yz � �yx. To see this,

consider a neighbourhood V of y such that �ðx; vÞ � �ðx; yÞ for all v 2 V . If

u 2 �xz n fxg then we have, for all w 2 V ,

�ðu; yÞ ¼ �ðu; xÞ þ �ðx; yÞ � �ðu; xÞ þ �ðx; wÞ � �ðu; wÞ;

and the proof is complete. �

COROLLARY 1. For every point y on every orientable surface S, S nM�1
y is

connected.

PROOF. Suppose S nM�1
y is disconnected. Denote by S0 the component

of S nM�1
y containing y, and take a point u in a component S00 6¼ S0 of S nM�1

y .

Then each segment �yu from y to u meets bdS0 � M�1
y . Take a point x in

M�1
y \ �yu, so y 2 Mx and, by Lemma 4, all points of �yu from x to u also belong

to M�1
y . In particular u 2 M�1

y and a contradiction is obtained. �

THEOREM 1. Let S 2 A be an orientable surface and y a point in S.

a) If two points of M�1
y lie in the same edge of CcpðyÞ, or on the same

component of CðyÞ n CcpðyÞ, then they belong to the same arcwise connected

component of M�1
y .

b) If there exists a point v in M�1
y \ CðyÞ n CcpðyÞ then M�1

y is connected or the

component of v in M�1
y intersects CcpðyÞ.

c) For any two points in the same component of M�1
y there exists a Jordan arc

J � M�1
y joining them such that J n CðyÞ is the union of at most two segments. In

particular, each component of M�1
y is arcwise connected.
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PROOF. a) If the points v; z 2 M�1
y are interior to the same edge of CcpðyÞ,

or to the same component of CðyÞ n CcpðyÞ, then there exists a set � as in

Lemma 1 such that, moreover, � contains all segments from v and z to y. Let �1vy,

�2vy and respectively �1zy, �
2
zy, denote the segments bounding �.

We claim that the Jordan arc Jvz � CðyÞ joining v to z in � is included

in M�1
y .

To prove the claim, consider a neighbourhood V of y such that �ðv; wÞ �
�ðv; yÞ and �ðz; wÞ � �ðz; yÞ hold for all points w 2 V . By possibly passing to

an open subset of V , we may assume that clð� [ V Þ is a topological cylinder,

because S is orientable. Choose u 2 Jvz n fv; zg, and assume y is not a local

maximum for �u. Then there exist points y0 ! y such that �ðu; y0Þ � �ðu; yÞ.
Let �1uy; �

2
uy be two segments from y to u, the union of which separates v from z

in �. Then O ¼ �1uy [ �2uy also separates y0 in clð� [ V Þ either from v or from z.

Assume the former be true and choose a segment �vy0 from v to y0 (see Figure 1).

Then, for y0 close to y, �vy0 is close to a segment from v to y, and therefore it cuts O,

say at eð6¼ yÞ. Assume e 2 �1uy. Summing up the inequalities �ðu; y0Þ � �ðu; yÞ and
�ðv; yÞ � �ðv; y0Þ, we obtain

�ðu; y0Þ þ �ðv; yÞ � �ðv; y0Þ þ �ðu; yÞ:

Figure 1.

Common maxima of distance functions on Alexandrov surfaces 55



Then, the other equality cases in Lemma 2 being easily excluded, y0 ¼ y and the

claim is proven: Jvz � M�1
y .

b) Assume there exist points v; z 2 M�1
y \ CðyÞ such that v =2 CcpðyÞ and z

belongs either to CcpðyÞ or to another component of CðyÞ n CcpðyÞ than v. Figure 2

a) presents the case v; z =2 CcpðyÞ (the arrows are indicating segments to y), while

Figure 2 b) illustrates images of the points in Figure 2 a) onto Ty.

Denote by Jvz a (minimal with respect to inclusion) Jordan arc of CðyÞ joining v

to z, and by x the point of Jvz \ CcpðyÞ closest to v along Jvz. Let Jvx be the

subarc of Jvz from v to x. Eventhought Jvz needs not to be unique, x and Jvx are

uniquely determined by the assumption v =2 CcpðyÞ.
Then, for each point u interior to Jvx, the union of segments from u to

y separates v from z in S, hence the arguments proving a) completely apply to

show intJvx � M�1
y .

We claim that x belongs to M�1
y , too. This is not directly implied by the

previous considerations and passing to the limit, because the set M�1
y is not

necessarily closed. Assume x 6¼ z, since otherwise there is nothing to justify.

To prove the claim, choose a sequence of points un 2 Jvx converging to x,

each point of which is joint to y by precisely two segments, say �1uny and �2uny. This

choice is possible because CðyÞ has at most countably many ramification points.

Denote by Sv
n, respectively Sz

n, the component of S n ð�1uny [ �2unyÞ containing
v, respectively z. Also denote by �n, �n the angles at y of �1uny and �2uny towards S

v
n,

respectively Sz
n. Then, by the last part of Lemma 3, �n � � and �n � �. Passing

to the limit we get segments �1xy ¼ limn!1 �1uny and �2xy ¼ limn!1 �2uny from x to y

such that their angles �, respectively � at y towards v, respectively z, verify

� � lim infn!1�n � �

a) b)

Figure 2.
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and

� � lim infn!1�n � �:

Observe now that � < �, because z 2 M�1
y . Indeed, since x 6¼ z, there exist

two segments from y to z, the angle � of which at y strictly contains �. But � � �,

by the last part of Lemma 3, hence � < �.

Since x is a ramification point of CðyÞ, there exists a segment �3xy from y to x

whose direction at y divides � into angles strictly less than �.

Therefore, by the first part of Lemma 3, x 2 M�1
y and the proof of b) is

complete.

c) Choose points x; x� in a component C of M�1
y in S.

For any real number � > 0 there exists a finite covering of C (since it exists

for S) with closed intrinsic balls B1; . . . ; Bn in S of diameter maxnj¼1 diamBj < �,

where the integer n � 1 depends on �. Assume x 2 B1 and x� 2 Bn. By the

connectedness of C, B1 \
Sn

j¼2 Bj 6¼ ;, say B1 \ B2 6¼ ;. Then ðB1 [ B2Þ \Sn
j¼3 Bj 6¼ ; as well. Iterating, we can find a finite sequence of balls B1 ¼

Bi1 ; . . . ; Bim ¼ Bn such that Bi� \Bi�þ1
6¼ ;, for � ¼ 1; . . . ;m� 1 and

fi1; . . . ; img � f1; . . . ; ng. Therefore, it suffices to verify that points in C close

enough to each other, say in the same closed intrinsic ball of diameter �, belong

to the same arcwise connected component of M�1
y .

Assume x; x� 2 C \ B1 and let z; z� be the cut points of y in the directions

of x; x�, respectively. Our choice directly implies that z is close to z�, by the

convergence of segments.

If fz; z�g � CðyÞ n CcpðyÞ, or z; z� belong to the same edge E of CcpðyÞ, then
the conclusion follows by Lemma 4 and a). Indeed, the Jordan arc J joining z

to z� in CðyÞ n CcpðyÞ, respectively in E, is included in M�1
y , as well as the whole

segment from x to z, respectively from x� to z�.

Assume now z belongs to a tree component T of CðyÞ n CcpðyÞ and z� is

in CcpðyÞ, or z; z� belong to different edges E;E� of CcpðyÞ. By letting � ! 0, we

get – say – sequences xn ! x� and respectively zn ! z�, where x ¼ x1, z ¼ z1, zn
is the cut point of y in the direction of xn and moreover, according to the case,

all points zn are either in T or in E. Therefore, either T connects to CcpðyÞ at z�,
or z� 2 E \ E�.

To end the proof, observe that the whole Jordan arc J joining z to z� either in

T [ fz�g, or in E, is included in M�1
y . Indeed, for any point u 2 J there exists a

point xnu
2 J closer to z� than u, hence u lies in J between x and xnu

and therefore

the arguments at a) completely apply. Moreover, Lemma 4 shows that the whole

segment from x to z, respectively from x� to z�, is also included in M�1
y . �
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THEOREM 2. For every orientable surface S of genus g and every point y in

S, M�1
y has at most maxf1; 10g� 5g components.

PROOF. If g ¼ 0 then M�1
y is connected, as follows easily from the proof of

a) in Theorem 1, so we may assume from now on that g > 0.

Notice that, by b) in Theorem 1, if M�1
y has a component disjoint to CcpðyÞ

then M�1
y consists of precisely that component. Assume this is not the case. Then

the interior of each edge of CcpðyÞ may intersect at most one component of M�1
y ,

by a) in Theorem 1, and moreover each vertex of CcpðyÞ may belong to a

component of M�1
y . Since CcpðyÞ is a graph with 2g generating cycles, its maximal

number of edges is 6g� 3, while for counting together edges and vertices yields

at most 10g� 5 (a proof of this fact is given in [1]). �

3. Local tree components of M�1
y .

The main purpose of the last part of this paper is to highlight a strong

relationship between �Ty and the structure of M�1
y , with Theorems 4 to 6. Before

this we show, by Theorem 3, that the objects we shall talk about do exist.

The following result slightly strengthens Theorem 9 in [8]. The proof follows

the same argument, with a simple modification, and will not be repeated here.

LEMMA 5. Every combinatorial type of finite tree can be realized as the cut

locus CðyÞ of some point y on some doubly covered convex polygon, such that the

internal edges of CðyÞ are arbitrarily small compared to the external ones.

We shall employ the following hinge variant of the Toponogov’s comparaison

theorem. For, let �H denote the distance on the simply connected 2-dimensional

space MH of constant curvature H.

LEMMA 6. Let � be a domain in the surface S 2 A , bounded by the

segments �i : ½0; li� ! S, i ¼ 1; 2; 3. Assume the curvature exists on � and verifies

K � H. Assume moreover that the segments �1; �2 make an angle of � at the point

�1ð0Þ ¼ �2ð0Þ. Consider segments ���i : ½0; li� ! MH, i ¼ 1; 2, making an angle of � at

the point ���1ð0Þ ¼ ���2ð0Þ. Then �ð�1ðl1Þ; �2ðl2ÞÞ � �Hð���1ðl1Þ; ���2ðl2ÞÞ.

We shall write T � T 0 if the trees T and T 0 have the same combinatorial

structure.

THEOREM 3. Every finite tree can be realized as the set F�1
y , for some point

y on some surface S 2 A .

PROOF. For every tree T there exists, by Lemma 5, a convex surface P and

a point z in P such that CðzÞ � T . Remark that Fz contains at least one smooth
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point o of P . Therefore, since P is piecewise Euclidean, there are at least three

segments from z to o, hence o is a ramification point of CðzÞ. Moreover, since z is

not a vertex of P , there exists a circle C � P centered at z of radius smaller than

the injectivity radius at z.

Choose a circle C� parallel to C and of smaller radius. Cut along C� and

smoothly connect to P n C� a right circular cone of apex y whose total angle is

�Ty ¼ �, with y on the line orthogonal to the centre of C�. The above connection

can be done such that the curvature of the glued piece V is nonpositive

everywhere except at y. The resulting surface S is Alexandrov, S 2 A , and the

distance function from y on S clearly coincides, on P n C� ¼ S n V , to the distance

function from z on P . Next considerations will all refer to S.

Notice that C is a distance circle from y, so CðyÞ � T . Moreover, o 2 F�1
y by

the construction.

Observe now that each point in F�1
y is necessarily joined to y by at least 2

segments. For, choose v 2 S with a unique shortest path �vy to y, and a segment

�yw starting at y orthogonally to �vy. If w is close enough to y then the triangle

wvy contains no vertex of P , so its curvature exists and is nonpositive. Construct

a planar triangle �ww�vv�yy such that k �ww� �yyk ¼ �ðw; yÞ, k�yy� �vvk ¼ �ðy; vÞ and
=��vv�yy �ww ¼ �=2. By Lemma 6,

�ðv; wÞ � k�vv� �wwk > k�vv� �yyk ¼ �ðv; yÞ:

Then, since F�1
y is closed, it consists of points interior to CðyÞ with respect

to the relative topology.

We claim that every point x 2 CðyÞ n fog close enough to o also belongs to

F�1
y . Indeed, such x is joined to y by precisely two segments, which make at y an

angle �x < �. By Lemma 3, �ðx; yÞ > �ðx; uÞ for all points u in some small ball

Bðy; "�ðx; yÞÞ n fyg. By the upper semicontinuity of F , if x is close to o then Fx is

close to y ¼ Fo. Thus, for any point x in CðyÞ close enough to o we obtain

Fx � Bðy; "�ðx; yÞÞ, whence Fx ¼ y, and the claim is proved.

Therefore, F�1
y is a subtree of CðyÞ and moreover, all points of CðyÞ

close enough to o belong to F�1
y . So, if the ramification points of CðyÞ are close to

each other then they all belong to F�1
y . �

REMARK. By a somewhat similar – yet, since it settles by direct induction

a variant of Lemma 5, quite lengthy – argument, one can prove that for any

tree T there exists a convex pyramid P of apex y with total angle 	y ¼ � such

that F�1
y � CðyÞ � T . The constructed surface can be smoothened everywhere

except at y, while keeping the desired properties.
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EXAMPLE. The set M�1
y may be a local tree but not necessarily a tree.

To see this, consider a flat Riemannian surface F 2 A and a point z 2 F . The

radius of injectivity injðzÞ at z is positive, hence we may cut off from F a disk D

around z of radius smaller than injðzÞ, and smoothly glue instead a right circular

cone of apex y whose total angle is �Ty ¼ �, such that the curvature of the glued

piece is nonpositive everywhere except at y. Lemmas 3 and 6 now show that, on

the new surface, M�1
y contains all points in, possibly excepting some extremities

(if any), of CðyÞ. �

REMARK. If �Ty < � then M�1
y ¼ S n fyg, directly from Lemma 3. Con-

versely, if M�1
y has nonempty interior in S then �Ty � �, by M�1

y n CðyÞ 6¼ ; and

Lemma 3 again.

If �Ty ¼ � then M�1
y may be a local tree (as shown in Theorem 3 or by the

previous example), or it may have interior points. The last situation is illustrated

by the special case of a Tannery surface with parameters p ¼ 2 and q ¼ 1 (see [2],

p.95 and p.102 for the precise definitions), as it follows from Theorem 11 in [14].

Concluding, if �Ty < � then M�1
y ¼ S n fyg and there is nothing more to say,

and if �Ty ¼ � then one cannot generally characterize M�1
y . The main part of this

section will be devoted to describe the structure of M�1
y in the case �Ty > �.

We continue with a result treating – slightly more generally – the sets Q�1
y

instead of M�1
y . Before, notice that �Ty � � directly implies, by the definition of

the critical points, Q�1
y ¼ S n fyg. The case �Ty ¼ 2� is treated in [1].

THEOREM 4. If the surface S is orientable and y 2 S such that �Ty > � then

Q�1
y is contained in a local tree of CðyÞ with less than

�Ty

�Ty�� extremities outside the

cycles of CðyÞ.

PROOF. Each point of Q�1
y is joined to y by at least two segments, because

�Ty > �. If Q�1
y � CcpðyÞ there is nothing to prove, since CcpðyÞ is itself a local tree

of CðyÞ without extremities. So we can assume that Q�1
y is included in some

connected local tree T 0 of CðyÞ with m extremities outside CcpðyÞ, say x1; . . . ; xm.

Consider a minimal with respect to inclusion, connected local tree T of T 0 which

contains x1; . . . ; xm; in particular, T has no other extremity.

Denote by �i the maximal domain of S bounded by segments from xi to y

such that T � S n�i, and by �i the angle of �i at y, hence �Ty � �i � �. Since
Sm

i¼1 �i is strictly included in S, �m
i¼1�i < �Ty and we get

m� � �m
i¼1ð�Ty � �iÞ ¼ m�Ty � �m

i¼1�i > ðm� 1Þ�Ty;

whence �Ty <
m

m�1
� or, equivalently, m <

�Ty

�Ty��
. �
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THEOREM 5. Suppose the surface S is orientable of genus g and y 2 S such

that �Ty > �. ThenM�1
y is a local tree with at mostmaxf1; 10g� 5g components, it

has at most 2g generating cycles and less than
�Ty

�Ty�� extremities outside the cycles

of CðyÞ.

PROOF. Last part of Lemma 3 together with �Ty > � directly imply

M�1
y � CðyÞ. Theorem 1 and the properties of CðyÞ show that M�1

y is a local

tree, the tree case being obtained from Corollary 1.

The number of components of M�1
y follows from Theorem 2 and M�1

y � CðyÞ.
Since CðyÞ has 2g generating cycles, this gives an upper bound for the number

of the generating cycles of M�1
y � CðyÞ.

Finally if M�1
y has only one extremity outside CcpðyÞ then clearly 1 <

�Ty

�Ty��.

Otherwise, for each extremity xi (i ¼ 1; . . . ;m) of M�1
y outside CcpðyÞ, there is a

tree component Ti of xi in M�1
y \ CðyÞ n CcpðyÞ such that M�1

y � clTi \ CcpðyÞ 6¼ ;,
by b) of Theorem 1, and Theorem 4 ends the proof. �

The next result is obtained by adding to the upper bound in Theorem 5 the

maximal number of vertices of CcpðyÞ, as well as twice the corresponding number

of edges of CcpðyÞ (see the final part in the proof of Theorem 2).

COROLLARY 2. If the surface S is orientable and y 2 S such that �Ty > �

then M�1
y is a local tree with less than

�Ty

�Ty�� þ 16g� 8 extremities.

REMARK. Theorems 4 and 5 may be compared to results of J. Itoh [7] and

T. Zamfirescu [17], valid for Riemannian surfaces. They showed that, eventhough

Qx may be totally disconnected and may have uncountably many points, and

CðxÞ may be non-triangulable, Qx must belong to a single handsome tree in CðxÞ,
the number of endpoints of which is bounded by above by a constant depending

only on the positive curvature of S.

The statement of Theorem 5 can also be seen as a restriction on �Ty put by

the set M�1
y , in which case we get the following theorem and corollary.

THEOREM 6. Let S be an orientable surface and y a point in S. If M�1
y is

included in CðyÞ and has m > 1 extremities outside the cycles of CðyÞ, or if a tree

component of M�1
y contains no vertex of CcpðyÞ and has m > 1 extremities, then

� � �Ty <
m

m�1 �.

PROOF. The inequality �Ty � � follows from Lemma 3, and the first case is

covered by Theorem 5.

The second case needs a little more care. Denote by xi (i ¼ 1; . . . ;m) the

extremities of a tree component C of M�1
y without vertices of CcpðyÞ. Theorem 1
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together with intC ¼ ; imply C is included in the (arcwise connected) union of

CðyÞ with some subsegments of segments from y. If there is an extremity xi

outside CðyÞ then �Ty ¼ � (by Lemma 3) and the inequality is satisfied. So we

may assume that all extremities xi are on CðyÞ; therefore, C � CðyÞ and the

ramification points of C are ramifications of CðyÞ. Then, because the set of

ramification points of the tree CðyÞ is at most countable, there are points x0
i 2

C \ CðyÞ which are joined to y by precisely two segments, say �i and �0i.

Since C � CðyÞ contains no vertex of CcpðyÞ, there exists a subset SC of S

homeomorphic to a cylinder such that all segments from y to the points of C are

included in SC . Thus, if x
0
i is close to xi then �i [ �0i separates in SC xi from all

extremities of C n fxig. The rest of the proof runs similarly to that of Theorem 5

and will not be repeated. �

Let Tm denote any tree with m extremities. An interesting consequence of

Theorem 6 is the following.

COROLLARY 3. A convex surface S contains at most 7 points y such that

M�1
y � T�3, or at most 5 points y such that M�1

y � T4�m�6, or at most 4 points y

such that M�1
y � T�7. Moreover, S contains at most 3 points y with intM�1

y 6¼ ;.

PROOF. Let S 2 A be convex and m � 3; the total curvature at y can be

expressed, by Theorem 6, as

!y ¼ 2�� �Ty > 2��
m

m� 1
� ¼ ��

1

m� 1
� � �=2:

Since the total curvature of S is equal to 4�, there are at most 7 points y 2 S such

that M�1
y � Tm with m � 3. The other estimations follow similarly.

Assume now intM�1
y 6¼ ;, hence �Ty � � by Lemma 3. Then the total

curvature at y is !y ¼ 2�� �Ty � �, and there are at most k � 4 points y 2 S with

intM�1
y 6¼ ;. Suppose k ¼ 4, so S is flat everywhere excepting its vertices y (where

!y ¼ �Ty ¼ �), hence S is either a doubly covered rectangle or a tetrahedron with

curvature � at each of its vertices. On doubly covered rectangles M�1
y is an arc for

each vertex y, while in the case of tetrahedra all vertices y haveM�1
y � T3, because

CðyÞ � T3 and M�1
y � CðyÞ, M�1

y � CðyÞ, just as in the proof of Theorem 3.

Therefore, k < 4. �

EXAMPLE. In the following we provide a convex surface having a countable

set of points xn with Fxn an arc, and a countable set of points yn with F�1
yn

an arc,

so proving that the last inequality in Theorem 6 – and thus that in Theorem 5 – is

sharp. It also shows that the assumption m � 3 in M�1
y � Tm within Corollary 3 is

necessary.
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Take in a plane a quarter of circle with the centre at o, bounded by the radii

½ox� and ½oy0�, and denote it by J0 (see Figure 3).

Let x1 be the mid-point of ½ox� and y1 the point on the bisector of the angle
=�ox1y0 determined by kx1 � y0k ¼ kx1 � y1k. Let J1 be the smallest arc of

circle centered at x1 between y0 and y1. Inductively, let xn be the mid-point of

the segment ½xxn�1� and yn the point on the bisector of the angle =�oxnyn�1 such

that kxn � yn�1k ¼ kxn � ynk. Denote by Jn the smallest arc of circle centered at

xn between yn�1 and yn. The sequence fyngn�0 converges to a point y on the line ox

and limn!1 xn ¼ x.

Let S be the doubly-covered compact planar region bounded by

[n�0Jn [ ½xy�. One can easily check on S that Fx ¼ y, and for all integers n � 1

we have Fxn ¼ Jn and F�1
yn

¼ ½xnxnþ1�. �
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