Common maxima of distance functions on orientable Alexandrov surfaces

By Costin VÎlcu

(Received Nov. 30, 2005)
(Revised Feb. 7, 2007)

Abstract

We find properties of the sets M_{y}^{-1} of all points on a compact orientable Alexandrov surface S, the distance functions of which have a common maximum at $y \in S$. For example, the components of M_{y}^{-1} are arcwise connected and their number is at most $\max \{1,10 g-5\}$, where g is the genus of S. A special attention receives the case of local tree components of M_{y}^{-1}, providing a relationship to the unit tangent cone at y.

1. Introduction.

In this paper, by surface we always mean a compact 2-dimensional Alexandrov space with curvature bounded below (without boundary), as defined by Burago, Gromov and Perelman in [3]. It is well-known that our surfaces are topological manifolds. We refer the reader to $[\mathbf{3}],[\mathbf{1 0}],[\mathbf{1 1}]$ for basic facts on surfaces, such as convergence theorems on shortest paths or on angles, the generalized Toponogov theorem, and a description of the structure of the cut loci. Let \mathscr{A} be the space of all surfaces.

For any two points x, y on the surface S, denote by $\rho(x, y)$ the geodesic distance between them, and by ρ_{x} the distance function from $x, \rho_{x}(y)=\rho(x, y)$. Let M_{x} denote the set of all relative maxima of ρ_{x}, and M the naturally induced multivalued mapping, associating to any point $x \in S$ the set M_{x}. Similarly, F_{x} is the set of all farthest points from x (absolute maxima of ρ_{x}), Q_{x} the set of all critical points with respect to ρ_{x}, and F, Q, are the corresponding multivalued mappings.

As usual, the point $y \in S$ is called critical with respect to ρ_{x} if for any vector v tangent to S at y there exists a segment from y to x whose direction at y makes an angle not larger than $\pi / 2$ with v. For an interesting presentation of the principles, as well as the applications, of the critical point theory for distance functions, see the survey [5] by K. Grove.

[^0]Properties of the mappings M, Q and F have recently been obtained in $[\mathbf{1}],[\mathbf{6}]$ and $[\mathbf{1 4}]$. Various results concerning the mapping F on convex surfaces can be found in the survey [13], which also announces some results of this paper, in the particular framework of convex surfaces.

For any surface S, the space T_{y} of all unit tangent directions at $y \in S$ is a closed Jordan curve of length λT_{y} at most 2π [3]. Call the point y conical if $\lambda T_{y}<2 \pi$, and smooth otherwise.

If f is a multivalued mapping defined on S with the set f_{x} as image of x, put $f_{y}^{-1}=\left\{x \in S: y \in f_{x}\right\}$.

This study focuses on the sets M_{y}^{-1} and, since $M_{y}^{-1} \subset Q_{y}^{-1}$ (see Lemma 3), it complements properties of the sets Q_{y}^{-1} obtained in [1]; for example [$\left.\mathbf{1}\right]$, if S is orientable of genus g and y is a smooth point in S then $1 \leq \operatorname{card} Q_{y}^{-1} \leq$ $\max \{1,8 g-4\}$, and an easy example shows the existence of conical points y with infinitely many "inverse critical points".

Our Theorem 1 is valid for orientable surfaces. Roughly speaking, it states that the components of the sets M_{y}^{-1} are arcwise connected, and further describes these components. A main consequence of these properties is Theorem 2: for every orientable surface S of genus g and every point y in S, M_{y}^{-1} has at most max $\{1,10 g-5\}$ components. If moreover $\lambda T_{y}>\pi$ then M_{y}^{-1} is a local tree (a tree if $g=0$), with at most $2 g$ generating cycles and less than $\frac{\lambda T_{y}}{\lambda T_{y}-\pi}$ extremities outside the cycles of the cut locus of y (Theorem 5). Theorem 4 prepares a part of Theorem 5 by proving it, slightly more generally, for the sets Q_{y}^{-1}, while Theorem 3 shows that every finite tree can be realized as the set F_{y}^{-1}, for some point y on some surface $S \in \mathscr{A}$. Finally, Theorem 6 expresses the dependence of λT_{y} on M_{y}^{-1} and has a nice consequence in Corollary 3: a convex surface contains at most 7 points y such that M_{y}^{-1} is a tree with at least 3 extremities. Several examples are given to complete the presentation.

The properties of a set M_{y}^{-1} are not necessarily inherited by its subsets. Nevertheless, one can easily see, following the proofs, that F_{y}^{-1} enjoys as well these properties. (This is why Theorem 3 deals with the mapping F^{-1}, instead of M^{-1} as all other results.) Therefore, our work can also be regarded as treating global maxima, and thus it contributes to a description of the farthest points H. Steinhaus had asked for (see Section A35 in [4]).

Throughout this paper, by segment we mean a shortest path between its extremities. The cut locus $C(x)$ of a point x in S is the set of all endpoints different from x, called cut points, of maximal (with respect to inclusion) segments starting at x. It is known that $C(x)$ is a local tree (that is, each of its points z has a neighbourhood V in S where the component $K_{z}(V)$ of z is a tree), even a tree if $g=0$.

There are points x on surfaces, the cut locus of which is dense in the surface.
(A large class of examples is provided, for example, by Theorem 4 in [16].) It will turn out that, for our study, very important is the cyclic part $C^{c p}(x)$ of $C(x)$. It is the minimal (with respect to inclusion) subset of $C(x)$, the exclusion of which from S provides a topological disk. For every point x in every surface $S \in \mathscr{A}$, $C^{c p}(x)$ is a local tree with finitely many vertices [9], and each component of $C \backslash C^{c p}(x)$ is a tree.

Recall that a tree is a set T any two points of which can be joined by a unique Jordan arc included in T. The degree of a point y of a local tree is the number of components of $K_{y}(V) \backslash\{y\}$, if V is chosen such that $K_{y}(V)$ is a tree. A point $y \in T$ is called an extremity of T if it has degree 1 , and a ramification point of T if it has degree at least 3. An internal edge of T is a Jordan arc which connects ramification points of T.

For a set $M \subset S, \operatorname{cl} M, \operatorname{int} M$ and $\operatorname{card} M$ stand - as usually - for the closure, the interior and the cardinality of M, respectively. We denote by λG the length of the curve G, by $B(x, r)$ the open intrinsic ball of radius r centered at $x \in S$ and by $[x v]$ the line-segment determined by the points $x, v \subset \mathbf{R}^{2}$.

2. General properties of M_{y}^{-1}.

The goal of this section is to characterize the components of M_{y}^{-1}, via Theorem 1 and its consequences. The proof of Theorem 1 makes use of several lemmas, with which we start.

Lemma 1. Let $S \in \mathscr{A}$ and $y \in S$. Suppose the points $v, z \in C(y)$ are each joined to y by two (possibly coinciding) segments $\gamma_{v y}^{1}, \gamma_{v y}^{2}$ and respectively $\gamma_{z y}^{1}, \gamma_{z y}^{2}$, the union of which cuts off from S a closed set Δ contractible to a topological circle. Then there exists a Jordan arc $J_{v z} \subset C(y)$ joining v to z, every interior point of which belongs to Δ and can be joined to y by two segments, the union of which separates v from z in Δ.

Proof. The existence of the Jordan arc $J_{v z} \subset C(y)$ joining v to z follows from the properties of $C(y)$ (see, for example, [11]). The separability was established, for convex surfaces, by Lemma 1 in [15]. The arguments therein also hold under our more general assumptions, and will not be repeated here.

Next result was implicitly established for convex surfaces within the proof of Theorem 5 in [12], but the same arguments are valid in a more general framework.

Lemma 2. Let (A, ρ) be an Alexandrov space with curvature bounded below, and $\gamma_{a c}, \gamma_{b d}$ be segments joining the points $a, c \in A$ and respectively $b, d \in A$. If $\gamma_{a c} \cap \gamma_{b d}=\{e\}$ and $\rho(a, b)+\rho(c, d) \geq \rho(a, c)+\rho(b, d)$, then $a=d$, or $b=c$, or
$a=c$, or $b=d$.
The following statement is easily proven using Proposition 2.4 in [11].
Lemma 3. On $S \in \mathscr{A}$, let γ, γ^{\prime} be (possibly coinciding) segments from x to y and D a component of the complement of $\gamma \cup \gamma^{\prime}$ in an open disc around y. If the angle of γ, γ^{\prime} at y toward D is smaller than π then there exists $\varepsilon>0$ such that y is a strict maximum for the restriction of the distance function ρ_{x} to $B(y, \varepsilon \rho(x, y)) \cap D$. Conversely, if $y \in M_{x}$ then $y \in Q_{x}$; in particular, if $\lambda T_{y}>\pi$ then there are at least two segments from x to y.

The next result will help to reduce the study of M_{y}^{-1} to that of $M_{y}^{-1} \cap C(y)$.
Lemma 4. Assume $S \in \mathscr{A}$ and $y \in S$. If $x \in M_{y}^{-1} \backslash C(y)$ then M_{y}^{-1} contains the whole segment from x to the cut point of y in the direction of x.

Proof. We show that M_{y}^{-1} contains, together with x, the cut point z of y along the segment $\gamma_{y x}$, as well as the arc $\gamma_{x z}$ of the segment $\gamma_{y z} \supset \gamma_{y x}$. To see this, consider a neighbourhood V of y such that $\rho(x, v) \leq \rho(x, y)$ for all $v \in V$. If $u \in \gamma_{x z} \backslash\{x\}$ then we have, for all $w \in V$,

$$
\rho(u, y)=\rho(u, x)+\rho(x, y) \geq \rho(u, x)+\rho(x, w) \geq \rho(u, w),
$$

and the proof is complete.
Corollary 1. For every point y on every orientable surface $S, S \backslash M_{y}^{-1}$ is connected.

Proof. Suppose $S \backslash M_{y}^{-1}$ is disconnected. Denote by S^{\prime} the component of $S \backslash M_{y}^{-1}$ containing y, and take a point u in a component $S^{\prime \prime} \neq S^{\prime}$ of $S \backslash M_{y}^{-1}$. Then each segment $\gamma_{y u}$ from y to u meets $\operatorname{bd} S^{\prime} \subset M_{y}^{-1}$. Take a point x in $M_{y}^{-1} \cap \gamma_{y u}$, so $y \in M_{x}$ and, by Lemma 4, all points of $\gamma_{y u}$ from x to u also belong to M_{y}^{-1}. In particular $u \in M_{y}^{-1}$ and a contradiction is obtained.

Theorem 1. Let $S \in \mathscr{A}$ be an orientable surface and y a point in S.
a) If two points of M_{y}^{-1} lie in the same edge of $C^{c p}(y)$, or on the same component of $C(y) \backslash C^{c p}(y)$, then they belong to the same arcwise connected component of M_{y}^{-1}.
b) If there exists a point v in $M_{y}^{-1} \cap C(y) \backslash C^{c p}(y)$ then M_{y}^{-1} is connected or the component of v in M_{y}^{-1} intersects $C^{c p}(y)$.
c) For any two points in the same component of M_{y}^{-1} there exists a Jordan arc $J \subset M_{y}^{-1}$ joining them such that $J \backslash C(y)$ is the union of at most two segments. In particular, each component of M_{y}^{-1} is arcwise connected.

Proof. a) If the points $v, z \in M_{y}^{-1}$ are interior to the same edge of $C^{c p}(y)$, or to the same component of $C(y) \backslash C^{c p}(y)$, then there exists a set Δ as in Lemma 1 such that, moreover, Δ contains all segments from v and z to y. Let $\gamma_{v y}^{1}$, $\gamma_{v y}^{2}$ and respectively $\gamma_{z y}^{1}, \gamma_{z y}^{2}$, denote the segments bounding Δ.

We claim that the Jordan arc $J_{v z} \subset C(y)$ joining v to z in Δ is included in M_{y}^{-1}.

To prove the claim, consider a neighbourhood V of y such that $\rho(v, w) \leq$ $\rho(v, y)$ and $\rho(z, w) \leq \rho(z, y)$ hold for all points $w \in V$. By possibly passing to an open subset of V, we may assume that $\operatorname{cl}(\Delta \cup V)$ is a topological cylinder, because S is orientable. Choose $u \in J_{v z} \backslash\{v, z\}$, and assume y is not a local maximum for ρ_{u}. Then there exist points $y^{\prime} \rightarrow y$ such that $\rho\left(u, y^{\prime}\right) \geq \rho(u, y)$.

Let $\gamma_{u y}^{1}, \gamma_{u y}^{2}$ be two segments from y to u, the union of which separates v from z in Δ. Then $O=\gamma_{u y}^{1} \cup \gamma_{u y}^{2}$ also separates $y^{\prime} \operatorname{in} \operatorname{cl}(\Delta \cup V)$ either from v or from z. Assume the former be true and choose a segment $\gamma_{v y^{\prime}}$ from v to y^{\prime} (see Figure 1).

Figure 1.

Then, for y^{\prime} close to $y, \gamma_{v y^{\prime}}$ is close to a segment from v to y, and therefore it cuts O, say at $e(\neq y)$. Assume $e \in \gamma_{u y}^{1}$. Summing up the inequalities $\rho\left(u, y^{\prime}\right) \geq \rho(u, y)$ and $\rho(v, y) \geq \rho\left(v, y^{\prime}\right)$, we obtain

$$
\rho\left(u, y^{\prime}\right)+\rho(v, y) \geq \rho\left(v, y^{\prime}\right)+\rho(u, y) .
$$

Then, the other equality cases in Lemma 2 being easily excluded, $y^{\prime}=y$ and the claim is proven: $J_{v z} \subset M_{y}^{-1}$.
b) Assume there exist points $v, z \in M_{y}^{-1} \cap C(y)$ such that $v \notin C^{c p}(y)$ and z belongs either to $C^{c p}(y)$ or to another component of $C(y) \backslash C^{c p}(y)$ than v. Figure 2 a) presents the case $v, z \notin C^{c p}(y)$ (the arrows are indicating segments to y), while Figure 2 b) illustrates images of the points in Figure 2 a) onto T_{y}.

Figure 2.

Denote by $J_{v z}$ a (minimal with respect to inclusion) Jordan arc of $C(y)$ joining v to z, and by x the point of $J_{v z} \cap C^{c p}(y)$ closest to v along $J_{v z}$. Let $J_{v x}$ be the subarc of $J_{v z}$ from v to x. Eventhought $J_{v z}$ needs not to be unique, x and $J_{v x}$ are uniquely determined by the assumption $v \notin C^{c p}(y)$.

Then, for each point u interior to $J_{v x}$, the union of segments from u to y separates v from z in S, hence the arguments proving a) completely apply to show $\operatorname{int} J_{v x} \subset M_{y}^{-1}$.

We claim that x belongs to M_{y}^{-1}, too. This is not directly implied by the previous considerations and passing to the limit, because the set M_{y}^{-1} is not necessarily closed. Assume $x \neq z$, since otherwise there is nothing to justify.

To prove the claim, choose a sequence of points $u_{n} \in J_{v x}$ converging to x, each point of which is joint to y by precisely two segments, say $\gamma_{u_{n} y}^{1}$ and $\gamma_{u_{n} y}^{2}$. This choice is possible because $C(y)$ has at most countably many ramification points.

Denote by S_{n}^{v}, respectively S_{n}^{z}, the component of $S \backslash\left(\gamma_{u_{n} y}^{1} \cup \gamma_{u_{n} y}^{2}\right)$ containing v, respectively z. Also denote by α_{n}, β_{n} the angles at y of $\gamma_{u_{n} y}^{1}$ and $\gamma_{u_{n} y}^{2}$ towards S_{n}^{v}, respectively S_{n}^{z}. Then, by the last part of Lemma $3, \alpha_{n} \leq \pi$ and $\beta_{n} \leq \pi$. Passing to the limit we get segments $\gamma_{x y}^{1}=\lim _{n \rightarrow \infty} \gamma_{u_{n} y}^{1}$ and $\gamma_{x y}^{2}=\lim _{n \rightarrow \infty} \gamma_{u_{n} y}^{2}$ from x to y such that their angles α, respectively β at y towards v, respectively z, verify

$$
\alpha \leq \liminf _{n \rightarrow \infty} \alpha_{n} \leq \pi
$$

and

$$
\beta \leq \liminf _{n \rightarrow \infty} \beta_{n} \leq \pi
$$

Observe now that $\alpha<\pi$, because $z \in M_{y}^{-1}$. Indeed, since $x \neq z$, there exist two segments from y to z, the angle η of which at y strictly contains α. But $\eta \leq \pi$, by the last part of Lemma 3 , hence $\alpha<\pi$.

Since x is a ramification point of $C(y)$, there exists a segment $\gamma_{x y}^{3}$ from y to x whose direction at y divides β into angles strictly less than π.

Therefore, by the first part of Lemma 3, $x \in M_{y}^{-1}$ and the proof of b) is complete.
c) Choose points x, x^{*} in a component C of M_{y}^{-1} in S.

For any real number $\delta>0$ there exists a finite covering of C (since it exists for S) with closed intrinsic balls B_{1}, \ldots, B_{n} in S of diameter $\max _{j=1}^{n} \operatorname{diam} B_{j}<\delta$, where the integer $n \geq 1$ depends on δ. Assume $x \in B_{1}$ and $x^{*} \in B_{n}$. By the connectedness of $C, B_{1} \cap \bigcup_{j=2}^{n} B_{j} \neq \emptyset$, say $B_{1} \cap B_{2} \neq \emptyset$. Then $\left(B_{1} \cup B_{2}\right) \cap$ $\bigcup_{j=3}^{n} B_{j} \neq \emptyset$ as well. Iterating, we can find a finite sequence of balls $B_{1}=$ $B_{i_{1}}, \ldots, B_{i_{m}}=B_{n} \quad$ such that $\quad B_{i_{\alpha}} \cap B_{i_{\alpha+1}} \neq \emptyset, \quad$ for $\quad \alpha=1, \ldots, m-1 \quad$ and $\left\{i_{1}, \ldots, i_{m}\right\} \subset\{1, \ldots, n\}$. Therefore, it suffices to verify that points in C close enough to each other, say in the same closed intrinsic ball of diameter δ, belong to the same arcwise connected component of M_{y}^{-1}.

Assume $x, x^{*} \in C \cap B_{1}$ and let z, z^{*} be the cut points of y in the directions of x, x^{*}, respectively. Our choice directly implies that z is close to z^{*}, by the convergence of segments.

If $\left\{z, z^{*}\right\} \subset C(y) \backslash C^{c p}(y)$, or z, z^{*} belong to the same edge E of $C^{c p}(y)$, then the conclusion follows by Lemma 4 and a). Indeed, the Jordan arc J joining z to z^{*} in $C(y) \backslash C^{c p}(y)$, respectively in E, is included in M_{y}^{-1}, as well as the whole segment from x to z, respectively from x^{*} to z^{*}.

Assume now z belongs to a tree component T of $C(y) \backslash C^{c p}(y)$ and z^{*} is in $C^{c p}(y)$, or z, z^{*} belong to different edges E, E^{*} of $C^{c p}(y)$. By letting $\delta \rightarrow 0$, we get - say - sequences $x_{n} \rightarrow x^{*}$ and respectively $z_{n} \rightarrow z^{*}$, where $x=x_{1}, z=z_{1}, z_{n}$ is the cut point of y in the direction of x_{n} and moreover, according to the case, all points z_{n} are either in T or in E. Therefore, either T connects to $C^{c p}(y)$ at z^{*}, or $z^{*} \in E \cap E^{*}$.

To end the proof, observe that the whole Jordan arc J joining z to z^{*} either in $T \cup\left\{z^{*}\right\}$, or in E, is included in M_{y}^{-1}. Indeed, for any point $u \in J$ there exists a point $x_{n_{u}} \in J$ closer to z^{*} than u, hence u lies in J between x and $x_{n_{u}}$ and therefore the arguments at a) completely apply. Moreover, Lemma 4 shows that the whole segment from x to z, respectively from x^{*} to z^{*}, is also included in M_{y}^{-1}.

ThEOREM 2. For every orientable surface S of genus g and every point y in S, M_{y}^{-1} has at most $\max \{1,10 g-5\}$ components.

Proof. If $g=0$ then M_{y}^{-1} is connected, as follows easily from the proof of a) in Theorem 1, so we may assume from now on that $g>0$.

Notice that, by b) in Theorem 1, if M_{y}^{-1} has a component disjoint to $C^{c p}(y)$ then M_{y}^{-1} consists of precisely that component. Assume this is not the case. Then the interior of each edge of $C^{c p}(y)$ may intersect at most one component of M_{y}^{-1}, by a) in Theorem 1, and moreover each vertex of $C^{c p}(y)$ may belong to a component of M_{y}^{-1}. Since $C^{c p}(y)$ is a graph with $2 g$ generating cycles, its maximal number of edges is $6 g-3$, while for counting together edges and vertices yields at most $10 g-5$ (a proof of this fact is given in [1]).

3. Local tree components of M_{y}^{-1}.

The main purpose of the last part of this paper is to highlight a strong relationship between λT_{y} and the structure of M_{y}^{-1}, with Theorems 4 to 6 . Before this we show, by Theorem 3, that the objects we shall talk about do exist.

The following result slightly strengthens Theorem 9 in [8]. The proof follows the same argument, with a simple modification, and will not be repeated here.

Lemma 5. Every combinatorial type of finite tree can be realized as the cut locus $C(y)$ of some point y on some doubly covered convex polygon, such that the internal edges of $C(y)$ are arbitrarily small compared to the external ones.

We shall employ the following hinge variant of the Toponogov's comparaison theorem. For, let ρ_{H} denote the distance on the simply connected 2-dimensional space M_{H} of constant curvature H.

Lemma 6. Let Δ be a domain in the surface $S \in \mathscr{A}$, bounded by the segments $\gamma_{i}:\left[0, l_{i}\right] \rightarrow S, i=1,2,3$. Assume the curvature exists on Δ and verifies $K \leq H$. Assume moreover that the segments γ_{1}, γ_{2} make an angle of α at the point $\gamma_{1}(0)=\gamma_{2}(0)$. Consider segments $\bar{\gamma}_{i}:\left[0, l_{i}\right] \rightarrow M_{H}, i=1,2$, making an angle of α at the point $\bar{\gamma}_{1}(0)=\bar{\gamma}_{2}(0)$. Then $\rho\left(\gamma_{1}\left(l_{1}\right), \gamma_{2}\left(l_{2}\right)\right) \geq \rho_{H}\left(\bar{\gamma}_{1}\left(l_{1}\right), \bar{\gamma}_{2}\left(l_{2}\right)\right)$.

We shall write $T \sim T^{\prime}$ if the trees T and T^{\prime} have the same combinatorial structure.

THEOREM 3. Every finite tree can be realized as the set F_{y}^{-1}, for some point y on some surface $S \in \mathscr{A}$.

Proof. For every tree T there exists, by Lemma 5 , a convex surface P and a point z in P such that $C(z) \sim T$. Remark that F_{z} contains at least one smooth
point o of P. Therefore, since P is piecewise Euclidean, there are at least three segments from z to o, hence o is a ramification point of $C(z)$. Moreover, since z is not a vertex of P, there exists a circle $C \subset P$ centered at z of radius smaller than the injectivity radius at z.

Choose a circle C^{*} parallel to C and of smaller radius. Cut along C^{*} and smoothly connect to $P \backslash C^{*}$ a right circular cone of apex y whose total angle is $\lambda T_{y}=\pi$, with y on the line orthogonal to the centre of C^{*}. The above connection can be done such that the curvature of the glued piece V is nonpositive everywhere except at y. The resulting surface S is Alexandrov, $S \in \mathscr{A}$, and the distance function from y on S clearly coincides, on $P \backslash C^{*}=S \backslash V$, to the distance function from z on P. Next considerations will all refer to S.

Notice that C is a distance circle from y, so $C(y) \sim T$. Moreover, $o \in F_{y}^{-1}$ by the construction.

Observe now that each point in F_{y}^{-1} is necessarily joined to y by at least 2 segments. For, choose $v \in S$ with a unique shortest path $\gamma_{v y}$ to y, and a segment $\gamma_{y w}$ starting at y orthogonally to $\gamma_{v y}$. If w is close enough to y then the triangle $w v y$ contains no vertex of P, so its curvature exists and is nonpositive. Construct a planar triangle $\bar{w} \bar{v} \bar{y}$ such that $\|\bar{w}-\bar{y}\|=\rho(w, y),\|\bar{y}-\bar{v}\|=\rho(y, v)$ and $\angle \bar{v} \bar{y} \bar{w}=\pi / 2$. By Lemma 6,

$$
\rho(v, w) \geq\|\bar{v}-\bar{w}\|>\|\bar{v}-\bar{y}\|=\rho(v, y) .
$$

Then, since F_{y}^{-1} is closed, it consists of points interior to $C(y)$ with respect to the relative topology.

We claim that every point $x \in C(y) \backslash\{o\}$ close enough to o also belongs to F_{y}^{-1}. Indeed, such x is joined to y by precisely two segments, which make at y an angle $\alpha_{x}<\pi$. By Lemma 3, $\rho(x, y)>\rho(x, u)$ for all points u in some small ball $B(y, \varepsilon \rho(x, y)) \backslash\{y\}$. By the upper semicontinuity of F, if x is close to o then F_{x} is close to $y=F_{o}$. Thus, for any point x in $C(y)$ close enough to o we obtain $F_{x} \subset B(y, \varepsilon \rho(x, y))$, whence $F_{x}=y$, and the claim is proved.

Therefore, F_{y}^{-1} is a subtree of $C(y)$ and moreover, all points of $C(y)$ close enough to o belong to F_{y}^{-1}. So, if the ramification points of $C(y)$ are close to each other then they all belong to F_{y}^{-1}.

REMARK. By a somewhat similar - yet, since it settles by direct induction a variant of Lemma 5 , quite lengthy - argument, one can prove that for any tree T there exists a convex pyramid P of apex y with total angle $\theta_{y}=\pi$ such that $F_{y}^{-1} \sim C(y) \sim T$. The constructed surface can be smoothened everywhere except at y, while keeping the desired properties.

Example. The set M_{y}^{-1} may be a local tree but not necessarily a tree.
To see this, consider a flat Riemannian surface $F \in \mathscr{A}$ and a point $z \in F$. The radius of injectivity $\operatorname{inj}(z)$ at z is positive, hence we may cut off from F a disk D around z of radius smaller than $\operatorname{inj}(z)$, and smoothly glue instead a right circular cone of apex y whose total angle is $\lambda T_{y}=\pi$, such that the curvature of the glued piece is nonpositive everywhere except at y. Lemmas 3 and 6 now show that, on the new surface, M_{y}^{-1} contains all points in, possibly excepting some extremities (if any), of $C(y)$.

Remark. If $\lambda T_{y}<\pi$ then $M_{y}^{-1}=S \backslash\{y\}$, directly from Lemma 3. Conversely, if M_{y}^{-1} has nonempty interior in S then $\lambda T_{y} \leq \pi$, by $M_{y}^{-1} \backslash C(y) \neq \emptyset$ and Lemma 3 again.

If $\lambda T_{y}=\pi$ then M_{y}^{-1} may be a local tree (as shown in Theorem 3 or by the previous example), or it may have interior points. The last situation is illustrated by the special case of a Tannery surface with parameters $p=2$ and $q=1$ (see [2], p. 95 and p. 102 for the precise definitions), as it follows from Theorem 11 in [14].

Concluding, if $\lambda T_{y}<\pi$ then $M_{y}^{-1}=S \backslash\{y\}$ and there is nothing more to say, and if $\lambda T_{y}=\pi$ then one cannot generally characterize M_{y}^{-1}. The main part of this section will be devoted to describe the structure of M_{y}^{-1} in the case $\lambda T_{y}>\pi$.

We continue with a result treating - slightly more generally - the sets Q_{y}^{-1} instead of M_{y}^{-1}. Before, notice that $\lambda T_{y} \leq \pi$ directly implies, by the definition of the critical points, $Q_{y}^{-1}=S \backslash\{y\}$. The case $\lambda T_{y}=2 \pi$ is treated in [1].

THEOREM 4. If the surface S is orientable and $y \in S$ such that $\lambda T_{y}>\pi$ then Q_{y}^{-1} is contained in a local tree of $C(y)$ with less than $\frac{\lambda T_{y}}{\lambda T_{y}-\pi}$ extremities outside the cycles of $C(y)$.

Proof. Each point of Q_{y}^{-1} is joined to y by at least two segments, because $\lambda T_{y}>\pi$. If $Q_{y}^{-1} \subset C^{c p}(y)$ there is nothing to prove, since $C^{c p}(y)$ is itself a local tree of $C(y)$ without extremities. So we can assume that Q_{y}^{-1} is included in some connected local tree T^{\prime} of $C(y)$ with m extremities outside $C^{c p}(y)$, say x_{1}, \ldots, x_{m}. Consider a minimal with respect to inclusion, connected local tree T of T^{\prime} which contains x_{1}, \ldots, x_{m}; in particular, T has no other extremity.

Denote by Δ_{i} the maximal domain of S bounded by segments from x_{i} to y such that $T \subset S \backslash \Delta_{i}$, and by α_{i} the angle of Δ_{i} at y, hence $\lambda T_{y}-\alpha_{i} \leq \pi$. Since $\bigcup_{i=1}^{m} \Delta_{i}$ is strictly included in $S, \Sigma_{i=1}^{m} \alpha_{i}<\lambda T_{y}$ and we get

$$
m \pi \geq \Sigma_{i=1}^{m}\left(\lambda T_{y}-\alpha_{i}\right)=m \lambda T_{y}-\Sigma_{i=1}^{m} \alpha_{i}>(m-1) \lambda T_{y},
$$

whence $\lambda T_{y}<\frac{m}{m-1} \pi$ or, equivalently, $m<\frac{\lambda T_{y}}{\lambda T_{y}-\pi}$.

THEOREM 5. Suppose the surface S is orientable of genus g and $y \in S$ such that $\lambda T_{y}>\pi$. Then M_{y}^{-1} is a local tree with at most $\max \{1,10 g-5\}$ components, it has at most $2 g$ generating cycles and less than $\frac{\lambda T_{y}}{\lambda T_{y}-\pi}$ extremities outside the cycles of $C(y)$.

Proof. Last part of Lemma 3 together with $\lambda T_{y}>\pi$ directly imply $M_{y}^{-1} \subset C(y)$. Theorem 1 and the properties of $C(y)$ show that M_{y}^{-1} is a local tree, the tree case being obtained from Corollary 1.

The number of components of M_{y}^{-1} follows from Theorem 2 and $M_{y}^{-1} \subset C(y)$.
Since $C(y)$ has $2 g$ generating cycles, this gives an upper bound for the number of the generating cycles of $M_{y}^{-1} \subset C(y)$.

Finally if M_{y}^{-1} has only one extremity outside $C^{c p}(y)$ then clearly $1<\frac{\lambda T_{y}}{\lambda T_{y}-\pi}$. Otherwise, for each extremity $x_{i}(i=1, \ldots, m)$ of M_{y}^{-1} outside $C^{c p}(y)$, there is a tree component T_{i} of x_{i} in $M_{y}^{-1} \cap C(y) \backslash C^{c p}(y)$ such that $M_{y}^{-1} \supset c l T_{i} \cap C^{c p}(y) \neq \emptyset$, by b) of Theorem 1, and Theorem 4 ends the proof.

The next result is obtained by adding to the upper bound in Theorem 5 the maximal number of vertices of $C^{c p}(y)$, as well as twice the corresponding number of edges of $C^{c p}(y)$ (see the final part in the proof of Theorem 2).

Corollary 2. If the surface S is orientable and $y \in S$ such that $\lambda T_{y}>\pi$ then M_{y}^{-1} is a local tree with less than $\frac{\lambda T_{y}}{\lambda T_{y}-\pi}+16 \mathrm{~g}-8$ extremities.

Remark. Theorems 4 and 5 may be compared to results of J. Itoh $[\mathbf{7}]$ and T. Zamfirescu [17], valid for Riemannian surfaces. They showed that, eventhough Q_{x} may be totally disconnected and may have uncountably many points, and $C(x)$ may be non-triangulable, Q_{x} must belong to a single handsome tree in $C(x)$, the number of endpoints of which is bounded by above by a constant depending only on the positive curvature of S.

The statement of Theorem 5 can also be seen as a restriction on λT_{y} put by the set M_{y}^{-1}, in which case we get the following theorem and corollary.

THEOREM 6. Let S be an orientable surface and y a point in S. If M_{y}^{-1} is included in $C(y)$ and has $m>1$ extremities outside the cycles of $C(y)$, or if a tree component of M_{y}^{-1} contains no vertex of $C^{c p}(y)$ and has $m>1$ extremities, then $\pi \leq \lambda T_{y}<\frac{m}{m-1} \pi$.

Proof. The inequality $\lambda T_{y} \geq \pi$ follows from Lemma 3, and the first case is covered by Theorem 5 .

The second case needs a little more care. Denote by $x_{i}(i=1, \ldots, m)$ the extremities of a tree component C of M_{y}^{-1} without vertices of $C^{c p}(y)$. Theorem 1
together with int $C=\emptyset$ imply C is included in the (arcwise connected) union of $C(y)$ with some subsegments of segments from y. If there is an extremity x_{i} outside $C(y)$ then $\lambda T_{y}=\pi$ (by Lemma 3) and the inequality is satisfied. So we may assume that all extremities x_{i} are on $C(y)$; therefore, $C \subset C(y)$ and the ramification points of C are ramifications of $C(y)$. Then, because the set of ramification points of the tree $C(y)$ is at most countable, there are points $x_{i}^{\prime} \in$ $C \cap C(y)$ which are joined to y by precisely two segments, say γ_{i} and γ_{i}^{\prime}.

Since $C \subset C(y)$ contains no vertex of $C^{c p}(y)$, there exists a subset S_{C} of S homeomorphic to a cylinder such that all segments from y to the points of C are included in S_{C}. Thus, if x_{i}^{\prime} is close to x_{i} then $\gamma_{i} \cup \gamma_{i}^{\prime}$ separates in $S_{C} x_{i}$ from all extremities of $C \backslash\left\{x_{i}\right\}$. The rest of the proof runs similarly to that of Theorem 5 and will not be repeated.

Let T_{m} denote any tree with m extremities. An interesting consequence of Theorem 6 is the following.

COROLLARY 3. A convex surface S contains at most 7 points y such that $M_{y}^{-1} \sim T_{\geq 3}$, or at most 5 points y such that $M_{y}^{-1} \sim T_{4 \leq m \leq 6}$, or at most 4 points y such that $M_{y}^{-1} \sim T_{\geq 7}$. Moreover, S contains at most 3 points y with $\operatorname{int} M_{y}^{-1} \neq \emptyset$.

Proof. Let $S \in \mathscr{A}$ be convex and $m \geq 3$; the total curvature at y can be expressed, by Theorem 6, as

$$
\omega_{y}=2 \pi-\lambda T_{y}>2 \pi-\frac{m}{m-1} \pi=\pi-\frac{1}{m-1} \pi \geq \pi / 2
$$

Since the total curvature of S is equal to 4π, there are at most 7 points $y \in S$ such that $M_{y}^{-1} \sim T_{m}$ with $m \geq 3$. The other estimations follow similarly.

Assume now $\operatorname{int} M_{y}^{-1} \neq \emptyset$, hence $\lambda T_{y} \leq \pi$ by Lemma 3. Then the total curvature at y is $\omega_{y}=2 \pi-\lambda T_{y} \geq \pi$, and there are at most $k \leq 4$ points $y \in S$ with $\operatorname{int} M_{y}^{-1} \neq \emptyset$. Suppose $k=4$, so S is flat everywhere excepting its vertices y (where $\omega_{y}=\lambda T_{y}=\pi$), hence S is either a doubly covered rectangle or a tetrahedron with curvature π at each of its vertices. On doubly covered rectangles M_{y}^{-1} is an arc for each vertex y, while in the case of tetrahedra all vertices y have $M_{y}^{-1} \sim T_{3}$, because $C(y) \sim T_{3}$ and $M_{y}^{-1} \subset C(y), M_{y}^{-1} \sim C(y)$, just as in the proof of Theorem 3. Therefore, $k<4$.

EXAMPLE. In the following we provide a convex surface having a countable set of points x_{n} with $F_{x_{n}}$ an arc, and a countable set of points y_{n} with $F_{y_{n}}^{-1}$ an arc, so proving that the last inequality in Theorem 6 - and thus that in Theorem 5 - is sharp. It also shows that the assumption $m \geq 3$ in $M_{y}^{-1} \sim T_{m}$ within Corollary 3 is necessary.

Figure 3.

Take in a plane a quarter of circle with the centre at o, bounded by the radii $[o x]$ and $\left[o y_{0}\right]$, and denote it by J_{0} (see Figure 3).

Let x_{1} be the mid-point of $[o x]$ and y_{1} the point on the bisector of the angle Lox y_{0} determined by $\left\|x_{1}-y_{0}\right\|=\left\|x_{1}-y_{1}\right\|$. Let J_{1} be the smallest arc of circle centered at x_{1} between y_{0} and y_{1}. Inductively, let x_{n} be the mid-point of the segment $\left[x x_{n-1}\right]$ and y_{n} the point on the bisector of the angle $L o x_{n} y_{n-1}$ such that $\left\|x_{n}-y_{n-1}\right\|=\left\|x_{n}-y_{n}\right\|$. Denote by J_{n} the smallest arc of circle centered at x_{n} between y_{n-1} and y_{n}. The sequence $\left\{y_{n}\right\}_{n \geq 0}$ converges to a point y on the line $o x$ and $\lim _{n \rightarrow \infty} x_{n}=x$.

Let S be the doubly-covered compact planar region bounded by $\cup_{n \geq 0} J_{n} \cup[x y]$. One can easily check on S that $F_{x}=y$, and for all integers $n \geq 1$ we have $F_{x_{n}}=J_{n}$ and $F_{y_{n}}^{-1}=\left[x_{n} x_{n+1}\right]$.

Acknowledgements. Thanks are due to the referee for his remarks. The comments of Professor T. Zamfirescu on a preliminary version of the manuscript helped to improve the clarity of the presentation, especially of the proof of Theorem 1. The work was finalized during the author's stay at Kumamoto University, supported by JSPS.

References

[1] I. Bárány, J. Itoh, C. Vîlcu and T. Zamfirescu, Every point is critical, to appear.
[2] A. L. Besse, Manifolds all of whose Geodesics are Closed, Springer-Verlag, New York, 1978.
[3] Y. Burago, M. Gromov and G. Perelman, A. D. Alexandrov spaces with curvature bounded below, Russian Math. Surveys, 47 (1992), 1-58.
[4] H. T. Croft, K. J. Falconer and R. K. Guy, Unsolved Problems in Geometry, Springer-Verlag, New York, 1991.
[5] K. Grove, Critical point theory for distance functions, Amer. Math. Soc., Proc. Sympos. Pure Math., 54 (1993), 357-385.
[6] K. Grove and P. Petersen, A radius sphere theorem, Invent. Math., 112 (1993), 577-583.
[7] J. Itoh, Essential cut locus on a surface, Proc. $5^{\text {th }}$ Pacific Rim Geometry Conference, Tohoku Math. Publ., 20, Tohoku Univ., Sendai, 2001, pp. 53-59.
[8] J. Itoh and C. Vîlcu, Farthest points and cut loci on some degenerate convex surfaces, J. Geom., 80 (2004), 106-120.
[9] J. Itoh and T. Zamfirescu, On the length of the cut locus on surfaces, Rend. Circ. Mat. Palermo, Serie II, Suppl., 70 (2002), 53-58.
[10] Y. Otsu and T. Shioya, The Riemannian structure of Alexandrov spaces, J. Differential Geom., 39 (1994), 629-658.
[11] K. Shiohama and M. Tanaka, Cut loci and distance spheres on Alexandrov surfaces, Actes de la Table Ronde de Géométrie Différentielle (Luminy, 1992), Sém. Congr., Soc. Math. France, 1, (1996), 531-559.
[12] C. Vîlcu, On two conjectures of Steinhaus, Geom. Dedicata, 79 (2000), 267-275.
[13] C. Vîlcu, Properties of the farthest point mapping on convex surfaces, Rev. Roumaine Math. Pures Appl., 51 (2006), 125-134.
[14] C. Vîlcu and T. Zamfirescu, Multiple farthest points on Alexandrov surfaces, Adv. Geom., 7 (2007), 83-100.
[15] T. Zamfirescu, Farthest points on convex surfaces, Math. Z., 226 (1997), 623-630.
[16] T. Zamfirescu, On the cut locus in Alexandrov spaces and applications to convex surfaces, Pacific J. Math., 217 (2004), 375-386.
[17] T. Zamfirescu, On the critical points of a Riemannian surface, Adv. Geom., 6 (2006), 493-500.

Costin VÎLCU

Institute of Mathematics Simion Stoilow of the Romanian Academy
P.O. Box 1-764, Bucharest 014700

Romania
E-mail: Costin.Vilcu@imar.ro

[^0]: 2000 Mathematics Subject Classification. Primary 53C45.
 Key Words and Phrases. Alexandrov surface, distance function.

