Antipodal convex hypersurfaces

by Jin-ichi Itoh ${ }^{\text {a,* }}$, Joël Rouyer ${ }^{\text {b, }, ~}$ and Costin Vîlcu ${ }^{\text {c, } \ddagger}$
${ }^{\text {a }}$ Faculty of Education, Kumamoto University, Kumamoto 860-8555, Japan
${ }^{\mathrm{b}} 16$, rue Phlippe, 68220 Hegenheim, France
${ }^{c}$ Institute of Mathematics "Simion Stoilow" of the Romanian Academy, P.O. Box 1-764, Bucharest 70700, Romania

Communicated by Prof. J.J. Duistermaat

Abstract

Motivated by a conjecture of Steinhaus, we consider the mapping F, associating to each point x of a convex hypersurface the set of all points at maximal intrinsic distance from x. We first provide two large classes of hypersurfaces with the mapping F single-valued and involutive. Afterwards we show that a convex body is smooth and has constant width if its double has the above properties of F, and we prove a partial converse to this result. Additional conditions are given, to characterize the (doubly covered) balls.

1. INTRODUCTION

A convex hypersurface is the boundary of a convex body (i.e., compact convex set with interior points) in the Euclidean space \mathbb{R}^{d+1}, or a doubly covered convex body in \mathbb{R}^{d}; in the last case we call it degenerate. The intrinsic metric ρ of a convex hypersurface S is defined, for any two points x, y in S, as the length $\rho(x, y)$ of a segment (i.e., shortest path on the hypersurface) from x to y. For any point $x \in S$ let ρ_{x} denote the distance function from x, given by $\rho_{x}(y)=\rho(x, y)$ for all $y \in S$,

[^0]and let F_{x} be the set of all farthest points from x (i.e., global maxima of ρ_{x}). For simplicity, we shall not distinguish between the set $F_{x}=\{y\}$ and the point y, and we shall write $F_{x}=y$, when the case occurs.

Our paper concerns the following question of H. Steinhaus (see Section A35, (ii) in [3]): is the sphere characterized by the property that the mapping F, associating to any point x on the convex surface S the set F_{x} of farthest points from x, is single-valued, 1-1 and symmetrical?

It is well known that our mapping F is upper semicontinuous. We call F injective if $F_{x} \cap F_{y}=\emptyset$ for any pair of distinct points $x, y \in S$, and we call F surjective if for every point $y \in S$ there is some point $x \in S$ with $y \in F_{x}$. When we say that F is bijective, we implicitly state that F is single-valued.

While the employment of the mapping F led to a beautiful topological characterization of the spheres [4], the above - most natural - attempt to use F for a metrical characterization of the spheres was not successful.

A class \mathcal{R} of centrally-symmetric surfaces of revolution was provided by the third author in [10], to negatively answer Steinhaus' question. He also asked for alternative descriptions of the set \mathcal{H}, of all convex (hyper)surfaces for which F is a single-valued involution ($F \circ F=\mathrm{id}_{S}$). We shall call the elements of \mathcal{H}, referring to the sphere, antipodal convex (hyper)surfaces.

Put $\mathcal{I}=\{S$ convex $: \operatorname{rad}(S)=\operatorname{diam}(S)\}$, where $\operatorname{rad}(S)$ is the intrinsic radius of S, $\operatorname{rad}(S)=\min _{x \in S} \rho\left(x, F_{x}\right)$.

All surfaces in the class \mathcal{I} are antipodal, because $\mathcal{R} \subset \mathcal{I} \subset \mathcal{H}$ [13]. We show, with our Theorem 2, that the inclusion $\mathcal{R} \subset \mathcal{I}$ is strict. Other examples are provided in [6], by showing that all right circular cylinders of small height also belong to $\mathcal{I} \backslash \mathcal{R}$.

The second author [8] proved that no tetrahedron is antipodal, leaving open the existence problem for antipodal polyhedral convex surfaces.

Yet all these considerations were done for surfaces in \mathbb{R}^{3}. The aim of this work is to study antipodal convex hypersurfaces in \mathbb{R}^{d+1}, for any integer $d \geqslant 2$.

In the first part of the paper, Theorem 1 generalizes the set \mathcal{R} to higher dimensions (see Section 3 for the precise definition), while Theorem 2 provides a new class of examples, by considering the union of two caps of d-dimensional semispheres of (not necessarily) different radii. We prove that all these hypersurfaces belong to $\mathcal{I} \cap \mathcal{H}$.

In the last part we restrict our study to the set \mathcal{D} of all degenerate convex hypersurfaces. We show in Theorem 3 that every hypersurface in $\mathcal{H} \cap \mathcal{D}$ is the double of a smooth convex body of constant width. Theorem 4 provides a partial converse to Theorem 3; roughly speaking, it states that every double of a \mathcal{C}^{2}-differentiable convex body of constant width has a neighbourhood of its ridge, the restriction of F to which has the properties of Steinhaus.

Theorems 5-7 partly confirm Steinhaus' guess, by proving that it is possible to characterize the balls (eventhough not the spheres) by the use of the mapping F. More precisely, a degenerate convex hypersurface D is a doubly covered ball if D is centrally symmetric and the corresponding mapping F is an involutive bijection (Theorem 5), respectively if D is two-dimensional and F is an isometry
(Theorem 6), and the only degenerate convex hypersurfaces in \mathcal{I} are the doubly covered balls (Theorem 7).

We refer to the survey article [11] for general properties of, and references on, farthest point sets on convex surfaces.

The diameter of a convex hypersurface S is $\operatorname{diam} S=\sup _{x \in S} \rho_{x}\left(F_{x}\right)$.
The width $w(u)$ of the convex body $K \subset \mathbb{R}^{d}$ (or of its boundary) in the direction $u \in S^{d-1}$ is the distance between the two supporting hyperplanes of K orthogonal to u. (Here, S^{d-1} denotes the unit sphere in \mathbb{R}^{d}.) K is said to be of constant width if $w(u)=w$ for all $u \in S^{d-1}$. See [2] for a survey on this topic.

According to [9], a convex body K is called smooth if all its boundary points are regular. The double D of K is called smooth if K is smooth, and of differentiable class \mathcal{C}^{r} if $\mathrm{bd} K$, the boundary of K, is so.

For $a, b, c \in \mathbb{R}^{d+1}$, the notations $a b c,[a b],[a b c]$ and $\|a-b\|$ stand for the 2-plane spanned by the points a, b, and c, the line-segment determined by a and b, the Euclidean triangle determined by a, b and c, and the length of [ab], respectively. We denote by $\left(e_{1}, \ldots, e_{d+1}\right)$ the canonical basis of \mathbb{R}^{d+1}, and the j th component of $\omega \in \mathbb{R}^{d+1}$ by ω^{j}.

The length of the curve Γ is denoted by $l(\Gamma)$.

2 HYPERSURFACES OF REVOLUTION

The goal of this section is to give some more notations and an auxiliary result for later use.

We describe any hypersurface of revolution S as

$$
S=\left\{(x, y) \in \mathbb{R}^{d} \times \mathbb{R}:(\|x\|, y) \in \Gamma\right\}
$$

where Γ is a curve in $\mathbb{R} \geqslant 0 \times \mathbb{R}$ running from $(0, a)$ to $(0, b)$, where $a<b$ and all intermediate points of Γ lie in $\mathbb{R}_{>0} \times \mathbb{R}$. Then the south and north pole pole of S are $\sigma=(0, a) \in \mathbb{R}^{d} \times \mathbb{R}$ and $v=(0, b) \in \mathbb{R}^{d} \times \mathbb{R}$, respectively.

Each point $p \neq \sigma, \nu$ in the hypersurface of revolution S lies on a unique meridian M_{p}, defined as the component of $S \cap p \sigma v \backslash\{\sigma, \nu\}$ containing p. Denote by M_{p}^{-}the opposite meridian to M_{p} (or to p) in the plane $p \sigma v$, the image of M_{p} under the antipodal map in the first d coordinates.

Consider now a continuous map $\phi:[0, a] \subset \mathbb{R} \rightarrow[0,+\infty[$ such that $\phi(s)>0$ for all $s \in\left[0, a\left[\right.\right.$ and $\phi(a)=0$, and denote by S_{ϕ} the hypersurface of revolution generated as above by the curve Γ consisting of the union of the graphs of ϕ and $-\phi$. Alternatively, the symmetrical graph G_{ϕ} of $\phi, G_{\phi} \stackrel{\text { def }}{=}\{(s, 0, \ldots, 0, \pm \phi(s)): s \in$ $[0, a]\}$, is included in the $\left(x_{1}, x_{d+1}\right)$-plane $P=\left\{q: x_{2}(q)=\cdots=x_{d}(q)=0\right\} \subset$ \mathbb{R}^{d+1}. Denote by Λ the unit $(d-2)$-sphere of the $\left(x_{2}, \ldots, x_{d}\right)$-space P^{\perp}. When (λ, α) varies in $\Lambda \times\left[-\frac{\pi}{2}, \frac{\pi}{2}\right], G_{\phi}$ generates the hypersurface S_{ϕ} given by

$$
X(s, \lambda, \alpha)=s \sin \alpha e_{1}+s \cos \alpha \lambda \pm \phi(s) e_{d+1}
$$

The points $\sigma=(0, \ldots, 0,-\phi(0))$ and $\nu=(0, \ldots, 0, \phi(0))$ are respectively the south and the north pole of S_{ϕ}.

We shall repeatedly make use of the following simple result.

Lemma 1. The diameter diam (S) of any hypersurface of revolution S is equal to the length of any meridian of S. If the distance between two points p, q on the hypersurface of revolution S is equal to $\operatorname{diam}(S)$ then $F_{p}=q$ and p, q lie on opposite meridians. In particular, if S is centrally symmetric then the points are symmetric to each other.

Proof. The diameter of a hypersurface of revolution S is at least equal to the length of one of its meridians, because any meridian is a segment between the poles of S.

Let p, q be two points in S such that $\rho(p, q)=\operatorname{diam}(S), M_{p}$ the meridian through p, and $z \in M_{p}^{-}$determined by $\rho(q, v)=\rho(z, v)$. We have

$$
\begin{align*}
\operatorname{diam}(S) & =\rho(p, q) \\
& \leqslant \min \{\rho(p, v)+\rho(\nu, q), \rho(p, \sigma)+\rho(\sigma, q)\} \tag{1}\\
& =\min \{\rho(p, \nu)+\rho(\nu, z), \rho(p, \sigma)+\rho(\sigma, z)\} \\
& \leqslant \frac{1}{2}\left(l\left(M_{p}\right)+l\left(M_{p}^{-}\right)\right)=l\left(M_{p}\right) \leqslant \operatorname{diam}(S) \tag{2}
\end{align*}
$$

which implies that $\operatorname{diam}(S)=\rho(p, q)=l\left(M_{p}\right)=l(M)$ for any meridian M.
The the equality case in (2) implies

$$
\rho(p, \nu)+\rho(\nu, z)=\rho(p, \sigma)+\rho(\sigma, z)=\operatorname{diam}(S) .
$$

By the equality case in (1), the two components of $\left(M_{p} \cup M_{q}\right) \backslash\{p, q\}$ are segments.
Let q^{\prime} be the point symmetric to q with respect to $\nu \sigma p$. Then the two components of ($\left.M_{p} \cup M_{q^{\prime}}\right) \backslash\left\{p, q^{\prime}\right\}$ are segments too. Since segments do not bifurcate, $M_{q}=M_{p}^{-}$ and $q=z$.

3. A CLASS OF ANTIPODAL HYPERSURFACES

In this section we provide a class \mathcal{R} of antipodal hypersurfaces, by generalizing in arbitrary dimension the last theorem in [10].

Let $\phi:[0, a] \rightarrow \mathbb{R}$ be a concave nonincreasing function such that

$$
0=\phi(a)<\phi(0)<a .
$$

We assume that the function $\psi:[0, a] \rightarrow \mathbb{R}$, given by $\psi(s)=s^{2}+\phi^{2}(s)$, is strictly increasing.

Let \mathcal{R} be the set of all hypersurfaces S_{ϕ} obtained from the above functions ϕ by rotating in \mathbb{R}^{d+1} their symmetrical graphs $G_{\phi} \subset x_{1} o x_{d+1}$ about the axis $\mathbb{R} e_{d+1}$; i.e., for ϕ as above, $s \in[0, a], \lambda \in \Lambda$, and $\alpha \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right], S_{\phi}$ is given by

$$
X(s, \lambda, \alpha)=s \sin \alpha e_{1}+s \cos \alpha \lambda \pm \phi(s) e_{d+1} .
$$

For the proof of Theorem 1 we need to define, for each concave function ϕ as above, a new function $\eta:[-a, a] \rightarrow \mathbb{R}$ by $\eta(\pm s)=\phi(s)$. Let $S_{\phi}^{-} \subset \mathbb{R}^{d+1}$ be the
hypersurface defined by the rotation of the graph of η about the axis $\mathbb{R} e_{1}$; that is, for $t \in[-a, a], \mu \in \Lambda$ and $\beta \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right], S_{\phi}^{-}$is given by

$$
Y(t, \mu . \beta)=t e_{1}+\phi(|t|) \cos \beta \mu+\phi(|t|) \sin \beta e_{d+1} .
$$

Lemma 2. The hypersurfaces S_{ϕ} and S_{ϕ}^{-}are convex, S_{ϕ}^{-}is included in conv S_{ϕ} and $S_{\phi}^{-} \cap S_{\phi}=S_{\phi} \cap P$.

Proof. Let C_{ϕ} denote the set of all $(x, y) \in \mathbb{R}^{d} \times \mathbb{R}$ such that $|y|-\phi(\|x\|) \leqslant 0$, that is, the basin $f \leqslant 0$ of the function $f:(x, y) \mapsto|y|-\phi(\|x\|)$. Clearly $S_{\phi}=\mathrm{bd} C_{\phi}$.

The function $y \mapsto|y|$ is convex, and therefore the function $(x, y) \mapsto|y|$ is convex. The function $x \mapsto\|x\|$ is convex and the function $-\phi$ is nondecreasing and convex, hence the composition $x \mapsto-\phi(\|x\|)$ is convex, and thus the function $(x, y) \mapsto$ $-\phi(\|x\|)$ is convex. As the sum of two convex functions is convex, the function f is convex, and because the subgraph of any convex function is a convex set, it follows that the set C_{ϕ} is convex, and therefore $S_{\phi}=\mathrm{bd} C_{\phi}$ is a convex hypersurface. The proof that S_{ϕ}^{--}is a convex hypersurface is analogous.

The hypersurface S_{ϕ}^{-}is the set of all $(u, v, y) \in \mathbb{R} \times \mathbb{R}^{d-1} \times \mathbb{R}$ such that $u=$ $\pm \phi^{-1}(\|(v, y)\|)$, or equivalently $\phi(|u|)^{2}=\|v\|^{2}+y^{2}$. Because the function ψ is strictly increasing, we have

$$
\begin{aligned}
\phi(\|(u, v)\|)^{2}+u^{2}+\|v\|^{2} & =\phi(\|(u, v)\|)^{2}+\|(u, v)\|^{2} \\
& \geqslant \phi(|u|)^{2}+u^{2}=\|v\|^{2}+y^{2}+u^{2}
\end{aligned}
$$

with equality if and only if $v=0$. This is equivalent to $\phi(\|(u, v)\|)^{2} \geqslant y^{2}$ with equality if and only if $v=0$, that is, $(u, v, y) \in C_{\phi}$ and $(u, v, y) \in S_{\phi}$ if and only if $v=0$ if and only if $(u, v, y) \in S_{\phi} \cap P$.

The next well-known lemma can be found, for example, in [1], p. 80. Let K be a convex body in \mathbb{R}^{d+1} and x a point in $\mathbb{R}^{d+1} \backslash \operatorname{int} K$. The metric projection of x onto K is the unique point in K closest to x.

Lemma 3. Let K be a convex body in \mathbb{R}^{d+1} and Γ a curve in $\mathbb{R}^{d+1} \backslash$ int K. Then the length of Γ is at least as long as its metric projection onto K.

The following result extends to arbitrary dimension Theorem 2 in [10]; the proof we present here is not verbatim the same as the proof given in [10], although it contains the same steps.

Theorem 1. $\mathcal{R} \subset \mathcal{I} \cap \mathcal{H}$.

Proof. Consider a hypersurface S_{ϕ} in \mathcal{R} and a point $p \in S_{\phi}$.
We first prove that if p lies on the equator, that is, $p^{d+1}=0$, then $\rho(p,-p)=$ $\operatorname{diam}\left(S_{\phi}\right)$.

Because of the rotational symmetry, we may assume that $p \in P$, that is, $p^{J}=0$ for all $2 \leqslant j \leqslant d$. In combination with $p^{d+1}=0$ this means that p is a pole of S_{ϕ}^{-}, and therefore $\rho_{S_{\phi}^{-}}(p,-p)=\operatorname{diam}\left(S_{\phi}^{-}\right)=l\left(M_{p}\right)=\operatorname{diam}\left(S_{\phi}\right)$ according to Lemma 1. On the other hand, if Γ is any segment in S_{ϕ} from p to $-p$ and Γ^{-}its metric projection onto conv S_{ϕ}^{-}, which lands in S_{ϕ}^{-}, then

$$
\operatorname{diam}\left(S_{\phi}\right) \geqslant \rho(p,-p)=l(\Gamma) \geqslant l\left(\Gamma^{-}\right) \geqslant \rho_{S_{\phi}^{-}}(p,-p)=\operatorname{diam}\left(S_{\phi}\right)
$$

where the second inequality follows from Lemma 3. Therefore $\rho(p,-p)=$ $\operatorname{diam}\left(S_{\phi}\right)$.

We now drop the assumption that $p^{d+1}=0$. Let Γ be a segment from p to $-p$. Then Γ intersects the equator in at least one point q. We obtain from the symmetry of S_{ϕ} that $\rho(q,-p)=\rho(-q, p)$, and consequently

$$
\begin{aligned}
\operatorname{diam}(S) & \geqslant \rho(p,-p)=l(\Gamma)=\rho(p, q)+\rho(q,-p) \\
& =\rho(q, p)+\rho(p,-q) \geqslant \rho(q,-q)=\operatorname{diam}\left(S_{\phi}\right)
\end{aligned}
$$

It follows that $\rho(p,-p)=\operatorname{diam}\left(S_{\phi}\right)$, and therefore Lemma 1 yields that $-p$ is the unique point $p^{\prime} \in S_{\phi}$ such that $\rho\left(p, p^{\prime}\right)=\operatorname{diam}\left(S_{\phi}\right)$.

4 ANOTHER CLASS OF ANTIPODAL HYPERSURFACES

In this section we provide another class \mathcal{J} of convex hypersurfaces verifying the Steinhaus' conditions mentioned in Introduction. We consider the union of two caps of d-dimensional semispheres of (possibly not) different radii, and prove that it belongs to $\mathcal{I} \cap \mathcal{H}$. Our argument also holds for the limit case where one of the caps is a disk.
In order to prove the main result of this section, we shall use the following fact of elementary analysis.

Lemma 4. Let Y be a connected topological space, I and interval in \mathbb{R}, and for each $y \in Y$, let $f_{y}: I \rightarrow \mathbb{R}$ be such that:
(i) For each $y \in Y$ the function f_{y} is not constant, and either increasing or decreasing on I,
(ii) For each $x \in I$ the function $y \mapsto f_{y}(x)$ is continuous.

Then either for each $y \in Y$ the function f_{y} is increasing, or for each $y \in Y$ the function f_{y} is decreasing.

Proof. Let Y^{+}and Y^{-}denote the set of all $y \in Y$ such that f_{y} is increasing and f_{y} is decreasing, respectively. It follows from (i) that $Y^{+} \cap Y^{-}=\emptyset$ and $Y=Y^{+} \cup Y^{-}$. Let $y \in Y^{+}$. Because f_{y} is not constant, there exist $a, b \in I$ such that $a<b$ and $f_{y}(a)<f_{y}(b)$. It follows from (ii) that there exists a neighbourhood Z of y in Y such that for every $z \in Z$ we have $f_{z}(a)<f_{z}(b)$, which implies that $f_{z} \in Y^{+}$. This
proves that Y^{+}is an open subset of Y. Similarly we obtain that Y^{-}is an open subset of Y, and because Y is the disjoint union of Y^{+}and Y^{-}and Y is connected, it follows that $Y=Y^{+}$or $Y=Y^{-}$.

Let $L_{d, R_{1}, R_{2}}$ be the union of two d-dimensional spherical caps of respective radii $R_{1} \geqslant 1$ and $R_{2} \geqslant 1$, whose common boundary is a unit ($d-1$)-dimensional sphere; i.e., $L_{d, R_{1}, R_{2}}$ is the boundary of the intersection of two balls of respective radii R_{1} and R_{2}, with centers at distance $\sqrt{R_{1}^{2}-1}+\sqrt{R_{2}^{2}-1}$. Denote by \mathcal{J} the set of all hypersurfaces $L_{d, R_{1}, R_{2}}$.

Theorem 2. $\mathcal{J} \subset \mathcal{I} \cap \mathcal{H}$.
Proof. The following argument will be an exercise in trigonometrical geometry.
Denote by V the space spanned by e_{d+1}, by H the hyperplane orthogonal to V and by Λ the unit $(d-1)$-sphere in H.

For $i=1,2$, let B_{i} be a ball of radius R_{i} in \mathbb{R}^{d+1} whose center ω_{i} belongs to V, and let S_{l} be the boundary of B_{i}. Assume that $1 \leqslant R_{1} \leqslant R_{2}$ and $S_{1} \cap S_{2}=\Lambda$. Assume, moreover, that $\omega_{1}^{d+1}<0$ and $\omega_{2}^{d+1}>0$, and put $C_{i}=\left\{u \in S_{l}:(-1)^{i} u^{d+1}<\right.$ $0\}$. Then the boundary $L_{d . R_{1} R_{2}}$ of $B_{1} \cap B_{2}$ is the disjoint union $C_{1} \cup \Lambda \cup C_{2}$. Let $\Theta_{l}=\angle \mathbf{0} \omega_{l} \lambda$, where $\lambda \in \Lambda$. It follows from elementary calculus that

$$
\begin{align*}
\Theta_{i} & =\sin ^{-1} \frac{1}{R_{l}} \\
\omega_{l} & =\left(0, \ldots, 0,(-1)^{i} h_{l}\right) \tag{3}\\
h_{i} & =\sqrt{R_{i}^{2}-1}=\cot \Theta_{l}
\end{align*}
$$

A parametrization of $C_{i}^{*} \stackrel{\text { def }}{=} C_{i} \backslash V$ is given by

$$
\begin{align*}
\phi_{i} & : \Lambda \times] 0, \Theta_{i}\left[\rightarrow \mathbb{R}^{d+1}\right. \\
\quad(\lambda, \theta) \mapsto \omega_{i} & +R_{i}\left(\sin \theta \lambda-(-1)^{i} \cos \theta e_{d+1}\right) \tag{4}
\end{align*}
$$

We call respectively λ and θ the longitude and the colatitude of $\phi_{l}(\lambda, \theta)$.
It is quite obvious that a meridian of $L_{d, R_{1} R_{2}}$ has the length equal to

$$
\operatorname{diam}\left(L_{d, R_{1} R_{2}}\right)=R_{1} \Theta_{1}+R_{2} \Theta_{2}
$$

A meridian path of $L_{d, R_{1} R_{2}}$ is by definition a path in the union of two opposite meridians of $L_{d, R_{1} R_{2}}$.

If $p=\phi_{i}(\lambda, \theta)$ belongs to $L_{d, R_{1} R_{2}} \backslash V$ then there exists a unique meridian M_{p} through p. Denote by $a(p)$ the point of $M_{p}^{-} \stackrel{\text { def }}{=} M_{\phi_{t}(-\lambda, \theta)}$ such that $\left(M_{p} \cup\right.$ $\left.M_{p}^{-}\right) \backslash\{p, a(p)\}$ consists of two equally long components. We claim that $a(p)$ is the only farthest point from p. To see this, it suffices to prove that the length of any path from p to $a(p)$ is never less than $\operatorname{diam}\left(L_{d, R_{1} R_{2}}\right)$ and to apply Lemma 1. By continuity, it is sufficient to investigate the following two cases.

Case 1. $p \in C_{2}^{*} \cup a\left(C_{2}^{*}\right)$. We can assume, without loss of generality, that $p \in C_{2}^{*}$ (otherwise, exchange p and $a(p)$). Note that p and $a(p)$ have opposite longitudes, and the colatitudes θ_{1} of $a(p)$ and θ_{2} of p satisfy

$$
\begin{equation*}
\theta_{1} R_{1}=\theta_{2} R_{2} \stackrel{\text { def }}{=} \Delta \tag{5}
\end{equation*}
$$

It follows that $a\left(C_{2}^{*}\right)$ is the set of those points in C_{1}^{*} having the colatitude in]0, $\frac{R_{2}}{R_{1}} \Theta_{1}[$.

Notice that any segment Σ from p to $q=a(p)$ intersects $\Lambda \subset \operatorname{clC}_{2} \cap \mathrm{clC}_{1}$ at a single point, say λ. Indeed, if $r, r^{\prime} \in \Lambda$ then the segment between r and r^{\prime} of the circle on C_{2} with center at ω_{2} is shorter than the segment between r and r^{\prime} of the circle on C_{1} with center at ω_{1}, which in turn is shorter than the segment between r and r^{\prime} of the great circle on Λ. Therefore, if we start at $p \in C_{2}$ and want to reach $q \in C_{1}$ along a segment on $L_{d, R_{1}, R_{2}}$ then, after reaching a point on Λ via a circle segment on C_{2} with center at ω_{2}, we must immediately leave Λ into C_{1} and go to q along a circle segment in C_{1} with center at ω_{1}.

We can assume without loss of generality that

$$
\begin{aligned}
p & =\phi_{2}\left(e_{1}, \theta_{2}\right) \\
q & =\phi_{1}\left(-e_{1}, \theta_{1}\right) \\
\lambda & =(\cos \alpha, \sin \alpha, 0, \ldots, 0)
\end{aligned}
$$

Σ is the union of two arcs of great circles so, by the cosine rule for spherical triangles, its length is the minimum of

$$
\begin{aligned}
f_{R_{1}, R_{2}, \Delta}(\alpha)= & R_{1} \cos ^{-1}\left(\cos \Theta_{1} \cos \theta_{1}+\sin \Theta_{1} \cos \alpha \sin \theta_{1}\right) \\
& +R_{2} \cos ^{-1}\left(\cos \Theta_{2} \cos \theta_{2}-\sin \Theta_{2} \cos \alpha \sin \theta_{2}\right)
\end{aligned}
$$

We use (3) to compute the first derivative of $f_{R_{1}, R_{2}, \Delta}$ with respect to α,

$$
\begin{aligned}
& f_{R_{1}, R_{2}, \Delta}^{\prime}(\alpha)= \sin \alpha(\\
&\left(1-\left(\cos \Theta_{1} \cos \theta_{1}+\sin \theta_{1}\right.\right. \\
&\left.-\frac{\sin \theta_{2}}{\left.\left.\left(1-\left(\cos \Theta_{2} \cos \theta_{2}-\sin \theta_{1}\right)^{2}\right)^{1 / 2} \cos \alpha \sin \theta_{2}\right)^{2}\right)^{1 / 2}}\right) \\
& \stackrel{\text { def }}{=} \sin \alpha g_{R_{1}, R_{2}, \Delta}(\cos \alpha) .
\end{aligned}
$$

Notice that $g_{R_{1}, R_{2}, \Delta}(X)$ vanishes if and only if

$$
\begin{aligned}
h_{R_{1}, R_{2} . \Delta}(X) \stackrel{\text { def }}{=} & \frac{1-\left(\cos \Theta_{1} \cos \theta_{1}+X \sin \Theta_{1} \sin \theta_{1}\right)^{2}}{\sin ^{2} \theta_{1}} \\
& -\frac{1-\left(\cos \Theta_{2} \cos \theta_{2}-X \sin \Theta_{2} \sin \theta_{2}\right)^{2}}{\sin ^{2} \theta_{2}} \\
= & \sin ^{2} \Theta_{1} \cot ^{2} \theta_{1}-\sin ^{2} \Theta_{2} \cot ^{2} \theta_{2} \\
& -\left(\sin \left(2 \Theta_{1}\right) \cot \theta_{1}+\sin \left(2 \Theta_{2}\right) \cot \theta_{2}\right) X \\
& +\left(\sin ^{2} \Theta_{2}-\sin ^{2} \Theta_{1}\right) X^{2}
\end{aligned}
$$

does so, hence $f_{R_{1}, R_{2}, \Delta}$ has at most two extrema on $] 0, \pi[$. Therefore, if we prove that 0 and π are both minima for $f_{R_{1}, R_{2}, \Delta}$ then it follows that Σ is a meridian path. To do this, we shall apply Lemma 4 and show the property for suitable parameters.

We claim that $h_{R_{1}, R_{2}, \Delta}(\pm 1) \neq 0$, except for $R_{1}=R_{2}=1$. For $s= \pm 1$,

$$
\begin{aligned}
h_{R_{1}, R_{2}, \Delta}(s)= & \sin ^{2} \Theta_{1}\left(\cot ^{2} \theta_{1}-1\right)-\sin ^{2} \Theta_{2}\left(\cot ^{2} \theta_{2}-1\right) \\
& -s\left(\sin \left(2 \Theta_{1}\right) \cot \theta_{1}+\sin \left(2 \Theta_{2}\right) \cot \theta_{2}\right) \\
= & -\left(\cot \theta_{2} \sin \Theta_{2}+s \cos \Theta_{2}\right)^{2}+\left(\cot \theta_{1} \sin \Theta_{1}-s \cos \Theta_{1}\right)^{2}
\end{aligned}
$$

Since $0<\theta_{i} \leqslant \Theta_{i}, \cot \theta_{l} \geqslant \cot \Theta_{i}(i=1,2)$. It follows that both parenthesis above are positive and, by (5), $h(s)=0$ if and only if

$$
k(\Delta) \stackrel{\text { def }}{=} \cot \frac{\Delta}{R_{2}} \sin \Theta_{2}+s \cos \Theta_{2}-\cot \frac{\Delta}{R_{1}} \sin \Theta_{1}+s \cos \Theta_{1}=0
$$

Note that, by (3),

$$
k^{\prime}(\Delta)=\frac{1}{R_{1}^{2} \sin ^{2} \frac{\Delta}{R_{1}}}-\frac{1}{R_{2}^{2} \sin ^{2} \frac{\Delta}{R_{2}}} .
$$

Therefore, since the function $y \mapsto y \sin \frac{1}{y}$ is increasing on $] 0, \frac{2}{\pi}\left[, k^{\prime}(\Delta)\right.$ is nonnegative and it vanishes if and only if $R_{1}=R_{2}$. Hence

$$
\lim _{\Delta \rightarrow 0} k(\Delta) \leqslant k(\Delta) \leqslant k\left(R_{2} \Theta_{2}\right)
$$

By the use of the formula $\cot X=\frac{1}{X}+O(X)$, valid for small numbers X, we can compute the above limit

$$
\begin{aligned}
k(\Delta) & =\left(\frac{R_{2}}{\Delta}+O(\Delta)\right) \frac{1}{R_{2}}-\left(\frac{R_{1}}{\Delta}+O(\Delta)\right) \frac{1}{R_{1}}+s\left(\cos \Theta_{1}+\cos \Theta_{2}\right) \\
& \underset{\Delta \rightarrow 0}{\longrightarrow} s\left(\sqrt{1-R_{1}^{-2}}+\sqrt{1-R_{2}^{-2}}\right)
\end{aligned}
$$

Now, if $s=1$ then $k(\Delta)$ is nonnegative, and it vanishes if and only if $R_{2}=R_{1}=1$. If $s=-1$, use (5) to get

$$
k\left(R_{2} \Theta_{2}\right)=-2 \cos \Theta_{1} \leqslant 0,
$$

so $k(\Delta)$ is nonpositive and our claim is proved.
Choose an integer m large enough to ensure that ($R_{1}, R_{2}, R_{1} \Theta_{1}+R_{2} \Theta_{2}$) and $y_{0} \stackrel{\text { def }}{=}\left(\sqrt{2}, \sqrt{2}, \frac{\pi}{6 \sqrt{2}}\right)$ belong to Y_{m}, where

$$
Y_{m}=\left\{\left(\rho_{1}, \rho_{2}, \delta\right): \rho_{1} \in\left[1+\frac{1}{m}, m\right], \rho_{2} \in\left[\rho_{1}, m\right], \delta \in\left[\frac{1}{m}, \rho_{2} \sin ^{-1} \frac{1}{\rho_{2}}\right]\right\} .
$$

We want to apply Lemma 4 for $[a, b]=[0, \pi]$ and $Y=Y_{m}$. Suppose the assumption of Lemma 4 is not verified; then, for each positive integer n, there
exist $\left.x_{n} \in\right] 0,1 / n\left[\right.$ and a triple $y_{n}=\left(\rho_{1}, \rho_{2}, \delta\right) \in Y_{m}$ such that $f_{y_{n}}^{\prime}\left(x_{n}\right)=0$ (resp. $\left.f_{y_{n}}^{\prime}\left(\pi-x_{n}\right)=0\right)$. Then, by the compactness of Y_{m}, we can extract a subsequence of $\left\{y_{n}\right\}_{n}$ converging to $y \in Y_{m}$. It follows that the function h_{y} associated to f_{y} as above verifies $h_{y}(1)=0$ (resp. $h_{y}(-1)=0$), in contradiction to the above claim.

Therefore, we can apply Lemma 4 to deduce that 0 and π are both minima of f_{y} for all y in Y_{m} if and only if they are minima of $f_{y_{0}}$. Finally, use (5) to establish this last statement by a direct computation:

$$
f_{y_{0}}^{\prime \prime}(\pi)=f_{y_{0}}^{\prime \prime}(0)=g_{y_{0}}(0)>0
$$

Case 2. $p \in C_{1}^{*} \backslash \operatorname{cl} a\left(C_{2}\right)$. We can assume, without loss of generality, that $p=$ $\phi\left(e_{1}, \theta\right)$ and $a(p)=\phi\left(-e_{1}, \theta^{\prime}\right)$, where θ and θ^{\prime} are real positive numbers such that

$$
R_{1}\left(\theta+\theta^{\prime}\right)=R_{1} \Theta_{1}+R_{2} \Theta_{2}
$$

It follows that θ and θ^{\prime} are not less than $\frac{R_{2}}{R_{1}} \Theta_{2}$. Assume that $\theta \leqslant \theta^{\prime}$ (otherwise, exchange them).

A segment between p and $p^{\prime}=a(p)$ consists either of a meridian path included in C_{1}, in which case $\rho\left(p, p^{\prime}\right)=\operatorname{diam}\left(L_{d, R_{1} R_{2}}\right)$, or of three arcs of circles: the first one in C_{1} from p to some point $u \in \Lambda$, the second one in C_{2} from u to some point $u^{\prime} \in \Lambda$, and the third one in C_{1} from u^{\prime} to p^{\prime}.

Let $p^{\prime \prime}=\phi\left(-e_{1}, \theta\right)$ be the point symmetrical to p with respect to e_{1}^{\perp}.
We claim that the shortest path from p to $p^{\prime \prime}$, among all paths intersecting C_{2}, is the meridian path. This claim would end the proof, since it directly implies that the meridian paths are segments between p and p^{\prime}.

To prove the claim, suppose on the contrary that a shortest path Σ joining p to $p^{\prime \prime}$ and intersecting C_{2} is shorter that $2\left(R_{2} \Theta_{2}+R_{1}\left(\Theta_{1}-\theta\right)\right)$.

Notice that Σ is symmetrical with respect to e_{1}^{\perp}. Indeed, denote by Σ^{\prime} the path symmetrical to Σ with respect to e_{1}^{\perp}, and assume $\Sigma \neq \Sigma^{\prime}$ (as point sets). Take the first point along Σ, say q, in $\Sigma^{\prime} \cap e_{1}^{\perp}$. Then the arcs of Σ and Σ^{\prime} from p to q have the same length, and they are segments of our hypersurface $L_{d, R_{1} R_{2}}$. If Σ and Σ^{\prime} would not have opposite directions at q then the first variation formula (see Theorem 3.5 in [7]) would show the existence (around q) of a path shorter then Σ, which is impossible by our choice. So Σ and Σ^{\prime} have opposite directions at q, and therefore they coincide as point sets.

We may assume that Σ consists of an arc of circle in C_{1} from p to $u=\cos \alpha e_{1}+$ $\sin \alpha e_{2}(\alpha \in] 0, \frac{\pi}{2}[)$, an arc of circle in C_{2} from u to $u^{\prime}=-\cos \alpha e_{1}+\sin \alpha e_{2}$, and an arc of circle in C_{1} from u^{\prime} to $p^{\prime \prime}$. Then the length of Σ is given by

$$
\begin{aligned}
L(\alpha)= & R_{2} \cos ^{-1}\left(1-\frac{2 \cos ^{2} \alpha}{R_{2}^{2}}\right) \\
& +2 R_{1} \cos ^{-1} \frac{\sin \theta \cos \alpha+\cos \theta \sqrt{R_{1}^{2}-1}}{R_{1}}
\end{aligned}
$$

By a straightforward computation, the first derivative of L is

$$
\begin{aligned}
L^{\prime}(\alpha)=2 \sin \alpha & \left(\frac{\sin \theta}{\sqrt{1-\left(\sin \theta \cos \alpha+\cos \theta \sqrt{R_{1}^{2}-1}\right)^{2} / R_{1}^{2}}}\right. \\
& \left.-\frac{1}{\sqrt{1-\cos ^{2} \alpha / R_{2}^{2}}}\right)
\end{aligned}
$$

and it vanishes on $] 0, \frac{\pi}{2}$ [if and only if $\cos \alpha$ is a solution of the equation

$$
\begin{equation*}
\left(R_{2}^{2}-R_{1}^{2}\right) X^{2}+2 \cot \theta \sqrt{R_{1}^{2}-1} R_{2}^{2} X-\cot ^{2} \theta R_{2}^{2}=0 \tag{6}
\end{equation*}
$$

Since the product of the solutions of (6) is negative, there exists at most one local extremum for L in $] 0, \frac{\pi}{2}\left[\right.$, say at α_{0}. Furthermore,

$$
L^{\prime}\left(\frac{\pi}{2}\right)=\frac{\sin \theta}{\sqrt{1-\cos ^{2} \theta\left(R_{1}^{2}-1\right) / R_{1}^{2}}}-1<0
$$

whence α_{0} is a point of maximum, and the global minimum of L on $\left[0, \frac{\pi}{2}\right]$ is either at 0 or at $\frac{\pi}{2}$. Now we compute

$$
\begin{aligned}
\frac{1}{2 R_{1}} & \left(L(0)-L\left(\frac{\pi}{2}\right)\right) \\
= & -\cos ^{-1} \frac{\cos \theta \sqrt{R_{1}^{2}-1}}{R_{1}} \\
& +\cos ^{-1} \frac{\sin \theta+\cos \theta \sqrt{R_{1}^{2}-1}}{R_{1}}+\frac{R_{2}}{2 R_{1}} \cos ^{-1}\left(1-\frac{2}{R_{2}^{2}}\right) \\
= & -\cos ^{-1}\left(\cos \theta \cos \Theta_{1}\right) \\
& +\cos ^{-1}\left(\sin \theta \sin \Theta_{1}+\cos \theta \cos \Theta_{1}\right) \\
& +\frac{\sin \Theta_{1}}{2 \sin \Theta_{2}} \cos { }^{-1}\left(1-2 \sin ^{2} \Theta_{2}\right) \\
= & -\cos ^{-1}\left(\cos \theta \cos \Theta_{1}\right)+\Theta_{1}-\theta+\frac{\sin \Theta_{1}}{\sin \Theta_{2}} \Theta_{2} \\
\leqslant & -\Theta_{1}+\Theta_{1}-\theta+\frac{R_{2}}{R_{1}} \Theta_{2} \leqslant 0 .
\end{aligned}
$$

So, the global minimum of L is at 0 , and the shortest path Σ is a meridian path. This completes the proof of Theorem 2.

5 DEGENERATE ANTIPODAL HYPERSURFACES

The usual definition of a convex hypersurface covers, beside the boundaries of convex bodies, the degenerate case too. Formally, a d-dimensional degenerate convex hypersurface D is the union of two isometric copies K and K^{\prime} of a convex body (also denoted by) $K \subset \mathbb{R}^{d}(d \geqslant 2)$, glued together along their boundary by
identifying the points $x \in \operatorname{bd} K$ and $x^{\prime} \dot{=}(x) \in \operatorname{bd} K^{\prime}$, where $\imath: K \rightarrow K^{\prime}$ is the isometry between K and K^{\prime}. Call K and K^{\prime} the faces of D, and D the double of K; the ridge of D is $\operatorname{rd} D=K \cap K^{\prime}$. Thus, D is (seen as) limit in \mathbb{R}^{d+1} of d-dimensional convex hypersurfaces containing $\operatorname{rd} D$.

Let \mathcal{D} denote the space of all degenerate convex hypersurfaces of some fixed dimension.

For any point x in the double D_{T} of an arbitrary simplex T of dimension at least 4, the set F_{x} is included in the vertex set of T [5]. Since F is upper semi-continuous and its image is closed, there exists a neighbourhood of D_{T} in \mathcal{D}, all of which hypersurfaces have F properly multivalued. Moreover, the same happens for F on most (in the sense of Baire categories) hypersurfaces in \mathcal{D} [12], so $\mathcal{H} \cap \mathcal{D}$ is a small subset of \mathcal{D}. We refine this by Theorem 3.

The next auxiliary result, a complete proof of which can be found in [12], follows from the first variation formula.

A point $y \in S$ is called critical with respect to ρ_{x} (or to x), if for any direction τ of S at y for there exists a segment from y to x whose direction at y makes an angle $\alpha \leqslant \pi / 2$ with τ.

Lemma 5. If $y \in S$ is a local maximum for ρ_{x} then it is critical with respect to ρ_{x}.
We say that a convex body K has the property of double normals if any line normal to K at some boundary point of K is also normal to K at the other intersection point with the boundary of K.

The following result can be found, for example, in [2].

Lemma 6. A convex body K has constant width if and only if it has the property of double normals.

The next result provides a link between the intrinsic geometry of convex hypersurfaces and the (extrinsic) geometry of convex bodies. Compared to Theorems 1 and 2 , it also shows that the degeneracy is a quite strong restriction.

Theorem 3. If the double of the convex body $K \subset \mathbb{R}^{d}$ has the corresponding mapping F an involutive bijection then K is smooth and has constant width.

Proof. Denote by D the double of K and consider a point z in $S_{K}=\mathrm{bd} K \subset D$. Then clearly $v=F_{z} \in S_{K}$ and there are precisely two segments from v to z, one on each face of D. By Lemma $5, v$ is a critical point for ρ_{z}, hence the line $z v$ is normal to S_{K} at v. Since $z=F_{v}, z$ is a critical point for ρ_{v} and the line $v z$ is normal to S_{K} at z, so S_{K} and consequently K has the property of double normals. Then K has constant width, by Lemma 6.

Assume there exists a supporting cone T_{x} of S_{K}, at some point $x \in S_{K}$, which is not a hyperplane, hence the normal cone N_{x} of S_{K} at x is not reduced to a vector. Then there exist two distinct 0 -extreme unit vectors $v^{\prime}, v^{\prime \prime}$ in N_{x}, and two sequences
of smooth points $x_{n}^{\prime}, x_{n}^{\prime \prime}$ convergent to x such that the unit normal vectors $n_{x_{n}^{\prime}}, n_{x_{n}^{\prime \prime}}$ converge to $v^{\prime}, v^{\prime \prime}$ respectively (see Theorem 2.2.7 in [9]).

Put $y_{n}^{\prime}=F_{x_{n}^{\prime}}, y_{n}^{\prime \prime}=F_{x_{n}^{\prime \prime}}$ and $y^{\prime}=\lim y_{n}^{\prime}, y^{\prime \prime}=\lim y_{n}^{\prime \prime}$. The Hausdorff dimension of the set of all singular points of S_{K} is at most $\operatorname{dim} S_{K}-1$ (see [9]), so we may take $x_{n}^{\prime}, x_{n}^{\prime \prime}$ such that $y_{n}^{\prime}, y_{n}^{\prime \prime}$ are smooth, too. We get $y^{\prime} \neq y^{\prime \prime}$, because the lines $x_{n}^{\prime} y_{n}^{\prime}$ and $x_{n}^{\prime \prime} y_{n}^{\prime \prime}$ are normal to S_{K} at $x_{n}^{\prime}, y_{n}^{\prime}$, and respectively $x_{n}^{\prime \prime}, y_{n}^{\prime \prime}$, and the limit directions v^{\prime} and $v^{\prime \prime}$ are distinct. On the other hand, $y^{\prime}, y^{\prime \prime} \in F_{x}$ because $y_{n}^{\prime}=F_{x_{n}^{\prime}}, y_{n}^{\prime \prime}=F_{x_{n}^{\prime \prime}}$, a contradiction to the bijectivity of F which proves the smoothness of D.

6. DOUBLES OF CONSTANT WIDTH CONVEX BODIES

Degenerate antipodal convex hypersurfaces are smooth and have constant width, as shown by Theorem 3. In this section we prove a partial converse of this fact.

Theorem 4. Let K be a \mathcal{C}^{2}-differentiable convex body of constant width w, and D the double of K. Then there exists a neighbourhood N of the ridge of D such that for all $x \in N, \max \rho_{x}=w$. Consequently, the restriction of F to N is single-valued and involutive.

Proof. To begin with, notice that the restriction of F to $S=\mathrm{rd} D$ is single-valued and involutive. Indeed, since K is of constant width, its boundary has the property of double normals (Lemma 6), and for any double normal the distance between the points of contact with $\mathrm{bd} K=S$ equals w.
Let $x, x^{\prime} \in S$ be two mutually antipodal points in D, and Σ one of the two segments between them. We denote by x_{t} (resp. x_{t}^{\prime}) the point of Σ (resp. of $t(\Sigma))$ such that $\rho\left(x, x_{t}\right)=t$ (resp. $\rho\left(x^{\prime}, x_{t}\right)=t$). We claim that there exists a positive number ε such that for all $t \in[0, \varepsilon], F_{x_{t}}=x_{t}^{\prime}$; moreover, there are precisely two segments between x_{t} and x_{t}^{\prime}, the union of which is $\Sigma \cup \iota(\Sigma)$. In particular, $\max \rho_{x_{t}}=\rho\left(x_{t}, x_{t}^{\prime}\right)=w$.

Assume on the contrary that for $t \rightarrow 0$ there exists a segment from x_{t} to x_{t}^{\prime} whose length is strictly less than w. Such a segment consists of a segment Γ_{t} from x_{t} to some point $y_{t} \in S$ and a segment Γ_{t}^{\prime} from y_{t} to x_{t}^{\prime}. Since Σ and $\iota(\Sigma)$ are the only segments between x and x^{\prime}, y_{t} goes to x (or to x^{\prime}) if t goes to 0 .

Let H be the hyperplane normal to Σ through x^{\prime}, and π the orthogonal projection onto H. As a convex hypersurface, S is locally the graph of some function defined on some neighbourhood of $x^{\prime} \in H$, namely there exists an open set U containing x such that

$$
S \cap U=\left\{z+(w-\psi(z)) \frac{\overrightarrow{x^{\prime} x}}{w}: z \in \pi(U)\right\}
$$

Since S is \mathcal{C}^{2}-differentiable, there exists a positive number A such that

$$
\begin{equation*}
0 \leqslant \psi(z) \leqslant A\left\|x^{\prime} z\right\|^{2} \tag{7}
\end{equation*}
$$

With $z_{t}=\pi\left(y_{t}\right)$, the distance between x_{t} and x_{t}^{\prime} is expressed by

$$
g\left(z_{t}, t\right) \stackrel{\text { def }}{=} \sqrt{\left\|x^{\prime} z_{t}\right\|^{2}+\left(t-\psi\left(z_{t}\right)\right)^{2}}+\sqrt{\left\|x^{\prime} z_{t}\right\|^{2}+\left(w-\psi\left(z_{t}\right)-t\right)^{2}} .
$$

Using the simple fact that $\sqrt{U}+\sqrt{V} \leqslant w$ if and only if $w^{2} \geqslant U+V$ and $(U+V-$ $\left.w^{2}\right)^{2} \geqslant 4 U V$, we obtain by a straightforward computation that $g\left(z_{t}, t\right) \leqslant w$ if and only if

$$
\begin{aligned}
& 0 \leqslant-\left\|x^{\prime} z_{t}\right\|^{2}+t(w-t)+\psi\left(z_{t}\right)\left(w-\psi\left(z_{t}\right)\right) \\
& 0 \leqslant-\left\|x^{\prime} z_{t}\right\|^{2} w^{2}+4 t \psi\left(z_{t}\right)\left(w-\psi\left(z_{t}\right)\right)(w-t) \stackrel{\text { def }}{=} h\left(z_{t}, t\right)
\end{aligned}
$$

From (7) we get, for $t<\frac{1}{4 A}$,

$$
\begin{aligned}
h\left(z_{t}, t\right) & \leqslant-\left\|x^{\prime} z_{t}\right\|^{2} w^{2}+4 w^{2} t A\left\|x^{\prime} z_{t}\right\|^{2} \\
& =\left\|x^{\prime} z_{t}\right\|^{2} w^{2}(4 t A-1)<0 .
\end{aligned}
$$

It follows that $g\left(z_{t}, t\right)>w$ for t small enough, which is in contradiction with Lemma 1, and proves the claim.

Put

$$
\varepsilon(z) \stackrel{\text { def }}{=} \max \left\{\varepsilon>0: \rho\left(z+\varepsilon \frac{\overrightarrow{z z^{\prime}}}{w}, F_{z+\varepsilon \frac{\overrightarrow{z^{\prime}}}{w}}\right)=w\right\} .
$$

Suppose that there exists a sequence z_{n} tending to z_{0} such that $\varepsilon\left(z_{n}\right)$ is tending to zero. The above argument shows that $h\left(z_{n}, \varepsilon\left(z_{n}\right)\right)<0$ for n large enough, which is impossible. Hence $\min _{z \in S} \varepsilon(z)>0$ and the proof is complete.

Remark. In the proof of Theorem 4 we have used the \mathcal{C}^{2}-differentiability only to obtain (7). Since this inequality also holds under the weaker hypothesis that the boundary of K has finite upper curvatures at every point (see [1] p. 14 for the definition), the statement of Theorem 4 can be accordingly strengthened.

7. THREE CHARACTERIZATIONS OF BALLS

In this section we partly confirm Steinhaus' guess, by proving with our Theorems $5-7$ that it is possible to characterize the balls (eventhough not the spheres) by the use of the mapping F.

Theorem 1 provides many hypersurfaces in $\mathcal{H} \backslash \mathcal{D}$ with central symmetry, and thus with the mapping F an isometry. Nevertheless, since any centrally symmetric body of constant width is a ball (see, for example, [2]), we directly obtain from Theorem 3 the following result.

Theorem 5. If the double of the centrally symmetric convex body $K \subset \mathbb{R}^{d}$ has the corresponding mapping F an involutive bijection then K is a ball.

Theorem 6. If the double of the convex body $K \subset \mathbb{R}^{2}$ has the corresponding mapping F an isometry then K is a ball.

Proof. This follows simply from Theorem 5 and Theorem 4 in [13], stating that the convex surface S is a centrally symmetric surface in \mathcal{H} if and only if the associated mapping F is an isometry.

Let S_{K} denote the sphere inscribed to K; i.e., the sphere of maximal radius included in K. We shall repeatedly and implicitly use the following simple fact (see, for example, [14]).

Lemma 7. Any closed half sphere of S_{K} contains a point in the set $S_{K} \cap K$.
While Theorems 1 and 2 provide many hypersurfaces in $\mathcal{I} \backslash \mathcal{D}$, the next result shows that there are very few degenerate hypersurfaces in \mathcal{I}.

Theorem 7. If the double D of the convex body K satisfies $\operatorname{rad}(D)=\operatorname{diam}(D)$ then K is a ball.

Proof. Suppose $D \in \mathcal{I} \cap \mathcal{D}$ is the double of the convex body $K \subset \mathbb{R}^{d}$. Then it is easily seen that K has constant width $w=\rho\left(x, F_{x}\right), x \in D$, and also has the property of double normals.

Let o and r denote the centre and the radius of the sphere S_{K} inscribed to K, respectively. We claim that $F_{o}=l(o)$. If so, then $\rho\left(o, F_{o}\right)=2 r$, hence $w=2 r$ and K is a ball.

To prove the claim, assume there exists a point $l(y) \in\left(F_{o} \backslash\{\iota(o)\}\right) \cap \iota(K)$. Denote by S_{-}and S_{+}the closed semispheres of S_{K} determined by the hyperplane orthogonal at o to the line $y o$, such that $y \in S_{-}$. Clearly, $y \in S_{-} \backslash S_{+}$.

The point o belongs to $F_{l(y)}$, because $\rho\left(o, F_{o}\right)=\rho\left(\iota(y), F_{l(y)}\right)$. By Lemma 5, there is some segment Γ from $\iota(y)$ to o which intersects S_{+}, say at a. Put $\{b\}=$ $\Gamma \cap \operatorname{rd} D$, hence $\Gamma=[\iota(y) b] \cup[b o]$ and $a \in[b o]$.

Since S_{K} is inscribed to K, there exists a point $c \in S_{-} \cap K$. Let H be the hyperplane orthogonal to the line yo through c, and d the point in $H \cap S_{-} \cap y a o$ determined by $[y a] \cap[o d] \neq \emptyset$.

Put $\{e\}=[o d] \cap[a y]$ and apply twice the triangle inequality, for [aeo] and [dey]. We get $\|a-o\|+\|y-d\| \leqslant\|e-o\|+\|a-e\|+\|y-e\|+\|d-e\|=\|d-o\|+$ $\|y-a\|$. Since $\|a-o\|=\|d-o\|=r$, it follows that $\|y-d\| \leqslant\|y-a\|$.

We have $\|\iota(y)-c\|=\|y-c\|$ and therefore, by the previous inequality,

$$
\begin{aligned}
l(\Gamma) & =\|c(y)-b\|+\|b-o\|=\|y-b\|+\|b-o\| \\
& \geqslant\|y-a\|+\|a-o\| \geqslant\|y-d\|+\|d-o\| \\
& =\|y-c\|+\|c-o\|=\|\iota(y)-c\|+\|c-o\| .
\end{aligned}
$$

The length-minimality of Γ implies that the inequalities above actually are all equalities, hence $\|y-d\|=\|y-a\|,\{a, d, c\} \subset S_{-} \cap S_{+}$, and any shortest path from $\iota(y)$ to o intersects S_{K} at a point in $S_{K} \cap K$.

Let E be the hyperellipsoid of revolution with the foci at o and y, and with the sum of the focal radii equal to $\rho(o, y)$. It follows that E is included in K, because all segments from $\iota(y)$ to o have the same length. Since E is tangent to K at c, its normal line n at c is also normal to K. Of course, n bisects the angle $\angle y c o$. But S_{K} and K are tangent at c, so n is also normal to S_{K} at c, and thus $n=o c$, impossible.

This completely proves the claim and the theorem.

8. OPEN QUESTIONS

We conclude with three questions related to our work.

1. The inclusion $\mathcal{I} \subset \mathcal{H}$ holds for convex surfaces in \mathbb{R}^{3} (see [13]); is it true in arbitrary dimension? An affirmative answer would simplify Theorems 1 and 2, and would give a further motivation for Theorem 7.
2. Theorems 1 and 2, and the fact that all right circular cylinders of small height belong to $\mathcal{I} \cap \mathcal{H}[6]$, suggest the following problem.
Find all convex (hyper)surfaces of revolution in $\mathcal{I} \cap \mathcal{H}$. Or, at least those whose generating function ϕ (see Section 2) has piecewise constant curvature.
3. Find all smooth hypersurfaces of constant width which belong to $\mathcal{H} \cap \mathcal{D}$ (see Theorems 3, 4 and 7).

ACKNOWLEDGEMENT

The authors are indebted to Professor J.J. Duistermaat, whose detailed suggestions generally improved the presentation of the paper, and in particular simplified Lemma 4 and the proof of Lemma 2.

REFERENCES

[1] Busemann H. - Convex Surfaces, Interscience Publishers, New York, 1958.
[2] Chakerian G.D., Groemer H. - Convex bodies of constant width, in: P. Gruber, J. Wills (Eds.), Convexity and Its Applıcations, Birkhäuser, Bassel, 1983, pp. 49-96.
[3] Croft H.T., Falconer K.J., Guy R.K. - Unsolved Problems in Geometry, Springer-Verlag, New York, 1991.
[4] Grove K., Petersen P. - A radius sphere theorem, Invent. Math. 112 (1993) 577-583.
[5] Itoh J., Vîlcu C. - Farthest points and cut loci on some degenerate convex surfaces, J. Geom. 80 (2004) 106-120.
[6] Itoh J., Vîlcu C. - What do cylinders look like?, to appear.
[7] Otsu Y., Shioya T. - The Riemannian structure of Alexandrov spaces, J. Differ. Geom. 39 (1994) 629-658.
[8] Rouyer J. - On antipodes on a convex polyhedron, Adv. Geom. 5 (2005) 497-507.
[9] Schneider R. - Convex Bodies: The Brunn-Minkowski Theory, Cambridge University Press, Cambridge, 1993.
[10] Vîlcu C. - On two conjectures of Steinhaus, Geom. Dedicata 79 (2000) 267-275.
[11] Vîlcu C. - Properties of the farthest point mapping on convex surfaces, Rev. Roumaine Math. Pures Appl. 51 (2006) 125-134.
[12] Vîlcu C. - On typical degenerate convex surfaces, Math. Ann. 340 (2008) 543-567.
[13] Vilcu C., Zamfirescu T. - Symmetry and the farthest point mapping on convex surfaces, Adv. Geom. 6 (2006) 345-353.
[14] Zamfirescu T. - Inscribed and circumscribed circles to convex curves, Proc. Amer. Math. Soc. 80 (1982) 455-457.

[^0]: * J. Itoh was partially supported by the Grant-in-Aid for Scientific Research, JSPS.
 \dagger The final form of the paper was achieved during the visit of J. Rouyer at Kumamoto Unıversity, supported by JSPS.
 \# This paper was done during the stay of C. Vîlcu at Kumamoto University, supported by JSPS.
 MSC. 52A $20,53 \mathrm{C} 45$
 Key words and phrases: Convex surface, Farthest point, Constant width
 E-mails: j-itoh@gpo.kumamoto-u.ac.jp (J. Itoh), Joel.Rouyer@libertysurf.fr (J. Rouyer), Costin.Vilcu@imar.ro (C. Vîlcu).

