On Two Conjectures of Steinhaus

COSTIN VÎLCU*
Institute of Mathematics of the Romanian Academy, PO Box 1-764, Bucharest 70700, Romania. e-mail: costin.vilcu@imar.ro

(Received: 14 September 1998; revised version: 15 January 1999)
(Communicated by K. Strambach)

Abstract

We disprove two conjectures of H. Steinhaus by showing that: (1) there is a convex surface S such that for any point x on S and any point y in the set F_{x} of farthest points from x, there are at most two segments from x to y; (2) the properties $\left|F_{x}\right|=1$ and $F_{F_{x}}=x$ do not characterize the sphere.

Mathematics Subject Classification (1991): 52A15.
Key words: convex surface, centrally symmetric, intrinsic distance, (geodesic) segment, farthest points.

1. The First Conjecture

In a very interesting book by Croft, Falconer and Guy ([2], p. 44 (iii)) we find the following conjecture of Steinhaus: on each closed convex surface (whose class of differentiability remains unprecise), there exist points x and y in the set F_{x} of farthest points from x, with at least three segments (i.e. shortest paths) joining them. We give here an example of a convex surface S disproving Steinhaus's conjecture. First we construct it and then prove that S provides a suitable example.

In the following, we consider closed convex surfaces in the Euclidean space \mathbb{R}^{3}. The coordinates in \mathbb{R}^{3} will be x_{1}, x_{2}, x_{3}. For two points x, y on a surface, the geodesic (intrinsic) distance between them will be denoted by $\delta(x, y)$. $|A|$ denotes the cardinality of the set A. Also, we shall not distinguish between a point and the set containing exactly that point.

Let C_{1} be the arc of the circle of centre $o^{\prime}=(0,-\alpha, 0)$ and radius 1 lying in the half-plane $x_{2} \geqslant 0(\alpha \in(0,1))$. Let C_{2} be the arc symmetric to C_{1} with respect to the x_{1}-axis (see Figure 1).

Denote $\{a, b\}=C_{1} \cap C_{2}$ and let d be the middle point of C_{1}. Take the points v_{1} and v_{2} on the x_{3}-axis, symmetric with respect to the origin o and consider the boundary S of the convex hull of the set $\left\{v_{1}, v_{2}\right\} \cup C_{1} \cup C_{2}$. We choose v_{1} and v_{2} far enough such that the length $l\left(C_{1}\right)$ of C_{1} be less than the distance from d to v_{i} and such that $\beta<\pi$, where β denotes the total angle of the tangent cone at v_{i} $(i=1,2)$. For any point u on C_{1} we have $l\left(C_{1}\right)<\delta\left(u, v_{1}\right)$, since $\|d\|<\|u\|$.

[^0]

Figure 1.

Figure 2.

PROPOSITION 1. On the surface S constructed above, from an arbitrary point $x \in S$ to any point $y \in F_{x}$ there are at most two segments.

Proof. The surfaces $S_{+}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in S \mid x_{3} \geqslant 0\right\}$ and $S_{-}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in\right.$ $\left.S \mid x_{3} \leqslant 0\right\}$ are unfoldable. Let us consider the unfoldings S^{\prime} and $S^{\prime \prime}$ as in Figure 2, where we marked by a 'prime' and a 'double prime' the points or arcs of S^{\prime} and $S^{\prime \prime}$ corresponding to those of S. On each unfolding the segments of S became line segments. In the following we shall implicitly refer to these unfoldings.

Let x be a point on S. We can assume that $x \in S_{-} \cap\left\{\left(x_{1}, x_{2}, x_{3}\right) \mid x_{2} \geqslant 0\right\}$. If $x=a($ or $x=b)$ then $F_{x}=\left\{v_{1}, v_{2}\right\}$ and from x to each $v_{i}(i=1,2)$ there is precisely one segment. If x lies on the segment $a v_{2}$ and is different from a then there are two segments from x to v_{1}, symmetric with respect to the plane $x_{1} o x_{3}$. Suppose now $x \notin a v_{2}$; let $s \in\left[0, l\left(C_{1}\right)\right]$ be the canonical parameter on the curve C_{1} and $c(s)$ the corresponding point on $C_{1}(c(0)=a)$. Let $u^{1}(s)$ be the angle made in $c(s)$ by C_{1} with the segment $\Gamma_{c(s) v_{1}}\left(\right.$ from $c(s)$ to $\left.v_{1}\right)$ and let $u^{2}(s)$ be the angle made in $c(s)$ by the segment $\Gamma_{c(s) x}$ with C_{1}. Since the angles u^{1} and u^{2} are increasing functions of s, their sum is also. A path Σ from x to v_{1} is a segment if and only if the opposite angles made with C_{1} in the point $c\left(s_{0}\right)$ given by $\left\{c\left(s_{0}\right)\right\}=\Sigma \cap C_{1}$ are equal. Equivalently, Σ is a segment from x to v_{1} if and only if $u^{1}\left(s_{0}\right)+u^{2}\left(s_{0}\right)=\pi$. Since $u^{1}(0)+u^{2}(0)<\pi$ and $u^{1}\left(l\left(C_{1}\right)\right)+u^{2}\left(l\left(C_{1}\right)\right)>\pi$ there is an unique value $s_{0} \in\left[0, l\left(C_{1}\right)\right]$ with $u^{1}\left(s_{0}\right)+u^{2}\left(s_{0}\right)=\pi$. Therefore the proof is finished if we show that $F_{x} \subseteq\left\{v_{1}, v_{2}\right\}$, with equality if and only if $x \in C_{1} \cup C_{2}$ (because of the symmetry with respect to the plane $x_{1} o x_{2}$). Equivalently, we have to check that all points of the surface S_{+}are at distance at most $\delta\left(x, v_{1}\right)$ from x. If z is an arbitrary point on S_{+}then we have

$$
\begin{aligned}
\delta(x, z) & \leqslant \delta\left(x, c\left(s_{0}\right)\right)+\delta\left(c\left(s_{0}\right), z\right) \\
& \leqslant \delta\left(x, c\left(s_{0}\right)\right)+\max \left\{\delta\left(c\left(s_{0}\right), v_{1}\right), l\left(C_{1}\right)\right\} \\
& \leqslant \delta\left(x, c\left(s_{0}\right)\right)+\delta\left(c\left(s_{0}\right), v_{1}\right)=\delta\left(x, v_{1}\right)
\end{aligned}
$$

with equality precisely for $z=v_{1}$.
This conjecture of Steinhaus remains open for the smooth case. It remains also open if restricted to those convex surfaces S with $\left|F_{x}\right|=1$ for all $x \in S$.
T. Zamfirescu [5] conjectured that on any convex surface S there are two points x, y such that from x to y there are at least three segments. This conjecture is also open.

2. The Second Conjecture

In the same book of Croft, Falconer and Guy ([2], p. 44 (ii)) we find another conjecture of Steinhaus saying that a convex surface S is a sphere if it verifies the properties $(S C):\left|F_{x}\right|=1$ and $F_{F_{x}}=x$ for any point x on S. We shall disprove this conjecture by showing that the regular tetrahedron satisfies the above two conditions. Thus two new problems arise naturally:

PROBLEM A. Characterize the family sC of all convex surfaces which verify Steinhaus's conditions (SC).

Problem B. Sharpen (SC) to obtain a characterization of the sphere.

Figure 3.

In the last part of this section we give a partial answer to Problem A by defining a set \mathcal{R} of convex surfaces and proving that \mathcal{R} is a subfamily of \mathcal{C}.

By a regular tetrahedron we mean here the boundary of the regular simplex in \mathbb{R}^{3}.

THEOREM 2. All points x on a regular tetrahedron satisfy $F_{F_{x}}=x$ and $\left|F_{x}\right|=1$.
Proof. Let x be a point on a regular tetrahedron $T=a b c d$. We shall prove separately the above two properties. We shall treat the cases:
(1) x is a vertex;
(2) x is interior to an edge;
(3) x is interior to a face.

If the natural correspondence between elements on the tetrahedron T and their correspondents on unfoldings is one-to-one then we shall make no distinction between them.

Property $\left|F_{x}\right|=1$
(1) Assume that $x=a$ and let us consider for T an equilateral triangle $a_{1} a_{2} a_{3}$ as unfolding, obtained by cutting T along the edges $a b, a c$ and $a d$ and straightening. Let y be the centre of the circumscribed circle of this equilateral triangle. One can easily see that any other point $z \in T$ is closer to a than y, hence we have $F_{a}=y$.
(2) Assume that our point x is interior to an edge, say $a b$, and is closer to a than to b or is the middle point of the segment $a b$. Let us cut T along the segments $x c$, $x d$ and $a b$ and consider an unfolding as in Figure 3. We get the isosceles trapezoid $x_{1} x_{2} x_{3} x_{4}$. The centre y of the circumscribed circle of this trapezoid is uniquely determined by x and $F_{x}=y$.

Figure 4.

Figure 5.
(3) Assume that x is interior to the triangle $b c d$ (see Figure 4). We cut T along the segments $x b, x c$ and $x d$ and we straighten the full triangles $x b c, x c d$ and $x d b$ to obtain the respectively coplanar points $a, b, c, x_{1} ; a, c, d, x_{2}$ and a, d, b, x_{3}. Let T^{\prime} be the obtained (nonclosed) surface. Let y be a point in F_{x}. If y is the vertex a then x must be the centre of the triangle $b c d$ and y is uniquely determined by x. If y belongs to an edge (say $a c$) or to a face (say $a c d$) then there are three segments from x to y, namely one from each x_{i} to $y, i=1,2,3$. This follows from a known, more general fact: from any point x on a convex surface S to any point $y \in F_{x}$ where the tangent cone has full angle 2π there are at least three segments. Assume that y is interior to the face $a c d$ (the proof for the case $y \in a c$ is similar). If we cut T^{\prime} (see Figure 4) along the edge $a b$ and we straighten such that the faces $a b x_{1} c$, $a c x_{2} d$ and $a d x_{3} b$ come into the same plane then we get a planar picture $T^{\prime \prime}$ as in Figure 5.

Then c is the midpoint of $x_{1} x_{2}, d$ is the midpoint of $x_{2} x_{3}$ and y is the circumcentre of $x_{1} x_{2} x_{3}$.

Property $F_{F_{x}}=x$

Figure 6.

This follows at once from the fact that y is the circumcentre of $a_{1} a_{2} a_{3}$ in case 1 , of $x_{1} x_{2} x_{3} x_{4}$ in Case 2, and of $x_{1} x_{2} x_{3}$ in Case 3.

This ends the proof of Theorem 2.
Remark 3. One can prove that $\left|F_{x}\right| \leqslant 2$ for any arbitrary tetrahedron \mathbf{T}, for all points $x \in \mathbf{T}$.

Remark 4. The property $F_{F_{x}}=x$ is not true for an arbitrary tetrahedron. One can see it on an 'almost degenerate' tetrahedron $a b c d$ with c and d close to the middle of $a b$ (see Figure 6).

STEINHAUS' CONDITIONS IN THE PRESENCE OF SYMMETRY

The regular tetrahedrons are far from spheres in the space of all nondegenerate convex surfaces endowed with the Pompeiu-Haussdorf metric $\rho\left(S_{1}, S_{2}\right)=$ max $\left\{\sup _{x \in S_{1}} \inf _{y \in S_{2}}\|x-y\|, \sup _{x \in S_{2}} \inf _{y \in S_{1}}\|x-y\|\right\}$. Moreover, the proof for the regular tetrahedron is quite elementary, but this example does not cover the smooth case. Next we shall study Steinhaus' conditions ($S C$) in the presence of a symmetry centre and discover a whole class \mathcal{R} of convex surfaces which verify $(S C)$, including the ellipsoids of revolution with axes $a=b>c$. Thus \mathcal{R} intersects all neighborhoods of a sphere.

From now on we shall denote by a 'prime' all symmetric objects.
THEOREM 5. Let S be a centrally symmetric convex surface $\left(S=S^{\prime}\right)$ and $x \in S$. The following statements are equivalent:
(i) $F_{y}=x$ for all $y \in F_{x}$;
(ii) $F_{x}=x^{\prime}$.

Moreover, both of them imply $\left|F_{x}\right|=1$.
Proof. That (ii) implies (i) is immediate.
We now show that (ii) implies (i). Suppose there is a point $y \in F_{x}$ such that $y \neq x^{\prime}$. By hypothesis and by symmetry we have $F_{y}=x \neq y^{\prime}, F_{x^{\prime}}=y^{\prime}, F_{y^{\prime}}=x^{\prime}$ and $\delta(x, y)=\delta\left(x^{\prime}, y^{\prime}\right)$. Denote by Σ a segment between x and x^{\prime}. By symmetry, Σ^{\prime} is a segment between x^{\prime} and x and the curve $\Sigma \cup \Sigma^{\prime}$ divides the surface S in two symmetric (topologically open) half-surfaces S_{1} and S_{1}^{\prime}. Since $y^{\prime} \neq x$ and $\delta(x, y) \geqslant \delta\left(x, x^{\prime}\right), y \notin \Sigma \cup \Sigma^{\prime}$. Suppose that $y \in S_{1}$, hence $y^{\prime} \in S_{1}^{\prime}$ and let Λ be a

Figure 7.
segment from y to y^{\prime}. We have $(\Lambda \cap \Sigma) \cup\left(\Lambda \cap \Sigma^{\prime}\right) \neq \phi$; suppose for example that $\Lambda \cap \Sigma=\{z\}$ (see Figure 7).

By applying twice the triangle inequality, we get $\delta(x, y) \leqslant \delta(x, z)+\delta(z, y)$ and $\delta\left(x^{\prime}, y^{\prime}\right) \leqslant \delta\left(x^{\prime}, z\right)+\delta\left(z, y^{\prime}\right)$. Therefore $\delta(x, y)+\delta\left(x^{\prime}, y^{\prime}\right) \leqslant \delta(x, z)+\delta(z, y)+$ $\delta\left(x^{\prime}, z\right)+\delta\left(z, y^{\prime}\right)=\delta\left(x, x^{\prime}\right)+\delta\left(y, y^{\prime}\right)$. But $\delta(x, y) \geqslant \delta\left(x, x^{\prime}\right)$ and $\delta\left(x^{\prime}, y^{\prime}\right)=$ $\delta(y, x) \geqslant \delta\left(y, y^{\prime}\right)$. Hence $\delta(x, y)=\delta(x, z)+\delta(z, y)$. Since geodesics do not admit bifurcations, this implies that a segment from x to y strictly includes Σ. But now Σ^{\prime} provides such a bifurcation, and a contradiction is found.

We propose here the following open problem: on any centrally symmetric convex surface S if $\left|F_{x}\right|=1$ for all $x \in S$ then $F_{x}=x^{\prime}$.

PROPOSITION 6. Let S be a convex surface with a symmetry centre o. If the points $x, y \in S$ determine the intrinsic diameter of S then they are symmetric to each other: $y=x^{\prime}$.

Proof. Similar to that of Theorem 5. Suppose there is a point $y \in F_{x}$ such that $y \neq x^{\prime}$. By hypothesis and by symmetry we have $x \in F_{y}, x \neq y^{\prime}, F_{x^{\prime}}=y^{\prime}$, $x^{\prime} \in F_{y^{\prime}}$ and $\delta(x, y)=\delta\left(x^{\prime}, y^{\prime}\right)$. Denote by Σ a segment between x and x^{\prime}. By symmetry, Σ^{\prime} is a segment between x^{\prime} and x and the curve $\Sigma \cup \Sigma^{\prime}$ divides the surface S in two symmetric (topologically open) half-surfaces S_{1} and S_{1}^{\prime}. Since $y^{\prime} \neq x$ and $\delta(x, y) \geqslant \delta\left(x, x^{\prime}\right), y \notin \Sigma \cup \Sigma^{\prime}$. Suppose that $y \in S_{1}$, hence $y^{\prime} \in S_{1}^{\prime}$, and let Λ be a segment from y to y^{\prime}. We have $(\Lambda \cap \Sigma) \cup\left(\Lambda \cap \Sigma^{\prime}\right) \neq \phi$; suppose for example that $\Lambda \cap \Sigma=\{z\}$ (see Figure 7). By applying twice the triangle inequality, we get $\delta(x, y) \leqslant \delta(x, z)+\delta(z, y)$ and $\delta\left(x^{\prime}, y^{\prime}\right) \leqslant \delta\left(x^{\prime}, z\right)+\delta\left(z, y^{\prime}\right)$. Therefore $\delta(x, y)+\delta\left(x^{\prime}, y^{\prime}\right) \leqslant \delta(x, z)+\delta(z, y)+\delta\left(x^{\prime}, z\right)+\delta\left(z, y^{\prime}\right)=\delta$ $\left(x, x^{\prime}\right)+\delta\left(y, y^{\prime}\right)$. But $\delta(x, y) \geqslant \delta\left(x, x^{\prime}\right)$ and $\delta\left(x^{\prime}, y^{\prime}\right)=\delta(y, x) \geqslant \delta\left(y, y^{\prime}\right)$. Hence $\delta(x, y)=\delta(x, z)+\delta(z, y)$. Since geodesics do not admit bifurcations, this implies that a segment from x to y strictly includes Σ. But now Σ^{\prime} provides such a bifurcation, and a contradiction is found.

COROLLARY 7. If S is a convex surface of revolution with symmetry centre then the diameter of S is equal to the half-length of a meridian.

Proof. Let $x, y \in S$ such that diam $S=\delta(x, y)$. By Proposition 6 we have $y=F_{x}=x^{\prime}$. Since all meridians are geodesics and between any two symmetrical
points there is a meridian \mathcal{M} we get $\delta\left(x, x^{\prime}\right) \leqslant \frac{1}{2} l(\mathcal{M})$. But the only segments between the poles of the surface are the meridians, therefore $\delta(x, y)=\frac{1}{2} l(\mathcal{M})$.

Let $\varphi:[0, a] \rightarrow \mathbb{R}$ be a convex function differentiable at 0 with $-a<\varphi(0)<0=$ $\varphi(a), \varphi^{\prime}(0)=0$ and such that $\psi:[0, a] \rightarrow \mathbb{R}$ given by $\psi(u)=\sqrt{u^{2}+\varphi(u)^{2}}$ is an increasing function. Let \mathcal{R} be the set of all surfaces obtained by rotating the curves C given by $\pm \varphi$, i. e. with

$$
x_{1}=u \cos \beta, \quad x_{2}=u \sin \beta, \quad x_{3}= \pm \varphi(u) \quad(u \in[0, a], \beta \in[0,2 \pi])
$$

Each surface in \mathcal{R} is convex (because φ is a convex function), is differentiable at its points with $x_{1}=x_{2}=0$ (because $\varphi^{\prime}(0)=0$) and is symmetric with respect to the plane $x_{1} o x_{2}$.

Also notice that \mathcal{R} contains the ellipsoids of revolution with axis $a=b>c$.
LEMMA 8. The length of a curve Γ in \mathbb{R}^{3} is at least as long as its metric projection onto a convex body.

Proof. See [1] p. 80.
THEOREM 9. $\mathcal{R} \subset \mathcal{C}$.
Proof. Let $S \in \mathcal{R}$. First, let $u \in S$ be an equatorial point and \mathcal{M} a meridian of S through u and $-u$. Let $S_{\mathcal{M}}$ be the surface obtained by the revolution of \mathcal{M} around the line through u and the origin. Because ψ is an increasing function, the surface $S_{\mathcal{M}}$ lies in the convex hull of S and $S \cap S_{\mathcal{M}}=\mathcal{M}$. By Lemma 8, the only segments of S from u to $-u$ are the half-meridians. By Corollary 7 and Proposition 6, $F_{u}=-u$.

Let $x \in S$ be now an arbitrary (but not equatorial) point. Let Γ be segment from x to $-x$ and let u be the intersection point between Γ and the equator. By the symmetry of S we get $\delta(-x, u)=\delta(x,-u)$. Therefore the length of Γ is larger than or equal to the length of a half-meridian: $l(\Gamma)=\delta(u, x)+\delta(x,-u) \geqslant$ $\frac{1}{2}(\mathcal{M})$. Hence $\delta(x,-x)=\frac{1}{2}(\mathcal{M})$ and we obtain $F_{x}=-x$ for all $x \in S$. Applying Theorem 5 we get $S \in s \mathcal{C}$.

Remark 10. As shown in the above proof, for all surfaces $S \in \mathscr{R}$ the only geodesic segments from an arbitrary point $x \in S$ to x^{\prime} are half-meridians.

Acknowledgement

I express my gratitude to Professor Tudor Zamfirescu for introducing me to this topic, for his encouragements and for some very useful suggestions.

References

1. Busemann, H.: Convex Surfaces, Interscience Publishers, New York, 1958.
2. Croft, H. T., Falconer, K. J. and Guy, R. K.: Unsolved Problems in Geometry, Springer-Verlag, New York, 1991.
3. Steinhaus, H.: On shortest path on closed surfaces, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astr. Phys. 6 (1958), 303-308.
4. Steinhaus, H.: Problem 291, Colloq. Math. 7 (1959), 110.
5. Zamfirescu, T.: Points joined by three shortest paths on convex surfaces, Proc. Amer. Math. Soc. 123 (1995), 3513-3518.

[^0]: * The idea of this article appeared during the author's stay at the University of Dortmund, part of the project TEMPUS S-JET-09094-95.

