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Abstract. We disprove two conjectures of H. Steinhaus by showing that: (1) there is a convex surface
S such that for any pointx on S and any pointy in the setFx of farthest points fromx, there are at
most two segments fromx to y; (2) the properties|Fx | = 1 andFFx = x do not characterize the
sphere.
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1. The First Conjecture

In a very interesting book by Croft, Falconer and Guy ([2], p. 44 (iii)) we find the
following conjecture of Steinhaus: on each closed convex surface (whose class of
differentiability remains unprecise), there exist pointsx andy in the setFx of far-
thest points fromx, with at least three segments (i.e. shortest paths) joining them.
We give here an example of a convex surfaceS disproving Steinhaus’s conjecture.
First we construct it and then prove thatS provides a suitable example.

In the following, we consider closed convex surfaces in the Euclidean space
R3. The coordinates inR3 will be x1, x2, x3. For two pointsx, y on a surface, the
geodesic (intrinsic) distance between them will be denoted byδ(x, y). |A| denotes
the cardinality of the setA. Also, we shall not distinguish between a point and the
set containing exactly that point.

Let C1 be the arc of the circle of centreo′ = (0,−α,0) and radius 1 lying in
the half-planex2 > 0 (α ∈ (0,1)). LetC2 be the arc symmetric toC1 with respect
to thex1-axis (see Figure 1).

Denote{a, b} = C1 ∩ C2 and letd be the middle point ofC1. Take the points
v1 andv2 on thex3-axis, symmetric with respect to the origino and consider the
boundaryS of the convex hull of the set{v1, v2} ∪ C1 ∪ C2. We choosev1 andv2

far enough such that the lengthl(C1) of C1 be less than the distance fromd to vi
and such thatβ < π , whereβ denotes the total angle of the tangent cone atvi
(i = 1,2). For any pointu onC1 we havel(C1) < δ (u, v1), since‖d‖ < ‖u‖.
∗ The idea of this article appeared during the author’s stay at the University of Dortmund, part of

the project TEMPUS S-JET-09094-95.
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Figure 1.

Figure 2.

PROPOSITION 1.On the surfaceS constructed above, from an arbitrary point
x ∈ S to any pointy ∈ Fx there are at most two segments.

Proof. The surfacesS+ = {(x1, x2, x3) ∈ S|x3 > 0} andS− = {(x1, x2, x3) ∈
S|x3 6 0} are unfoldable. Let us consider the unfoldingsS ′ andS ′′ as in Figure 2,
where we marked by a ‘prime’ and a ‘double prime’ the points or arcs ofS ′ and
S ′′ corresponding to those ofS. On each unfolding the segments ofS became line
segments. In the following we shall implicitly refer to these unfoldings.
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Let x be a point onS. We can assume thatx ∈ S− ∩ {(x1, x2, x3)|x2 > 0}. If
x = a (or x = b) thenFx = {v1, v2} and fromx to eachvi (i = 1,2) there is
precisely one segment. Ifx lies on the segmentav2 and is different froma then
there are two segments fromx to v1, symmetric with respect to the planex1ox3.
Suppose nowx 6∈ av2; let s ∈ [0, l(C1)] be the canonical parameter on the curve
C1 and c(s) the corresponding point onC1 (c(0) = a). Let u1(s) be the angle
made inc(s) by C1 with the segment0c(s)v1 (from c(s) to v1) and letu2(s) be
the angle made inc(s) by the segment0c(s)x with C1. Since the anglesu1 and
u2 are increasing functions ofs, their sum is also. A path6 from x to v1 is a
segment if and only if the opposite angles made withC1 in the pointc(s0) given by
{c(s0)} = 6∩C1 are equal. Equivalently,6 is a segment fromx to v1 if and only if
u1(s0)+u2(s0) = π . Sinceu1(0)+u2(0) < π andu1(l(C1))+u2(l(C1)) > π there
is an unique values0 ∈ [0, l(C1)] with u1(s0) + u2(s0) = π . Therefore the proof
is finished if we show thatFx ⊆ {v1, v2}, with equality if and only ifx ∈ C1 ∪ C2

(because of the symmetry with respect to the planex1ox2). Equivalently, we have
to check that all points of the surfaceS+ are at distance at mostδ(x, v1) from x. If
z is an arbitrary point onS+ then we have

δ(x, z) 6 δ(x, c(s0))+ δ(c(s0), z)
6 δ(x, c(s0))+max{δ(c(s0), v1), l(C1)}
6 δ(x, c(s0))+ δ(c(s0), v1) = δ(x, v1),

with equality precisely forz = v1. 2
This conjecture of Steinhaus remains open for the smooth case. It remains also

open if restricted to those convex surfacesS with |Fx | = 1 for all x ∈ S.
T. Zamfirescu [5] conjectured that on any convex surfaceS there are two points

x, y such that fromx to y there are at least three segments. This conjecture is also
open.

2. The Second Conjecture

In the same book of Croft, Falconer and Guy ([2], p. 44 (ii)) we find another
conjecture of Steinhaus saying that a convex surfaceS is a sphere if it verifies
the properties(SC): |Fx | = 1 andFFx = x for any point x on S. We shall
disprove this conjecture by showing that the regular tetrahedron satisfies the above
two conditions. Thus two new problems arise naturally:

PROBLEM A. Characterize the familySC of all convex surfaces which verify
Steinhaus’s conditions(SC).

Problem B.Sharpen(SC) to obtain a characterization of the sphere.



270 COSTIN VÎLCU

Figure 3.

In the last part of this section we give a partial answer to Problem A by defining
a setR of convex surfaces and proving thatR is a subfamily ofSC.

By a regular tetrahedron we mean here the boundary of the regular simplex in
R3.

THEOREM 2. All pointsx on a regular tetrahedron satisfyFFx = x and|Fx | = 1.
Proof. Let x be a point on a regular tetrahedronT = abcd. We shall prove

separately the above two properties. We shall treat the cases:

(1) x is a vertex;
(2) x is interior to an edge;
(3) x is interior to a face.

If the natural correspondence between elements on the tetrahedronT and their
correspondents on unfoldings is one-to-one then we shall make no distinction
between them.

Property |Fx | = 1

(1) Assume thatx = a and let us consider forT an equilateral trianglea1a2a3 as
unfolding, obtained by cuttingT along the edgesab, ac andad and straightening.
Let y be the centre of the circumscribed circle of this equilateral triangle. One can
easily see that any other pointz ∈ T is closer toa thany, hence we haveFa = y.

(2) Assume that our pointx is interior to an edge, sayab, and is closer toa than
to b or is the middle point of the segmentab. Let us cutT along the segmentsxc,
xd andab and consider an unfolding as in Figure 3. We get the isosceles trapezoid
x1x2x3x4. The centrey of the circumscribed circle of this trapezoid is uniquely
determined byx andFx = y.
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Figure 4.

Figure 5.

(3) Assume thatx is interior to the trianglebcd (see Figure 4). We cutT along
the segmentsxb, xc andxd and we straighten the full trianglesxbc, xcd andxdb
to obtain the respectively coplanar pointsa, b, c, x1; a, c, d, x2 anda, d, b, x3. Let
T ′ be the obtained (nonclosed) surface. Lety be a point inFx . If y is the vertexa
thenx must be the centre of the trianglebcd andy is uniquely determined byx. If
y belongs to an edge (sayac) or to a face (sayacd) then there are three segments
from x to y, namely one from eachxi to y, i = 1,2,3. This follows from a known,
more general fact: from any pointx on a convex surfaceS to any pointy ∈ Fx
where the tangent cone has full angle 2π there are at least three segments. Assume
thaty is interior to the faceacd (the proof for the casey ∈ ac is similar). If we cut
T ′ (see Figure 4) along the edgeab and we straighten such that the facesabx1c,
acx2d andadx3b come into the same plane then we get a planar pictureT ′′ as in
Figure 5.

Thenc is the midpoint ofx1x2, d is the midpoint ofx2x3 andy is the circum-
centre ofx1x2x3.

Property FFx = x
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Figure 6.

This follows at once from the fact thaty is the circumcentre ofa1a2a3 in case 1, of
x1x2x3x4 in Case 2, and ofx1x2x3 in Case 3.

This ends the proof of Theorem 2. 2
Remark3. One can prove that|Fx | 6 2 for any arbitrary tetrahedronT, for all

pointsx ∈ T.

Remark4. The propertyFFx = x is not true for an arbitrary tetrahedron. One
can see it on an ‘almost degenerate’ tetrahedronabcd with c andd close to the
middle ofab (see Figure 6).

STEINHAUS’ CONDITIONS IN THE PRESENCE OF SYMMETRY

The regular tetrahedrons are far from spheres in the space of all nondegenerate
convex surfaces endowed with the Pompeiu–Haussdorf metricρ(S1, S2) = max
{supx∈S1

infy∈S2‖x−y‖, supx∈S2
infy∈S1‖x−y‖}. Moreover, the proof for the regular

tetrahedron is quite elementary, but this example does not cover the smooth case.
Next we shall study Steinhaus’ conditions(SC) in the presence of a symmetry
centre and discover a whole classR of convex surfaces which verify(SC), in-
cluding the ellipsoids of revolution with axesa = b > c. ThusR intersects all
neighborhoods of a sphere.

From now on we shall denote by a ‘prime’ all symmetric objects.

THEOREM 5. LetS be a centrally symmetric convex surface(S = S ′) andx ∈ S.
The following statements are equivalent:

(i) Fy = x for all y ∈ Fx ;
(ii) Fx = x′.
Moreover, both of them imply|Fx | = 1.

Proof.That (ii) implies (i) is immediate.
We now show that (ii) implies (i). Suppose there is a pointy ∈ Fx such that

y 6= x′. By hypothesis and by symmetry we haveFy = x 6= y′, Fx ′ = y′, Fy ′ = x′
andδ(x, y) = δ(x′, y′). Denote by6 a segment betweenx andx′. By symmetry,
6′ is a segment betweenx′ andx and the curve6 ∪ 6′ divides the surfaceS in
two symmetric (topologically open) half-surfacesS1 and S ′1. Sincey′ 6= x and
δ(x, y) > δ(x, x′), y 6∈ 6 ∪6′. Suppose thaty ∈ S1, hencey′ ∈ S ′1 and let3 be a



ON TWO CONJECTURES OF STEINHAUS 273

Figure 7.

segment fromy to y′. We have(3∩6)∪ (3∩6′) 6= φ; suppose for example that
3 ∩6 = {z} (see Figure 7).

By applying twice the triangle inequality, we getδ(x, y) 6 δ (x, z)+δ(z, y) and
δ(x′, y′) 6 δ(x′, z)+ δ(z, y′). Thereforeδ(x, y) + δ (x′, y′) 6 δ(x, z)+ δ(z, y)+
δ (x′, z) + δ(z, y′) = δ (x, x′) + δ(y, y′). But δ(x, y) > δ(x, x′) andδ(x′, y′) =
δ(y, x) > δ(y, y′). Henceδ(x, y) = δ(x, z) + δ(z, y). Since geodesics do not
admit bifurcations, this implies that a segment fromx to y strictly includes6. But
now6′ provides such a bifurcation, and a contradiction is found. 2
We propose here the following open problem:on any centrally symmetric convex
surfaceS if |Fx | = 1 for all x ∈ S thenFx = x′.

PROPOSITION 6. Let S be a convex surface with a symmetry centreo. If the
pointsx, y ∈ S determine the intrinsic diameter ofS then they are symmetric to
each other:y = x′.

Proof. Similar to that of Theorem 5. Suppose there is a pointy ∈ Fx such that
y 6= x′. By hypothesis and by symmetry we havex ∈ Fy , x 6= y′, Fx ′ = y′,
x′ ∈ Fy ′ andδ(x, y) = δ (x′, y′). Denote by6 a segment betweenx andx′. By
symmetry,6′ is a segment betweenx′ andx and the curve6 ∪ 6′ divides the
surfaceS in two symmetric (topologically open) half-surfacesS1 andS ′1. Since
y′ 6= x andδ(x, y) > δ (x, x′), y 6∈ 6 ∪ 6′. Suppose thaty ∈ S1, hencey′ ∈ S ′1,
and let3 be a segment fromy to y′. We have(3 ∩ 6)∪ (3 ∩ 6′) 6= φ; suppose
for example that3 ∩ 6 = {z} (see Figure 7). By applying twice the triangle
inequality, we getδ(x, y) 6 δ(x, z) + δ(z, y) andδ(x′, y′) 6 δ(x′, z) + δ(z, y′).
Thereforeδ(x, y) + δ(x′, y′) 6 δ (x, z) + δ(z, y) + δ (x′, z) + δ(z, y′) = δ

(x, x′) + δ(y, y′). But δ(x, y) > δ (x, x′) and δ(x′, y′) = δ(y, x) > δ(y, y′).
Henceδ(x, y) = δ (x, z)+ δ(z, y). Since geodesics do not admit bifurcations, this
implies that a segment fromx to y strictly includes6. But now6′ provides such a
bifurcation, and a contradiction is found. 2
COROLLARY 7. If S is a convex surface of revolution with symmetry centre then
the diameter ofS is equal to the half-length of a meridian.

Proof. Let x, y ∈ S such that diamS = δ(x, y). By Proposition 6 we have
y = Fx = x′. Since all meridians are geodesics and between any two symmetrical
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points there is a meridianM we getδ(x, x′) 6 1
2l(M). But the only segments

between the poles of the surface are the meridians, thereforeδ(x, y) = 1
2l(M). 2

Let ϕ: [0, a] → R be a convex function differentiable at 0 with−a < ϕ(0) < 0 =
ϕ(a), ϕ′(0) = 0 and such thatψ : [0, a] → R given byψ(u) = √u2 + ϕ(u)2 is an
increasing function. LetR be the set of all surfaces obtained by rotating the curves
C given by±ϕ, i. e. with

x1 = u cosβ, x2 = u sin β, x3 = ±ϕ(u) (u ∈ [0, a], β ∈ [0,2π ]).
Each surface inR is convex (becauseϕ is a convex function), is differentiable

at its points withx1 = x2 = 0 (becauseϕ′(0) = 0) and is symmetric with respect
to the planex1ox2.

Also notice thatR contains the ellipsoids of revolution with axisa = b > c.

LEMMA 8. The length of a curve0 inR3 is at least as long as its metric projection
onto a convex body.

Proof.See [1] p. 80. 2
THEOREM 9. R ⊂ SC.

Proof.Let S ∈ R. First, letu ∈ S be an equatorial point andM a meridian ofS
throughu and−u. Let SM be the surface obtained by the revolution ofM around
the line throughu and the origin. Becauseψ is an increasing function, the surface
SM lies in the convex hull ofS andS∩SM =M. By Lemma 8, the only segments of
S from u to−u are the half-meridians. By Corollary 7 and Proposition 6,Fu = −u.

Let x ∈ S be now an arbitrary (but not equatorial) point. Let0 be segment
from x to−x and letu be the intersection point between0 and the equator. By the
symmetry ofS we getδ(−x, u) = δ(x,−u). Therefore the length of0 is larger
than or equal to the length of a half-meridian:l(0) = δ(u, x) + δ (x,−u) >
1
2(M). Henceδ(x,−x) = 1

2(M) and we obtainFx = −x for all x ∈ S. Applying
Theorem 5 we getS ∈ SC. 2

Remark10. As shown in the above proof, for all surfacesS ∈ R the only
geodesic segments from an arbitrary pointx ∈ S to x′ are half-meridians.
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