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Abstract. We disprove two conjectures of H. Steinhaus by showing that: (1) there is a convex surface
S such that for any point on S and any pointy in the setF, of farthest points fronx, there are at

most two segments from to y; (2) the propertie$Fy| = 1 andFr, = x do not characterize the
sphere.
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1. The First Conjecture

In a very interesting book by Croft, Falconer and Guy ([2], p. 44 (iii)) we find the
following conjecture of Steinhaus: on each closed convex surface (whose class of
differentiability remains unprecise), there exist poiatandy in the setF, of far-
thest points fronx, with at least three segments (i.e. shortest paths) joining them.
We give here an example of a convex surfSagisproving Steinhaus’s conjecture.
First we construct it and then prove thaprovides a suitable example.

In the following, we consider closed convex surfaces in the Euclidean space
R3. The coordinates ifR3 will be x1, xy, x3. For two pointsx, y on a surface, the
geodesic (intrinsic) distance between them will be denotedlbyy). |A| denotes
the cardinality of the set. Also, we shall not distinguish between a point and the
set containing exactly that point.

Let C; be the arc of the circle of centeé = (0, —«, 0) and radius 1 lying in
the half-planer, > 0 (@ € (0, 1)). Let C;, be the arc symmetric t6; with respect
to thex;-axis (see Figure 1).

Denote{a, b} = C1 N C, and letd be the middle point of’;. Take the points
v andv, on thexs-axis, symmetric with respect to the originand consider the
boundarys of the convex hull of the s€w;, v.} U C; U C,. We choose; andwv;
far enough such that the lengttC,) of C; be less than the distance frairto v;
and such thaB < =&, wherep denotes the total angle of the tangent cone; at
(i =1, 2). For any pointz on C; we havel(Cy) < & (u, v1), since|d| < |lu]l.

* The idea of this article appeared during the author’s stay at the University of Dortmund, part of
the project TEMPUS S-JET-09094-95.
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Figure 2.
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PROPOSITION 1.0n the surfaceS constructed above, from an arbitrary point

x € S to any pointy € F, there are at most two segments.

Proof. The surfacess; = {(x1, x2, x3) € Slxz3 > 0} andS_ = {(x1, x5, x3) €
S|x3 < 0} are unfoldable. Let us consider the unfoldingjsand S” as in Figure 2,
where we marked by a ‘prime’ and a ‘double prime’ the points or arc§ @ind
S” corresponding to those ¢f On each unfolding the segmentsbecame line
segments. In the following we shall implicitly refer to these unfoldings.
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Let x be a point onS. We can assume thate S_ N {(x1, x2, x3)|x2 > O}. If
x = a (orx = b) thenF, = {vq, vp} and fromx to eachv; (i = 1, 2) there is
precisely one segment. if lies on the segmentv, and is different fromu then
there are two segments fromto v1, Symmetric with respect to the plangox;.
Suppose now ¢ avy; lets € [0,1(C,)] be the canonical parameter on the curve
C, andc(s) the corresponding point o6 (c(0) = a). Let u'(s) be the angle
made inc(s) by C; with the segment.(),, (from c(s) to v;) and letu?(s) be
the angle made im(s) by the segment’, (), with C;. Since the angles! and
u? are increasing functions of, their sum is also. A pattt from x to vy is a
segment if and only if the opposite angles made withn the pointc(sg) given by
{c(sg)} = XNy are equal. Equivalently; is a segment from to v, if and only if
u(so) +u?(sg) = 7. Sinceut(0) +u?(0) < 7 andul((C1))+u?((Cy)) > 7 there
is an unique valugy € [0, [(C1)] with u'(so) + u?(sg) = m. Therefore the proof
is finished if we show thaF, C {v1, vp}, with equality if and only ifx € C; U C>
(because of the symmetry with respect to the plejae,). Equivalently, we have
to check that all points of the surfadge are at distance at mo&tx, v1) from x. If
z is an arbitrary point or, then we have

8(x,z) < 8(x,c(s0)) + 8(c(s0). 2)
< 8(x, c(s0)) + max{s(c(so), v1), [(C1)}
< 8(x, c(s0)) + 8(c(s0), v1) = 8(x, v1),
with equality precisely for = v;. O

This conjecture of Steinhaus remains open for the smooth case. It remains also
open if restricted to those convex surfadewith |F,| = 1 forallx € S.

T. Zamfirescu [5] conjectured that on any convex surfatieere are two points
x, y such that fromx to y there are at least three segments. This conjecture is also
open.

2. The Second Conjecture

In the same book of Croft, Falconer and Guy ([2], p. 44 (ii))) we find another
conjecture of Steinhaus saying that a convex surfaég a sphere if it verifies

the properties(SC): |F,| = 1 and Fr, = x for any pointx on S. We shall
disprove this conjecture by showing that the regular tetrahedron satisfies the above
two conditions. Thus two new problems arise naturally:

PROBLEM A. Characterize the famil§C of all convex surfaces which verify
Steinhaus’s condition&SC).

Problem B. Sharpen(SC) to obtain a characterization of the sphere.
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Figure 3.

In the last part of this section we give a partial answer to Problem A by defining
a setR of convex surfaces and proving thatis a subfamily ofSC.

By a regular tetrahedron we mean here the boundary of the regular simplex in
R3.

THEOREM 2. All pointsx on a regular tetrahedron satisfif;, = x and|F,| = 1.
Proof. Let x be a point on a regular tetrahedr@h = abcd. We shall prove
separately the above two properties. We shall treat the cases:

(1) x is a vertex;
(2) x is interior to an edge;
(3) x is interior to a face.

If the natural correspondence between elements on the tetrahEdiod their
correspondents on unfoldings is one-to-one then we shall make no distinction
between them.

Property |F,| =1

(1) Assume that = a and let us consider f&f an equilateral triangle;asas as
unfolding, obtained by cuttin@ along the edgesb, ac andad and straightening.
Let y be the centre of the circumscribed circle of this equilateral triangle. One can
easily see that any other point T is closer taz thany, hence we havé, = y.

(2) Assume that our pointis interior to an edge, say, and is closer ta than
to b or is the middle point of the segmedt. Let us cutT along the segments,
xd andab and consider an unfolding as in Figure 3. We get the isosceles trapezoid
x1xpx3x4. The centrey of the circumscribed circle of this trapezoid is uniquely
determined by andF, = y.
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(3) Assume that is interior to the trianglécd (see Figure 4). We cut along
the segmentsb, xc andxd and we straighten the full triangla$c, xcd andxdb
to obtain the respectively coplanar poiat9, c, x1; a, ¢, d, x, anda, d, b, x3. Let
T’ be the obtained (nonclosed) surface. kdte a point inF,. If y is the vertexa
thenx must be the centre of the triangled andy is uniquely determined hy. If
y belongs to an edge (say) or to a face (sayicd) then there are three segments
from x to y, namely one from each to y,i = 1, 2, 3. This follows from a known,
more general fact: from any pointon a convex surfacé to any pointy € F,
where the tangent cone has full angte there are at least three segments. Assume
thaty is interior to the faceicd (the proof for the case € ac is similar). If we cut
T’ (see Figure 4) along the edgé and we straighten such that the fae#s;c,
acxpd andadxzb come into the same plane then we get a planar pictUras in
Figure 5.

Thenc is the midpoint ofx1x;, d is the midpoint ofx,x3 andy is the circum-
centre ofxixoxs.

Property Fr, = x
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This follows at once from the fact thatis the circumcentre afiazaz in case 1, of
x1x2x3%4 In Case 2, and af1x,x3 in Case 3.
This ends the proof of Theorem 2. O

Remark3. One can prove thaF,| < 2 for any arbitrary tetrahedroR, for all
pointsx € T.

Remark4. The propertyFr, = x is not true for an arbitrary tetrahedron. One
can see it on an ‘almost degenerate’ tetrahedrbt with ¢ andd close to the
middle ofab (see Figure 6).

STEINHAUS CONDITIONS IN THE PRESENCE OF SYMMETRY

The regular tetrahedrons are far from spheres in the space of all nondegenerate
convex surfaces endowed with the Pompeiu—Haussdorf metfic S,) = max
{sup.cs, infycs,llx—yll, SUR.cs, INfyes, lx—y I} Moreover, the proof for the regular
tetrahedron is quite elementary, but this example does not cover the smooth case.
Next we shall study Steinhaus’ conditiodSC) in the presence of a symmetry
centre and discover a whole clags of convex surfaces which verifgSC), in-
cluding the ellipsoids of revolution with axes= b > c¢. ThusR intersects all
neighborhoods of a sphere.

From now on we shall denote by a ‘prime’ all symmetric objects.

THEOREM 5. Let S be a centrally symmetric convex surfage= ') andx € S.
The following statements are equivalent:

() Fy=xforally € Fy;
(i) F, =x'.

Moreover, both of them imph¥, | = 1.

Proof. That (ii) implies (i) is immediate.

We now show that (ii) implies (i). Suppose there is a point F, such that
y # x'. By hypothesis and by symmetry we halg= x # y', Fv =y, Fy = x'
andé(x, y) = 8(x’, y"). Denote byX a segment betweenandx’. By symmetry,
Y’ is a segment betweeri andx and the curvex U X’ divides the surface in
two symmetric (topologically open) half-surfacés and S;. Sincey” # x and
8(x,y) 2 8(x,x),y ¢ ¥UZX. Suppose that € S1, hencey’ € §; and letA be a
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Figure 7.

segment fromy to y’. We have(A N X)U (A N X') # ¢; suppose for example that
ANXE ={z} (see Figure 7).

By applying twice the triangle inequality, we git, y) < 8 (x, 2)+6(z, y) and
S(x',y) <8(x',z2) +6(z, y). Therefored(x, y) +6 (x', y') <8(x,2) +6(z, y)+
§(x',2) +68(z,y) =8 (x,x)+8(y,y). Butd(x,y) > 8(x,x") ands(x’, y) =
8(y,x) = 8(y, y'). Henced(x,y) = 8(x,z) + 8(z, y). Since geodesics do not
admit bifurcations, this implies that a segment frerto y strictly includesX. But
now X’ provides such a bifurcation, and a contradiction is found. O

We propose here the following open probleom: any centrally symmetric convex
surfaceS if |F,| = 1forall x € SthenF, = x'.

PROPOSITION 6. Let S be a convex surface with a symmetry cenitrdf the
pointsx, y € S determine the intrinsic diameter ¢fthen they are symmetric to
each otheryy = x'.

Proof. Similar to that of Theorem 5. Suppose there is a poirt F, such that
y # x'. By hypothesis and by symmetry we havec F,, x # y', Fv =Y/,
x' e Fy andé(x,y) = & (x/,y"). Denote byx a segment betweenandx’. By
symmetry, X’ is a segment betweeri andx and the curvex U ¥’ divides the
surfaceS in two symmetric (topologically open) half-surfacés and S;. Since
y #xandd(x,y) =8 (x,x),y ¢ X UX. Suppose that € Sy, hencey’ € S,
and letA be a segment from to y’. We have(A N Z)U (A N X') # ¢; suppose
for example thatA N ¥ = {z} (see Figure 7). By applying twice the triangle
inequality, we geb(x, y) < 38(x,z) +38(z, y) ands(x’, y) < 8(x', 2) +8(z, ).
Therefored(x, y) + 8(x', y') < 8§ (x,2) +68(z,y) +68 (x',2) +8(z,y) =4
(x,x") + 8@y, y). Buté(x,y) = & (x,x") ands(x’, y") = 8(y,x) = 8(y, ¥).
Henced (x, y) = 6 (x, z) + 8(z, ¥). Since geodesics do not admit bifurcations, this
implies that a segment fromto y strictly includesx. But nowX’ provides such a
bifurcation, and a contradiction is found. O

COROLLARY 7. If S is a convex surface of revolution with symmetry centre then
the diameter of is equal to the half-length of a meridian.

Proof. Let x, y € S such that diamS = §(x, y). By Proposition 6 we have
y = F, = x’. Since all meridians are geodesics and between any two symmetrical
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points there is a meridia we getd(x, x') < %Z(M). But the only segments
between the poles of the surface are the meridians, ther&fore) = %I(M). O

Let ¢:[0, a] — R be a convex function differentiable at 0 withu < ¢(0) < 0=
¢(a), ¢'(0) = 0 and such tha: [0, a] — R given by (1) = u? + ¢(u)? is an
increasing function. LeRR be the set of all surfaces obtained by rotating the curves
C given by+g, i. e. with

X1 = u COSp, X2 =u Sin B, x3=x¢w) @ €[0,4al],B <l0,27]).

Each surface imR is convex (becausg is a convex function), is differentiable
at its points withx; = x, = 0 (becaus@’(0) = 0) and is symmetric with respect
to the planexioxs.

Also notice thatR contains the ellipsoids of revolution with axis= b > c.

LEMMA 8. The length of a curvE in R3 s at least as long as its metric projection
onto a convex body.
Proof. See [1] p. 80. O

THEOREM9. R C 4C.

Proof.Let S € R. First, letu € S be an equatorial point angl a meridian ofS
throughu and—u. Let S, be the surface obtained by the revolutionmfaround
the line through: and the origin. Becausg is an increasing function, the surface
S 4 lies in the convex hull of andSNS, = M. By Lemma 8, the only segments of
S from u to —u are the half-meridians. By Corollary 7 and Propositior,= —u.

Let x € S be now an arbitrary (but not equatorial) point. LIlethe segment
from x to —x and letu be the intersection point betwe&rand the equator. By the
symmetry ofS we get§(—x, u) = §(x, —u). Therefore the length df is larger
than or equal to the length of a half-merididdl’) = §(u,x) + 8 (x, —u) >
Z(M). Hences (x, —x) = 3(M) and we obtainF, = —x for all x € S. Applying
Theorem 5 we gef € $C. a

Remark10. As shown in the above proof, for all surfacése R the only
geodesic segments from an arbitrary pairg S to x” are half-meridians.
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