

*Geometriae Dedicata* **79:** 267–275, 2000. © 2000 *Kluwer Academic Publishers. Printed in the Netherlands.* 

# On Two Conjectures of Steinhaus

## COSTIN VÎLCU\*

Institute of Mathematics of the Romanian Academy, PO Box 1-764, Bucharest 70700, Romania. e-mail: costin.vilcu@imar.ro

(Received: 14 September 1998; revised version: 15 January 1999)

(Communicated by K. Strambach)

**Abstract.** We disprove two conjectures of H. Steinhaus by showing that: (1) there is a convex surface S such that for any point x on S and any point y in the set  $F_x$  of farthest points from x, there are at most two segments from x to y; (2) the properties  $|F_x| = 1$  and  $F_{F_x} = x$  do not characterize the sphere.

Mathematics Subject Classification (1991): 52A15.

Key words: convex surface, centrally symmetric, intrinsic distance, (geodesic) segment, farthest points.

#### 1. The First Conjecture

In a very interesting book by Croft, Falconer and Guy ([2], p. 44 (iii)) we find the following conjecture of Steinhaus: on each closed convex surface (whose class of differentiability remains unprecise), there exist points x and y in the set  $F_x$  of farthest points from x, with at least three segments (i.e. shortest paths) joining them. We give here an example of a convex surface S disproving Steinhaus's conjecture. First we construct it and then prove that S provides a suitable example.

In the following, we consider closed convex surfaces in the Euclidean space  $\mathbb{R}^3$ . The coordinates in  $\mathbb{R}^3$  will be  $x_1, x_2, x_3$ . For two points x, y on a surface, the geodesic (intrinsic) distance between them will be denoted by  $\delta(x, y)$ . |A| denotes the cardinality of the set A. Also, we shall not distinguish between a point and the set containing exactly that point.

Let  $C_1$  be the arc of the circle of centre  $o' = (0, -\alpha, 0)$  and radius 1 lying in the half-plane  $x_2 \ge 0$  ( $\alpha \in (0, 1)$ ). Let  $C_2$  be the arc symmetric to  $C_1$  with respect to the  $x_1$ -axis (see Figure 1).

Denote  $\{a, b\} = C_1 \cap C_2$  and let *d* be the middle point of  $C_1$ . Take the points  $v_1$  and  $v_2$  on the  $x_3$ -axis, symmetric with respect to the origin *o* and consider the boundary *S* of the convex hull of the set  $\{v_1, v_2\} \cup C_1 \cup C_2$ . We choose  $v_1$  and  $v_2$  far enough such that the length  $l(C_1)$  of  $C_1$  be less than the distance from *d* to  $v_i$  and such that  $\beta < \pi$ , where  $\beta$  denotes the total angle of the tangent cone at  $v_i$  (i = 1, 2). For any point *u* on  $C_1$  we have  $l(C_1) < \delta(u, v_1)$ , since ||d|| < ||u||.

<sup>\*</sup> The idea of this article appeared during the author's stay at the University of Dortmund, part of the project TEMPUS S-JET-09094-95.



Figure 2.

**PROPOSITION 1.** On the surface S constructed above, from an arbitrary point  $x \in S$  to any point  $y \in F_x$  there are at most two segments.

*Proof.* The surfaces  $S_+ = \{(x_1, x_2, x_3) \in S | x_3 \ge 0\}$  and  $S_- = \{(x_1, x_2, x_3) \in S | x_3 \le 0\}$  are unfoldable. Let us consider the unfoldings S' and S'' as in Figure 2, where we marked by a 'prime' and a 'double prime' the points or arcs of S' and S'' corresponding to those of S. On each unfolding the segments of S became line segments. In the following we shall implicitly refer to these unfoldings.

Let x be a point on S. We can assume that  $x \in S_{-} \cap \{(x_1, x_2, x_3) | x_2 \ge 0\}$ . If x = a (or x = b) then  $F_x = \{v_1, v_2\}$  and from x to each  $v_i$  (i = 1, 2) there is precisely one segment. If x lies on the segment  $av_2$  and is different from a then there are two segments from x to  $v_1$ , symmetric with respect to the plane  $x_1 o x_3$ . Suppose now  $x \notin av_2$ ; let  $s \in [0, l(C_1)]$  be the canonical parameter on the curve  $C_1$  and c(s) the corresponding point on  $C_1$  (c(0) = a). Let  $u^1(s)$  be the angle made in c(s) by  $C_1$  with the segment  $\Gamma_{c(s)v_1}$  (from c(s) to  $v_1$ ) and let  $u^2(s)$  be the angle made in c(s) by the segment  $\Gamma_{c(s)x}$  with  $C_1$ . Since the angles  $u^1$  and  $u^2$  are increasing functions of s, their sum is also. A path  $\Sigma$  from x to  $v_1$  is a segment if and only if the opposite angles made with  $C_1$  in the point  $c(s_0)$  given by  $\{c(s_0)\} = \Sigma \cap C_1$  are equal. Equivalently,  $\Sigma$  is a segment from x to  $v_1$  if and only if  $u^{1}(s_{0}) + u^{2}(s_{0}) = \pi$ . Since  $u^{1}(0) + u^{2}(0) < \pi$  and  $u^{1}(l(C_{1})) + u^{2}(l(C_{1})) > \pi$  there is an unique value  $s_0 \in [0, l(C_1)]$  with  $u^1(s_0) + u^2(s_0) = \pi$ . Therefore the proof is finished if we show that  $F_x \subseteq \{v_1, v_2\}$ , with equality if and only if  $x \in C_1 \cup C_2$ (because of the symmetry with respect to the plane  $x_1 o x_2$ ). Equivalently, we have to check that all points of the surface  $S_+$  are at distance at most  $\delta(x, v_1)$  from x. If z is an arbitrary point on  $S_+$  then we have

$$\delta(x, z) \leq \delta(x, c(s_0)) + \delta(c(s_0), z)$$
$$\leq \delta(x, c(s_0)) + \max\{\delta(c(s_0), v_1), l(C_1)\}$$
$$\leq \delta(x, c(s_0)) + \delta(c(s_0), v_1) = \delta(x, v_1),$$

with equality precisely for  $z = v_1$ .

This conjecture of Steinhaus remains open for the smooth case. It remains also open if restricted to those convex surfaces S with  $|F_x| = 1$  for all  $x \in S$ .

T. Zamfirescu [5] conjectured that on any convex surface S there are two points x, y such that from x to y there are at least three segments. This conjecture is also open.

## 2. The Second Conjecture

In the same book of Croft, Falconer and Guy ([2], p. 44 (ii)) we find another conjecture of Steinhaus saying that a convex surface *S* is a sphere if it verifies the properties (*SC*):  $|F_x| = 1$  and  $F_{F_x} = x$  for any point *x* on *S*. We shall disprove this conjecture by showing that the regular tetrahedron satisfies the above two conditions. Thus two new problems arise naturally:

**PROBLEM A.** Characterize the family &C of all convex surfaces which verify Steinhaus's conditions (SC).

Problem B. Sharpen (SC) to obtain a characterization of the sphere.



Figure 3.

In the last part of this section we give a partial answer to Problem A by defining a set  $\mathcal{R}$  of convex surfaces and proving that  $\mathcal{R}$  is a subfamily of  $\& \mathcal{C}$ .

By a regular tetrahedron we mean here the boundary of the regular simplex in  $\mathbb{R}^3$ .

THEOREM 2. All points x on a regular tetrahedron satisfy  $F_{F_x} = x$  and  $|F_x| = 1$ . *Proof.* Let x be a point on a regular tetrahedron T = abcd. We shall prove separately the above two properties. We shall treat the cases:

(1) x is a vertex;

(2) x is interior to an edge;

(3) x is interior to a face.

If the natural correspondence between elements on the tetrahedron T and their correspondents on unfoldings is one-to-one then we shall make no distinction between them.

# Property $|F_x| = 1$

(1) Assume that x = a and let us consider for T an equilateral triangle  $a_1a_2a_3$  as unfolding, obtained by cutting T along the edges ab, ac and ad and straightening. Let y be the centre of the circumscribed circle of this equilateral triangle. One can easily see that any other point  $z \in T$  is closer to a than y, hence we have  $F_a = y$ .

(2) Assume that our point x is interior to an edge, say ab, and is closer to a than to b or is the middle point of the segment ab. Let us cut T along the segments xc, xd and ab and consider an unfolding as in Figure 3. We get the isosceles trapezoid  $x_1x_2x_3x_4$ . The centre y of the circumscribed circle of this trapezoid is uniquely determined by x and  $F_x = y$ .



Figure 5.

(3) Assume that x is interior to the triangle bcd (see Figure 4). We cut T along the segments xb, xc and xd and we straighten the full triangles xbc, xcd and xdb to obtain the respectively coplanar points  $a, b, c, x_1; a, c, d, x_2$  and  $a, d, b, x_3$ . Let T' be the obtained (nonclosed) surface. Let y be a point in  $F_x$ . If y is the vertex a then x must be the centre of the triangle bcd and y is uniquely determined by x. If y belongs to an edge (say ac) or to a face (say acd) then there are three segments from x to y, namely one from each  $x_i$  to y, i = 1, 2, 3. This follows from a known, more general fact: from any point x on a convex surface S to any point  $y \in F_x$ where the tangent cone has full angle  $2\pi$  there are at least three segments. Assume that y is interior to the face acd (the proof for the case  $y \in ac$  is similar). If we cut T' (see Figure 4) along the edge ab and we straighten such that the faces  $abx_1c$ ,  $acx_2d$  and  $adx_3b$  come into the same plane then we get a planar picture T'' as in Figure 5.

Then c is the midpoint of  $x_1x_2$ , d is the midpoint of  $x_2x_3$  and y is the circumcentre of  $x_1x_2x_3$ .

Property  $F_{F_x} = x$ 



This follows at once from the fact that y is the circumcentre of  $a_1a_2a_3$  in case 1, of  $x_1x_2x_3x_4$  in Case 2, and of  $x_1x_2x_3$  in Case 3.

This ends the proof of Theorem 2.

*Remark* 3. One can prove that  $|F_x| \leq 2$  for any arbitrary tetrahedron **T**, for all points  $x \in \mathbf{T}$ .

*Remark* 4. The property  $F_{F_x} = x$  is not true for an arbitrary tetrahedron. One can see it on an 'almost degenerate' tetrahedron *abcd* with *c* and *d* close to the middle of *ab* (see Figure 6).

#### STEINHAUS' CONDITIONS IN THE PRESENCE OF SYMMETRY

The regular tetrahedrons are far from spheres in the space of all nondegenerate convex surfaces endowed with the Pompeiu–Haussdorf metric  $\rho(S_1, S_2) = \max \{\sup_{x \in S_1} \inf_{y \in S_2} \|x - y\|, \sup_{x \in S_2} \inf_{y \in S_1} \|x - y\|\}$ . Moreover, the proof for the regular tetrahedron is quite elementary, but this example does not cover the smooth case. Next we shall study Steinhaus' conditions (*SC*) in the presence of a symmetry centre and discover a whole class  $\mathcal{R}$  of convex surfaces which verify (*SC*), including the ellipsoids of revolution with axes a = b > c. Thus  $\mathcal{R}$  intersects all neighborhoods of a sphere.

From now on we shall denote by a 'prime' all symmetric objects.

THEOREM 5. Let S be a centrally symmetric convex surface (S = S') and  $x \in S$ . The following statements are equivalent:

(i)  $F_y = x$  for all  $y \in F_x$ ; (ii)  $F_y = x'$ 

(11) 
$$F_x = x^2$$
.

*Moreover, both of them imply*  $|F_x| = 1$ .

*Proof.* That (ii) implies (i) is immediate.

We now show that (ii) implies (i). Suppose there is a point  $y \in F_x$  such that  $y \neq x'$ . By hypothesis and by symmetry we have  $F_y = x \neq y'$ ,  $F_{x'} = y'$ ,  $F_{y'} = x'$  and  $\delta(x, y) = \delta(x', y')$ . Denote by  $\Sigma$  a segment between x and x'. By symmetry,  $\Sigma'$  is a segment between x' and x and the curve  $\Sigma \cup \Sigma'$  divides the surface S in two symmetric (topologically open) half-surfaces  $S_1$  and  $S'_1$ . Since  $y' \neq x$  and  $\delta(x, y) \ge \delta(x, x')$ ,  $y \notin \Sigma \cup \Sigma'$ . Suppose that  $y \in S_1$ , hence  $y' \in S'_1$  and let  $\Lambda$  be a





segment from *y* to *y'*. We have  $(\Lambda \cap \Sigma) \cup (\Lambda \cap \Sigma') \neq \phi$ ; suppose for example that  $\Lambda \cap \Sigma = \{z\}$  (see Figure 7).

By applying twice the triangle inequality, we get  $\delta(x, y) \leq \delta(x, z) + \delta(z, y)$  and  $\delta(x', y') \leq \delta(x', z) + \delta(z, y')$ . Therefore  $\delta(x, y) + \delta(x', y') \leq \delta(x, z) + \delta(z, y) + \delta(x', z) + \delta(z, y') = \delta(x, x') + \delta(y, y')$ . But  $\delta(x, y) \geq \delta(x, x')$  and  $\delta(x', y') = \delta(y, x) \geq \delta(y, y')$ . Hence  $\delta(x, y) = \delta(x, z) + \delta(z, y)$ . Since geodesics do not admit bifurcations, this implies that a segment from *x* to *y* strictly includes  $\Sigma$ . But now  $\Sigma'$  provides such a bifurcation, and a contradiction is found.

We propose here the following open problem: on any centrally symmetric convex surface S if  $|F_x| = 1$  for all  $x \in S$  then  $F_x = x'$ .

**PROPOSITION 6.** Let S be a convex surface with a symmetry centre o. If the points  $x, y \in S$  determine the intrinsic diameter of S then they are symmetric to each other: y = x'.

*Proof.* Similar to that of Theorem 5. Suppose there is a point  $y \in F_x$  such that  $y \neq x'$ . By hypothesis and by symmetry we have  $x \in F_y$ ,  $x \neq y'$ ,  $F_{x'} = y'$ ,  $x' \in F_{y'}$  and  $\delta(x, y) = \delta(x', y')$ . Denote by  $\Sigma$  a segment between x and x'. By symmetry,  $\Sigma'$  is a segment between x' and x and the curve  $\Sigma \cup \Sigma'$  divides the surface S in two symmetric (topologically open) half-surfaces  $S_1$  and  $S'_1$ . Since  $y' \neq x$  and  $\delta(x, y) \ge \delta(x, x')$ ,  $y \notin \Sigma \cup \Sigma'$ . Suppose that  $y \in S_1$ , hence  $y' \in S'_1$ , and let  $\Lambda$  be a segment from y to y'. We have  $(\Lambda \cap \Sigma) \cup (\Lambda \cap \Sigma') \neq \phi$ ; suppose for example that  $\Lambda \cap \Sigma = \{z\}$  (see Figure 7). By applying twice the triangle inequality, we get  $\delta(x, y) \le \delta(x, z) + \delta(z, y)$  and  $\delta(x', y') \le \delta(x', z) + \delta(z, y')$ . Therefore  $\delta(x, y) + \delta(x', y') \le \delta(x, z) + \delta(z, y) + \delta(x', z) + \delta(z, y') = \delta(x, x') + \delta(y, y')$ . But  $\delta(x, y) \ge \delta(x, x')$  and  $\delta(x', y') = \delta(y, x) \ge \delta(y, y')$ . Hence  $\delta(x, y) = \delta(x, z) + \delta(z, y)$ . Since geodesics do not admit bifurcations, this implies that a segment from x to y strictly includes  $\Sigma$ . But now  $\Sigma'$  provides such a bifurcation, and a contradiction is found.

COROLLARY 7. If S is a convex surface of revolution with symmetry centre then the diameter of S is equal to the half-length of a meridian.

*Proof.* Let  $x, y \in S$  such that diam  $S = \delta(x, y)$ . By Proposition 6 we have  $y = F_x = x'$ . Since all meridians are geodesics and between any two symmetrical

points there is a meridian  $\mathcal{M}$  we get  $\delta(x, x') \leq \frac{1}{2}l(\mathcal{M})$ . But the only segments between the poles of the surface are the meridians, therefore  $\delta(x, y) = \frac{1}{2}l(\mathcal{M})$ .  $\Box$ 

Let  $\varphi: [0, a] \to \mathbb{R}$  be a convex function differentiable at 0 with  $-a < \varphi(0) < 0 = \varphi(a), \varphi'(0) = 0$  and such that  $\psi: [0, a] \to \mathbb{R}$  given by  $\psi(u) = \sqrt{u^2 + \varphi(u)^2}$  is an increasing function. Let  $\mathcal{R}$  be the set of all surfaces obtained by rotating the curves C given by  $\pm \varphi$ , i. e. with

 $x_1 = u \cos \beta,$   $x_2 = u \sin \beta,$   $x_3 = \pm \varphi(u)$   $(u \in [0, a], \beta \in [0, 2\pi]).$ 

Each surface in  $\mathcal{R}$  is convex (because  $\varphi$  is a convex function), is differentiable at its points with  $x_1 = x_2 = 0$  (because  $\varphi'(0) = 0$ ) and is symmetric with respect to the plane  $x_1 o x_2$ .

Also notice that  $\mathcal{R}$  contains the ellipsoids of revolution with axis a = b > c.

LEMMA 8. The length of a curve  $\Gamma$  in  $\mathbb{R}^3$  is at least as long as its metric projection onto a convex body.

*Proof.* See [1] p. 80.

#### THEOREM 9. $\mathcal{R} \subset \mathcal{SC}$ .

*Proof.* Let  $S \in \mathcal{R}$ . First, let  $u \in S$  be an equatorial point and  $\mathcal{M}$  a meridian of S through u and -u. Let  $S_{\mathcal{M}}$  be the surface obtained by the revolution of  $\mathcal{M}$  around the line through u and the origin. Because  $\psi$  is an increasing function, the surface  $S_{\mathcal{M}}$  lies in the convex hull of S and  $S \cap S_{\mathcal{M}} = \mathcal{M}$ . By Lemma 8, the only segments of S from u to -u are the half-meridians. By Corollary 7 and Proposition 6,  $F_u = -u$ .

Let  $x \in S$  be now an arbitrary (but not equatorial) point. Let  $\Gamma$  be segment from x to -x and let u be the intersection point between  $\Gamma$  and the equator. By the symmetry of S we get  $\delta(-x, u) = \delta(x, -u)$ . Therefore the length of  $\Gamma$  is larger than or equal to the length of a half-meridian:  $l(\Gamma) = \delta(u, x) + \delta(x, -u) \ge \frac{1}{2}(\mathcal{M})$ . Hence  $\delta(x, -x) = \frac{1}{2}(\mathcal{M})$  and we obtain  $F_x = -x$  for all  $x \in S$ . Applying Theorem 5 we get  $S \in \mathcal{SC}$ .

*Remark* 10. As shown in the above proof, for all surfaces  $S \in \mathcal{R}$  the only geodesic segments from an arbitrary point  $x \in S$  to x' are half-meridians.

#### Acknowledgement

I express my gratitude to Professor Tudor Zamfirescu for introducing me to this topic, for his encouragements and for some very useful suggestions.

# References

- 1. Busemann, H.: Convex Surfaces, Interscience Publishers, New York, 1958.
- Croft, H. T., Falconer, K. J. and Guy, R. K.: Unsolved Problems in Geometry, Springer-Verlag, New York, 1991.

#### ON TWO CONJECTURES OF STEINHAUS

- 3. Steinhaus, H.: On shortest path on closed surfaces, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astr. Phys. 6 (1958), 303-308.
- Steinhaus, H.: Problem 291, *Colloq. Math.* 7 (1959), 110.
  Zamfirescu, T.: Points joined by three shortest paths on convex surfaces, *Proc. Amer. Math.* Soc. 123 (1995), 3513–3518.