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We establish that certain classes of simple, closed, polygonal curves on the surface of a
convex polyhedron develop in the plane without overlap. Our primary proof technique
shows that such curves “live on a cone,” and then develops the curves by cutting the
cone along a “generator” and flattening the cone in the plane. The conical existence results
support a type of source unfolding of the surface of a polyhedron, described elsewhere.

© 2013 Published by Elsevier B.V.

. Introduction

otivation. Any result on simple (non-self-intersecting) development of curves may help establishing nonoverlapping sur-
ace unfoldings [5]. One of the earliest results in this regard [12] proved that the left-development of a directed, simple,
losed convex curve does not self-intersect. The proof used Cauchy’s Arm Lemma. Here we extend this result to a wider
lass of curves without invoking Cauchy’s lemma.

Left-development of a simple, closed curve C on a convex polyhedron P can be regarded as unfolding of an infinitesimal
and B on P , right (or left) bounded by C . In this respect, our results complement the work on band unfolding [2,3], which
n turn helps to better understand unfoldings of P .

The source unfolding with respect to a point x in P was first used in computational geometry in [10,14], and has recently
een extended to be based on curves “living on a cone” to both sides [9]. The results obtained here support this new type
f source unfolding.

In the following we give only the definitions necessary to state our results, and postpone the presentation of other
oncepts and basic results to the next section.

evelopment. Let C be a directed, simple, closed, polygonal curve on the surface of a convex polyhedron P . For any point
∈ C , let L(p) be the total surface angle incident to p at the left side of C , and R(p) the angle to the right side. The

eft-development of C with respect to x ∈ C is an isometric drawing Cx of C cut at x in the plane, starting from x and
reserving the left angles L(p), p ∈ C : the angle to the left of Cx at every point p (corresponding to p ∈ C ) in the plane
quals L(p). The right-development is defined analogously.

Notice that the left- and right-developments of a curve are different if C passes through one or more vertices of P .
oreover, in general the development depends upon the cut point x.

✩ A preliminary version of these results was reported in [13].

* Corresponding author.
E-mail addresses: orourke@cs.smith.edu (J. O’Rourke), Costin.Vilcu@imar.ro (C. Vîlcu).

1 Partially supported by Romanian Government grant PN-II-ID-PCE-2012-4-0378 of CNCS-UEFISCDI.

925-7721/$ – see front matter © 2013 Published by Elsevier B.V.
ttp://dx.doi.org/10.1016/j.comgeo.2013.08.010

http://dx.doi.org/10.1016/j.comgeo.2013.08.010
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/comgeo
Original text:
Inserted Text:
Given name

Original text:
Inserted Text:
Surname

Original text:
Inserted Text:
Given name

Original text:
Inserted Text:
Surname

Original text:
Inserted Text:
eft development

Original text:
Inserted Text:
Left development

Original text:
Inserted Text:
left development

Original text:
Inserted Text:
right development

Original text:
Inserted Text:
left and right developments

mailto:orourke@cs.smith.edu
mailto:Costin.Vilcu@imar.ro
http://dx.doi.org/10.1016/j.comgeo.2013.08.010


JID:COMGEO AID:1288 /FLA [m3G; v 1.112; Prn:9/09/2013; 14:42] P.2 (1-15)

2 J. O’Rourke, C. Vîlcu / Computational Geometry ••• (••••) •••–•••

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

52 52

53 53

54 54

55 55

56 56

57 57

58 58

59 59

60 60

61 61
Curve classes. To describe our results, we introduce several classes of curves on convex polyhedra.
Define a curve C to be convex (to the left) if the angle to the left is at most π at every point p: L(p) � π ; and say that

C is a convex loop if this condition holds for all but one exceptional loop point x, at which L(x) > π is allowed. Analogously,
define C to be reflex (to the right) if the angle to the right is at least π at every point p: R(p) � π ; and say that C is a
reflex loop if this condition holds for all but an exceptional loop point x, at which R(x) < π is allowed.

The loop versions arise naturally in some contexts. For example, extending a convex path on P until it self-intersects
leads to a convex loop. See also the discussion in Section 2.

Paper’s structure and summary of results. In Section 3 we give a new proof for the result in [12]: Every convex curve C
left-develops to Cx without intersection, for every cut point x. The results proven there will be employed in both Sections 4
and 5, which can stand independent of one another.

In Section 4 we show that there are convex loops C such that, for some x, the left-development Cx self-intersects.
However, for every convex loop, there exists a point y for which C y left-develops without overlap.

In Section 5 we prove that every reflex curve, and every reflex loop whose other side is convex, right-develops without
intersection, for every cut point.

These results may be combined to reach conclusions about the left- and right-developments of the same curve. For
example, every convex curve C that passes through at most one vertex, both left-develops and right-develops without
overlap, for every cut point x.

Our main strategy is to establish “conical existence,” and its main technique is vertex merging. These are presented in
Section 2, along with other necessary definitions and basic tools.

Many questions remain open, and are detailed in the final section.

2. Preliminary tools and lemma

Curvature. The curvature ω(p) at any point p ∈P is the “angle deficit”: 2π minus the sum of the face angles incident to p.
The curvature is only nonzero at vertices of P ; at each vertex it is positive because P is convex.

Half-surfaces and relationships between curve classes. C partitions P into two half-surfaces. We call the left and right half-
surfaces P L and P R respectively, or P if the distinction is irrelevant. We view each half-surface as closed, with boundary C .

Define a corner of curve C to be any point p at which either L(p) �= π or R(p) �= π . Let c1, c2, . . . , cm be the corners
of C , which may or may not also be vertices of P . C “turns” at each ci , and is straight at any noncorner point. Let αi = L(ci)

be the surface angle to the left side at ci , and βi = R(ci) the angle to the right side. Also let ωi = ω(ci) to simplify notation.
We have αi + βi + ωi = 2π by the definition of curvature.

When C is vertex-free, ωi = 0 at all corners, and the relationships among the curve classes are simple and natural: the
other side of a convex curve is reflex, the other side of a reflex curve is convex. The same holds for the loop versions: the
other side of a convex loop is a reflex loop (because αm � π implies βm � π , where cm is the loop point), and the other
side of a reflex loop is a convex loop.

When C includes vertices, the relationships between the curve classes are more complicated. The other side of a convex
curve is reflex only if the curvatures at the vertices on C are small enough so that αi + ωi � π ; C would still be convex
even if it just included those vertices inside. The same holds for convex loops.

On the other hand, the other side of a reflex curve is always convex, because nonzero vertex curvatures only make the
other side more convex. The other side of a reflex loop is a convex loop, and it is a convex curve if the curvature at the
loop point cm is large enough to force αm � π , i.e., if βm + ωm � π . This latter subclass of reflex loops—those whose other
side is convex—especially interests us (see Section 5). In particular, any convex curve that includes at most one vertex is a
reflex loop of that type.

The Gauss–Bonnet theorem. We will employ this theorem (e.g., [4]) in two forms. The first is that the total curvature of
P is 4π : the sum of ω(v) for all vertices v of P is 4π . It will be useful to partition the curvature into three pieces. Let
ΩL(C) = ΩL be the total curvature strictly interior to P L , ΩR the curvature to the right, and ΩC the sum of the curvatures
on C (which is nonzero only at vertices of P). Then ΩL + ΩC + ΩR = 4π .

The second form of the Gauss–Bonnet theorem relies on the notion of the “turn” of a curve. Define τL(ci) = τi = π − αi
as the left turn of curve C at corner ci , and let τL(C) = τL be the total (left) turn of C , i.e., the sum of τi over all corners
of C . Thus a convex curve has nonnegative turn at each corner, and a reflex curve has nonpositive turn at each corner. Then
τL + ΩL = 2π , and defining the analogous term to the right of C , τR + ΩR = 2π .

Alexandrov’s Gluing Theorem. In our proofs we use Alexandrov’s theorem [1, Thm. 1, p. 100], that gluing polygons to form
a topological sphere in such a way that at most 2π angle is glued at any point results in a unique convex polyhedron.

Vertex merging. We now explain a technique used by Alexandrov, e.g., [1, p. 240]. Consider two vertices v1 and v2 of
curvatures ω1 and ω2 on P , with ω1 + ω2 < 2π , and cut P along a shortest path γ (v1, v2) joining v1 to v2. Construct
a planar triangle T = v̄ ′ v̄1 v̄2 such that its base v̄1 v̄2 has the same length as γ (v1, v2), and the base angles are equal to
1
2 ω1 and 1

2 ω2 respectively. Glue two copies of T along the corresponding lateral sides, and further glue the two bases of
the copies to the two “banks” of the cut of P along γ (v1, v2). By Alexandrov’s Gluing Theorem, the result is a convex

Original text:
Inserted Text:
Classes

Original text:
Inserted Text:
Structure and Summary of Results

Original text:
Inserted Text:
Surfaces and Relationships between Curve Classes

Original text:
Inserted Text:
is

Original text:
Inserted Text:
Theorem

Original text:
Inserted Text:
Merging



JID:COMGEO AID:1288 /FLA [m3G; v 1.112; Prn:9/09/2013; 14:42] P.3 (1-15)

J. O’Rourke, C. Vîlcu / Computational Geometry ••• (••••) •••–••• 3

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

52 52

53 53

54 54

55 55

56 56

57 57

58 58

59 59

60 60

61 61

F
t
a

p
s
i
h
l

g

N

C
a
t
a

c
c

L
a
p

i
o
o

n
Λ

t

s

ig. 1. (a) C = (a,b, c,d) is a convex curve with angle 3
4 π to the left at each vertex. The curvature at v1 and at v2 is 1

2 π . (b) The 3D result after merging
he vertices v1 and at v2. (c) Cutting along the generator from v ′ through the midpoint of ad and developing C shows that it lives on a cone with apex
ngle π at v ′ . (Base of P is 3 × √

2.)

olyhedral surface P ′ . On P ′ , the points v1 and v2 are no longer vertices because exactly the angle deficit at each has been
utured in; they have been replaced by a new vertex v ′ of curvature ω′ = ω1 +ω2 (preserving the total curvature). Fig. 1(a)
llustrates this. Here γ (v1, v2) = v1 v2 is the top “roof line” of the house-shaped polyhedron P . Because ω1 = ω2 = 1

2 π , T

as base angles 1
4 π and apex angle 1

2 π . Thus the curvature ω′ at v ′ is π . (Other aspects of this figure will be discussed
ater.)

Note this vertex-merging procedure only works when ω1 + ω2 < 2π ; otherwise the angle at the apex v̄ ′ of T would be
reater than or equal to π .

Our primary proof technique relies on the notion of a curve C “living on a cone,” which is based on neighborhoods of C .
ext we introduce these notions.

one and generators. A cone is an unbounded developable surface with curvature zero everywhere except at one point, its
pex, which has total incident surface angle, the cone angle, of at most 2π ; the curvature at the apex of a cone is 2π minus
he cone angle. Throughout, we will consider a cylinder as a cone whose apex is at infinity with cone angle 0, and a plane
s a cone with cone angle 2π .

We only care about the intrinsic properties of the cone’s surface; its shape in R
3 is not relevant for our purposes. So one

ould view it as having a circular cross section, although we will often flatten it to the plane. The latter case shows that our
ones are isometric to unbounded polyhedral convex surfaces having precisely one vertex.

A generator of a cone Λ is a ray starting from the apex a and lying on Λ.

iving on a cone. An open region NL is a vertex-free left neighborhood of C to its left if it includes C as its right boundary,
nd it contains no vertices of P . Notice that C has many vertex-free left neighborhoods, but all will be equivalent for our
urposes.

We say that C lives on a cone to its left if there exists a cone Λ and a neighborhood NL so that NL may be embedded
sometrically onto Λ, and encloses the cone apex a. To say that NL embeds isometrically onto Λ means that we could cut
ut NL (including its right boundary C ) and paste it onto Λ with no wrinkles or tears: the distance between any two points
f NL on NL ∩P is the same as it is on NL ∩ Λ. See Fig. 2.

We say that C lives on a cone to its right if NR embeds isometrically on the cone, where NR is a vertex-free right
eighborhood of C such that the cone apex a is inside (the image of) C . We will call the cones to the left and right of C ,
L and ΛR respectively.

We will see that all four combinatorial possibilities occur: C may not live on a cone to either side, it may live on a cone
o one side but not to the other, it may live on different cones to its two sides, or live on the same cone to both sides.

We should remark that the cone on which a curve C lives has no direct relationship (except in special cases) to the
urface that results from extending the faces of P crossed by C .
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Fig. 2. A 4-segment curve C that lives on cone ΛL to its left. One possible NL is shown, and a generator g = ax is illustrated.

Fig. 3. (a) Cone Λ on which C lives. (b, c) Positions of x1 and x2 after cutting open Λ along ax, according to ΩL > π (b) and ΩL < π (c).

Lemma 1. A curve C that lives on a cone Λ (say, to its left) uniquely determines that cone.

Proof. Suppose that C lives on two cones Λ and Λ′ . We will show that the regions of these two cones bounded by C are
isometric.

First note that the apex curvature of both Λ and Λ′ is ΩL , the total curvature inside and left of C . Indeed, the surfaces
of both Λ and Λ′ inside and left of C , with boundary C , are polyhedral convex surfaces with boundary, hence the claim
follows from the Gauss–Bonnet theorem, τL + ΩL = 2π , because τL is the same whether on Λ or Λ′ .

Let x ∈ C be a point of C that has a tangent t to one side, and let x1 be a point in the plane and t1 a direction vector
from x1. We may, of course, assume that x1 is the origin and t1 is the horizontal axis of the plane. Position Λ in the plane
so that x and t coincide with x1 and t1. Roll Λ in the plane until x is encountered again; call that point of the plane x2.
This process results in the same positions of x1 and x2 as would be produced by cutting the cone along a generator ax and
embedding the cut surface into the plane.

If x1 = x2, then both Λ and Λ′ are planar (i.e., ΩL = 0) and hence isometric. So assume x1 �= x2. If ΩL > π , then the
cone angle α < π , as in Fig. 3(b). The segment x1x2 determines two isosceles triangles with apex angle α (symmetric to
each other with respect to x1x2), only one of which can correspond to the left side of C . Analogously, if ΩL � π , then x1x2
determines a unique isosceles triangle of apex angle ΩL , the equal sides of which bound, together with C , the region of Λ

to the left of C ; see Fig. 3(c). Note that C doesn’t actually depend on the cones Λ and Λ′ , but only on the left neighborhood
of C in P , and hence this development is the same for Λ and Λ′ . So, up to planar isometries, the planar unfolding of the
cone supporting C is unique, and thus the cone itself and the position of C on it are unique up to isometries. �
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Note that Lemma 1 does not assume that C is convex or reflex; rather it holds for any closed curve C .

one visibility. A curve C that lives on the cone Λ is visible from the apex if every generator meets C at one point. Although
t is possible for a curve to live on a cone but not be visible from its apex (as in Fig. 3(a)), when we can establish visibility
rom the apex, cutting C at any point x ∈ C will develop Cx without overlap, because cutting Λ along the generator through

develops the cone and C simultaneously.

. Convex curves

In this section we focus on convex curves C , our goal being to merge all vertices inside C , and thus to transform P into
cone. In order to apply vertex merging, we use a lemma to guarantee the existence of a pair of vertices to merge.

onvexity of half-surfaces. We first remark that a half-surface P ⊂ P bounded by a convex curve C is not necessarily
onvex, in the sense that, if x, y ∈ P , then a shortest path γ of P connecting x and y lies in P . This can be seen in the
ollowing:

xample 1. Let P be defined as follows. Start with the top half of a regular octahedron, whose four equilateral triangle faces
orm a pyramid over a square base abcd. Remove the base and flex the pyramid by squeezing a toward c slightly while

aintaining the four equilateral triangles, a motion that separates b from d. Define P to be the convex hull of these four
oved points a′b′c′d′ and the pyramid apex. Let C = (a′,b′, c′,d′) and let P be the half-surface including the four equilateral

riangles. Then a′ and c′ are in P , but the edge a′c′ of P , which is the shortest path connecting those points, is not in P : it
rosses the “bottom” of P .

Although P may not be convex, P is relatively convex in the sense that there is some P# and a convex half-surface
# ⊂P# such that P is isometric to P #.

emma 2. Every half-surface P ⊂P bounded by a convex curve C is relatively convex, i.e., P is isometric to a half-surface that contains
shortest path γ between any two of its points x and y. More particularly, if neither x nor y is on C , then the shortest path γ contains
o points of C . If exactly one of x or y is on C , then that is the only point of γ on C .

roof. We glue two copies of P along ∂ P = C . Because C is convex, Alexandrov’s Gluing Theorem says the resulting surface
s isometric to a unique polyhedral surface, call it P#. Because P# has intrinsic symmetry with respect to C , a lemma of
lexandrov [1, p. 214] applies to show that the polyhedron P# has a symmetry plane Π containing C .

Now consider the points x and y in the upper half P of P#, at or above Π . If γ is a shortest path from x to y, then by
he symmetry of P#, so is its reflection γ ′ in Π . Because shortest paths on convex surfaces do not branch, γ must lie in
he closed half-space above Π , and so lies on P .

If neither x nor y are on C , they are strictly above Π , and γ must be as well to avoid a shortest-path branch. If, say,
∈ C but y /∈ C , and if γ touched C elsewhere, say at z, then from y to x we have a shortest path γ and another shortest
ath, composed of the arc of γ from y to z and the arc of γ ′ from z to x, hence we would have a shortest-path branch at z.

f both x and y are on C , then either γ meets C in exactly those two points, or γ ⊂ C , for the same reason as above. �
emma 3. Let C be a curve on P , convex to its left. Then C lives on a cone ΛL to its left side, whose apex a has curvature ΩL .

roof. Let V be the set of vertices of the half-surface P L not on C .
By the Gauss–Bonnet theorem, τL + ΩL = 2π . Because τL � 0 for a convex curve, we must have ΩL � 2π .
Suppose first that ΩL < 2π . If |V | = 1, then P L is a pyramid, which is already a cone. So suppose |V | � 2, and let v1

nd v2 be any two vertices in V . Lemma 2 guarantees that a shortest path γ between them is in P #
L and disjoint from C .

his shortest path corresponds to a geodesic γ in P L . Perform vertex merging along γ , resulting in a new vertex v ′ whose
urvature is the sum of that of v1 and v2. Note that merging is always possible, because ω1 + ω2 � ΩL < 2π . Also note
hat v ′ is not on C , because γ is disjoint from C , by Lemma 2. Let NL be some small left neighborhood of C in P L . Then

L is unaffected by the vertex merging: neither v1 nor v2 is in NL because it is vertex-free, and NL may be chosen narrow
nough (by Lemma 2) so that no portion of γ is in NL . Replace V by (V \ {v1, v2}) ∪ {v ′}.

Continue vertex merging in a like manner between vertices of V until |V | = 1, at which point we have C and NL living
n a cone, as claimed.

If ΩL = 2π , then the last step of vertex merging will not succeed. However, we can see that a slight altering of the two
lued triangles so that ΩL < 2π will result in the cone apex approaching infinity, as follows. Cut along a geodesic between
he two vertices, say vi and vi+1, and insert double triangles of base angles 1

2 ωi and respectively 1
2 ωi+1 − εn , with εn > 0

nd limn εn = 0. So in this case C and NL live on a cylinder, which we earlier defined as a degenerate cone. �
The next two examples illustrate the two cases in the proof of Lemma 3.
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Fig. 4. (a) A doubly covered flat pentagon. (b) After merging v1 and v2. (c) After merging v12 and v3.

Fig. 5. All of C is visible from a. Here z1 and z2 are images of z when the cone is cut along az.

Example 2. In Fig. 1(a), the two vertices inside C , of curvature 1
2 π each, are merged to one of curvature π , which is then

the apex of a cone on which C lives, as in (b) of the figure.

Example 3. Fig. 4(a) shows an example with three vertices inside C . P is a doubly covered flat pentagon, and C =
(v4, v5, v4) is the closed curve consisting of a repetition of the segment v4 v5. C has π surface angle at every point to
its left, and so is convex. The curvatures at the other vertices are ω1 = π and ω2 = ω3 = 1

2 π . Thus ΩL = 2π , and the proof
of Lemma 3 shows that C lives on a cylinder. Following the proof, merging v1 and v2 removes those vertices and creates
a new vertex v12 of curvature 3

2 π ; see (b) of the figure. Finally merging v12 with v3 creates a “vertex at infinity” v123 of
curvature 2π . Thus C lives on a cylinder as claimed. If we first merged v2 and v3 to v23, and then v23 to v1, the result
would be the same.

Lemma 4. A convex curve C on P is visible from the apex a of the unique cone Λ on which it lives to its convex side.

Proof. The existence and the uniqueness of the cone Λ are given by Lemmas 3 and 1.
Let z be a closest point of C to a. Then az must be orthogonal to C at p, by [7, Cor. 1] (repeated in [8, Lem. 1]). Now

cut Λ along the segment az, which clearly cannot intersect C except at z. Continue cutting around the whole C , and call
the result P . Insert an isosceles “curvature triangle” at the cut az with apex angle ω(a). This flattens P to a planar domain
whose boundary is convex, because the angles at the two images z1 and z2 of z are each less than π ; see Fig. 5. Visibility
of all of C from a follows. �

A different proof for Lemma 4 is given in [13, Lem. 4].
By Lemmas 3, 1 and 4 we conclude the following:

Theorem 1. Let C be a left-convex curve on P . Then C lives on a unique cone Λ to its left side, whose apex a has curvature ΩL , and so
has cone angle 2π − ΩL . C is visible from the apex a of Λ.
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ig. 6. (a) A convex loop C that does not live on a cone. (Base of P is 3 × 3.) (b) A flattening of the cone on which it should live. C y does not overlap when
ut at y. (c) Cx overlaps when cut at loop point x.

. Convex loops

onvex loops and cones. The following example shows that the technique successfully used for convex curves cannot be
irectly applied to convex loops: not every convex loop lives on the cone obtained by vertex merging.

xample 4. Consider the polyhedron P shown in Fig. 6(a), which is a variation on the example from Fig. 1(a). Here C =
a,b,b′, x, c′, c,d) is a convex loop, with loop point x. The cone on which it should live is analogous to Fig. 1(c): vertex

erging of v1 and v2 again produces the cone apex v ′ whose curvature is π . But C does not “fit” on this cone, as Fig. 6(b)
hows; the apex v ′ is not inside C .

Not only does the curve C in Example 4 not live on the cone produced by vertex merging, but it cannot live on any cone.
o see this, assume that C lives on a cone Λ of apex v; denote by L the closed region of Λ bounded by C and containing
. By Lemma 1 and its proof, Λ and the relative position of v in L are uniquely determined by C .

Consider shortest paths γ ′ = xv and γ ′′ = v y on Λ, from x to v , and from v to y. Notice that γ ′ ∪ γ ′′ ⊂ L, hence we
ay denote by Li the two resulting regions of L sharing the common boundary γ ′ ∪ γ ′′ . From the symmetry of C and L,

t follows that L1 and L2 are symmetric to each other with respect to γ ′ ∪ γ ′′ . (Otherwise we can change the roles of L1
nd L2 and find another relative position of the cone apex with respect to L, impossible.) Therefore, L1 and L2 are convex,
ence visible from v .

By the proof of Lemma 1, ωv = π . If we cut Λ along the generator v y, Λ unfolds in the plane and C also develops
ithout overlapping. Moreover, v becomes the third vertex of an isosceles triangle with base y1 y2 and apex angle π , hence

he midpoint of the segment y1 y2, v = v ′ . See again Fig. 6(b). But, as we have already mentioned, C does not “fit” on this
one.

verlapping development of convex loop. In light of the preceding negative results, it is perhaps not surprising that there
re convex loops C and points x ∈ C such that Cx left-develops with overlap. Indeed Fig. 6(c) shows an example where x is
he loop point.

Despite the negative results illustrated above, we can show that there always exists some cut point y that develops a
onvex loop without overlap.

emma 5. Every convex loop C contains a point y different from its loop point x, such that C y left-develops without overlap.

roof. The proof idea is, roughly speaking, to show that every convex loop “lives on two cones with non-empty intersec-
ion,” and to unfold those cones as in the previous section.

The following argument concerns only the left side of C , so we may assume that x is not a vertex of P . (If x is a vertex
f P then we can insert a “curvature triangle” at x to the right side of C , of angle ω(x) < π inserted at x.) Let τ1 and τ2 be
he tangent directions to P at x, such that −τ1 and −τ2 are tangent to C . It follows that τ1 and τ2 are pointing into C .
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Fig. 7. Case 1. (a) P L = P1 ∪ P2 on P : γ = xy is a shortest path. (b) Planar development of cone Λ2. (c) Planar development of cones Λ1 and Λ2, joined
along γ .

Case 1. Assume first there exists a shortest path γ = xy from x to some y ∈ C whose tangent direction at x lies between τ1
and τ2; see Fig. 7(a). Then γ splits P = P L into two convex regions Pi sharing a common boundary γ ; let Ci = C ∩ Pi . We
perform vertex merging within each Pi , just as in the proof of Lemma 3, producing two cones Λi (with apices ai ), sharing
a common boundary γ .

Now cut each cone along the generators ai y, and unfold both cones (see Theorem 1), joining them along γ . We describe
next the geometry of this planar layout P , and show that C y is thereby developed without overlap.

Let T1 and T2 be rays tangent to C at y; if y is not a corner of C , then T1 and T2 are collinearly opposing; we will
assume this, as it is only easier if y is a corner. This situation is illustrated on P in Fig. 7(a). Now we describe the planar
layout, using over-bars to represent elements embedded in the plane; see Fig. 7(b)–(c).

The two cone unfoldings Λi are joined along γ , see Fig. 7(c). Let N1 and N2 be rays from y, making with γ angles
β + π/2 and (π − β) + π/2, respectively. Informally these correspond to “normals to C” pointing to the reflex side of C
at y. We stress that N1 and N2 are defined uniquely by their angles with γ , and not relative to T1 and T2. We have N1 = N2
when y is not a corner of C . Let F2 be the ray tangent to P at x, directed opposite to τ1, and define F1 similarly. Define Ri
to be the regions of the plane bounded by Ni ∪γ ∪ Fi . The angle at y in R1 is β +π/2, and that in R2 is (π −β)+π/2. Let
y′ be the second image of y in Λ2 that results from cutting a2 y, so that 
a2 y y′ is an isosceles “curvature triangle” apexed
at a2 with angle ω(a2) there. First note that � a2 yx < π − β , because π − β is the angle at y formed between γ and T2
on P . The angle at the base of the isosceles triangle 
a2 y y′ is at most π/2. Therefore the angle � y′ yx < (π − β) + π/2,
as marked in Fig. 7(b). This shows that y′ ∈ R2. Thus the curve C ′

2 = C2 ∪ y y′ remains in R2. This curve C ′
2 is itself either

convex, or a convex loop (with loop point y). In the former case, Corollary 4 in [8] shows that the flat surface it bounds is
planar and so without overlappings. In the second case, we can split the flat surface it bounds into two flat, convex domains,
each of which is planar, whence their join is planar. This implies that C ′

2 is without overlappings, and hence so is C2.
Applying analogous reasoning to Λ1 and C1 yields the claim that C = C1 ∪ C2 does not overlap.

Case 2. Assume now that Case 1 does not hold. This means that all shortest paths falling between τ1 and τ2 do not reach
C , i.e., they hit the cut locus with respect to x first. The cut locus X = X(x) is the closure of the locus of points with more
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Fig. 8. Case 2: (a) The digon D on P . (b) Planar layout. The surface inside D is not shown, as not relevant for our proof.

ig. 9. Cutting a sliver tetrahedron ((a) bottom) by a convex 2-loop ((a) top); this curve is a doubling of the cut path (a,b, c,d), nonconvex at one turn at b,
nd one turn at c. Development of the convex 2-loop and overlappings (b).

han one shortest path to x. X is a tree (also known as the “ridge tree” [14]) with its leaves at the vertices of P . The cut
ocus plays a role in related work, including our work in [8,9], but here we only need its most basic properties. In particular,

e established in [8] that the branch of X that is the target of the shortest paths between τ1 and τ2 meets C in a single
oint w . (We will prove that C w , the development of C when cut at w , avoids overlap.) Then there are two shortest paths

rom x to w , enclosing that branch, which start at or outside of τ1 and τ2. See Fig. 8(a). These two segments determine
hat we called a “fat digon” D , “fat” because it consumes all the potential γ segments that would keep us in Case 1 above.

et the angle of D at x be α. (A metrically accurate polyhedral example is provided in [8, Fig. 12].)

Call Pi the convex regions that remain outside of D to either side, and let Ci = C ∩ Pi . Again we perform vertex merging
ithin each Pi to obtain two cones Λi , with apices ai , and we unfold each by cutting along ai w . Now, in contrast to Case 1,

ere we layout the cone unfoldings to share only the point x, and such that the angle between xw1 and xw2, where w1
nd w2 are the two images of w , is precisely α, the digon angle at x on P . This guarantees we obtain a development of
w in the neighborhood of x. In analogy with Case 1, define F1 and F2 to oppose τ2 and τ1 respectively. See Fig. 8(b).

The regions Ri bounded by Ni ∪ xwi ∪ Fi contain Ci , following the same logic as in Case 1: analyzing the angles at

i shows that the second images w ′
i are inside Ri , and the curves Ci ∪ xwi are flat convex loops. Notice that the surface

nside D is not relevant for our proof, we only care about its angle α at x. Thus the development of C when cut at w ,
w = C1 ∪ C2, avoids overlap. �

This result on convex loops is best possible in the sense that there are curves C that are convex except at two exceptional
oints—call them convex 2-loops—for which Cx overlaps for every x. The basic construction that illustrates this derives from a
sliver tetrahedron,” which has long been known to overlap from a particular edge unfolding. Fig. 9 illustrates how doubling
he cut path leads to overlap.

The degeneracy of this example may leave it not entirely convincing, but it may be mimicked to be nondegenerate.
ig. 10 shows an example of a curve that is convex except at two points, all of whose developments overlap.

We summarize this section with the following:

heorem 2. Convex loops may not live on cones and they may develop with overlap if cut arbitrarily, but there always exists at least
ne cut point assuring nonoverlapping development. There exist convex 2-loops all developments of which are overlapping.
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Fig. 10. (a) A curve C = (xL ,a,b, c,d, xR ), convex except at the two reflex corners c and d. Here xL and xR are slightly separated points near the midpoint
x of the back bottom cube edge, and the two “spikes” are too thin for both sides to be distinguished at this resolution. The cube faces are labeled F , L, R ,
T , B for Front, Left, Right, Top, and Back, respectively. (b) The left portion (xL ,a,b) on an unfolding of the faces it crosses. (c) The right portion (c,d, xR ).
(d) Development of curve C . Note that because C encloses no vertices of the cube, it is isometric to a planar polygon. Thus its development is independent
of a cut point: all of its developments are congruent.

5. Reflex curves and reflex loops

We consider now curves C which are either reflex curves, or reflex loops whose other side is convex. Recall that
c1, c2, . . . , cm denote the corners of C , with cm the loop point if C is a reflex loop, and βi = R(ci) is the angle to the
right side of C at ci .

Lemma 6. Let C be a curve that is either reflex (to its right), or a reflex loop which is convex to the other (left) side, with βm < π at the
loop point cm. Then C lives on a cone ΛR to its reflex side.

Proof. The proof idea is, roughly speaking, to merge all vertices of P to the left (= convex) side of C together with those
on C , thus making C live on a cone to its right side. This is accomplished as follows: (i) merge all vertices of P to the
left (= convex) side of C thus obtaining a cone ΛL on which C lives to its left; (ii) alter a right neighborhood NR of C
by insertion of curvature triangles, thus “forcing C” live on ΛL to both of its sides; (iii) remove the introduced curvature
triangles and alter ΛL accordingly, thus obtaining a new cone ΛR on which C (and NR ) lives to the right. The formal details
follow.

(i) Because C is convex to its left, we have ΩL � 2π . Just as in Lemma 3, merge the vertices strictly in P L to one vertex
a. Let ΛL be the cone with apex a on which C now lives to the left. It will simplify subsequent notation to let Λ = ΛL .

(ii) Let NR be a right neighborhood of C (to the reflex side of C ). For subsequent subscript embellishment, we use N to
represent NR . Its shape is irrelevant to the proof, as long as it is vertex-free and its left boundary is C .

Join a to each corner ci by a cone-generator gi (a ray from a on Λ). Lemma 4 ensures this is possible. Cut along gi
beyond ci into N . There are choices how to extend gi beyond ci , but the choice does not matter for our purposes. For
example, one could choose a cut that bisects βi at ci . Insert along each cut into N a curvature triangle, that is, an isosceles
triangle with two sides equal to the cut length, and apex angle ωi at ci . (If ci does not coincide with a vertex of P , then
ωi = 0 and no curvature triangle is inserted.) This flattens the surface at ci , and “fattens” N to N ′ without altering C or the
cone Λ left of C . Now N ′ lives on the same cone Λ that C and its left neighborhood NL do.

(iii) From now on we view Λ and the subsequent cones we will construct as flattened into the plane, producing a doubly
covered cone with half the apex angle. (Notice that here “doubly covered” above refers to a neighborhood of the cone apex,
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Fig. 11. A convex curve C on an icosahedron, with αi = 2
3 π , βi = π , and ωi = 1

3 π at each corner. The cone Λ for C opened (b) and doubly covered (c).

ig. 12. (a) After insertion of curvature triangles, N ′ lives on Λ. (b) Removing the doubly covered half-curvature triangle at c1 leads to a new cone Λ1.
In this and in Fig. 13 we display the full icosahedron faces to the right of C , although only a small neighborhood is relevant to the proof.)

nd not to the image of the curve C .) It is always possible to choose any generator ax for x ∈ C and flatten so that ax is the
eftmost extreme edge of the double cone. We start by selecting x = c1, so that g1 is the leftmost extreme; let h1 be the
ightmost extreme edge. We illustrate the construction before proceeding.

Let C be the curve on the icosahedron illustrated in Fig. 11(a). This curve is reflex to the right and thus convex to the
eft, and already lives on the pentagonal pyramid cone Λ to the left without any vertex merging. We will make it live on

cone to the right side via the proof technique of Lemma 6. Fig. 11(b) shows the five equilateral triangles incident to the
pex, and (c) shows the corresponding doubly covered cone. Fig. 12(a) illustrates Λ after insertion of the curvature triangles
o the right of C , each with apex angle ωi = 1

3 π . A possible neighborhood N ′ is outlined.
After insertion of all curvature triangles, in some sense we erase where they were inserted, and just treat N ′ as a strip

iving on Λ. Now, with g1 the leftmost extreme, we identify a half-curvature triangle on the front side, matched by a
alf-curvature triangle on the back side, incident to c1 in N ′ . Each triangle has angle 1

2 ω1 at c1. See again Fig. 12(a). Now
otate g1 counterclockwise about c1 by 1

2 ωi , and cut out the two half-curvature triangles from N ′ , regluing the front to the
ack along the cut segment. Extend the rotated line g′

1 to meet the extension of h1. Their intersection point is the apex a1
f a new (doubly covered) cone Λ1, on which neither a nor c1 are vertices. Note that the rotation of g1 effectively removes
n angle of measure ω1 incident to c1 from the N ′ side, and inserts it on the other side of C . See Fig. 12(b). Call the new
eighborhood N1, and the new convex curve C1. C1 is the same as C except that the left angle at c1 is now α1 +ω1, which
y the assumption of the lemma, is still convex because β1 � π .

Now we argue that g′
1 does not intersect N1 other than where it forms the leftmost boundary. For if g′

1 intersected N1
lsewhere, then, taking N1 to be smaller and smaller, tending to C1, we conclude that g′

1 must intersect C1 at a point other
han c1. But this contradicts the fact that either of the two planar images (from the two sides of Λ) of C1 is convex. Indeed
′
1 is a supporting line at c1 to the convex set constituted by Λ1 up to C1.

Note that we have effectively merged vertices c1 and a to form a1, in a manner similar to the vertex merging used in
emma 3. The advantage of the process just described is that it does not rely on having a triangle half-angle no more than

at the new cone apex.
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Fig. 13. (a) Generator g2 from a1 through c2 into N1. (b) Reoriented so g2 is left extreme.

Next we eliminate the curvature triangle inserted at c2. Let g2 be the generator from a1 through c2 (again, Lemma 4
applies). Identify a curvature triangle of apex angle ω2 in N1 bisected by g2; see Fig. 13(a). Now reflatten the cone Λ1 so
that g2 is the left extreme, and let h2 be the right extreme, as in (b) of the figure. Rotate g2 by 1

2 ω2 about c2 to produce
g′

2, cut out the half-curvature triangles on both the front and back of N1, and extend g′
2 to meet the extension of h2 at a

new apex a2. Now we have a new neighborhood N2, with left boundary the convex curve C2, living on a cone Λ2 to its left
side.

We apply this process through c1, . . . , cm−1. It could happen at some stage that g′
i and the hi extension meet on the

other side of Ci , in which case the cone apex is to the reflex side. (Or, they could be parallel and meet “at infinity,” which
is what occurs with the icosahedron example.) From the assumption of the lemma that βi � π for i < m, αi + ωi � π and
so the curves Ci remain convex throughout the process. So the argument above holds.

For the last, possibly exceptional corner cm , Cm−1 from the previous step is convex, but the final step could render Cm

nonconvex (if αm + ωm > π ). But as there is no further processing, this nonconvexity does not affect the proof. Therefore,
after removing all curvature triangles inserted to the right, and inserting them to the left, our curve C remains living on a
cone to both its left and right side.

For the icosahedron example in Figs. 11–13, five insertions of 1
3 π curvature triangles, together with the original 1

3 π
curvature at a, produces a cylinder, since βi = π for the five ci corners of C . Notice that C becomes a simple closed
geodesic on that cylinder, and therefore a circle. �
Example 5. An example of a reflex loop that satisfies the hypotheses of Lemma 6 is shown in Fig. 14(a). Here C has five
corners, and is convex to one side at each. C passes through only one vertex of the cuboctahedron P , and so it is reflex at
the four non-vertex corners to its other side. Corner c5 coincides with a vertex of P , which has curvature ω5 = 1

3 π . Here

α5 = β5 = 5
6 π . Because β5 < π , C is a reflex loop. We have ΩL = 2

3 π because C includes two cuboctahedron vertices, u and

v in the figure. ΩC = ω5 = 1
3 π , and therefore ΩR = 3π . The apex curvature of ΛL is ΩL = 2

3 π , and the apex curvature of
ΛR is π . NR lives on the unbounded side of this cone, which is shown shaded in Fig. 14(b). Note the apex a is left of C , in
accord with Lemma 6.

Lemma 7. Let C be a curve that is either reflex (to its right), or a reflex loop which is convex to the other (left) side, with βm < π at the
loop point cm. Then C is visible from the apex a of the cone Λ on which it lives to its reflex side.

Proof. Again letting c1, . . . , cm be the corners of C , with cm the possibly exceptional vertex, we know that βi � π for
i = 1, . . . ,m − 1, but it may be that βm < π . Just as in the proof of Lemma 6, we flatten Λ into the plane, this time choosing
cm to lie on the leftmost extreme generator g1 of Λ. Let b be the point of C that lies on the rightmost extreme generator
g2 in this flattening. Finally, let Cu be the portion of C on the upper surface of the flattened Λ, and Cl the portion on the
lower surface. See Fig. 15. Now that we have placed the one anomalous corner on the extreme boundary L1, both Cu and
Cl present a uniform aspect to the apex a, whether it is to the convex or reflex side of C : every corner of Cu and Cl is
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ig. 14. (a) A curve C of five corners passing through one polyhedron vertex. C is convex to one side, and a reflex loop to the other, with loop point c5, at
hich β5 = 5

6 π(= 150◦) < π . (b) The cone ΛR with apex a is shaded.

Fig. 15. The apex a could lie either to the reflex or to the convex side of C .

eflex (or flat) toward the reflex side, and convex (or flat) toward the convex side. In particular, cmb ∪ Cu is a planar convex
omain. Each line through a intersects cmb exactly once, and therefore intersects Cu exactly once; and similarly for Cl . �

Just as we observed for convex loops, this visibility lemma does not hold for all reflex loops—the assumption that the
ther side is convex is essential to the proof.

We summarize this section in a theorem (recall that ΩL + ΩC + ΩR = 4π ).
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Fig. 16. (a) Open curve C ′ = (p1, p2, p3, p4, p5) on cone of angle α, with cone opened. (b) A different opening of the same cone and curve. (c) Development
of curve C ′ self-intersects.

Theorem 3. Let C be a reflex curve, or a reflex loop which is convex to the other (left) side. Then C lives on a unique cone ΛR to its
reflex side, and is visible from the apex a of ΛR . If ΩR > 2π , a is left of C ; if ΩR < 2π , a is right of C ; and if ΩR = 2π , ΛR is a cylinder.

Proof. The cone ΛR constructed in the proof of Lemma 6 results in the cone apex to the convex side of C as long as
ΩL + ΩC � 2π , when ΩR � 2π . Excluding the cylinder case, this justifies the claims concerning on which side of C the
cone apex resides. The apex curvature of ΛR is min{ΩL + ΩC ,ΩR}.

The uniqueness of ΛR follows from Lemma 1, and the visibility from Lemma 7. �
6. Discussion
60

61We summarize the results claimed in the Introduction in a theorem:
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Theorem 4. On a convex polyhedron, every convex curve left-develops without overlap, for every cut point. The same applies for reflex
curves and reflex loops whose other side is convex, with respect to their right side. Every convex loop has some cut-point from which it
left-develops without overlap.

Proving that a curve on a convex polyhedron lives on a cone is a powerful technique for establishing that these poly-
hedron curves develop without overlap. Even when a curve—such as a convex loop—does not live on a cone, still the cone
perspective can help prove nonoverlapping development (as it did in Lemma 5).

Many questions remain.

Overlapping developments. First, it is not the case that every curve that lives on a cone develops without overlap. Here we
show that there exist C such that Cx is nonsimple for every choice of x. We provide one specific example, but it can be
generalized.

The cone Λ has cone angle α = 3
4 π ; it is shown cut open and flattened in two views in Fig. 16(a), (b). An open curve

C ′ = (p1, p2, p3, p4, p5) is drawn on the cone. Directing C ′ in that order, it turns left by 3
4 π at p2, p3, and p4. From p5,

we loop around the apex a with a segment S = (p5, p6, p′
5), where p′

5 is a point near p5 (not shown in the figure). Finally,
we form a simple closed curve on Λ by then doubling C ′ at a slight separation (again not illustrated in the figure), so that
from p5 it returns in reverse order along that slightly displaced path to p1 again. Note that C = C ′ ∪ S ∪ C ′ is closed and
includes the apex a in its (left) interior.

Now, let x be any point on C from which we will start the development Cx . Because C is essentially C ′ ∪ C ′ , x must fall
in one or the other copy of C ′ , or at their join at p1. Regardless of the location of x, at least one of the two copies of C ′ is
unaffected. So Cx must include C ′ as a subpath in the plane.

Finally, developing C ′ reveals that it self-intersects: Fig. 16(c). Therefore, Cx is not simple for any x. Moreover, it is easy
to extend this example to force self-intersection for many values of α and analogous curves. The curve C ′ was selected only
because its development is self-evident.

Slice curves. There are curves already known to develop without overlap that are not known to live on a cone. One particular
class we could not settle are the slice curves. A slice curve C is the intersection of P with a plane. Slice curves in general are
not convex. The intersection of P with a plane is a convex polygon in that plane, but the surface angles of P to either side
along C could be greater or smaller than π at different points. Slice curves were proved to develop without intersection, to
either side, in [11], so they are good candidates to live on cones. However, we have not been able to prove that they do.

Convex loops. Although we have shown that there is some cut point from which every convex loop develops without
overlap (Lemma 5), we have not determined all the cut points that enjoy this property.

Cone curves. Finally, we have not obtained a complete classification of the curves on a cone that develop, for every cut
point x, as simple curves in the plane. It would be equally interesting to identify the class of curves on cones for which
there exists at least one cut-point that leads to simple development. The same questions for curves on a sphere are also
unresolved [6].
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