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Abstract. We prove a quadrilateral comparison result for convex surfaces, involving projec-
tions onto quasigeodesics. As an application, we locate the set of all farthest points (i.e., points at
maximal intrinsic distance from some point) in a convex surface, with respect to a simple closed
quasigeodesic.
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1 Introduction

A convex surface S is the boundary of a convex body (compact convex set with interior
points) in the Euclidean space R3, or a doubly covered planar convex body. The metric ρ
of S is defined, for any points x, y in S, as the length ρ(x, y) of a segment (i.e., shortest
path on S) from x to y. The distance from the point x in S to a closed subset K of S is
given by ρ(x,K) = miny∈K ρ(x, y).

Several comparison results are well-known for convex surfaces, see for example [1],
[14]; basically, they compare triangles or hinges in a given surface to those in the plane.
We propose, with our Theorem 1 and Corollary 2, a quadrilateral type comparison.

Theorem 1 states, for any convex surface, that the length of a segment γuv between
points u, v on the same side of, and at equal distance to, a simple quasigeodesic δ is at
most equal to the length of any subarc δu0v0 of δ between projections u0, v0 of u, v onto
the relative interior of δ, provided that γuv ∩ δu0v0 = ∅. Corollary 2 was inspired by
the property of nonpositively curved manifolds, that the projection onto closed convex
subsets is distance decreasing (see [2] p. 9); it stipulates, for any convex domainD on any
convex surface, that the projection onto bdD of any two points in D at equal distance to
bdD is distance increasing.

As an application, we repeatedly use Theorem 1 for proving a criterion to locate far-
thest points on convex surfaces, with respect to simple closed quasigeodesics. We will
give later the precise definitions; here we just notice that any geodesic of a convex sur-
face S is a quasigeodesic, and if S has bounded specific curvature (in particular, if S is
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differentiable) then the converse is also true (see [3] pp. 114 and 27).
For any point x in S, denote by ρx the distance function from x, ρx(y) = ρ(x, y) for

any y ∈ S, by Fx the set of all farthest points from x (i.e., points of global maximum
for ρx), and by F the corresponding multivalued mapping. Put F =

⋃
x∈S Fx, the set

of all farthest points. Chapter A35 in the book [4] of H. Croft, K. Falconer and R. Guy
indicates several questions of H. Steinhaus, asking for characterizations of the sets of
farthest points.

Our Theorem 2 contributes to this topic, by stating that all farthest points are located
around points at maximal distance from a simple closed quasigeodesic O, in intrinsic
balls of radii λ(O), where λ(C) stands for the length of the curve C. As consequences
of Theorem 2, Corollaries 3 to 6 give sufficient conditions for the (closed) set F to be
disconnected, and thus for the existence of points with multiple farthest points. Refer to
[21] for an overview on this topic.

For the reader’s convenience, in the remaining part of this introduction we recall some
more definitions and give additional notation. A geodesic is a curve γ : [0, l]→ S which
is locally segment: for each s ∈ [0, l] there exists ε > 0 such that the restriction of γ to
[s−ε, s+ε]∩ [0, l] is a segment (i.e., a shortest path) between its extremities. (We restrict
our attention in this paper to compact geodesics.)

Consider a broken geodesic γ which is a Jordan arc, say γ =
⋃n
i=0 γaiai+1 , where

γaiai+1 is a geodesic joining the points ai, ai+1 ∈ S (i = 0, . . . , n). Then a right and a
left side can be consistently defined locally along γ \{a0, an+1}. Denote by αi and βi the
angles between γaiai−1 and γaiai+1 to the right and to the left of γ, respectively. The right
and left swerve of γ are the numbers sr(γ) =

∑n
i=1(π − αi), sl(γ) =

∑n
i=1(π − βi).

Consider now a Jordan arcAwhich has definite tangent directions at its endpoints p, q,
and γ a broken geodesic from p to q which is a Jordan arc and lies to the right of, or on,A.
Denote by θp and θq the angles between γ and A at p and q. Then lim(θp + θq + sr(γ))
exists when γ approachesA from the right (see [1] p. 353) and it is called the right swerve
of A ([3], p. 109). The left swerve is defined similarly.

A quasigeodesic arc (respectively a closed quasigeodesic curve) is a Jordan arc (re-
spectively a closed Jordan curve) which has definite tangent directions at each point and
every subarc of which has nonnegative right and left swerves ([3], p. 114). A quasi-
geodesic is a curve each subarc of which is quasigeodesic. A segment connecting two
points with complete angles ≤ π forms, traversed back and forth, a degenerate closed
quasigeodesic.

A convex subset of a convex surface is defined to contain with any two points a seg-
ment joining them.

A domain of a convex surface is a subset homeomorphic to a closed disk; it is called
(quasi)geodesic if its boundary consists of finitely many (quasi)geodesic arcs. A (quasi)-
geodesic quadrilateral is a domain bounded by four (quasi)geodesic arcs. A triangle on a
convex surface is a domain whose boundary consists of three segments. We shall denote
a quasigeodesic domain by the sequence of its boundary arcs or, if those are clear from
the context, by the sequence of their intersection points.

The angle towards the domainD made by the boundary arcs γ and γ′ at their common
point a ∈ D will be denoted by ∠Dγγ′.
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For the points u, v on the Jordan arc A, Auv will denote the subarc of A joining them.
As usual, diam(S) is the intrinsic diameter of S, diam(S) = maxx,y∈S ρ(x, y),

relintA is the relative interior of A, and || · || is the standard norm in R3.

2 Basic results

We shall need the following version of Alexandrov’s gluing theorem (see [1] p. 362 or [3]
p. 154).

Lemma 1. The 2-manifold resulting from gluing together along the boundary, by identi-
fying the points via the natural isometry, two isometric copies of a quasigeodesic (respec-
tively convex) domain of a convex surface is isometric to a convex surface.

We shall also use Pogorelov’s rigidity theorem ([15] p. 167).

Lemma 2. Any two isometric convex surfaces are congruent.

For the following result, see [1] p. 215.

Lemma 3. For any triangle γ1γ2γ3 in a convex surface denote by γ1γ2γ3 a planar trian-
gle with λ(γi) = λ(γi). Then ∠γiγi+1 ≤ ∠γiγi+1, i = 1, 2, 3 (mod 3), and equality
holds if and only if the triangles γ1γ2γ3 and γ1γ2γ3 are isometric.

When they exist, the left and right tangent directions of the arc A at p ∈ A will be
denoted by τ−p and τ+

p , respectively.
In the following lemma, the notation ∠γτ stands for the angle at the point w, between

the tangent direction τ to S at w and the tangent direction to the segment γ starting at w.

Lemma 4. Let S be a convex surface, C a curve on S having tangent directions τ−y , τ+
y

at every y ∈ relintC, and let x be a point in S \ C.

a) Suppose there exist points z, v ∈ relintC such that maxγzx ∠γzxτ
+
z < π/2 and

minγvx
∠γvxτ−v > π/2, where γzx and γvx are segments from z and v to x. Then

there are points zm ∈ relintC close to z in the direction τ+
z , and vM ∈ relintC close

to v in the direction τ−v , such that ρ(x, zm) < ρ(x, z) and ρ(x, vM ) > ρ(x, v).
b) If x0 ∈ relintC such that ρ(x, x0) = ρ(x,C), and γx0x is a segment joining x0 to x,

then min
{
∠γx0xτ

+
x0
,∠γx0xτ

−
x0

}
≥ π/2.

Proof. The first part is a direct consequence of the first variation formula (Theorem 3.5
in [13]). The second part follows from the first one. 2

Notice that a point x may have several projections onto (i.e., points realizing the dis-
tance to) a quasigeodesic.

Also notice that for any point x on any quasigeodesic δ, the angles between the tangent
directions of δ at x on both sides of δ are at most π. This is clear for polyhedral convex
surfaces from the definition of quasigeodesics, and remains true by passing to the limit.
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Corollary 1. Let δ be a quasigeodesic on a convex surface S, x a point in S \ δ and
x0 ∈ relint δ a projection of x onto δ. Then there exists, on each side of δ, at most one
segment joining x0 to x, each of which is orthogonal to δ.

Proof. Fix a segment γx0x from x0 to x, say on the right side of δ. The angle αγ made by
the tangent directions τ−x0

, τ+
x0

of δ at x0, on the right side of δ, is at most π. Therefore,
min

{
∠γx0xτ

−
x0
,∠γx0xτ

+
x0

}
is at most αγ/2 ≤ π/2.

By the use of b) in Lemma 4, we also obtain min
{
∠γx0xτ

−
x0
,∠γx0xτ

+
x0

}
≥ π/2, so

∠γx0xτ
−
x0

= ∠γx0xτ
+
x0

= π/2. Since the complete angle at x0 is at most 2π, the rest of
the proof follows. 2

3 Projections onto quasigeodesics

The main goal of this section is to establish Theorem 1, a quadrilateral comparison result
which will be the key ingredient for the proofs of Corollary 2 and Theorem 2.

We start with two lemmas; the first one, an elementary property, is the final step in the
proof of Theorem 1.

Lemma 5. If p, q are two points inside a planar rectangle xyzv such that ||p − v|| =
||q − z|| = ||x − v|| then ||p − q|| ≤ ||x − y||, with equality if and only if either p = x
and q = y, or p ∈ yz and q ∈ xv.

Proof. Put R = xyzv, a = ||x− v||, Dv = R ∩
{
y : ||y − v|| ≤ a

}
and Dz = R ∩

{
y :

||y − z|| ≤ a
}

. Assume that Dz ∩Dv 6= ∅ (the other case is simpler).
The point t of intersection between pz and bdDz divides bdDz into two subarcs, say

Ay containing y, and Av meeting xv ∪ vz.
Suppose first that p ∈ R \Dz (or, similarly, q ∈ R \Dv). If q ∈ Ay then

||p− q|| ≤ max
{
||pq − q||, ||p− qp||

}
≤ ||x− y||,

where pq ∈ bdDv and qp ∈ bdDz have the same distance to xy as q and respectively p.
If q ∈ Av , put {q0} = Av ∩ bdR. We obtain again

||p− q|| ≤ ||p− q0|| ≤ ||x− q0|| ≤ ||x− y||,

the last inequality following from ∠xq0z ≥ ∠xyz = π/2, ∠xq0y ≥ ∠xyq0.
Suppose now that p ∈ Dz and q ∈ Dv . If q ∈ Av , put {q0} = Av ∩ bdR and take

the point p0 in bdR \ {x} such that ||x− v|| = ||p0 − v||. Then again

||p− q|| ≤ max
{
||pq − q||, ||p− qp||

}
≤ ||p0 − q0|| ≤ ||x− y||,

where pq ∈ bdDv and qp ∈ bdDz are defined as above. Finally, q ∈ Ay implies

||p− q|| ≤ ||p− y|| ≤ ||x− y||,

where the last inequality follows from ∠ypv ≥ ∠yxv = π/2, ∠xpy ≥ ∠yxp. 2
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Let δ be a quasigeodesic on a convex surface S and u, v points in S \ δ. We say that
u and v are on the same side of δ if there exist projections u0, v0 of u, v onto δ, and
segments γu0u, γv0v on the same side of δ. Of course, two points might be on the left, and
also on the right, side of δ.

The next result is a particular case of Theorem 2.

Lemma 6. Let u and v be two points in a convex surface S, on the same side of, and at
equal distances to, a geodesic δ of S. Let u0, v0 ∈ relint δ be projections of u and respec-
tively v onto δ, and let γuu0 , γvv0 be segments on the same side of δ (see Corollary 1). If
there exists a segment γuv ⊂ S \ δu0v0 such that one of the two quadrilaterals bounded by
γuv ∪ γuu0 ∪ γvv0 ∪ δu0v0 has all its angles at most π, then λ(γuv) ≤ λ(δu0v0). Equality
holds if and only if the above quadrilateral is isometric to a Euclidean rectangle.

Proof. The idea is to show that a quadrilateral D = uu0v0v contains a geodesic diagonal,
in order to apply Lemmas 3 and 5. However, without the assumption that one of the two
quadrilaterals bounded by γuv ∪ γuu0 ∪ γvv0 ∪ δu0v0 — denote it by uu0v0v — has all its
angles at most π, such a diagonal may not exist (e.g., all geodesics joining on S opposite
vertices in uu0v0v are outside uu0v0v).

Glue two isometric copies of uu0v0v, say D and D∗, along their boundary by identi-
fying the points via the natural isometry. The angle condition for uu0v0v assures that the
resulting surface SD, to which we will refer in the following, is (isometric to) a convex
surface, by Lemmas 1 and 2.

Assume first that δu0v0 is a segment in SD.
Denote by γvu0 a segment on SD joining v to u0. Then, because of the symmetry

of SD, γvu0 is contained in one of the faces of SD, say in D. In particular, the tangent
direction of γu0v at u0 lies in the tangent cone Tu0 at u0 between the tangent directions of
δu0v0 and γu0u, hence

∠γu0uγu0v + ∠γu0vδu0v0 = π/2.

Consider a planar triangle v̄ū0v̄0 having the same side lengths as vu0v0 ⊂ D. Lem-
ma 3 yields

∠v̄v̄0ū0 ≤ ∠γv0vδv0u0 = π/2, quad∠v̄ū0v̄0 ≤ ∠γu0vδu0v0 .

Further construct a planar triangle v̄ū0ū2 exterior to v̄ū0v̄0, and of the same side
lengths as vu0u ⊂ D. For it we have, by Lemma 3, ∠v̄ū0ū ≤ ∠γu0vγu0u. We obtain

∠ūū0v̄ + ∠v̄ū0v̄0 ≤ ∠γu0uγu0v + ∠γu0vδu0v0 = π/2.

This together with ∠v̄v̄0ū0 ≤ π/2 enable us to apply Lemma 5, for a (planar) rectangle
u∗ū0v̄0v

∗ containing the quadrilateral ūū0v̄0v̄, and to obtain

λ(γuv) = ||ū− v̄|| ≤ ||ū0 − v̄0|| = λ(δu0v0).

The equality case follows directly from Lemmas 3 and 5.
Assume now that δu0v0 ⊂ SD is a not a segment between u0 to v0, and denote by

µu0v0 ⊂ D such a segment. Notice that µu0v0∩γuv = ∅ (because γuv∪{u0, v0} is included
in the boundary of the convex domain D of SD), and ∠γu0uµu0v0 < ∠γu0uδu0v0 = π/2.
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Take the domain ∆ in D bounded by γuv ∪ γuu0 ∪ γvv0 ∪ µu0v0 , and construct its
double S∆. Applying the above argument for S∆ instead of SD gives

λ(γuv) = ||ū− v̄|| ≤ ||ū0 − v̄0|| = λ(µu0v0) < λ(δu0v0).

In this case we cannot obtain equality. 2

We notice here that the condition γuv ⊂ S \ δu0v0 was necessary to construct the
double SD of the domain D.

We are now in the position to prove the main result of this section.

Theorem 1. Let u and v be two points in a convex surface S, on the same side of, and
at equal distance to, a quasigeodesic δ of S. If u0, v0 ∈ relint δ are projections of u and
respectively v onto δ, and there exists a segment γuv disjoint from δu0v0 , then ρ(u, v) ≤
λ(δu0v0). Equality holds if and only if a quadrilateral determined by u, v and δv0u0 is
isometric to a Euclidean rectangle.

Proof. There exist, by Corollary 1, segments γuu0 and γvv0 on — say — the right side of
δ, and they are orthogonal to δ, because u0, v0 ∈ relint δ. Denote by

∐∗ the domain of
S bounded by γuv ∪ γvv0 ∪ δv0u0 ∪ γu0u, on the right of δ. Our main idea of proof is to
find a geodesic domain D ⊂

∐∗ to which to apply Lemma 6. Unfortunately, there is no
guarantee that

∐∗ is appropriate.
Assume that λ(γuv) > λ(δu0v0), since otherwise there is nothing to prove. Consider a

shortest path γu0v0 connecting u0 to v0 in
∐∗ and observe that γu0v0 cannot contain both

u and v.
The case u ∈ γu0v0 (or similarly v ∈ γu0v0 ) is easily completed, with γuv0 ⊂ γu0v0 , by

λ(δu0v0) ≥ λ(γu0v0) = ρ(u0, u) + λ(γuv0) = ρ(v0, v) + λ(γuv0) ≥ λ(γuv).

In this case, it is easily seen that we cannot have simultaneously equality at both inequal-
ities above.

Therefore, we can assume that γu0v0 ∩ {u, v} = ∅ and, because geodesics do not
branch, γu0v0 ∩ bd

∐∗ ⊂ δu0v0 . Then either γu0v0 ∩ relint δu0v0 6= ∅, or γu0v0 ∩ bd
∐∗

=
{u0, v0} and, in the last case, γu0v0 is a geodesic of S because of its local length-minima-
lity. In both cases, the angles in

∐∗ between γu0v0 and γu0u at u0, and between γv0u0 and
γv0v at v0, clearly exist and they are at most π/2.

Let
∐

denote the geodesic domain of
∐∗ bounded by γuv ∪ γvv0 ∪ γv0u0 ∪ γu0u, and

let ρU be its metric naturally induced by ρ.
Take points u1 ∈ γuu0 and v1 ∈ γvv0 such that ρU(γuu0 , γvv0) = ρU (u1, v1).
Observe first that we cannot have u1 = u and v1 = v, because ρU (u, v) > λ(δu0v0) ≥

λ(γu0v0). Neither can we have u1 6= u and v1 = v0, because of the first part of (a) in
Lemma 4.

Case i) Assume that u1 = u0 and v1 = v0 and, moreover, ρU(u1, v1) < ρU (u′, v′)
for any points u′ ∈ γuu0 and v′ ∈ γvv0 .



Quasigeodesics and farthest points on convex surfaces 7

Since ρU(u0, v0) = λ(γu0v0) < ρU (u, v), we may take points u2 ∈ relint γuu0 close
to u0, and v2 ∈ relint γvv0 close to v0, such that ρ(u2, u0) = ρ(v2, v0) and

ρU (u2, u0) + ρU (u0, v0) + ρU (v2, v0) < ρ(u, v).

Consequently,

ρU (u2, v2) ≤ ρU (u2, u0) + ρU (u0, v0) + ρU (v2, v0) < ρ(u, v).

Consider a shortest path γu2v2 in
∐

. By the choice of u2 and v2, and by Lemma 4,
γu2v2 does not meet bd

∐
except at its extremities, so it is a geodesic of S. Therefore,

u2u0v0v2 defines a geodesic quadrilateral, all interior angles of which are less than π. Fi-
nally apply Lemma 6 to obtain λ(γu2v2) ≤ λ(γu0v0), contradicting the case assumptions.

Case ii) Assume that u1 ∈ relint γuu0 and v1 ∈ relint γvv0 . Consider a shortest path
γu1v1 ⊂

∐
, from u1 to v1; by Lemma 4, γu1v1 ⊥ γuu0 and γv1u1 ⊥ γvv0 . Notice that γu1v1

cannot pass through u or v, because ρU(γuu0 , γvv0) = ρU (u1, v1).
We claim that γu1v1 ∩ γu0v0 = ∅. Suppose this is not true, choose the first point x

along γu1v1 in γu1v1 ∩ γu0v0 , and notice that the arc γu1x of γu1v1 is a geodesic. At x we
have 0 < ∠

∐
γv1u1γv0u0 < π, because quasigeodesics have definite tangent directions

at each point. Consider a small convex cap around x (see the precise definition in [3]
p. 84), cut it along γu0v0 and keep the part U included in

∐
. By further restricting, if

necessary, we can assume it be a quasigeodesic domain. Its boundary has nonnegative
swerve towards U ([3] p. 111), so we can glue two copies of U along their boundary (by
identifying the points via the natural isometry) and the result is (isometric to) a convex
surface SU , by Lemmas 1 and 2. There exists a segment γyz joining, on the face U
of SU , points y, z of γu1v1 separated by x. Moreover, x 6∈ γyz , because at x we have
∠Uτ−γu1v1

τ+
γu1v1

≤ ∠Uγu1v1γu0v0 < π. But this contradicts the length-minimality of γu1v1

inside
∐

, and proves the claim.
Consequently, the quadrilateral u1u0v0v1 has all its angles ≤ π/2. Since its sides are

geodesic arcs, the Gauss–Bonnet theorem (see [3] p. 105) implies its excess is zero, so
u1u0v0v1 is flat and therefore isometric to a planar rectangle.

Take the maximal (with respect to inclusion) flat rectangle R ⊂
∐

with one side
γu0v0 and two sides included in γuu0 ∪ γvv0 . We may assume, by possibly renaming two
of its vertices, that R = u1u0v0v1. The previous argument shows now that, for any points
u′ ∈ γuu0 and v′ ∈ γvv0 outsideR, we have ρU(u1, v1) < ρU (u′, v′). Thus we can reduce
this case to the preceding one.

Case iii) Assume finally that u1 = u and v1 6= v (or, similarly, u1 6= u and v1 = v).
Define w ∈ γuu0 by ρ(w, u0) = ρ(v1, v0) and choose shortest paths γu1v1 , γwv1 in

∐
.

Then γu1v1 ⊥ γuu0 by Corollary 1, γu1v1 ∩ γwv1 = {v1}, and moreover γwv1 ∩ γu0v0 = ∅
(see the proof for this at Case ii)).

Since S is nonnegatively curved, the Gauss–Bonnet theorem applied to the quadrilat-
eral Q = wu0v0v1 yields ∠Qu0wv1 + ∠Qwv1v0 ≥ π, so

∠Quwv1 + ∠Qwv1u = 3π/2− (∠Qu0wv1 + ∠Qwv1v0) ≤ π/2.
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Construct nonoverlapping planar triangles w̄ūv̄1 and ūv̄1v̄ with the same side lengths
as wuv1 and uv1v. Then, by Lemma 3,

∠ūw̄v̄1 + ∠w̄v̄1ū ≤ ∠Quwv1 + ∠Qwv1u ≤ π/2,

hence ∠w̄ūv̄1 ≥ π/2. Moreover, ∠ūv̄1v̄ ≤ ∠Quv1v = π/2. The cosine rule applied to
w̄ūū1 and ūū1v̄ yields

ρU (w, v1) = ||w̄ − v̄1|| ≥ ||ū− v̄|| = λ(γuv).

Finally observe that all angles of the quadrilateral wu0v0v1 are at most π, and apply
Lemma 6 to get ρU (w, v1) = λ(γwv1) ≤ λ(δu0v0).

The equality case follows from Lemma 6 and the proof. 2

Remark. Theorem 1 gives the better estimate ρ(u, v) ≤ ρ(u0, v0), provided the domain
of S determined by u, v and δv0u0 contains a segment γu0v0 .

Theorem 1 proved useful (see Corollary 2.3 in [9]) to show, for any convex surface
S and any simple closed quasigeodesic of length on l on S, that l2 − 2l diam(S) +
4 area(S) > 0.

It also implies the following result, inspired by a property of nonpositively curved
manifolds, that the projection onto closed convex subsets is distance decreasing (see [2]
p. 9).

Corollary 2. For any convex domain D of any convex surface, the projection onto bdD
of any two points in D at equal distance to bdD, is distance increasing.

Proof. Glue two isometric copies ofD along their boundary (by identifying the points via
the natural isometry) to obtain a convex surface S with planar symmetry (see Lemmas 1
and 2), where (the image of) bdD is a simple closed quasigeodesic (see [3] p. 154).
Theorem 1 and the above remark directly apply to D to obtain the conclusion. 2

4 Farthest points and simple closed quasigeodesics

In this section we apply Theorem 1 for proving a criterion to locate the set F of all farthest
points on a convex surface (Theorem 2), and we derive sufficient conditions for this set
being disconnected, and thus for the existence of points with multiple farthest points.

A motivation for this section comes from H. Steinhaus’ questions to characterize the
sets of farthest points (see §A35 in [4]). Next we briefly mention some of the results
recently obtained in this direction, and refer the reader to [21] for an overview.

On any convex surface S, for nearly all (in the sense of porosity) points x in S, Fx
consists of a single point [24].

Let S denote the space of all convex surfaces, endowed with the usual Pompeiu–
Hausdorff metric. A more particular motivation comes from a conjecture of T. Zamfirescu
[24], that the set S2, of all surfaces S ∈ S on which there exists a point x with discon-
nected set of relative maxima, is dense in S. By Theorems 6 and 7 in [23], for proving this
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conjecture it suffices to show that densely many surfaces have the mapping F properly
multivalued.

Four types of results should be considered, when trying to decide which points are
(not) farthest points. First, there are classes of surfaces with explicit determination of all
(or some) sets of farthest points [16], [18], or with bijective (or even involutive) mapping
F , see [7], [11], [20], [22]. Second, there are a few criteria to recognize farthest points by
the use of the total curvature at a point, see [8] and [10]. Third, there are results showing
that some points on a surface are not farthest points, by considering the total curvature
[17], the relationship between farthest points and other critical points of distance functions
[23], or a bound on the Gauß curvature along a loop of the surface [23]. And fourth, there
are criteria to locate farthest points on convex surfaces. We mention here our Theorem 2
with its corollaries, as well as the last results in [10], stating — roughly speaking — that
any small cap of boundary length small enough with respect to its radius does contain at
least one farthest point.

Let B(x, l) denote the open intrinsic ball of radius l centered at x.

Theorem 2. Let O be a simple closed quasigeodesic on a convex surface S, S1 and S2
the subsets of S bounded by O, and x1 ∈ S1, x2 ∈ S2 points at maximal distance from O
in S1, respectively S2. Then for any point y in F one has mini=1,2 ρ(y, xi) < λ(O).

If, moreover, the intrinsic balls B(x1, λ(O)) and B(x2, λ(O)) are disjoint then each
contains farthest points; consequently, the set F is disconnected and the mapping F is
properly multivalued.

Proof. Put l = λ(O) and suppose there exists a point v ∈ F\
⋃
i=1,2 B(xi, l), say v ∈ S1.

Choose z ∈ S such that v ∈ Fz .
Denote by x0, z0 and v0 the projections of x1, z and respectively v ontoO, and choose

segments γx1x0 , γzz0 and γvv0 ; by Lemma 4, all these segments are orthogonal to O.
Take xv ∈ γx1x0 such that ρ(xv, x0) = ρ(v, v0). By Theorem 1, ρ(xv, v) is at most

equal to the length of the smaller arc of O joining x0 to v0, so ρ(xv, v) ≤ l/2 and thus,
by the triangle inequality,

ρ(x1, xv) ≥ ρ(x1, v)− ρ(xv, v) ≥ l/2.

Assume first that z ∈ S2. Choose a segment γx1z and put {y} = O ∩ γx1z . Clearly
O ∩ γx1z 6= ∅, because either z ∈ O, or O separates z and x1. We have

ρ(z, x1) = ρ(z, y) + ρ(y, x1)

≥ ρ(z, z0) + ρ(x0, x1)

≥ ρ(z, z0) + l/2 + ρ(xv, x0)

≥ ρ(z, z0) + ρ(z0, v0) + ρ(v0, v) ≥ ρ(z, v).

To end the proof of this case, observe that ρ(z, x1) > ρ(z, v). Indeed, equality would
imply γx1z ⊥ O, by z0 = x0, and γx1z ⊂ O, by ρ(z0, v0) = l/2 and ρ(z, z0)+ρ(z0, v0)+
ρ(v0, v) = ρ(z, v), which is impossible.
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Assume now that z ∈ S1 and ρ(z,O) ≤ ρ(v,O), and denote by vz the point of γvv0

given by ρ(vz, v0) = ρ(z, z0). We have l/2 ≥ ρ(z, vz), by Theorem 1. Since

ρ(x1, x0) = ρ(x1, O) ≤ ρ(x1, z) + ρ(z, z0),

we obtain

ρ(z, x1) ≥ ρ(x1, x0)− ρ(z, z0)

≥ l/2 + ρ(xv, x0)− ρ(z, z0)

≥ ρ(z, vz) + ρ(v0, v)− ρ(vz, v0)

= ρ(z, vz) + ρ(vz, v) ≥ ρ(z, v).

Observe that ρ(z, x1) > ρ(z, v) in this case too. Indeed, equality would imply the exis-
tence of some segment γx1x0 such that z ∈ γx1x0 , and also v ∈ γx1x0 , by ρ(x1, xv) ≥ l/2,
hence v = x1 and a contradiction is obtained.

Assume finally that z ∈ S1 and ρ(z,O) > ρ(v,O). Define the level set of v by

C =
{
y ∈ S1 : ρ(y,O) = ρ(v,O)

}
.

Then, since C is closed in S, we may consider points xv, zv ∈ C such that ρ(x2, xv) =
ρ(x2, C) and respectively ρ(z, zv) = ρ(z, C). Choose segments γx2xv and γzzv .

Notice thatC separates z and x2, because ρ(z,O) > ρ(v,O), so ρ(z, x2) ≥ ρ(z, zv)+
ρ(x2, xv). Theorem 1 applied to O and ρ(xv, v), respectively to O and ρ(zv, v), gives

max
{
ρ(xv, v), ρ(zv, v)

}
≤ l/2.

We obtain again ρ(x2, xv) ≥ l/2, and therefore

ρ(z, x2) ≥ ρ(z, zv) + ρ(x2, xv)

≥ ρ(z, zv) + l/2
≥ ρ(z, zv) + ρ(zv, v) ≥ ρ(z, v).

To end the first part of the proof, suppose ρ(z, x2) = ρ(z, v). Then xv ∈ γx2v and
consequently xv = v, by ρ(x1, xv) = ρ(x1, v) − ρ(xv, v) = l/2, but also zv = xv , by
ρ(z, x2) = ρ(z, zv) + ρ(x2, xv), and zv = xv , because ρ(z, zv) + ρ(zv, v) = ρ(z, v).
Altogether imply v ∈ γx2v for some segment γx2v , and a contradiction is obtained.

For the last part of the theorem, if B(x1, λ(O)) ∩ B(x2, λ(O)) = ∅ then necessarily
Fx1 ⊂ B(x2, λ(O)) and Fx2 ⊂ B(x1, λ(O)). Moreover, the upper semicontinuity of F
shows that all points z close to xi have Fz ⊂ B(xi+1, λ(O)), i = 1, 2 (mod 2).

Finally, the upper semicontinuity of F and Brouwer’s fixed point theorem imply (see
[23]) that the mapping F is properly multivalued as soon as F 6= S. 2

Remarks. i) If the convex surface S is smooth enough then there exist at least three sim-
ple closed geodesics on S, by the classical result of L. A. Lusternik and L. G. Schnirelman.
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Contrasting to this is the theorem of P. Gruber [6], that most (in the sense of Baire cat-
egory) convex surfaces have no closed geodesic. A. V. Pogorelov [15] proved that any
S ∈ S has at least three simple closed quasigeodesics.

ii) The estimate of Theorem 2 is not optimal, since F is closed. It can however be im-
proved by successive applications of Theorem 2 to different simple closed quasigeodesics.

As a direct consequence of Lemma 1, each domainD of S whose boundary is a simple
closed quasigeodesic is relatively convex; i.e., it is isometric to some convex domain
(see [3] p. 155). Then any two (possibly degenerate) simple closed quasigeodesics on a
convex surface either intersect each other or the region they bound is isometric to a zone
between parallel circles on a circular cylinder. For, if they do not cut each other, the region
between them is relatively convex, as intersection of two relatively convex domains, and
the arguments of [3] p. 112 entirely apply.

iii) Let {xαi
i }αi∈Ai

denote the set of all points in Si at maximal distance toO, i = 1, 2.
Theorem 2 can be rephrased as

F ⊂
⋃
i=1,2

⋂
αi∈Ai

B(xαi
i , λ(O)).

Notice that ρ(xα1
i , x

α2
i ) ≤ l/2, by Theorem 1, because ρ(xα1

i , O) = ρ(xα2
i , O). Equal-

ity holds if and only if the region of S between O and the (necessarily unique) segment
from xα1

i to xα2
i is isometric to a cylinder, by the Gauss–Bonnet theorem.

iv) A necessary condition for the conclusion of Theorem 2 to be non-trivial (i.e.,
F ⊆

⋃
i=1,2

⋂
αi
B(xαi

i , λ(O)) 6= S) is that λ(Os) < diam(S), where Os denotes the
shortest non-trivial closed quasigeodesic of S.

Various estimates on λ(Os) were obtained for smooth convex (hyper)surfaces (see for
example [5], [12], [19] and the references therein); some of them also hold, by passing to
the limit, for arbitrary convex surfaces. Estimates on λ(Os) are good to verify whether
diam(S) > λ(Os), but they may also be useful in conjunction with criteria to find some
small neighborhood of Os in S, or to decide that a point in S is at maximal distance to Os
in the domain bounded by Os that it belongs to, without having Os explicitly determined.
This last problem is treated in [10].

Theorem 2 is particularly useful in the presence of additional hypotheses.

Corollary 3. Let S be a convex surface of revolution, E the equator of S, and M a
meridian of S. If λ(M) ≥ 2λ(E) then the set F is disconnected and the mapping F is
properly multivalued.

Proof. The equator E (the largest parallel circle) of S is easily seen to be a closed quasi-
geodesic. Thus, B(x1, λ(E)) ∩ B(x2, λ(E)) = ∅ if and only if λ(M) ≥ 2λ(E), and
Theorem 2 directly applies to get the conclusion. 2

Corollary 4. Suppose the convex surface S is symmetric with respect to the plane Π, and
the Euclidean distance wΠ between planes supporting S and parallel to Π satisfies wΠ ≥
2λ(Π ∩ S). Then the set F is disconnected and the mapping F is properly multivalued.
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Proof. The planar symmetry of S with respect to Π directly implies that O = Π ∩ S is a
simple closed quasigeodesic of S.

Let x1, x2 be points in S symmetric with respect to Π and at maximal intrinsic distance
from O. Denote by z1, z2 the contact points of S with its supporting planes parallel to Π,
hence they are symmetric to each other and wΠ = 2 dist(zi,Π), i = 1, 2. We have:

λ(O) ≤ dist(zi,Π) ≤ ρ(zi, O) ≤ ρ(xi, O),

hence B(xi, λ(O)) ∩O = ∅ and Theorem 2 directly applies to get the conclusion. 2

Corollary 5. If there exist a simple closed quasigeodesic O of the convex surface S and
a farthest point x from O such that ρ(x,O) ≥ 2λ(O), then the set F is disconnected and
the mapping F is properly multivalued.

Proof. Denote by S1 the subset of S bounded byO which contains x, put S2 = cl(S\S1),
and take a point x2 at maximal distance in S2 from O. Let v be the intersection point of
O with a segment from x to x2. Then

ρ(x, x2) ≥ ρ(x, v) ≥ ρ(x,O) ≥ 2λ(O),

hence the open balls B(x, λ(O)) and B(x2, λ(O)) are disjoint and, by Theorem 2, the
proof is complete. 2

Corollary 6. If a simple closed quasigeodesicO of the convex surface S satisfies 4λ(O) ≤
diam(S) then the set F is disconnected and the mapping F is properly multivalued.

Proof. Choose points y, z ∈ S realizing the diameter of S. Since ρ(y, z) = diam(S) >
2λ(O), y and z belong to different intrinsic balls, say (with the notations in Theorem 2)
y ∈ B(x1, λ(O)) and z ∈ B(x2, λ(O)).

Suppose that B(x1, λ(O)) ∩B(x2, λ(O)) 6= ∅, hence ρ(x1, x2) < 2λ(O). Then

4λ(O) ≤ diam(S) = ρ(y, z) ≤ ρ(y, x1) + ρ(x1, x2) + ρ(x2, z) < 4λ(O),

and a contradiction is obtained.
Since F is included in two disjoint balls, Theorem 2 ends the proof. 2

Open questions. The last conclusion of Theorem 2 may also be regarded from an oppo-
site viewpoint, suggesting the following related open questions.

Suppose the set F of all farthest points on the convex surface S has precisely two
components; are these components separated by a simple closed quasigeodesic of S?

Suppose that F is included in two disjoint balls of equal radius; are these balls sepa-
rated by a simple closed quasigeodesic of S?
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