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Multiple farthest points on Alexandrov surfaces

Costin Vı̂lcu and Tudor Zamfirescu

(Communicated by K. Strambach)

Abstract. The farthest point mapping on compact surfaces, associating to each point x of the
surface the set of absolute maxima of the intrinsic distance from x, is for some surfaces single-
valued and a homeomorphism, while for other surfaces it is not single-valued, and not surjective.
These two big classes are not very well understood. For instance it is still unknown whether, say
in the convex case, the second class is dense. For a C2 metric on both surfaces and the space
of surfaces, the first class has, however, nonempty interior. We describe various properties of the
sets of critical points, and of relative and absolute maxima of distance functions, and find several
connections between them. We see for example that, on smooth surfaces homeomorphic to S2, a
point cannot be critical with respect to more than one other point. Sufficient conditions for a surface
to belong to the second class will be formulated and a particular Tannery surface belonging to the
boundary of both classes will be presented.
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1 Introduction

We investigate the set of critical points with respect to distance functions on Alexandrov
surfaces. Special attention will receive Alexandrov surfaces homeomorphic to the 2-di-
mensional sphere S2, while we sometimes restrict ourselves to convex surfaces.

In this paper, by surface we always mean a compact 2-dimensional Alexandrov space
with curvature bounded below (without boundary), as defined by Burago, Gromov and
Perelman in [4]. Let A be the space of all surfaces.

It is well-known that our surfaces are topological manifolds. Other basic facts on
surfaces, such as convergence theorems on shortest paths or on angles, the generalized
Toponogov theorem, and an ample description of the topological and metric structure of
the cut loci, can be found in [4], [18], [11]. Some of these basic facts will be tacitly used,
while in other cases we shall recall the needed facts as lemmas.

Denote by S the space of all convex surfaces embedded in R3, and by A0, R0 the set
of all Alexandrov, respectively Riemannian, surfaces homeomorphic to S2.
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For any two points x, y on the surface S, ρ(x, y) means the geodesic (intrinsic) dis-
tance between them (induced by the Euclidean distance for S ∈ S), and ρx the distance
function from x: ρx(y) = ρ(x, y). For x ∈ S denote by Fx the set of all farthest points
from x (i.e., absolute maxima of ρx) and by F the farthest point mapping, the multivalued
mapping associating to any point x ∈ S the set Fx. Similarly, Mx is the set of all relative
maxima of ρx, Qx the set of all critical points with respect to ρx, and M , respectively Q,
are the corresponding mappings. Here, a point y ∈ S is called critical with respect to ρx,
or simply to x, if for any vector v tangent to S at y there exists a segment from y to x
whose direction at y makes an angle not larger than π/2 with v.

If f : S → P(S) is a multivalued mapping (with the set fx as image of x), we call
it injective if fx ∩ fy = ∅ whenever x 6= y, and surjective if for every point y ∈ S
there exists x ∈ S with y ∈ fx. We say that f is connected if fx is connected for each
x ∈ S. When we say that f is bijective or a homeomorphism, we implicitly state that f is
single-valued. Also, f−1

y = {x ∈ S : y ∈ fx}.
Several questions about farthest points proposed by H. Steinhaus (see Chapter A35

of the book [7] of H. T. Croft, K. J. Falconer and R. K. Guy) have been answered in the
convex case by the second author ([24], [25], [28], [29], [30]). J. Rouyer [14], [13] showed
that some of these results are also true in the framework of Riemannian geometry. The
present paper is also contributing to the study of the farthest point mapping on surfaces,
which Steinhaus had asked for.

The next section contains a description of the components of Mx and Fx, and points
out that, generically in S, Qx — and therefore Mx and Fx too — are totally disconnected.
In the third section we see that, on any smooth surface inA0, no point can be critical with
respect to more than one point. Section 4 establishes the especially strong relationship
between the components of Mx and those of Qx. In the following section it is proved
that the family S2 of those surfaces on which M is disconnected is open in A0. Two
major results of the paper, both in Section 6, are Theorem 6 stating several implications
between various connectedness and surjectivity properties of Q, M , or F , and Theorem 7
providing the generic equivalence of all properties considered in Theorem 6. The paper
continues with three very different sufficient conditions for a surface to belong to S2. The
third brings to light an exceptional type of surface belonging to the boundary of S2. This
takes a concrete form in the next section, where a special Tannery surface is investigated.
The paper ends with a few open questions.

We need more definitions and additional notation. cardA denotes the cardinality of
the set A, bd A denotes its boundary, A its closure, and λA its 1-dimensional Hausdorff
measure (length).

For any surface S and A ⊂ S, put ρ(x, A) = infy∈A ρx(y) and rx = supy∈S ρx(y).
Also, FA = ∪x∈AFx. The radius of the surface S is defined by radS = infx∈S rx and
its diameter by diam S = supx∈S rx. A domain of S is an open connected subset of S.

Let S ∈ A, x ∈ S, and ε > 0. Any set B(x, ε) = {y ∈ S : ρx(y) < ε} homeomor-
phic to a usual open disc in the plane is called open disc around x. If ε is small enough,
B(x, ε) is indeed an open disc (see [4]). An arc Γ is a homeomorphic image of [0, 1]; its
interior int Γ is the image of ]0, 1[.

The union of two segments (i.e., shortest paths) from x ∈ S to some point y ∈ S,
which make an angle equal to π at y, will be called a loop at x; of course, the segments
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have equal lengths.
A geodesic is a curve which is locally a segment. More precisely, there is an interval

I of R and a parametrization i : I → S such that any point t ∈ I has a neighbourhood
V for which i(V ) is a segment. A point of a surface S is called endpoint of S if it is not
interior to any geodesic.

If, for any x ∈ S, each loop (if there is at least one) at x has length 2rx, we say that S
is loopy.

If σ, σ′ are two segments with precisely one common endpoint a, then ∠σσ′ denotes
the angle between the tangent directions of σ and σ′ at a. For a 6= b, ab means the
segment from a to b when that segment is unique or clearly identifiable from the context.
∠xyz means ∠xyyz.

A geodesic triangle in a Riemannian manifold or a convex surface is a collection of
three segments γ1, γ2, γ3 such that γi, γi+1 have the common endpoint ai+2. The indices
should be taken modulo 3. We shall denote the triangle by (γ1, γ2, γ3).

For a point x ∈ S, let Cx be the set of all points joined to x by at least two segments,
and C(x) the cut locus of x, i.e. the set of all endpoints (different from x) of maximal
(with respect to inclusion) segments starting at x. Clearly, Cx ⊂ C(x), and C(x) is
known to be a local tree (that is, each of its points y has a neighbourhood V in S where
the component Ky(V ) of y is a tree), even a tree if the surface is homeomorphic to S2 (see
[10], [16], [18] for basic properties of the cut locus). Recall that a tree is a set T any two
points of which can be joined by a unique arc included in T . The degree of a point y of a
local tree is the number of components of Ky(V ) \ {y} if V is chosen such that Ky(V )
is a tree. A point y ∈ T is called an extremity of T if it has degree 1, and a ramification
point of T if it has degree at least 3. A tree is called nondegenerate if it has at least one
ramification point. A Y -tree is a tree with precisely three extremities, and a tree is finite
if it has finitely many extremities.

We consider isometrical surfaces as not different, and equip the space A with the
Hausdorff–Gromov metric. In S, where distinct surfaces may be isometric, the usual
Pompeiu–Hausdorff distance is never less than the Hausdorff–Gromov distance between
any two surfaces.

The space S is Baire, and in any Baire space most means “all except those in a set of
first category”.

Acknowledgement. Some theorems of this paper are refined and generalized versions
of results in C. Vı̂lcu’s Thesis (University of Dortmund, 2003).

2 Arcs in Qx, Mx, Fx

For any surface S, the space Ty of all unit tangent directions at y ∈ S is a closed Jordan
curve of length at most 2π [4]. The point y is said to be conical if λTy < 2π, and we call
S smooth if it has no conical points. Notice that a surface may be smooth without being
differentiable. This is, for example, the case for all convex surfaces admitting 1-singular
but no 0-singular points (in the terminology of R. Schneider [17]). In 1959 V. Klee proved
that most convex surfaces are smooth, even of class C1 [9].
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Lemma 1. On S ∈ A, let y ∈ C(x) and D be a component of the complement of C(x)
in an open disc O around y with y ∈ D. Then there exists a segment from x to y meeting
O \ {y} inside D. Consequently, if the degree of y is d, then there are at least d segments
from x to y.

Proof. Let the sequence of points yn ∈ D converge to y. Choose any segment σn from
x to yn. Since A is compact, {σn}∞n=1 has a convergent subsequence, the limit σ being
also a segment. Clearly, σ joins x to y and σ ∩O ⊂ D. By the definition of the cut locus,
intσ ∩O ⊂ D. 2

Lemma 2. Let S ∈ A, x ∈ S and y, z ∈ C(x). Let J be an arc joining y to z in C(x).
If u ∈ intJ is a relative minimum of ρx|J then u is the midpoint of a loop Λ at x and,
except for the two subarcs of Λ, no segments connect x to u.

This follows from the main result in [27].
For S ∈ S and x ∈ S, we know that Fx is homeomorphic to a compact subset of R

[28], so each component of Fx is either a point or an arc. We extend this here.

Theorem 1. For any surface S ∈ A and any point x in S, each component of Mx is
homeomorphic to a connected subset of the circle S1, hence each component of Fx is
a point or an arc or a closed Jordan curve. For S ∈ A0, each component of Mx is
homeomorphic to a connected subset of R, hence each component of Fx is a point or an
arc.

Proof. Let x ∈ S and take a component M1 of Mx containing more than one point. Since
M1 is included in C(x) which is a local tree, M1 is itself a local tree.

Since the restriction of ρx to M1 is continuous, it is a constant function, and has
therefore a relative minimum at each point of M1 of degree at least 2, in particular at
any ramification point of M1, if it has one. But such a point is also a ramification point
of C(x) and, by Lemma 1, is joined to x by at least three segments, in contradiction to
Lemma 2.

Without any ramification points, M1 must be an arc with possibly one or both end-
points removed, or a closed Jordan curve. The latter case is excluded for S ∈ A0, because
then C(x) is a tree. 2

Lemma 3. Let S ∈ A0, x ∈ S and y, z ∈ C(x) be distinct. Suppose Γy , Γ′y are (possibly
coinciding) segments from x to y and Γz , Γ′z are (possibly coinciding) segments from x
to z. Then there is a domain ∆ with boundary Γy ∪ Γ′y ∪ Γz ∪ Γ′z and a Jordan arc Jyz

in Cx ∪ {y, z} joining y to z. Moreover, every point in intJyz belongs to ∆ and can be
joined to x by two segments the union of which separates y from z.

Lemma 3 appears in [24], formulated for S instead of A0. The extension to A0 is
straightforward.

Lemma 4. Let S ∈ A, x ∈ S, and J ⊂ C(x) be an arc each point of which is joined
to x by precisely two segments. Let y1, y2 be the endpoints of J , and suppose there
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exists a domain ∆ bounded by the segments from x to y1, y2 and containing intJ . Then
∆ ∩ C(x) ⊂ J .

In case S ∈ A0, the existence of ∆ is guaranteed by Lemma 3.

Proof. Suppose there is a point z in ∆∩C(x)\J . Since C(x) is arcwise connected, there
is a minimal subarc A of C(x) containing z and meeting J . Let {u} = A ∩ J .

Assume first that u ∈ ∆. Then u ∈ J \ {y1, y2}, so it is a ramification point of
C(x), whence it is joined to x by at least three segments by Lemma 1, and we obtained a
contradiction.

Assume now that u ∈ C(x) \∆. Since the interiors of the segments from x to y1, y2

are disjoint from C(x), u must be one of the endpoints of J , say y1, and A \ {y1} ⊂ ∆.
By Lemma 1, there is another segment from x to y1 arriving at y1 between J and A, and
a contradiction is obtained again. 2

Lemma 5. On most convex surfaces, most points are endpoints.

This result was proven in [21].

Lemma 6. On S ∈ A, let σ, σ′ be (possibly coinciding) segments from x to y and D a
component of the complement of σ ∪ σ′ in an open disc around y. Further, suppose no
point of D belongs to any segment from x to y. Then C(x) ∩D admits a half-tangent at
y which bisects the angle of σ, σ′ at y toward D.

This is Lemma 2.1 in [18].
The following statement is rather obvious for S ∈ R0.

Lemma 7. For S ∈ A and x ∈ S, any arc J ⊂ C(x) joining two points y, z ∈ S with
ρx(y) < ρx(z) contains a point which is not critical with respect to ρx.

Proof. Let j : [0, λJ ] → J be a parametrization by arc-length of J , and f(s) = ρx(j(s)).
By Lemma 6, J has at any point v ∈ int J right and left tangents with directions

τ+, τ−. There are points τ+
1 , τ+

2 , τ−1 , τ−2 lying together with τ+, τ− in the order τ+
1 , τ+,

τ+
2 , τ−1 , τ−, τ−2 on Tv (where possibly τ+

1 = τ−2 or τ+
2 = τ−1 ), and there are segments

from v to x with directions τ+
1 , τ+

2 , τ−1 , τ−2 at v such that (i) the direction at v of any
further segment from x to v is separated from τ+ by τ+

1 and τ+
2 , and from τ− by τ−1 and

τ−2 ; (ii) ∠τ+τ+
1 = ∠τ+τ+

2 and ∠τ−τ−1 = ∠τ−τ−2 (by Lemma 6).
This yields the existence of right and left derivatives f+ and f− of f everywhere

in ]0, λJ [. (More precisely, f+(s) = − cos ∠τ+τ+
1 and f−(s) = cos ∠τ−τ−1 .) Since

λTv ≤ 2π, we have ∠τ+τ+
1 + ∠τ−τ−1 ≤ π, which yields f− ≥ f+.

Let q = min{x ∈ [0, λJ ] : f(x) = f(λJ)}. There exists a point t ∈]0, q[ with the
whole graph of f |[0,q] in one of the two closed half-planes with the line through (t, f(t))
of slope (f(q)− f(0))/q as boundary.

If there is such a point t with the graph above the line, then

f−(t) = f+(t) =
f(q)− f(0)

q
> 0.
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In the contrary case, the graph is below the line, and f−(t) ≥ f+(t) > 0 or (t +
ε, f(t + ε)) lies below the line through (t, f(t)) and (q, f(q)) for ε > 0 small enough.
In the latter situation, repeat the argument for f |[t,q] instead of f |[0,q], and we are in the
previous case.

So, in any case we have found a point t satisfying f−(t) ≥ f+(t) > 0, which means
that ∠τ−τ−1 < π/2 and τ+τ+

1 > π/2. The second inequality shows that v is not a critical
point. 2

Theorem 2. On most convex surfaces S, for any x ∈ S and a > 0, the set ρ−1
x (a)∩C(x)

is totally disconnected; consequently, Fx, and even Qx, are totally disconnected too.

Proof. Let S ∈ S, and suppose there exist x ∈ S and a > 0 such that ρ−1
x (a) ∩ C(x)

contains an arc J ′.
Let y1, y2 be two interior points of J ′, and denote by J the subarc of J ′ joining them.

Since each point z ∈ J is a relative minimum for ρx|J′ , we conclude, by Lemma 2, that
z is the midpoint of a loop Λz at x, and no segments connect x to z excepting those
in Λz . Now, denote by ∆ the domain bounded by Λy1 ∪ Λy2 . By Lemma 4, we have
∆ ∩ C(x) ⊂ J , whence no endpoint of S belongs to ∆ \ J , a fact which contradicts
Lemma 5.

By Lemma 7, ρx would be constant on any arc in Qx, and this we just showed to be
impossible. 2

Further, sometimes strange, properties of most convex surfaces are surveyed in [8]
and [22]. (See also [32].) It is, for example, true that on most convex surfaces there are
arbitrarily long geodesics without self-intersections [23] and with huge distance between
consecutive conjugate points [26].

3 The injectivity of Q

The goal of this section is to show that a smooth point cannot be simultaneously critical
with respect to two distinct points.

Lemma 8. On S ∈ A, let σ, σ′ be (possibly coinciding) segments from x to y and D a
component of the complement of σ ∪ σ′ in an open disc around y. Further, suppose no
point of D belongs to any segment from x to y. If the angle between σ, σ′ at y toward D
is larger than π, then y is a strict relative minimum of ρx|C(x)∩D.

This is part of Proposition 2.4 in [18].

Lemma 9. For any S ∈ A and x ∈ S we have Mx ⊂ Qx.

For S ∈ R0, this is essentially Berger’s Lemma (see [2]). For S ∈ S, this is Theo-
rem 2 in [24]. In the general case, it follows from Lemma 8.

Lemma 10. If S ∈ A, x ∈ S, y ∈ Qx and λTy > π, then there are at least two segments
from x to y.
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This useful lemma follows directly from the definition of a critical point.

Theorem 3. If S ∈ A0, x, y ∈ S are distinct, and z ∈ Qx∩Qy , then z is a conical point.
Hence, if S ∈ A0 is smooth then Q is injective; consequently, M and F are injective too.

Proof. Let X , Y be the family of all segments from x, respectively y, to z.
If y lies on a segment in X , then cardY = 1, whence z is conical by Lemma 10. If

not, since any segment in X meets any segment in Y only at z, all segments of Y lie in a
single component D of S \

⋃
σ∈X σ.

Thus, the directions of the segments in X at z are separated in Tz from those of the
segments in Y at z by the points α, β, say. The longer (if equally long, any) arc Γ from α
to β in Tz does not contain the direction τσ at z of any segment σ of precisely one of the
two families, say of X . Then, if z were not conical, the distance in Tz from the midpoint
of Γ to τσ would be larger than π/2 for any σ ∈ X , contradicting z ∈ Qx.

If S has no conical points, then, by Lemma 9,

Fx ∩ Fy ⊂ Mx ∩My ⊂ Qx ∩Qy = ∅

for x 6= y. 2

The preceding result is not extendable to orientable surfaces of higher genus or to
nonorientable surfaces.

On any flat torus not obtainable by identification of the sides of a rectangle, every
point is at diametral distance from other two points. The standard projective plane, too,
has F noninjective in a strong way: for any two points x, y on it, Fx ∩ Fy 6= ∅.

The sets M−1
y containing more than a single point are investigated in [19].

4 About the components of Qx and Mx

We start, once again, with two preparatory lemmas. The first of them complements
Lemma 8.

Lemma 11. On S ∈ A, let σ, σ′ be (possibly coinciding) segments from x to y and D a
component of the complement of σ ∪ σ′ in an open disc around y. If the angle of σ, σ′ at
y toward D is smaller than π, then y is a strict relative maximum of ρx|D.

This is easily proven using again Proposition 2.4 in [18].

Lemma 12. On S ∈ A, let σ, σ′ be segments from x to y and D,D′ the components of
the complement of σ∪σ′ in an open disc around y. If yn ∈ D, y′n ∈ D′, yn → y, y′n → y,
ρx(yn) ≥ ρx(y), and ρx(y′n) ≥ ρx(y), then σ ∪ σ′ is a loop at x, and no segment joins x
to y except for σ, σ′.

This follows from Lemma 11.
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Theorem 4. Consider the surface S ∈ A. For any point x ∈ S, every component of Qx

is a single point or an arc or a closed Jordan curve (the latter possibility being excluded
if S ∈ A0). If the component Q1 of Qx is an arc then Q1, possibly with one or both
endpoints removed, is a component of Mx. Hence Qx \Mx is totally disconnected.

The closure of any component of Mx is a component of Qx. This defines a natural
injection from the family of components of Mx to the family of components of Qx. Con-
sequently, if Q is connected then M is connected too.

Proof. Let the component Q1 of Qx contain more than one point. Since C(x) is a local
tree, Q1 includes an arc A. By Lemma 7, ρx is constant on A. So, intA ⊂ Mx. Since
this is true for any arc in Q1, by Theorem 1, Q1 cannot include a nondegenerate tree, so
it must be an arc or a closed Jordan curve, the latter case being excluded if S ∈ A0.

Let now M1 be a component of Mx. By Lemma 9, M1 ⊂ Qx. If M1 is an arc with
an endpoint e removed, we show that still e ∈ Qx.

Let σ, σ′ be the segments obtained as limits of the pairs of segments (see Lemma 2)
from x to the points yn ∈ M1 when yn → e.

Let O be a small open disc around e, with M1 \O 6= ∅. For n large enough, yn ∈ O
and the domain ∆ from Lemma 4 exists (J joining yn to e). Hence every point u ∈ ∆∩O
lies on some segment from x to a point in M1; therefore ρ(x, u) ≤ ρ(x, e).

The segments σ, σ′ cannot coincide, because arbitrarily close to e there are points
farther than e from x. These points must be in the component of O \ (σ∪σ′) not meeting
∆. By Lemma 12, σ ∪ σ′ is a loop at x, and e ∈ Qx.

Hence M1 ⊂ Qx. To show that M1 is a component of Qx it suffices to exclude the
existence of a second component M2 of Mx with M1 ∩M2 6= ∅.

Suppose such a component M2 exists. Then it is an arc with the endpoint {e} =
M1 ∩M2 removed, while M1 is also an arc with the endpoint e removed. As we already
know, there are precisely two segments from x to e. Since this is also true for any point
z ∈ M1 ∪M2, by Lemma 4,

C(x) ∩ V ⊂ M1 ∪M2 ∪ {e}

for some neighbourhood V of e. Then each point of V lies on some segment from x
to M1 ∪ M2 ∪ {e}. Thus, e ∈ Mx, whence M1 is not a component of Mx, and a
contradiction is obtained. 2

5 Openness of the family S2 of surfaces with disconnected M

The set S2 of all surfaces S ∈ A0 on which there exists a point x with disconnected Mx

has been introduced for S ∈ S by the second author in [29], where it was stated that S2 is
open and shown that on most S ∈ S2 ∩ S there exists a point x for which Mx is infinite.
We prove here that S2 is open in S, as well as in A0.

The set S1 of all surfaces S ∈ A0 on which F is a homeomorphism is not empty,
as S2 ∈ S1. In [20] we showed that, using C2 metrics on both S and A0, S1 has non-
empty interior. We do not know whether, equipped with the Hausdorff–Gromov distance,
S1/isometries is nowhere dense or not. (See Question 1 in Section 9.) Theorem 6 will
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show that S1 and S2 are disjoint. But are they complementary sets? (See Question 4 in
Section 9.)

Lemma 13. Let S ∈ A0, x ∈ S, and P ⊂ C(x) be an arc from y to z. If ρ(x, P ) <
ρ(x, y) and ρ(x, P ) < ρ(x, z), then Mx has at least two closed components M1,M2

separated by a loop Λ at x, such that ρ(x, v) < ρ(x,w) for any pair of points v ∈ Λ,
w ∈ M1 ∪M2.

Proof. Let u ∈ P satisfy ρ(x, P ) = ρ(x, u). By Lemma 2, there is a loop Λ at x with
midpoint u. Let the arc P ∗ ⊂ C(x) be a maximal extension of P with respect to inclusion.
The point u divides P ∗ into two subarcs P1, P2. Let M i be the set of all absolute maxima
of ρ|Pi

(i = 1, 2). Each component of M i is closed. Moreover, since u 6∈ M i, the sets
M1,M2 are separated by Λ. The proof ends with the remark that the components of each
M i are also components of Mx, and we find at least two such components, one in M1

and the other in M2. 2

Lemma 14. Suppose S ∈ A0 has a loop at x ∈ S of length less than 2rx. Then, for some
point x′ ∈ S, Mx′ has at least two closed components M1,M2 separated by a loop Λ at
x′, such that ρ(x′, v) < ρ(x′, w) for any pair of points v ∈ Λ, w ∈ M1 ∪M2.

Proof. Let Λ be the loop of length less than 2rx, with midpoint z. Let D be a component
of S \Λ containing some point v ∈ Fx. There are two consecutive segments σ, σ′ from x
to z in D (i.e., there is no segment from x to z separating intσ from intσ′ in D), with v
between them. Possibly σ∪σ′ = Λ. Then C(z) contains a small arc A ⊂ D starting at x,
bisecting the angle of σ, σ′ at z, and also bisecting the angle of suitably chosen segments
σy, σ′y from any y ∈ A to z, by Lemma 6 (see also Proposition 2.4 in [18]). Then σy → σ
and σ′y → σ′ as y → x (supposing σ, σ′, σ′y, σy in this order around z). Let Dy be the
component of S \ (σy ∪ σ′y) included in D.

For y close enough to x, v ∈ Dy and ρ(y, v) > ρ(y, z). Clearly, the angle of σy, σ′y
at z toward Dy is less than the angle of σ, σ′ at z toward D, which in turn was not larger
than π. Thus, by Lemma 11, z is a strict relative maximum of ρy|Dv

.
Let P ⊂ C(y) be the arc from z to v. Clearly, P ⊂ Dv ∪ {z}. Hence ρ(y, P ) is

smaller than both ρ(y, z), ρ(y, v). Now, the conclusion follows from Lemma 13. 2

Theorem 5. The set S2 is open in A0. The set S2 ∩ S is open in S.

Proof. We show that S2 ∩ S is open in S. Let S ∈ S2 ∩ S. By Theorem 6 in the next
section, S is not loopy, hence, by Lemma 14, for some x ∈ S, Mx has at least two closed
components, say M1,M2, separated by a loop Λ at x. Let

6ε ≤ min
{

ρx(M1)− λΛ
2

, ρx(M2)− λΛ
2

}
and denote by H the Pompeiu–Hausdorff distance in S.

Let
O = {S′ ∈ S : H(S, S′) < ε}.
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Take the points
x = a1, a2, . . . , ak, ak+1 = x ∈ Λ

with ρ(ai, ai+1) ≤ ε (i = 1, . . . , k).
Consider an arbitrary surface S′ ∈ O. We find points

y = b1, b2, . . . , bk, bk+1 = y ∈ S′

with ‖ai− bi‖ < ε. This yields ρ(bi, bi+1) < 3ε. Let σi be a segment from bi to bi+1 and
Σ = ∪k

i+1σi. For any point s ∈ Σ, there is some point ai ∈ Λ such that ‖ai − s‖ < 3ε.
Therefore, on S′,

ρ(y, s) ≤ ‖y − x‖+
λΛ
2

+ ‖ai − s‖ <
λΛ
2

+ 4ε.

For ui ∈ M1 there exists a point vi ∈ S′ satisfying ‖ui − vi‖ < ε (i = 1, 2). For ε small
enough, v1 and v2 are separated by Σ on S′. We have

ρ(y, vi) ≥ ρ(x, ui)− ‖x− y‖ − ‖ui, vi‖ > ρ(M i)− 2ε.

It follows that ρ(y, vi) > ρ(y, s) for any s ∈ Σ and i ∈ {1, 2}. This proves that S′ ∈ S2.
The same argument with the Hausdorff–Gromov metric instead ofH shows that S2 is

open in A0. 2

6 About the connectedness of Q, M, F , and the surjectivity of F

In [29] the second author introduced, for S ∈ S, the antipodal arc Jx, which is the
smallest arc in C(x) including Fx. Let us extend this notion for S ∈ A0, and call the
smallest tree Jx in C(x) including Fx simply the antipode of x.

Lemma 15. Suppose that S ∈ A0, x ∈ S and cardFx ≥ 2. Let z be an extremity of the
antipode Jx, and ε > 0. Then there exist an arc A starting at x and a number k > 0,
such that for any v ∈ A and any u ∈ B(v, kρ(v, x)), we have Fu ⊂ B(z, ε).

The proof of Lemma 15 appears inside the proof of Theorem 5 in [29]. It is given
for the convex case only. However, the same argument entirely applies for any S ∈ A0;
in particular the antipode of x, which is now a tree, should be used at the place of the
antipodal arc.

Theorem 6. For a surface S ∈ A0, the following implications hold.
F is single-valued ⇐⇒ F is continuous =⇒ F is surjective =⇒M is surjective =⇒

S is loopy ⇐⇒ Q is connected ⇐⇒M is connected =⇒ F is connected.

Proof. F is single-valued ⇐⇒ F is continuous.
The upper semicontinuity of arbitrary F becomes, for F single-valued, continuity.

Conversely, suppose F is continuous and there exists x ∈ S such that cardFx > 1.
By Lemma 15, there is a sequence of points xn ∈ S \ {x} convergent to x such that
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the sequence of sets Fxn converges to a single-point set, therefore different from Fx, in
contradiction the the continuity of F in x.

F is continuous =⇒ F is surjective.
Since F is continuous, FS is closed. If F is not surjective, there is a small open disc

D in S \ FS . Clearly, FS\D is included in S \ D. By Brouwer’s fixed point theorem,
F |S\D has a fixed point, which is impossible.

F is surjective =⇒M is surjective.
This follows from Fx ⊂ Mx for any x ∈ S.
M is surjective =⇒ S is loopy.
Suppose S is not loopy, i.e., there is a loop Λ at x ∈ S with midpoint y at distance

less than rx from x. By Lemma 14, for some point x′ ∈ S, Mx′ has at least two closed
components. Let A′ ⊂ C(x′) be the (unique) arc meeting each of the two preceding
components in precisely one point. Let A be the set of all absolute minima of ρ|A′ . The
components of A are points or arcs. Let u be a single-point component of A or, if such
components are missing, an endpoint of a component of A. Then u ∈ Qx′ \Mx′ and, by
Theorem 3, u /∈ MS .

S is loopy =⇒ Q is connected.
Suppose S is loopy, but Qx has besides a component Q0 in Fx a further component

Q1. If y ∈ Q1 is a strict relative maximum of ρx or belongs to Fx, then take z ∈ Q0 and
consider the arc J ⊂ C(x) joining y to z. Then ρx|J has an absolute minimum at a point
u different from y and z, and ρx(u) < rx. By Lemma 2, there is a loop at x through u of
length 2ρx(u), in contradiction to the assumption that S is loopy.

Suppose now that y ∈ Q1 is not a strict relative maximum of ρx and does not belong
to Fx. Moreover, assume there is no loop at x with y as midpoint. Then the maximal
angle at y between consecutive segments (if there are any consecutive segments) from x
to y is less than π. By Lemma 11, y is a strict relative maximum of ρx, and we reached a
contradiction. Hence there is a loop at x with midpoint y; moreover its length is less than
rx. Hence S is not loopy, and a contradiction is obtained again.

Q is connected =⇒M is connected.
This is part of Theorem 4.
M is connected =⇒ S is loopy.
This follows from Lemma 14.
M is connected =⇒ F is connected.
Indeed, for any x ∈ S, ρx being constant on each component of Mx, it is constant on

Mx; since Fx ⊂ Mx, the constant is rx, whence Mx = Fx. 2

Theorem 7. Let S belong to A0. If Fx is totally disconnected for each x ∈ S, then all
implications in Theorem 6 are valid in both directions.

This is in particular true for polyhedral convex surfaces and for most convex surfaces.

Proof. Indeed, by Theorem 1, for any surface S ∈ A0 and any point x ∈ S, if Fx is
connected, then it is either a point or an arc. Since the second possibility is excluded, Fx

contains a single point. On most convex surfaces, there is no point x with an arc in Fx,
by Theorem 2.
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For a polyhedral convex surface P , one can easily see that, for any point x in P , the
only points in Fx which are joined to x by precisely two segments are among the vertices
of P (see also [31]). If Fx contained an arc then, by Lemma 2, all points interior to that
arc would be joined to x by precisely two segments, too many points to be among the
vertices of P . 2

Remark. The set of all surfaces S ∈ S with F surjective is closed in S.

Since a geodesic arriving at an endpoint cannot go beyond it, the endpoint is a kind
of “farthest point” on that geodesic. This may suggest that endpoints of S ∈ S might
always lie in Fx for some point x ∈ S. However, this is deeply false, as every surface
S ∈ S2 ∩ S has, by Theorem 6, an open set O disjoint from FS , while, for most surfaces
in S, O contains lots of endpoints, by Lemma 5.

7 Sufficient conditions for a surface to belong to S2

We shall make use of a hinge variant of Toponogov’s well-known comparison theorem
(see, for example, [6]), which will now be recalled. Let MH be the simply connected
2-dimensional space of constant curvature H .

Lemma 16. Let M be a complete manifold with sectional curvature K ≤ H , and let
(γ1, γ2, γ3) be a geodesic triangle in M . If H > 0, suppose λγi ≤ π/

√
H (i = 1, 2).

Then there exists in MH a geodesic triangle (γ1, γ2, γ3) such that λγi = λγi (i =
1, 2), ∠γ1γ2 = ∠γ1γ2, and λγ3 ≥ λγ3.

Theorem 8. Suppose the surface S ∈ A0 is of class C2 in a neighbourhood of a loop Λ
of length l. If S has Gauß curvature K < π2/l2 along Λ, then S ∈ S2. In particular, this
is true if K is nonpositive along Λ.

Proof. Choose x, y ∈ S so that Λ is a loop at x with midpoint y. Using the continuity of
K, we find a neighbourhood V ⊂ S of Λ and a number k < π2/l2 such that K < k in V .

Let yz ∈ V be a segment orthogonal to Λ at y. Let x̄, ȳ, z̄ be points on the sphere
Mk of curvature k, such that ρ0(x̄, ȳ) = π/(2

√
k), ρ0(ȳ, z̄) = ρ(y, z) and ∠x̄ȳz̄ = π/2;

here, ρ0 is the standard metric of Mk. It follows that ȳ belongs to the equator farthest
from x̄, whence ρ0(x̄, z̄) = ρ0(x̄, ȳ). By Lemma 16, we have

ρ(x, z) ≥ ρ0(x̄, z̄) =
π

2
√

k
>

l

2
= ρ(x, y).

Hence y /∈ Fx and S is not loopy. By Theorem 6, S ∈ S2. 2

The above estimate is sharp, as it is shown by the example of an ellipsoid E with half-
axes a, b, c satisfying a = b and c = 2a, whose curvature along the equator of length l
equals 1/c2 = π2/l2. Indeed, we proved in [20] that the mapping F is a homeomorphism
on the ellipsoids for which a = b < c < 2a. Since the set of convex surfaces with
surjective F is closed, F must be surjective on E too. By Theorem 6, E /∈ S2. But
E ∈ bdS2, as follows from the next few lines.
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Examples. Theorem 8 provides compact surfaces of revolution in S2, for example those
with Gauß curvature K < 1/(4r2) along an equator Λ of radius r. Among them we find
the ellipsoids with semi-axes a, b, c verifying a = b and c > 2a.

We can also apply Theorem 8 to boundaries of rectangular boxes and to doubly cov-
ered polygons, all of which admit a loop Λ with a neighbourhood isometric to an open
subset of a cylinder or a cone.

Remark. One can, of course, formulate Theorem 8 in terms of an upper bound to the
curvature, in the sense of Alexandrov, in addition to the lower bound that our surfaces
have by definition. But the goal being to give an easy-to-apply criterion, we chose to use
Gauß curvature.

Theorem 9. If on S ∈ A there exists a point y ∈ S such that λTy < π, then S ∈ S2.

Proof. By Lemma 11, y is a strict relative maximum of ρx for any point x ∈ S \ {y}.
Choosing x close enough to y guarantees that y /∈ Fx, whence Mx does not consist of the
isolated point y alone, and is therefore disconnected. 2

Theorem 10. If S ∈ A0 and radS = diam S/2 then S ∈ S2, except for the case of a
surface S with precisely two conical points y, z where λTy = λTz = π, and with a closed
geodesic Λ so that λΛ = diam S, FΛ = S, and, for each point x ∈ Λ, rx = rad S and
Fx is an arc from y to z.

Proof. Suppose S 6∈ S2, i.e., for each point x ∈ S, Mx is connected and, since Fx ⊂ Mx

and ρx is constant on Mx, Fx = Mx.
Let x, y, z ∈ S satisfy rx = radS and ρ(y, z) = diam S. Then

diam S = 2rx ≥ ρ(x, y) + ρ(x, z) ≥ ρ(y, z) = diam S,

whence y, z ∈ Fx and x belongs to a segment Γyz from y to z. Thus, {y, z} ⊂ C(x)\Cx,
whence λTy and λTz are, by Lemma 9, not larger than π.

By Theorem 1, Fx is an arc. The points y and z belong to Fx and are joined to x by
unique segments. Since each point v interior to Fx is a relative minimum for ρx|Fx

and
hence is the mid-point of a loop Λv at x by Lemma 2, y and z must be the endpoints of
the arc Fx.

Now put ∆ = S \ Γyz and apply Lemma 4. We obtain ∆ =
⋃

v∈int Fx
Λv , so S has

no conical points, except for y, z.
Consider now the set E(y, z) of all points in S at equal distance from y and z. Each

arc from y to z meets E(y, z).
For an arbitrary point w ∈ E(y, z) \ {x}, denote by Λw the loop at x through w; so

Λw separates y from z. Since y, z are points of the tree C(w), there exists a unique arc
Jw ⊂ C(w) joining them. Consider a point w′ ∈ Jw ∩ Λw. Then

ρ(w,w′) ≤ λΛw/2 = radS.

We also have
2 rad S = ρ(y, z) ≤ ρ(w, y) + ρ(w, z) = 2ρ(w, y),
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so we obtain ρ(w,w′) ≤ ρ(w, y). If ρ(w,w′) < ρ(w, y) = ρ(w, z) then, by Lemma 13,
S ∈ S2, which, as we assumed, is not the case. Thus,

ρ(w,w′) = λΛw/2 = radS = ρ(w, y) = ρ(w, z).

From
ρ(y, z) = diam S = ρ(w, y) + ρ(w, z),

we obtain that w is the mid-point of a segment from y to z, and the segments joining w to
y and z are unique. Since Mw is connected, we have Mw = Fw, and since y, z ∈ Fw, we
get, as before, Fw = Jw.

Assume now w /∈ Fx. The equality ρ(w,w′) = λΛw/2 implies that Λw is a closed
geodesic, consequently its directions at x make an angle of π.

Suppose there exists a point w∗ ∈ E(y, z) \ (Fx ∪ Λw). The above arguments show
that Λw∗ is a closed geodesic. Then Λw ∩ Λw∗ = {x} implies that the directions of Λw∗

at x do not separate in Tx those of Λw and are different from them, so their angle is less
than π, and a contradiction is obtained. Hence

E(y, z) ⊂ Fx ∪ Λw.

To show that Λw ⊂ E(y, z), let x′ ∈ Λw be chosen arbitrarily. Choose an arc A
joining y to z, disjoint from (Fx ∪ Λw) \ {x′, y, z}. This arc obviously meets E(y, z) in
a point different from y and z. Due to the preceding inclusion, the point must be x′. We
saw that u ∈ E(y, z) yields

ru = radS = ρ(u, y) = ρ(u, z).

So, if u /∈ Λw, it is separated from y or z by Λw, say from y. Then any segment from
u to y meets Λw at a point at distance radS from y, whence ρ(u, y) > radS, and a
contradiction is obtained.

Put Λ = E(y, z). Finally, we have to prove that FΛ = S. To see this, notice first that,
by Lemma 4, C(w) = Fw for all points w ∈ Λ. Let now v ∈ S \ {y, z}. Since y, z are
conical, they belong to C(v). The arc J ⊂ C(v) joining y to z clearly meets Λ, say at v′.
Then v ∈ C(v′) = Fv′ , by the preceding remark. And, obviously, y, z ∈ FΛ, too. 2

The actual existence of an exceptional surface as described in Theorem 10 is illus-
trated by the example considered in the next section.

8 Farthest points on a Tannery surface

We investigate here the special case of a Tannery surface, particularly interesting for our
purposes.

A Riemannian surface (S, g) is called a Pl-surface if all of its geodesics are periodic
with least common period l ([3], p. 182). A Pl-surface of revolution (i.e., having S1 as an
effective isometry group) is called a Tannery surface (see [3], pp. 95 and 102).
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On the unit sphere S2, let n and s be the North and South poles, and consider a point
x ∈ S2 \{n, s}. Denote by Gx the great circle through n and x, and let 2r be the distance
from n to x (realized on Gx) and θ the angle made by the plane of Gx with a fixed plane
through n and s.

Consider, for the set U = S2 \ {n, s}, the parametrization (r, θ) described before,
with r ∈]0, π/2[, θ ∈ [0, 2π[, and endow U with the metric g = 4dr2 + sin2 rdθ. By
Proposition 4.6 in [3] p. 96, the metric g extends (only) to a C0 metric on S2.

We obtain, from considerations in [3] and an application of Theorem 10, the following
about (S2, g).

Theorem 11. a) (S2, g) is a Tannery surface (with parameters p = 2, q = 1).
b) (S2, g) may be isometrically embedded in the Euclidean space R3 as a convex surface

of revolution (S, ρ), whose half-meridian (joining the images of the poles through the

isometry, denoted again by n and s) is described by c(R) = ±
∫ 1

R

√
4

1−u2 − 1 du,
where R = sin r.

c) Except for the subsegments of half-meridians, every geodesic extends to a closed geo-
desic of S. Apart from the equator E, which has length 2π, every closed geodesic
Γ consists of 2q = 2 arcs between two consecutive points of tangent contact with the
parallels; Γ has length 4qπ = 4π and turns p = 2 times. The length of a half-meridian
is 2π.

d) diam S = 2 radS. For each point x ∈ E, Fx is the half-meridian opposed to x.
e) λTn = λTs = π, FE = S, and S /∈ S2.

Proof. a) and c) follow from Theorems 4.11 (p. 100) and 4.13 (p. 102) in [3], applied to
the particular metric g.

Concerning b), the isometric embedding of (S2, g) in R3 is a consequence of Propo-
sitions 4.18 (p. 105) and 4.20 (p. 107) (in our case h ≡ 0), while the convexity of the
surface follows from Proposition 4.23 and Remark 4.21 (pp. 108–109), all from [3].

We prove now d). The symmetry of S and p = 2 imply that each closed geodesic Γ
has precisely one self-intersection point xΓ, which must lie on E, and two points zΓ, z′Γ
on the half-meridian opposite to xΓ, at which Γ and the half-meridian are orthogonal.

Let x ∈ E, y ∈ Fx, and σ be a segment from x to y. Then the closed geodesic Γ
including σ has xΓ = x and y on one of the four arcs joining x to zΓ, z′Γ, each of length π.
Hence y equals zΓ or z′Γ and ρ(x, y) = π. By choosing x ∈ E and y in the half-meridian
Hx opposite to x, the same argument shows that y ∈ Fx, so Fx = Hx.

Since ρ(n, s) = 2π by c), and any segment not included in a meridian extends to a
closed geodesic and has therefore length at most 2π, we have indeed diam S = 2 radS.

To prove e), first note that FE =
⋃

x∈E Hx = S. If x ∈ E, then Mx = Hx. Clearly,
Mn = {s} and Ms = {n}. If x /∈ E ∪ {n, s}, then C(x) = Hx. For any point y ∈ Hx,
there are precisely two closed geodesics passing through x and y, and they have of course
different directions at y. Therefore, by Lemmas 8 and 11, ρx is strictly monotone on
Hx \ {n, s}. It follows that Mx equals {n} or {s}. Hence S /∈ S2.

Finally, λTn = λTs = π follows from Theorem 10, because every point but n and s
is interior to a geodesic and therefore not conical. 2
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Our Tannery surface has F surjective and properly multi-valued; thus, the converse of
the second implication in Theorem 6 is not true.

9 Nine open questions

We restrict our open questions to the perhaps easier but certainly important convex case,
but most of them make sense in A0 or even A. Let us start with the problem mentioned
already in the Abstract.

Question 1. Is S2 dense in S?
The case of the regular tetrahedron shows that FS can be connected even if S ∈ S2,

as J. Rouyer proved in [12]. In most of our examples, however, the set FS is disconnected
as soon as F is not surjective.

Question 2. For which convex polyhedral surfaces S is FS connected?

Question 3. Consider a surface S ∈ S such that FS 6= S. Do there always exist points
y ∈ bd FS and x ∈ F−1

y such that cardFx ≥ 2?
It is natural to ask whether {S1,S2} forms a partition of A0. This reduces to the

following problem.

Question 4. Do convex surfaces with F single-valued and noninjective exist?
Several possible implications between statements in Theorem 6 are neither proved nor

disproved, so far.

Question 5. Does connectedness of F imply connectedness of M?

Question 6. Does surjectivity of M imply surjectivity of F ?
Of course, surjectivity of M implies surjectivity of Q. But what is the relationship

between the surjectivity of Q and the loopiness of S?

Question 7. Does surjectivity of Q imply loopiness of S? Or vice-versa?
J. Rouyer proved that all tetrahedra in R3 belong to S2 (see [12], [15]).

Question 8. Which convex polyhedral surfaces do not belong to S2?
We believe that there are no surfaces different from the Tannery surface described in

Section 8 playing the exceptional role in Theorem 10. However this is not proven yet.

Question 9. Is the Tannery surface from the preceding section the unique exception in
Theorem 10?
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