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Sector 1, România
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In this paper we study the existence of radial solutions for Neumann problems in a ball and in an annular
domain, associated to mean curvature operators in Euclidean and Minkowski spaces. Our approach relies on
the Leray-Schauder degree together with some fixed point reformulations of our nonlinear Neumann boundary
value problems.
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1 Introduction

The study of hypersurfaces in the Lorentz-Minkowski space with coordinates (x1, . . . , xN , t) and the metric∑N
j=1(dxj)2 − (dt)2 leads to partial differential equations (PDE) of the type

div

(
∇v(x)√

1 − |∇v(x)|2

)
= H(x, v(x)) in Ω,

where Ω is a domain in R
N and H : Ω × R → R is a nonlinearity prescribing the mean curvature of the

hypersurface. A first essential result concerning the above PDE was proved by E. Calabi [7] in the case Ω = R
N

and N ≤ 4. This was later extended to arbitrary dimension by S. Y. Cheng and S. T. Yau in [8]. On the other
hand, if H ≡ c > 0 and Ω = R

N , then A. Treibergs [21] obtained an existence result about entire solutions for
the above PDE in the presence of a pair of well ordered upper and lower-solutions, and the Dirichlet problem
with H bounded has been considered by Bartnik and Simon [2].

In the paper [3] we studied the existence of radial solutions for nonlinear Dirichlet problems in the unit ball
and in an annular domain from R

N , associated with the mean curvature operator in Euclidean space

Ev = div

(
∇v√

1 + |∇v|2

)
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380 Bereanu, Jebelean, and Mawhin: Radial solutions for mean curvature operators

and with the mean extrinsic curvature operator in Minkowski space

Mv = div

(
∇v√

1 − |∇v|2

)
.

Here | · | stands for the Euclidean norm in R
N . The results from [3] were extended to the case of systems in [4].

The approach in [3] and [4] relies on Schauder fixed point theorem.

The aim of this paper is to present existence results of radial solutions for Neumann problems in a ball and in
an annular domain, associated with the operators E and M. To formulate these problems, let R1, R2 ∈ R, 0 ≤
R1 < R2 and let us denote by A the annular domain {x ∈ R

N : R1 ≤ |x| ≤ R2}. For f : [R1, R2] × R
2 → R a

given continuous function, we consider the following Neumann boundary-value problems:

Mv = f

(
|x|, v, dv

dr

)
in A, ∂v

∂ν
= 0 on ∂A (1.1)

and

Ev = f

(
|x|, v, dv

dr

)
in A, ∂v

∂ν
= 0 on ∂A. (1.2)

As usual, we have denoted by dv
dr the radial derivative and by ∂v

∂ν the outward normal derivative of v. It should be
noticed that for R1 = 0 one has Neumann problems in the ball of radius R2.

Setting r = |x| and v(x) = u(r), the above problems (1.1) and (1.2) become(
rN−1 u′√

1 − |u′|2

)′
= rN−1f(r, u, u′), u′(R1) = 0 = u′(R2), (1.3)

respectively,(
rN−1 u′√

1 + |u′|2

)′
= rN−1f(r, u, u′), u′(R1) = 0 = u′(R2). (1.4)

Clearly, the solutions of (1.3) and (1.4) are classical radial solutions of (1.1), respectively (1.2).

Our approach for problem (1.3) relies upon a Leray-Schauder type continuation theorem, that we recall here
for the convenience of the reader (see e.g. [16] and references therein). Let (X, ‖ · ‖) be a real normed space,
Ω be a bounded open subset of X and S : Ω → X be a compact operator such that 0 /∈ (I − S)(∂Ω). The
Leray-Schauder degree of I − S with respect to Ω and 0 is denoted by dLS [I − S,Ω, 0] (see e.g. [11]). We set
Bρ = {x ∈ X : ‖x‖ < ρ}.

Lemma 1.1 Let S : R ×Bρ → X be a compact operator such that

x �= S(λ, x) for all (λ, x) ∈ R × ∂Bρ

and such that

dLS [I − S(λ0, ·), Bρ, 0] �= 0 for some λ0 ∈ R.

Then the set S of solutions (λ, x) ∈ R ×Bρ of the problem

x = S(λ, x)

contains a continuum (closed and connected) C whose projection on R is R.

The existence result obtained for (1.3) is then employed, via a cutting method, to derive the existence of
solutions for problem (1.4). In particular, we extend the method of (not necessarily ordered) lower and upper
solutions to problem of the type (1.3), and give some applications and several examples. In the last section we
deal with pendulum-like nonlinearities.

For interesting results concerning radial solutions for Dirichlet boundary value problems associated to some
nonlinear perturbations of the operators E and p-Laplacian we refer the reader to [9, 12–14]. The Neumann
problem associated to some nonlinear perturbations of the p-Laplacian is considered for example in papers [19,
22].
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2 A class of Neumann boundary-value problems

Consider the Neumann boundary-value problem (BVP)(
rN−1φ(u′)

)′ = rN−1f(r, u, u′), u′(R1) = 0 = u′(R2), (2.1)

where φ is a homeomorphism such that φ(0) = 0, belonging to one of the following classes (0 < a <∞):

φ : (−a, a) −→ R (singular),
φ : R −→ R (classical),
φ : R −→ (−a, a) (bounded),

and f : [R1, R2]×R
2 → R is continuous. By a solution of (2.1) we mean a continuously differentiable function

u such that u′ ∈ dom(φ), φ(u′) is differentiable and (2.1) is satisfied.

We denote by C the Banach space of continuous functions defined on [R1, R2] endowed with the usual norm
|| · ||∞, by C1 the Banach space of continuously differentiable functions defined on [R1, R2] endowed with the
norm

||u|| = ||u||∞ + ||u′||∞,

and by C1
† the closed subspace of C1 defined by

C1
† = {u ∈ C1 : u′(R1) = 0 = u′(R2)}.

The corresponding open ball with center in 0 and radius ρ is denoted by Bρ. For any continuous function
w : [R1, R2] → R, we write

wL := min
[R1,R2]

w, wM := max
[R1,R2]

w.

Let us introduce the continuous projector

Q : C −→ C, Qu =
N

RN
2 −RN

1

∫ R2

R1

rN−1u(r) dr,

the continuous function

γ : (0,∞) −→ R, γ(r) =
1

rN−1
,

and the linear operators

L : C −→ C, Lu(r) = γ(r)
∫ r

R1

tN−1u(t) dt (r ∈ (R1, R2]),

H : C −→ C1, Hu(r) =
∫ r

R1

u(t) dt (r ∈ [R1, R2]).

It is not difficult to prove that L is compact (Arzelà-Ascoli) and H is bounded. Finally, we associate to f its
Nemytskii operator

Nf : C1 −→ C, Nf (u) = f(·, u(·), u′(·)).

It is known that Nf is continuous and takes bounded sets into bounded sets.

Let us decompose any function u ∈ C1
† in the form

u = u+ ũ (u = u(R1), ũ(R1) = 0),

and let

C̃1
† = {u ∈ C1

† : u(R1) = 0}.

We first study an associated modified problem.

www.mn-journal.com c© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Lemma 2.1 If φ is singular, the set S of the solutions (u, ũ) ∈ R × C̃1
† of problem(

rN−1φ(ũ′)
)′ = rN−1[Nf (u+ ũ) −Q ◦Nf(u + ũ)] (2.2)

contains a continuum C whose projection on R is R and whose projection on C̃1
† is contained in the ball Bρ(a)

where ρ(a) = a(1 +R2 −R1).

P r o o f. Consider the nonlinear operator

M̃ : R × C̃1
† −→ C̃1

† , M̃(u, ũ) = [H ◦ φ−1 ◦ L ◦ (I −Q) ◦Nf ](u+ ũ).

Let (u, ũ) ∈ R × C̃1
† and ṽ = M̃(u, ũ). It follows that ṽ ∈ C1, ṽ(R1) = 0, ||ṽ′||∞ < a and

φ(ṽ′(r)) = γ(r)
∫ r

R1

tN−1[Nf (u+ ũ)(t) −QNf(u+ ũ)] dt (r ∈ (R1, R2]). (2.3)

Moreover φ(ṽ′(R1)) = 0 and

φ(ṽ′(R2)) = γ(R2)
∫ R2

R1

tN−1[Nf(u + ũ)(t) −QNf(u+ ũ)] dt

= γ(R2)

[∫ R2

R1

tN−1Nf (u+ ũ)(t) dt−QNf(u + ũ)
∫ R2

R1

tN−1 dt

]
= 0.

Hence, M̃ is well defined and it is clear that M̃ is compact. Now, using (2.3) we infer that (u, ũ) ∈ R × C̃1
† is a

solution of (2.2) if and only if

ũ = M̃(u, ũ). (2.4)

So, it suffices to prove that the set of solution of the above problem contains a continuum of solutions whose
projection on R is R and whose projection on C̃1

† is contained in the ball Bρ(a). Note that if (u, ũ) ∈ R × C̃1
†

satisfies (2.4), then

||ũ′||∞ < a, ||ũ||∞ < a(R2 − R1).

We deduce that

ũ �= M̃(u, ũ) for all (u, ũ) ∈ R × ∂Bρ(a). (2.5)

Consider the compact homotopy

M̃ : [0, 1]× C̃1
† −→ C̃1

† , M̃(λ, ũ) =
[
H ◦ φ−1 ◦ λL ◦ (I −Q) ◦Nf

]
(ũ).

Note that

M̃(0, ·) = 0, M̃(1, ·) = M̃(0, ·).

It is clear that

ũ �= M̃(λ, ũ) for all (λ, ũ) ∈ [0, 1]× ∂Bρ(a).

Hence from the invariance under a homotopy of the Leray-Schauder degree [11] we deduce that

dLS

[
I − M̃(0, ·), Bρ(a), 0

]
= dLS

[
I, Bρ(a), 0

]
= 1. (2.6)

The result follows now from Lemma 1.1, (2.5) and (2.6).
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Remark 2.2 Assume that φ is classical or singular and let us consider the nonlinear operator

N : C1
† −→ C1

† , N = P +QNf +H ◦ φ−1 ◦ L ◦ (I −Q) ◦Nf ,

where P : C → C is the continuous projector defined by Pu = u(R1). Using the same strategy as above, it is
not difficult to prove that N is well defined, compact and for any u ∈ C1

† one has that u is a solution of (2.1) iff
u is a fixed point of N .

In the singular case we have the following existence result.

Theorem 2.3 Assume that φ is singular and there exist ε ∈ {−1, 1} and ρ > 0 such that

ε (sgn u)QNf(u) ≥ 0 (2.7)

for any u ∈ C1
† satisfying |u|L ≥ ρ and ||u′||∞ < a. Then the BVP (2.1) has at least one solution.

P r o o f. Let C be the continuum given in Lemma 2.1 and ũ1 ∈ C̃1
† be such that (ρ + ρ(a), ũ1) ∈ C. Taking

u1 = ρ + ρ(a) + ũ1, one has that u1 ≥ 0, |u1|L > ρ and ||u′1||∞ < a. Hence, from (2.7) it follows that
εQNf (u1) ≥ 0.On the other hand, let ũ2 ∈ C̃1

† be such that (−ρ− ρ(a), ũ2) ∈ C. Taking u2 = −ρ− ρ(a)+ ũ2,

one has that u2 ≤ 0, |u2|L > ρ and ||u′2||∞ < a. Hence, from (2.7) it follows that εQNf (u2) ≤ 0. Using the
intermediate value theorem, we infer that there exists (u, ũ) ∈ C such that QNf(u + ũ) = 0. This implies that
u = u+ ũ is a solution of (2.1).

The following very useful result is a direct consequence of the above theorem.

Corollary 2.4 Assume that φ is singular and let h : [R1, R2] × R
2 → R and g : [R1, R2] × R → R be

continuous, with h bounded on [R1, R2] × R × (−a, a), and g such that

lim
u→−∞ g(r, u) = +∞, lim

u→+∞ g(r, u) = −∞(
resp. lim

u→−∞ g(r, u) = −∞, lim
u→+∞ g(r, u) = +∞

) (2.8)

uniformly in r ∈ [R1, R2]. Then the BVP(
rN−1φ(u′)

)′ + rN−1g(r, u) = rN−1h(r, u, u′), u′(R1) = 0 = u′(R2)

has at least one solution.
In particular, the problem(

rN−1φ(u′)
)′ + μrN−1u = rN−1h(r, u, u′), u′(R1) = 0 = u′(R2)

has at least one solution for each μ �= 0.

We now consider the bounded and classical cases.

Lemma 2.5 Let ψ : (−a, a) → (−b, b) be a homeomorphism such that ψ(0) = 0 and 0 < a, b ≤ ∞. Assume
that there exists a constant k ≥ 0 such that kR2

N < b and

|f(r, u, v)| ≤ k for all (r, u, v) ∈ [R1, R2] × R
2. (2.9)

If u is a possible solution of the Neumann BVP(
rN−1ψ(u′)

)′ = rN−1f(r, u, u′), u′(R1) = 0 = u′(R2), (2.10)

then

||u′||∞ ≤ max(|ψ−1(±kR2/N)|) =: ρ1(ψ). (2.11)

www.mn-journal.com c© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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P r o o f. If u ∈ C1
† solves (2.10) then

u′(r) = ψ−1

(
γ(r)

∫ r

R1

tN−1f(t, u(t), u′(t)) dt
)

(r ∈ (R1, R2]). (2.12)

Using (2.9) we get∣∣∣∣γ(r)
∫ r

R1

tN−1f(t, u(t), u′(t)) dt
∣∣∣∣ ≤ kR2

N
(r ∈ (R1, R2]),

which, together with (2.12), gives (2.11).

Theorem 2.6 Let φ : R → (−b, b) be a homeomorphism such that φ(0) = 0 with 0 < b ≤ ∞ and let f be
like in Lemma 2.5. Assume that there exist a ∈ (ρ1(φ),∞), ε ∈ {−1, 1} and ρ > 0 such that (2.7) holds for any
u ∈ C1

† satisfying |u|L ≥ ρ and ||u′||∞ < a. Then the BVP (2.1) has at least one solution.

P r o o f. Let d ∈ (ρ1(φ), a) and ψ : (−a, a) → R be a homeomorphism which coincides with φ on [−d, d].
Then, ρ1(φ) = ρ1(ψ) and using Lemma 2.5 one has that the solutions of (2.10) coincide with the solutions of
(2.1). Now the result follows from Theorem 2.3.

Lemma 2.7 Let R1 > 0 and ψ : (−a, a) → (−b, b) be a homeomorphism such that ψ(0) = 0 and 0 < a, b ≤
∞. Assume that there exists c ∈ C such that 2R1−N

1 ||c−/γ||L1 < b and

f(r, u, v) ≥ c(r), for all (r, u, v) ∈ [R1, R2] × R
2. (2.13)

If u is a possible solution of the Neumann BVP (2.10) then

||u′||∞ ≤ max
( ∣∣ψ−1

(
± 2R1−N

1 ||c−/γ||L1

)∣∣ ) =: ρ2(ψ). (2.14)

P r o o f. First of all, let us note that

∣∣rN−1f(r, u, v)
∣∣ ≤ rN−1f(r, u, v) + 2

c−(r)
γ(r)

(2.15)

for all (r, u, v) ∈ [R1, R2] × R
2. If u solves (2.10) then

QNf(u) = 0. (2.16)

From (2.15) and (2.16) we get∫ R2

R1

∣∣rN−1f(r, u(r), u′(r))
∣∣ dr ≤ 2||c−/γ||L1. (2.17)

Now the result follows from (2.12) and (2.17).

Theorem 2.8 Let R1 > 0 and φ : R → (−b, b) be a homeomorphism such that φ(0) = 0 with 0 < b ≤ ∞
and f be like in Lemma 2.7. Assume that there exist a ∈ (ρ2(φ),∞), ε ∈ {−1, 1} and ρ > 0 such that (2.7)
holds for any u ∈ C1

† satisfying |u|L ≥ ρ and ||u′||∞ < a. Then the BVP (2.1) has at least one solution.

P r o o f. See the proof of Theorem 2.6.

Remark 2.9 In the particular caseN = 1, Theorem 2.3 was proved in [17] (see also [6] for the periodic case),
while Theorems 2.6 and 2.8 were obtained in [5].
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3 Existence of radial solutions

The results of the previous section can be used to derive the existence of radial solutions for the Neumann
problems (1.1) and (1.2).

Theorem 3.1 Assume that there exist ε ∈ {−1, 1} and ρ > 0 such that

ε(sgn u)
∫ R2

R1

rN−1f(r, u(r), u′(r)) dr ≥ 0 (3.1)

for all u ∈ C1
† such that |u|L ≥ ρ and ‖u′‖∞ < 1. Then problem (1.1) has at least one classical radial solution.

P r o o f. Theorem 2.3 applies with

φ : (−1, 1) −→ R, φ(y) =
y√

1 − y2
. (3.2)

Corollary 3.2 Let h : [R1, R2] × R
2 → R and g : [R1, R2] × R → R be continuous, with h bounded on

[R1, R2] × R × (−1, 1), and g such that condition (2.8) holds. Then the Neumann BVP

Mv + g(|x|, v) = h

(
|x|, v, dv

dr

)
in A, ∂v

∂ν
= 0 on ∂A

has at least one radial solution.

Example 3.3 For any p > 1 and any l ∈ C, the Neumann problems

Mv ± |v|p−1v = l(|x|) in A, ∂v

∂ν
= 0 on ∂A

have at least one radial solution.

As another example of application, let us consider the Neumann problem

Mv + g(v) = l(|x|) in A, ∂v

∂ν
= 0 on ∂A, (3.3)

where g : R → R is continuous and l ∈ C. It is not difficult to check that Theorem 3.1 with f(r, u, u′) =
l(r) − g(u) yields the following Landesman-Lazer-type existence condition.

Corollary 3.4 If either

lim sup
v→−∞

g(v) <
N

RN
2 −RN

1

∫ R2

R1

rN−1l(r) dr < lim inf
v→+∞ g(v)

or

lim sup
v→+∞

g(v) <
N

RN
2 −RN

1

∫ R2

R1

rN−1l(r) dr < lim inf
v→−∞ g(v),

then problem (3.3) has at least one classical radial solution.

Example 3.5 The Neumann problem

Mv + arctan v + sin v = l(|x|) in A, ∂v

∂ν
= 0 on ∂A

has a radial solution if l ∈ C is such that

1 − π

2
<

N

RN
2 −RN

1

∫ R2

R1

rN−1l(r) dr <
π

2
− 1.

Let φ be defined by (3.2). For a constant q ∈ [0, 1), we set

ρ̃(q) := φ(q).
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Theorem 3.6 Assume that there is some k ≥ 0 such that kR2 < N and (2.9) holds true. If there exist
constants a > ρ̃(kR2/N), ε ∈ {−1, 1} and ρ > 0 such that the sign conditions (3.1) are fulfilled for all u ∈ C1

†
such that |u|L ≥ ρ and ‖u′‖∞ < a, then problem (1.2) has at least one classical radial solution.

P r o o f. Theorem 2.6 applies with φ : R → (−1, 1), φ(y) = y√
1+y2

.

Theorem 3.7 Let R1 > 0 and assume that there is some c ∈ C such that k := 2R1−N
1 ||c−/γ||L1 < 1 and

(2.13) holds true. If there exist constants a > ρ̃(k), ε ∈ {−1, 1} and ρ > 0 such that the sign conditions (3.1) are
fulfilled for all u ∈ C1

† such that |u|L ≥ ρ and ‖u′‖∞ < a, then problem (1.2) has at least one classical radial
solution.

P r o o f. It follows from Theorem 2.8.

Remark 3.8 It is worth to point out that Theorems 2.6 and 2.8 also can be employed to derive existence results
of radial solutions for Neumann problems in an annular domain, associated to p-Laplacian operator.

4 Upper and lower solutions in the singular case

In this section, we extend the method of upper and lower solutions (see e.g. [10]) to the Neumann boundary value
problem (2.1).

Definition 4.1 A lower solution α (resp. upper solution β ) of (2.1) is a functionα ∈ C1 such that ‖α′‖∞ < a,
rN−1φ(α′) ∈ C1, α′(R1) ≥ 0 ≥ α′(R2)

(
resp. β ∈ C1, ‖β′‖∞ < a, rN−1φ(β′) ∈ C1, β′(R1) ≤ 0 ≤

β′(R2)
)

and (
rN−1φ(α′(r))

)′ ≥ rN−1f(r, α(r), α′(r))(
resp.

(
rN−1φ(β′(r))

)′ ≤ rN−1f(r, β(r), β′(r))
) (4.1)

for all r ∈ [R1, R2].
Below we shall invoke the hypothesis:

(H) R1 > 0 and φ : (−a, a) → R is an increasing homeomorphism such that φ(0) = 0 with 0 < a <∞.

Theorem 4.2 Assume that (H) holds true. If (2.1) has a lower solution α and a upper solution β such that
α(r) ≤ β(r) for all r ∈ [R1, R2], then problem (2.1) has a solution u such that α(r) ≤ u(r) ≤ β(r) for all
r ∈ [R1, R2].

P r o o f. Let γ : [R1, R2] × R → R be the continuous function defined by

γ(r, u) =

⎧⎪⎨⎪⎩
β(r) if u > β(r),
u if α(r) ≤ u ≤ β(r),
α(r) if u < α(r),

and define F : [R1, R2] × R
2 → R by F (r, u, v) = f(r, γ(r, u), v). We consider the modified problem(

rN−1φ(u′)
)′ = rN−1(F (r, u, u′) + u− γ(r, u)), u′(R1) = 0 = u′(R2) (4.2)

and first show that if u is a solution of (4.2) then α(r) ≤ u(r) ≤ β(r) for all r ∈ [R1, R2], so that u is a solution
of (2.1). Suppose by contradiction that there is some r0 ∈ [R1, R2] such that [α − u]M = α(r0) − u(r0) > 0.
If r0 ∈ (R1, R2) then α′(r0) = u′(r0) and there are sequences (rk) in [r0 − ε, r0) and (r′k) in (r0, t0 + ε]
converging to r0 such that α′(rk)−u′(rk) ≥ 0 and α′(r′k)−u′(r′k) ≤ 0. As φ is an increasing homeomorphism,
this implies

rN−1
k φ(α′(rk)) − rN−1

0 φ(α′(r0)) ≥ rN−1
k φ(u′(rk)) − rN−1

0 φ(u′(r0)),

r′N−1
k φ(α′(r′k)) − rN−1

0 φ(α′(r0)) ≤ r′N−1
k φ(u′(r′k)) − rN−1

0 φ(u′(r0))
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and hence (
rN−1φ(α′(r))

)′
r=r0

≤
(
rN−1φ(u′(r))

)′
r=r0

.

Hence, because α is a lower solution of (2.1) we obtain(
rN−1φ(α′(r))

)′
r=r0

≤
(
rN−1φ(u′(r))

)′
r=r0

= rN−1
0 (f(r0, α(r0), α′(r0)) + u(r0) − α(r0))

< rN−1
0 f(r0, α(r0), α′(r0))

≤
(
rN−1φ(α′(r))

)′
r=r0

,

a contradiction. If [α − u]M = α(R1) − u(R1) > 0, then α′(R1) − u′(R1) = α′(R1) ≤ 0. Using the fact that
α′(R1) ≥ 0, we deduce that α′(R1) = α′(R1)− u′(R1) = 0. This implies that φ(α′(R1)) = φ(u′(R1)). On the
other hand, [α− u]M = α(R1) − u(R1) implies, reasoning in a similar way as for r0 ∈ (R1, R2), that(

rN−1φ(α′(r))
)′

r=R1
≤
(
rN−1φ(u′(r))

)′
r=R1

.

Using the inequality above and α′(R1) = u′(R1), since R1 > 0, we can proceed as in the case r0 ∈ (R1, R2) to
obtain again a contradiction. The case where r0 = R2 is similar. In consequence we have that α(r) ≤ u(r) for all
r ∈ [R1, R2]. Analogously, using the fact that β is a upper solution of (2.1), we can show that u(r) ≤ β(r) for all
r ∈ [R1, R2].We now apply Corollary 2.4 to the modified problem (4.2) to obtain the existence of a solution.

Remark 4.3 (i) We remark that if in theorem above α, β are strict, then α(r) < u(r) < β(r) for all r ∈
[R1, R2]. Moreover, let us consider the open set

Ωα,β =
{
u ∈ C1

† : α(r) < u(r) < β(r) for all r ∈ [R1, R2], ||u′||∞ < a
}
.

Then, arguing as in the proof of Lemma 3 [6] one has that

dLS [I −N ,Ωα,β , 0] = −1,

where N is the fixed point operator associated to (2.1) introduced in Remark 2.2.
(ii) In contrast to the classical p-Laplacian or Euclidean mean curvature cases, no Nagumo-type condition is

required upon f in Theorem 4.2.

We now show, adapting an argument introduced by Amann-Ambrosetti-Mancini [1] in semilinear elliptic
problems, that the existence conclusion in Theorem 4.2 also holds when the lower and upper solutions are not
ordered. See [6, 17] for the case where N = 1.

Theorem 4.4 Assume that (H) holds true. If (2.1) has a lower solution α and an upper solution β, then
problem (2.1) has at least one solution.

P r o o f. Let C be given by Lemma 2.1. If there is some (u, ũ) ∈ C such that∫ R2

R1

rN−1f(r, u+ ũ(r), ũ′(r)) dr = 0,

then u+ ũ solves (2.1). If∫ R2

R1

rN−1f(r, u+ ũ(r), ũ′(r)) dr > 0

for all (u, ũ) ∈ C, then, using (2.2), u + ũ is an upper solution for (2.1) for each (u, ũ) ∈ C. Then, for
(αM + a(1 + R2 − R1), ũ) ∈ C, αM + a(1 + R2 − R1) + ũ(r) ≥ α(r) for all r ∈ [R1, R2] is an upper
solution and the existence of a solution to (2.1) follows from Theorem 4.2. Similarly, if∫ R2

R1

rN−1f(r, u+ ũ(r), ũ′(r)) dr < 0

for all (u, ũ) ∈ C, then (βL−a(1+R2−R1), ũ) ∈ C gives the lower solution βL−a(1+R2−R1)+ũ(r) ≤ β(r)
for all r ∈ [R1, R2] and the existence of a solution.
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Remark 4.5 Assume that φ : R → R is an increasing homeomorphism with φ(0) = 0 and the nonlinearity f
is bounded from below by a continuous function c ∈ C, that is (2.13) holds. Using Lemma 2.5 and the same strat-
egy as in the proof of Theorem 2.6, it can be shown that Theorem 4.4 also holds for classical homeomorphisms
under the additional condition (2.13).

The choice of constant lower and upper solutions in Theorems 4.2 and 4.4 leads to the following simple
existence condition.

Corollary 4.6 If (H) holds true then problem (2.1) has at least one solution if there exist constants A and B
such that

f(r, A, 0) · f(r,B, 0) ≤ 0

for all r ∈ [R1, R2].

A simple application of Theorem 4.4 provides a necessary and sufficient condition of existence of a solution of
(2.1) when f = f(r, u) and f(r, ·) is monotone. We adapt an argument first introduced for semilinear Dirichlet
problems by Kazdan-Warner [15].

Corollary 4.7 Assume that (H) holds true. If f : [R1, R2] × R → R is continuous and f(r, ·) is either non
decreasing or non increasing for every r ∈ [R1, R2], then problem(

rN−1φ(u′)
)′ = rN−1f(r, u), u′(R1) = 0 = u′(R2) (4.3)

is solvable if and only if there exists c ∈ R such that∫ R2

R1

rN−1f(r, c) dr = 0. (4.4)

P r o o f. Necessity. If problem (4.3) has a solution u, then, integrating both members of the differential equa-
tion in (4.3) and using the boundary condition, it follows that∫ R2

R1

rN−1f(r, u(r)) dr = 0. (4.5)

Assuming for example that f(r, ·) is non decreasing for every r ∈ [R1, R2], we deduce from (4.5) that∫ R2

R1

rN−1f(r, uL) dr ≤ 0 ≤
∫ R2

R1

rN−1f(r, uM ) dr,

so that, by the intermediate value theorem, there exists some c ∈ [uL, uM ] satisfying (4.4). The reasoning is
similar when f(r, ·) is non decreasing for every r ∈ [R1, R2].

Sufficiency. If c ∈ R satisfies (4.4), then the problem(
rN−1φ(u′)

)′ = rN−1f(r, c), u′(R1) = 0 = u′(R2) (4.6)

has a one-parameter family of solutions of the form d + w̃(r) with w̃ ∈ C̃1
† . There exists d1 ≤ d2 such that, for

all r ∈ [R1, R2],

α(r) := d1 + w̃(r) ≤ c ≤ d2 + w̃(r) =: β(r).

Hence, if f(r, ·) is non decreasing for each r ∈ [R1, R2], then(
rN−1φ(α′(r))

)′ =
(
rN−1φ(w̃′(r))

)′ = rN−1f(r, c) ≥ rN−1f(r, α(r))

and α is a lower solution for (4.3). Similarly β is an upper solution for (4.3). A similar argument shows that, if
f(r, ·) is non increasing for every r ∈ [R1, R2], α is an upper solution and β a lower solution for (4.3). So the
result follows from Theorem 4.4.

The results above can be applied to classical radial solutions of the Neumann problem (1.1).

c© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.mn-journal.com



Math. Nachr. 283, No. 3 (2010) 389

Corollary 4.8 Let R1 > 0. Problem (1.1) has at least one classical radial solution if there exist constants A
and B such that

f(r, A, 0) · f(r,B, 0) ≤ 0

for all r ∈ [R1, R2].

Corollary 4.9 Let R1 > 0. If f : [R1, R2]×R → R is continuous and f(r, ·) is either non decreasing or non
increasing for every r ∈ [R1, R2], then problem

Mv = f(|x|, v) in A, ∂v

∂ν
= 0 on ∂A

has a classical radial solution if and only if there exists c ∈ R such that (4.4) holds.

Example 4.10 Let f(v) = ev or f(v) = |v|p−1v+ with p > 1. If R1 > 0 then the Neumann problem

Mv + f(v) = l(|x|) in A, ∂v

∂ν
= 0 on ∂A(

resp. Mv − f(v) = l(|x|) in A, ∂v

∂ν
= 0 on ∂A

)
has a classical radial solution if and only if l ∈ C is such that∫ R2

R1

rN−1l(r) dr > 0

(
resp.

∫ R2

R1

rN−1l(r) dr < 0

)
.

The same result holds true if we replace the operator M by the p-Laplacian operator.

Remark 4.11 Multiplicity results of the Ambrosetti-Prodi type similar to the ones obtained in [6, 17] for
N = 1 can be deduced in a similar way from Theorem 4.2 and Remark 4.3 (i).

5 Pendulum-like nonlinearities

Consider the Neumann problem

Mv + b sin v = l(|x|) in A, ∂v

∂ν
= 0 on ∂A, (5.1)

where b > 0 and l ∈ C.
Let us suppose also that R1 > 0. Then, using Theorem 4.2, Remark 4.3 (i) and the method introduced in [18],

one can prove that (5.1) has at least one radial solution if ||l||∞ ≤ b and at least two radial solutions if ||l||∞ < b.
The following result shows that one has existence even in the case R1 = 0 for any l with Ql = 0, under an
additional condition concerning the distance between R1 and R2. We adapt to our situation an argument used
in [20].

Theorem 5.1 If Ql = 0 and 2(R2 −R1) ≤ 1, then (5.1) has at least one classical radial solution.

P r o o f. It is clear that it is sufficient to prove the existence of at least one solution for the Neumann problem(
rN−1φ(u′)

)′ + rN−1b sinu = rN−1l(r), u′(R1) = 0 = u′(R2), (5.2)

with φ given in (3.2). Let us make the change of variable

u = arcsinw.

Then, we obtain the Neumann problem(
rN−1φ

(
w′

√
1 − w2

))′
+ rN−1bw = rN−1l(r), w′(R1) = 0 = w′(R2). (5.3)
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Consider the closed subspace of C defined by

Ĉ = {w ∈ C : Qw = 0}

and denotes by N the Nemytskii operator Nf associated to f(r, w) = l(r) − bw. Consider also the nonlinear
operator

T : K̂ → Ĉ, T (w) = (I −Q) ◦H ◦
√

1 − w2φ−1 ◦ L ◦N(w),

where

K̂ =
{
w ∈ Ĉ : ||w||∞ ≤ 2(R2 −R1)

}
.

One has that T is well defined and compact. It is clear that

||T (w)||∞ < 2(R2 −R1) ≤ 1 for all w ∈ K̂.

Using Schauder’s fixed point theorem, we infer that there exist w ∈ K̂ such that w = T (w), and because
||w||∞ < 1, it follows that w is a solution of (5.3). Therefore u = arcsinw is a solution of (5.2).
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