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EXISTENCE OF AT LEAST TWO PERIODIC SOLUTIONS

OF THE FORCED RELATIVISTIC PENDULUM

CRISTIAN BEREANU AND PEDRO J. TORRES

(Communicated by Yingfei Yi)

Abstract. Using Szulkin’s critical point theory, we prove that the relativistic
forced pendulum with periodic boundary value conditions(

u′
√
1− u′2

)′
+ μ sinu = h(t), u(0)− u(T ) = 0 = u′(0)− u′(T ),

has at least two solutions not differing by a multiple of 2π for any continuous

function h : [0, T ] → R with
∫ T
0 h(t)dt = 0 and any μ �= 0. The existence of at

least one solution has been recently proved by Brezis and Mawhin.

1. Introduction and the main result

It is well known that the classical forced pendulum with periodic boundary value
conditions

u′′ + μ sin u = h(t), u(0)− u(T ) = 0 = u′(0)− u′(T ),

has at least two solutions not differing by a multiple of 2π for any continuous

function h : [0, T ] → R with
∫ T

0
h(t)dt = 0 and any μ �= 0. The existence of at least

one solution was proved by Hamel [9] and rediscovered independently by Dancer
[7] and Willem [15]. Then, the existence of a second solution has been proved by
Mawhin and Willem [11] using mountain pass arguments.

Motivated by those results, Brezis and Mawhin prove in [6] that the relativistic
forced pendulum with periodic boundary value conditions

(1.1)

(
u′

√
1− u′2

)′
+ μ sin u = h(t), u(0)− u(T ) = 0 = u′(0)− u′(T ),

has at least one solution for any forcing term h with mean value zero and any μ �= 0.
The above problem is reduced to finding a minimum for the corresponding action
integral over a closed convex subset of the space of T-periodic Lipschitz functions,
and then to show, using variational inequalities techniques, that such a minimum
solves the problem.

In this paper we show that (1.1) has at least two solutions not differing by a
multiple of 2π. Actually, we consider as in [2, 6] the more general periodic boundary
value problem

(1.2) (φ(u′))′ = f(t, u) + h(t), u(0)− u(T ) = 0 = u′(0)− u′(T ),
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where φ satisfies the hypothesis

there exists Φ : [−a, a] → R such that Φ(0) = 0, Φ is continuous,

of class C1 on (−a, a), with φ := Φ′ : (−a, a) → R(HΦ)

an increasing homeomorphism such that φ(0) = 0;

f : [0, T ]× R → R is a continuous function with its primitive

F (t, x) =

∫ x

0

f(t, ξ)dξ, ((t, x) ∈ [0, T ]× R)

satisfying the hypothesis

there exists ω > 0 such that(HF )

F (t, x) = F (t, x+ ω) for all (t, x) ∈ [0, T ]× R;

and finally the forcing term h : [0, T ] → R is supposed to be continuous and satisfies

(Hh)

∫ T

0

h(t)dt = 0.

Of course, by a solution of (1.2) we mean a function u ∈ C1[0, T ] with ||u′||∞ < a,
φ(u′) ∈ C1[0, T ] and (1.2) is satisfied.

Our main result is the following one.

Theorem 1.1. If the hypotheses (HΦ), (HF ) and (Hh) are satisfied, then (1.2) has
at least two solutions not differing by a multiple of ω.

Taking in (1.2), φ(s) = s√
1−s2

so that Φ(s) = 1−
√
1− s2, and f(t, x) = −μ sin x

so that F (t, x) = μ(cosx− 1) and ω = 2π, one has the following:

Corollary 1.2. Problem (1.1) has at least two solutions not differing by a multiple
of 2π for any forcing term h satisfying (Hh) and any μ �= 0.

Our approach is variational and is based upon Szulkin’s critical point theory [14]
and some results given in [2]. The corresponding result for the one-dimensional
curvature operator has been recently proved by Obersnel and Omari [12] using also
Szulkin’s critical point theory.

We point out that the approach of Mawhin and Willem [11] has an abstract
formulation given by Pucci and Serrin in [13] and then the Pucci-Serrin’s variant
of the Mountain Pass Lemma has been generalized by Ghoussoub and Preiss in
[8]. For Szulkin type functionals, the Ghoussoub-Preiss result is proved by Marano
and Motreanu [10] assuming also the reflexivity of the space. In our case, we work
in the space of continuous functions defined on a compact interval, which is not
reflexive, and in order to avoid this difficulty we use a truncation strategy coming
from the upper and lower solutions method.

2. Auxiliary results and notation

In this section we state some results from [2], which are the main tools in the
proof of Theorem 1.1.

Let g : [0, T ]× R → R be a continuous function with its primitive defined by

G(t, x) =

∫ x

0

g(t, ξ)dξ, ((t, x) ∈ [0, T ]× R),
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and consider the periodic boundary value problem

(2.1) (φ(u′))′ = g(t, u), u(0)− u(T ) = 0 = u′(0)− u′(T ).

We set C := C[0, T ], L∞ := L∞(0, T ) and W 1,∞ := W 1,∞(0, T ). The usual norm
‖ · ‖∞ is considered on C and L∞, whereas in W 1,∞ we consider the usual norm
‖u‖W 1,∞ = ‖u‖∞ + ‖u′‖∞.

We decompose any u ∈ C as follows:

u = u+ ũ, u =
1

T

∫ T

0

u(t)dt and

∫ T

0

ũ(t)dt = 0.

Note that one has

(2.2) ||ṽ||∞ ≤ T‖v′‖∞ for all v ∈ W 1,∞.

Let

K := {v ∈ W 1,∞ : ‖v′‖∞ ≤ a, v(0) = v(T )}
and Ψ : C → (−∞,+∞] be defined by

Ψ(v) =

⎧⎨⎩
∫ T

0
Φ(v′), if v ∈ K,

+∞, otherwise.

Obviously, Ψ is proper and convex. On the other hand, as shown in [6] (see also
[2]), Ψ is lower semicontinuous on C.

Next, let G : C → R be given by

G(u) =
∫ T

0

G(t, u) dt, u ∈ C.

A standard reasoning shows that G is of class C1 on C and its derivative is given
by

〈G′(u), v〉 =
∫ T

0

g(t, u)v dt, u, v ∈ C.

Following [2], we consider the energy functional associated to (2.1) given by

I : C → (−∞,+∞], I = Ψ+ G.

Then I has the structure required by Szulkin’s critical point theory [14]. Accord-
ingly, a function u ∈ C is a critical point of I if u ∈ K and

Ψ(v)−Ψ(u) + 〈G′(u), v − u〉 ≥ 0 for all v ∈ C.

It is shown in [2] that if u is a critical point of I, then u is a solution of (2.1).
On the other hand, {un} ⊂ K is a (PS)-sequence if I(un) → c ∈ R and∫ T

0

[Φ(v′)−Φ(u′
n) + g(t, un)(v − un)] dt ≥ −εn‖v − un‖∞ for all v ∈ K,

where εn → 0+. According to [14], the functional I is said to satisfy the (PS)-
condition if any (PS)-sequence has a convergent subsequence in C. Note also that
if {un} is a (PS)-sequence, then, from [2] one has that

• the sequence {
∫ T

0
G(t, un) dt} is bounded;

• if {un} is bounded, then {un} has a convergent subsequence in C.
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The next lemma is a direct consequence of [4, Theorem 3].

Lemma 2.1. Let us assume that (2.1) has two solutions α, β such that α(t) ≤ β(t)
for all t ∈ [0, T ]. Let γ : [0, T ]× R → R be the continuous function defined by

γ(t, x) =

⎧⎨⎩
β(t), if x > β(t),
x, if α(t) ≤ x ≤ β(t),
α(t), if x < α(t).

Consider the modified problem

(2.3) (φ(u′))′ = g(t, γ(t, u)) + u− γ(t, u), u(0)− u(T ) = 0 = u′(0)− u′(T ).

If u is a solution of (2.3), then

α(t) ≤ u(t) ≤ β(t) for all t ∈ [0, T ],

and u is a solution of (2.1).

3. Proof of the main result

First of all, using the corresponding result for the periodic case of Corollary 1 in
[2] one has that the energy functional I associated to (1.2) is bounded from below
and there exists u0 ∈ K a minimizer for I, which is also a solution of (1.2). On the
other hand, from (HF ) it follows that

I(u) = I(u+ jω) for all u ∈ C, j ∈ Z.

So, taking j sufficiently large, we can assume that u0 is strictly positive, and one
has that u1 := u0 + ω is a minimizer of I and also a solution of (1.2).

We associate to (1.2) the corresponding modified problem

(φ(u′))′ = f(t, γ(t, u)) + h(t) + u− γ(t, u),

u(0)− u(T ) = 0 = u′(0)− u′(T ),(3.1)

where in this case γ : [0, T ]× R → R is given by

γ(t, x) =

⎧⎨⎩
u1(t), if x > u1(t),
x, if u0(t) ≤ x ≤ u1(t),
u0(t), if x < u0(t).

So, if u is a solution of (3.1), then by Lemma 2.1,

(3.2) u0(t) ≤ u(t) ≤ u1(t) for all t ∈ [0, T ]

and u is a solution of (1.2).
Next, let J : C → (−∞,∞] be the energy functional associated to the modified

problem (3.1). So,

J(u) =

∫ T

0

Φ(u′) +

∫ T

0

A(t, u)dt for all u ∈ K,

where A : [0, T ]× R → R is given by

A(t, x) =

∫ x

0

f(t, γ(t, ξ))dξ + xh(t) +
x2

2
−
∫ x

0

γ(t, ξ)dξ,

for all (t, x) ∈ [0, T ]× R.
Let us note that if u is a critical point of J, then u is a solution of (3.1); hence

u satisfies (3.2) and u is also a solution of (1.2).
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Lemma 3.1. The following hold true.

(i) J(u0) = J(u1).
(ii) lim|x|→∞ A(t, x) = +∞ uniformly in t ∈ [0, T ].
(iii) The functional J is bounded from below and satisfies the (PS)-condition.

Proof. (i) From (HF ) and the definition of γ we infer that

A(t, u0(t)) = u0(t)f(t, u0(t)) + u0(t)h(t)−
u2
0(t)

2

and

A(t, u1(t)) = u0(t)f(t, u0(t)) + u1(t)h(t)−
u2
0(t)

2
,

for all t ∈ [0, T ]. On the other hand, using (Hh) we deduce that∫ T

0

u0(t)h(t)dt =

∫ T

0

u1(t)h(t)dt.

Hence ∫ T

0

A(t, u0(t))dt =

∫ T

0

A(t, u1(t))dt,

which together with

u′
0 = u′

1

implies that (i) holds true.
(ii) Using that γ is bounded, it follows that there exists c1 > 0 such that

A(t, x) ≥ x2

2
− c1|x| for all (t, x) ∈ [0, T ]× R,

implying that (ii) holds true.
(iii) From (ii) we deduce immediately that J is bounded from below.

Now let {un} be a (PS)-sequence. It follows that the sequence {
∫ T

0
A(t, un)dt} is

bounded. This, together with (2.2) and (ii), implies that {un} is bounded. Again
by (2.2) and the fact that {un} ⊂ K , we have that {un} is bounded in W 1,∞. By
the compact embedding of W 1,∞ into C (see for example [5]), it follows that {un}
has a convergent subsequence in C and J satisfies the (PS)-condition. �

End of the proof of the main result. We conclude the proof by using an argument
inspired by [12]. Using Lemma 3.1(iii) and Theorem 1.7 from [14], we deduce that
there exists u2, a critical point of J , such that

J(u2) = inf
C

J.

We have two cases.

Case 1. If u2 �= u0 and u2 �= u1, then, using the fact that u2 satisfies (3.2), it
follows that u2 is a solution of (1.2) such that u2 − u0 is not a multiple of ω.

Case 2. If u2 = u0 or u2 = u1, then using Lemma 3.1(i), it follows that u0 and u1

are also minimizers of J. Hence, using Lemma 3.1(iii) and [14, Corollary 3.3], we
infer that there exists u3, a critical point of J different from u0 and u1. Because u3

is a critical point of J, one has that u3 satisfies (3.2), and therefore u3 is a solution
of (1.2) such that u3 − u0 is not a multiple of ω. �
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4. Final remarks about the Neumann problem

Let us consider the Neumann problem

(4.1) [rN−1φ(u′)]′ = rN−1[f(r, u) + h(r)], u′(R1) = 0 = u′(R2),

where 0 ≤ R1 < R2, N ≥ 1 is an integer and φ, f and h satisfy hypotheses (HΦ),
(HF ) and (Hh). Then, using the same strategy as in the periodic case, without any
change and the corresponding results from [2] and [1], one has that (4.1) has at
least two solutions not differing by a multiple of ω. The existence of at least one
solution has been proved in [3, 2].

In particular, the Neumann problem

div

(
∇v√

1− |∇v|2

)
+ μ sin u = h(|x|) in A,

∂v

∂ν
= 0 on ∂A,

where A = {x ∈ R
N : R1 ≤ |x| ≤ R2}, has at least two classical radial solutions

not differing by a multiple of ω, for any μ �= 0 and any h ∈ C such that∫
A
h(|x|) dx = 0.
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