An Ambrosetti-Prodi-type result for periodic solutions of the telegraph equation

Cristian Bereanu*
Département de Mathématique, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium (bereanu@math.ucl.ac.be)

(MS received 3 January 2007; accepted 4 April 2007)

Using Leray-Schauder degree theory, a theorem of upper and lower solutions and a strong maximum principle for the telegraph equation we prove an
Ambrosetti-Prodi-type result for periodic solutions of the telegraph equation.

1. Introduction and the main result

We consider doubly periodic solutions of the nonlinear telegraph equation

$$
\left.\begin{array}{rl}
u_{t t}-u_{x x}+c u_{t}+f(t, x, u) & =s, \tag{1.1}\\
u(t+2 \pi, x)=u(t, x+2 \pi) & =u(t, x), \quad(t, x) \in \mathbb{R}^{2},
\end{array}\right\}
$$

where $c>0, f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ is a continuous function 2π-periodic in t and x, s is a real parameter.
Let \mathbb{T}^{2} be the torus defined by

$$
\mathbb{T}^{2}=\left(\frac{\mathbb{R}}{2 \pi \mathbb{Z}}\right) \times\left(\frac{\mathbb{R}}{2 \pi \mathbb{Z}}\right)
$$

A point of \mathbb{T}^{2} is denoted by (\hat{t}, \hat{x}), where (t, x) is a point of \mathbb{R}^{2} and $\hat{t}=t+2 \pi \mathbb{Z}$, $\hat{x}=x+2 \pi \mathbb{Z}$. Doubly periodic functions will be identified with functions defined on the torus. In particular,

$$
L^{p}\left(\mathbb{T}^{2}\right), C\left(\mathbb{T}^{2}\right), C^{\infty}\left(\mathbb{T}^{2}\right), \ldots
$$

denote the spaces of doubly periodic functions with the indicated degree of regularity. The norm in $L^{p}\left(\mathbb{T}^{2}\right)$ is denoted by $\|\cdot\|_{p}$ and the maximum norm in $C\left(\mathbb{T}^{2}\right)$ is denoted by $\|\cdot\|_{\infty} . B_{r}$ denotes the open ball of centre 0 and radius r in $C\left(\mathbb{T}^{2}\right)$. By a solution of (1.1) we mean a function $u \in C\left(\mathbb{T}^{2}\right)$ satisfying

$$
\int_{\mathbb{T}^{2}} u\left(\phi_{t t}-\phi_{x x}-c \phi_{t}\right)+\int_{\mathbb{T}^{2}}(f(t, x, u)-s) \phi=0 \quad \text { for all } \phi \in C^{\infty}\left(\mathbb{T}^{2}\right) .
$$

Suppose that the function f satisfies the following assumptions.
(f1) $f\left(t, x, u_{2}\right)-f\left(t, x, u_{1}\right) \leqslant \nu(c)\left(u_{2}-u_{1}\right)$ for all $(t, x) \in \mathbb{R}^{2}$ and every u_{1}, u_{2} with $u_{1} \leqslant u_{2}$. The constant $\nu(c)$ will be specified later.

[^0](f2) $f(t, x, u) \rightarrow \infty$ if $|u| \rightarrow \infty$ uniformly in $(t, x) \in \mathbb{R}^{2}$.
We are now in a position to state the main result of the paper.
Theorem 1.1. If f satisfies conditions (f1) and (f2), then there exists $s_{1} \in \mathbb{R}$ such that problem (1.1) has zero, at least one or at least two solutions according to $s<s_{1}$, $s=s_{1}$ or $s>s_{1}$.

An Ambrosetti-Prodi-type result has been also proved in [2]. More precisely, in [2] the function f has the particular form $f(t, x, u)=g(u)-h(t, x)$, where $h \in L^{2}\left(\mathbb{T}^{2}\right)$ is such that $\int_{\mathbb{T}^{2}} h=0$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function satisfying the following conditions.
(g1) There exist $a, b \in \mathbb{R}$ such that

$$
|g(u)| \leqslant a|u|+b \quad \text { for all } u \in \mathbb{R}
$$

(g2) There exists $0<\alpha<1$ such that

$$
|g(u)-g(v)| \leqslant \frac{\alpha}{2 \pi C}|u-v| \quad \text { for all } u, v \in \mathbb{R}
$$

where C is the norm of some linear operator.
(g3) $g(u) \rightarrow \infty$ if $|u| \rightarrow \infty$.
The above conditions are essential in order to use a Lyapunov-Schmidt procedure. To prove theorem 1.1, we adapt a method in [1] (see also [4]) to the present situation. The main tool which will be used in this paper is the Leray-Schauder degree together with a theorem of upper and lower solutions and a strong maximum principle for the telegraph equation proved in [5]. For a short history of the AmbrosettiProdi problem, see the introduction in [4]. Note that the Leray-Schauder degree theory, a theorem of upper and lower solutions and a strong maximum principle for the telegraph equation have been already used in order to give a multiplicity result for the forced sine-Gordon equation with periodic boundary conditions [6].

2. Auxiliary results

Consider the set

$$
\Gamma=\left\{m^{2}: m \in \mathbb{N}\right\}
$$

The following result plays an important role in the fixed-point reformulation of the problem (1.1).

Lemma 2.1 (Ortega and Robles-Pérez [5]). Assume that $\lambda \notin \Gamma$ and $h \in C\left(\mathbb{T}^{2}\right)$. There then exists $u \in C\left(\mathbb{T}^{2}\right)$, a unique solution of the linear problem

$$
\begin{equation*}
\int_{\mathbb{T}^{2}} u\left(\phi_{t t}-\phi_{x x}-c \phi_{t}-\lambda \phi\right)=\int_{\mathbb{T}^{2}} h \phi \quad \text { for all } \phi \in C^{\infty}\left(\mathbb{T}^{2}\right) \tag{2.1}
\end{equation*}
$$

This solution satisfies the estimate

$$
\begin{equation*}
\|u\|_{\infty} \leqslant C_{1}\|h\|_{1} \tag{2.2}
\end{equation*}
$$

where C_{1} is a constant that depends only on c and λ. Moreover, the linear operator $R_{\lambda}: C\left(\mathbb{T}^{2}\right) \rightarrow C\left(\mathbb{T}^{2}\right)$ defined by $R_{\lambda}(h)=u$ is a compact operator.

If $\lambda=0$ and $\int_{\mathbb{T}^{2}} h=0$, then (2.1) has a unique solution $u \in C\left(\mathbb{T}^{2}\right)$ such that $\int_{\mathbb{T}^{2}} u=0$, which satisfies (2.2).

The following result is a strong maximum principle for periodic solutions of the telegraph equation.

Lemma 2.2 (Ortega and Robles-Pérez [5]). There exists a function $\nu:(0, \infty) \rightarrow$ $(0, \infty)$ such that, for $-\lambda \in(0, \nu(c)]$ and $h \in C\left(\mathbb{T}^{2}\right)$ with

$$
h \geqslant 0, \quad \int_{\mathbb{T}^{2}} h>0
$$

we have

$$
R_{\lambda}(h)(t, x)>0 \quad \text { for all }(t, x) \in \mathbb{R}^{2}
$$

Moreover, the function ν satisfies

$$
\frac{c^{2}}{4}<\nu(c) \leqslant \frac{c^{2}+1}{4}, \quad \nu(c) \rightarrow 0 \text { as } c \rightarrow 0
$$

A function $\alpha \in C\left(\mathbb{T}^{2}\right)$ is a lower solution of (1.1) if the following inequality holds

$$
\begin{equation*}
\int_{\mathbb{T}^{2}} \alpha\left(\phi_{t t}-\phi_{x x}-c \phi_{t}\right)+\int_{\mathbb{T}^{2}}(f(t, x, \alpha)-s) \phi \leqslant 0 \quad \text { for all } \phi \in C_{+}^{\infty}\left(\mathbb{T}^{2}\right) \tag{2.3}
\end{equation*}
$$

An upper solution $\beta \in C\left(\mathbb{T}^{2}\right)$ is a function that satisfies the reversed inequality.
Lemma 2.3 (Ortega and Robles-Pérez [5]). Assume that f satisfies condition (f1) and that (1.1) has a lower solution $\alpha \in C\left(\mathbb{T}^{2}\right)$ and an upper solution $\beta \in C\left(\mathbb{T}^{2}\right)$ satisfying

$$
\alpha(t, x) \leqslant \beta(t, x) \quad \text { for all }(t, x) \in \mathbb{R}^{2}
$$

Then (1.1) has a solution $u \in C\left(\mathbb{T}^{2}\right)$ such that

$$
\alpha(t, x) \leqslant u(t, x) \leqslant \beta(t, x) \quad \text { for all }(t, x) \in \mathbb{R}^{2}
$$

3. A fixed-point reformulation and a priori estimations

Consider the nonlinear operator $N_{s}: C\left(\mathbb{T}^{2}\right) \rightarrow C\left(\mathbb{T}^{2}\right)$ defined by

$$
N_{s}(u)(t, x)=s-f(t, x, u(t, x)) \quad \text { for all }(t, x) \in \mathbb{R}^{2}
$$

The operator N_{s} is continuous and takes bounded sets into bounded sets. Let $\mathcal{G}(s, \cdot): C\left(\mathbb{T}^{2}\right) \rightarrow C\left(\mathbb{T}^{2}\right)$ be the operator

$$
\mathcal{G}(s, \cdot)=R_{-\nu} \circ\left[N_{s}+\nu I\right] .
$$

Henceforth, $\nu=\nu(c)$ and $c>0$ is fixed. Using the compactness of the linear operator $R_{-\nu}$, it is not difficult to see that the homotopy \mathcal{G} is compact on $[a, b] \times \bar{\Omega}$ whenever $a, b \in \mathbb{R}$ and Ω is an open bounded set in $C\left(\mathbb{T}^{2}\right)$. On the other hand, using lemma 2.1 we deduce the following lemma.

Lemma 3.1. A function $u \in C\left(\mathbb{T}^{2}\right)$ is a solution of (1.1) if and only if u is a fixed point of $\mathcal{G}(s, \cdot)$, that is $u=\mathcal{G}(s, u)$.

The following lemma gives an a priori bound for the possible solutions of (1.1) for s in compact intervals.

Lemma 3.2. If f satisfies condition (f2), then for each $b>0$ there exists $\rho=\rho(b)$ such that any possible solution u of (1.1) with $|s| \leqslant b$ satisfies $\|u\|_{\infty}<\rho$.

Proof. Let $|s| \leqslant b$ and $u \in C\left(\mathbb{T}^{2}\right)$ be a solution of (1.1). Using (f2) we deduce that f is bounded from below. This implies that there exists $\delta>0$ such that

$$
|f(t, x, u)| \leqslant f(t, x, u)+\delta \quad \text { for all }(t, x, u) \in \mathbb{R}^{3}
$$

which, together with

$$
\begin{equation*}
\int_{\mathbb{T}^{2}}(f(t, x, u)-s)=0 \tag{3.1}
\end{equation*}
$$

implies that

$$
\begin{equation*}
\int_{\mathbb{T}^{2}}|f(t, x, u)| \leqslant 4 \pi^{2}(s+\delta) \tag{3.2}
\end{equation*}
$$

Using (3.1) it follows that, for $h=N_{s}(u),(2.1)$ has a unique solution $\tilde{u} \in C\left(\mathbb{T}^{2}\right)$ such that $\int_{\mathbb{T}^{2}} \tilde{u}=0$ and

$$
\begin{equation*}
\|\tilde{u}\|_{\infty} \leqslant C_{1} \int_{\mathbb{T}^{2}}|f(t, x, u)-s| \tag{3.3}
\end{equation*}
$$

Using (3.2), (3.3) and the fact that $|s| \leqslant b$, we deduce that

$$
\begin{equation*}
\|\tilde{u}\|_{\infty} \leqslant C_{1} 4 \pi^{2}(2 b+\delta) \tag{3.4}
\end{equation*}
$$

On the other hand, it is clear that we have the decomposition

$$
\begin{equation*}
u=\bar{u}+\tilde{u}=\left(\frac{1}{4 \pi^{2}} \int_{\mathbb{T}^{2}} u\right)+\tilde{u} \tag{3.5}
\end{equation*}
$$

Using (f2), (3.1), (3.4) and (3.5) it follows that there exists a constant C_{2} such that

$$
\begin{equation*}
|\bar{u}|<C_{2} \tag{3.6}
\end{equation*}
$$

Now (3.4)-(3.6) give the conclusion.

4. Proof of the main result

Let $S_{j}=\{s \in \mathbb{R}:(1.1)$ has at least j solutions $\}, j \geqslant 1$.
(a) $S_{1} \neq \varnothing$. Take

$$
s^{*}>\max _{(t, x) \in \mathbb{R}^{2}} f(t, x, 0)
$$

and use (f2) to find $R_{+}^{*}>0$ such that

$$
\min _{(t, x) \in \mathbb{R}^{2}} f\left(t, x, R_{+}^{*}\right)>s^{*}
$$

Then $\alpha \equiv 0$ is a lower solution and $\beta \equiv R_{+}^{*}$ is an upper solution of (1.1) with $s=s^{*}$ such that $\alpha<\beta$. Using lemma 2.3 it follows that $s^{*} \in S_{1}$.
(b) If $\tilde{s} \in S_{1}$ and $s>\tilde{s}$, then $s \in S_{1}$. Let \tilde{u} be a solution of (1.1) with $s=\tilde{s}$, and let $s>\tilde{s}$. Then \tilde{u} is a lower solution for (1.1). Take $R_{+}>\max _{\mathbb{R}^{2}} \tilde{u}$ such that

$$
\min _{(t, x) \in \mathbb{R}^{2}} f\left(t, x, R_{+}\right)>s
$$

Then $\alpha=\tilde{u}$ is a lower solution and $\beta \equiv R_{+}$is an upper solution of (1.1) such that $\alpha<\beta$. From lemma 2.3, $s \in S_{1}$.
(c) $s_{1}=\inf S_{1}$ is finite and $S_{1} \supset\left(s_{1}, \infty\right)$. Let $s \in \mathbb{R}$ and suppose that (1.1) has a solution u. Then (3.1) holds, implying that $s \geqslant \inf _{\mathbb{R}^{3}} f>-\infty$. To obtain the second part of claim (c), we apply (b).
(d) $S_{2} \supset\left(s_{1}, \infty\right)$. Let $s_{3}<s_{1}<s_{2}$. For each $s \in \mathbb{R}$, let $\mathcal{G}(s, \cdot)$ be the fixed-point operator in $C\left(\mathbb{T}^{2}\right)$ associated with problem (1.1) and defined in lemma 3.1. Using lemma 3.2 we find ρ such that each possible zero of $I-\mathcal{G}(s, \cdot)$ with $s \in\left[s_{3}, s_{2}\right]$ satisfies $\|u\|_{\infty}<\rho$. Consequently, the invariance property of the Leray-Schauder degree implies that

$$
d_{\mathrm{LS}}\left[I-\mathcal{G}(s, \cdot), B_{\rho}, 0\right]
$$

is well defined and does not depend upon $s \in\left[s_{3}, s_{2}\right]$ (see [3]).
However, using (c), we see that $u-\mathcal{G}\left(s_{3}, u\right) \neq 0$ for all $u \in C\left(\mathbb{T}^{2}\right)$. This implies that $d_{\mathrm{LS}}\left[I-\mathcal{G}\left(s_{3}, \cdot\right), B_{\rho}, 0\right]=0$, so that $d_{\mathrm{LS}}\left[I-\mathcal{G}\left(s_{2}, \cdot\right), B_{\rho}, 0\right]=0$ and, by the excision property of Leray-Schauder degree [3],

$$
\begin{equation*}
d_{\mathrm{LS}}\left[I-\mathcal{G}\left(s_{2}, \cdot\right), B_{\rho^{\prime}}, 0\right]=0 \quad \text { if } \rho^{\prime}>\rho \tag{4.1}
\end{equation*}
$$

Let $\hat{s} \in\left(s_{1}, s_{2}\right)$ and \hat{u} be a solution of (1.1) with $s=\hat{s}$ (using (c)). Using (f2), it follows that there exists a constant $\beta>\max _{\mathbb{R}^{2}} \hat{u}$ such that

$$
\begin{equation*}
\min _{(t, x) \in \mathbb{R}^{2}} f(t, x, \beta)>s_{2} \tag{4.2}
\end{equation*}
$$

Consider the open bounded convex set in $C\left(\mathbb{T}^{2}\right)$ defined by

$$
\Omega_{\hat{u}, \beta}=\left\{u \in C\left(\mathbb{T}^{2}\right): \hat{u}<u<\beta\right\} .
$$

Let $u \in \bar{\Omega}_{\hat{u}, \beta}$ and $v=\mathcal{G}\left(s_{2}, u\right)$. Consider $w=\beta-v$. Hence, $w=R_{-\nu}(h)$, where $h \in C\left(\mathbb{T}^{2}\right)$ is defined as

$$
h(t, x):=\nu \beta-\nu u(t, x)-s_{2}+f(t, x, u(t, x)) \quad \text { for all }(t, x) \in \mathbb{R}^{2}
$$

Note that (f1), (4.2) and $u \leqslant \beta$ imply that $h>0$ on \mathbb{R}^{2}. Using lemma 2.2 , we deduce that $w>0$ on \mathbb{R}^{2}, that is $v<\beta$ on \mathbb{R}^{2}. Analogously, we can prove that $\hat{u}<v$ on \mathbb{R}^{2}. Consequently, $v \in \Omega_{\hat{u}, \beta}$ and

$$
\mathcal{G}\left(s_{2}, \bar{\Omega}_{\hat{u}, \beta}\right) \subset \Omega_{\hat{u}, \beta}
$$

This implies that

$$
\begin{equation*}
d_{\mathrm{LS}}\left[I-\mathcal{G}\left(s_{2}, \cdot\right), \Omega_{\hat{u}, \beta}, 0\right]=1 \tag{4.3}
\end{equation*}
$$

Hence, the existence property of Leray-Schauder degree [3] implies that $\mathcal{G}\left(s_{2}, \cdot\right)$ has a fixed point in $\Omega_{\hat{u}, \beta}$ which is also a solution of (1.1) with $s=s_{2}$ (lemma 3.1).

On the other hand, the additivity property of Leray-Schauder degree [3], (4.1) and (4.3) imply, for ρ^{\prime} sufficiently large, that

$$
\begin{aligned}
d_{\mathrm{LS}}\left[I-\mathcal{G}\left(s_{2}, \cdot\right), B_{\rho^{\prime}} \backslash \bar{\Omega}_{\hat{u}, \beta}, 0\right] & =d_{\mathrm{LS}}\left[I-\mathcal{G}\left(s_{2}, \cdot\right), B_{\rho^{\prime}}, 0\right] \\
-d_{\mathrm{LS}}\left[I-\mathcal{G}\left(s_{2}, \cdot\right), \Omega_{\hat{u}, \beta}, 0\right] & =-d_{\mathrm{LS}}\left[I-\mathcal{G}\left(s_{2}, \cdot\right), \Omega_{\hat{u}, \beta}, 0\right]=-1
\end{aligned}
$$

and (1.1) with $s=s_{2}$ has a second solution in $B_{\rho^{\prime}} \backslash \bar{\Omega}_{\hat{u}, \beta}$.
(e) $s_{1} \in S_{1}$. Let $\left(\tau_{k}\right)$ be a sequence in $\left(s_{1},+\infty\right)$ converging to s_{1}, and let u_{k} be a solution of (1.1) with $s=\tau_{k}$ given by (c). Using lemma 3.1, we deduce that

$$
\begin{equation*}
u_{k}=\mathcal{G}\left(\tau_{k}, u_{k}\right) \tag{4.4}
\end{equation*}
$$

From lemma 3.2, there exists $\rho>0$ such that $\left\|u_{k}\right\|_{\infty}<\rho$ for all $k \geqslant 1$. The compactness of \mathcal{G} implies that, up to a subsequence, the right-hand member of (4.4) converges in $C\left(\mathbb{T}^{2}\right)$, and hence $\left(u_{k}\right)$ converges to some $u \in C\left(\mathbb{T}^{2}\right)$ such that $u=$ $\mathcal{G}\left(s_{1}, u\right)$, i.e. to a solution of (1.1) with $s=s_{1}$.

Acknowledgments

The author offers his sincere thanks to the referee for suggesting an improvement in the proof of lemma 3.2.

References

1 C. Fabry, J. Mawhin and M. Nkashama. A multiplicity result for periodic solutions of forced nonlinear second-order ordinary differential equations. Bull. Lond. Math. Soc. 18 (1986), 173-180.
2 W. S. Kim. Multiple doubly periodic solutions of semilinear dissipative hyperbolic equations. J. Math. Analysis Applic. 197 (1996), 735-748.
3 M. A. Krasnosel'skii and P. P. Zabreiko. Geometrical methods of nonlinear analysis (Springer, 1984).
4 J. Mawhin. The periodic Ambrosetti-Prodi problem for nonlinear perturbations of the p Laplacian. J. Eur. Math. Soc. 8 (2006), 375-388.
5 R. Ortega and A. M. Robles-Pérez. A maximum principle for periodic solutions of the telegraph equation. J. Math. Analysis Applic. 221 (1998), 625-651.
6 R. Ortega and A. M. Robles-Pérez. A duality theorem for periodic solutions of a class of second-order evolution equations. J. Diff. Eqns 172 (2001), 409-444.

[^0]: *Dedicated to Jean Mawhin on his 65th birthday.

