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Abstract. The existence, non-existence and multiplicity of solutions to
periodic boundary value problems

(φ(u′))′ + g(u) = e(t) + s, u(0) − u(T ) = 0 = u′(0) − u′(T ),

is discussed, where φ : (−a, a) → R or φ : R → (−a, a) is an increasing
homeomorphism such that φ(0) = 0 and 0 < a ≤ ∞. The nonlinear term g
is assumed to be bounded, positive and g(±∞) = 0.
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1 Introduction and main results

Consider nonlinear second order differential equations with periodic boundary
conditions of the form

u′′ + g(u) = e(t) + s, u(0) − u(T ) = 0 = u′(0) − u′(T ), (1)

where g : R → R, e : [0, T ] → R are continuous functions and s ∈ R is a parameter.
Assume that the following assumptions are satisfied.

(H1)
∫ T

0 e(t)dt = 0.

(H2) g(u) > 0 for all u ∈ R.
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(H3) limu→±∞ g(u) = 0.

(H4) There isM > 0 such that |G(u)| ≤ M for all u ∈ R, whereG(u) =
∫ u

0 g(t)dt.

The main result in [8] is the following one, proved using critical point theory and
the method of upper and lower solutions.

Theorem If conditions (H1)-(H4) hold, there exists s∗(e) > 0 such that problem
(1) has at least one solution if and only if s ∈ (0, s∗(e)].

In this paper we consider periodic boundary value problems of the form

(φ(u′))′ + g(u) = e(t) + s, u(0) − u(T ) = 0 = u′(0) − u′(T ), (2)

where φ : (−a, a) → R or φ : R → (−a, a) is an increasing homeomorphism
such that φ(0) = 0 and 0 < a ≤ +∞. By solution of (2) we mean a function
u ∈ C1([0, T ]) such that φ ◦ u′ ∈ C1([0, T ]) and which verifies (2).

We first consider the case where φ : (−a, a) → R. When a = +∞, a typical
example is the p-Laplacian operator for which φ(v) = |v|p−2v for some p > 1.
Ward’s situation corresponds to p = 2. When a < +∞, a typical example is
φ(v) = v√

1−v2 , associated to the acceleration in special relativity. We prove the
following result.

Theorem 1 If φ : (−a, a) → R with 0 < a ≤ +∞ and conditions (H1)-(H3) hold,
there exists s∗(e) ∈ (0, supR g] such that problem (2) has zero, at least one or at
least two solutions according to s /∈ (0, s∗(e)], s = s∗(e) or s ∈ (0, s∗(e)).

This theorem not only extends Ward’s one to a more general class of
problems, but, even in the classical case, improves it by suppressing Assumption
(H4) and refining the conclusion.

In the case where φ : R → (−a, a) with 0 < a < +∞, for which a typical
example is the curvature operator associated to φ(v) = v√

1+v2 , Theorem 1 together
with some a priori estimates imply the following result, where the usual maximum
norm is denoted by || · ||∞.
Theorem 2 If φ : R → (−a, a) with 0 < a < +∞, if conditions (H1)-(H3) hold
and if

||e||∞ ≤ ||g||∞ <
a

2T
,

there exists s∗(e) ∈ (0, supR g] such that problem (2) has zero, at least one or at
least two solutions according to s /∈ (0, s∗(e)], s = s∗(e) or s ∈ (0, s∗(e)).

In contrast to Ward’s approach, we use Leray-Schauder degree techniques
[4]. The existence of a second solution is proved using an idea from [5], which
combines degree and lower and upper solutions. We use also the existence of a
continuum of solutions for a periodic boundary value problem associated to (2).
The idea of such a continuum comes from [1].
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2 Notation and auxiliary results

In this section φ : (−a, a) → R denotes an increasing homeomorphism such that
φ(0) = 0 and 0 < a ≤ +∞.

Let C denote the Banach space of continuous functions on [0, T ] endowed
with the uniform norm ‖ · ‖∞, C1 denote the Banach space of continuously dif-
ferentiable functions on [0, T ], equipped with the norm ‖u‖ = ‖u‖∞ + ‖u′‖∞. We
consider its closed subspace

C1
# = {u ∈ C1 : u(0) = u(T ), u′(0) = u′(T )},

and denote corresponding open balls of center 0 and radius r by Br. We denote
by P,Q : C → C the continuous projectors defined by

P,Q : C → C, Pu(t) = u(0), Qu(t) =
1
T

∫ T

0
u(τ) dτ (t ∈ [0, T ]),

and define the continuous linear operator H : C → C1 by

Hu(t) =
∫ t

0
u(τ) dτ (t ∈ [0, T ]).

If u ∈ C, we write

u+ = max{u, 0}, u− = max{−u, 0}.
A technical result from [2, 3] is needed for the construction of the equivalent

fixed point problems.

Proposition 1 For each h ∈ C, there exists a unique α := Qφ(h) ∈ Range h
such that ∫ T

0
φ−1(h(t) − α) dt = 0.

Moreover, the function Qφ : C → R is continuous.

The following fixed point reformulation of periodic boundary value problems
like (2) is taken from [2, 3].

Proposition 2 Assume that F : C1 → C is continuous and takes bounded sets
into bounded sets. Then u is a solution of the abstract periodic problem

(φ(u′))′ = F (u), u(0) − u(T ) = 0 = u′(0) − u′(T )

if and only if u ∈ C1
# is a fixed point of the operator M# defined on C1

# by

M#(u) = Pu+QF (u) +H ◦ φ−1 ◦ (I −Qφ) ◦ [H(I −Q)F ](u).

Furthermore, M# is completely continuous on C1
#.
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Let us decompose any u ∈ C1
# in the form

u = u+ ũ (u = u(0), ũ(0) = 0),

and let

C̃1
# = {u ∈ C1

# : u(0) = 0}.

Lemma 1 Assume that F : C1 → C is continuous and has bounded range. Then,
(u, ũ) ∈ R × C̃1

# is a solution of the problem

(φ(ũ′))′ = F (u+ ũ) − 1
T

∫ T

0
F (u+ ũ)(t) dt (3)

if and only if

ũ = H ◦ φ−1 ◦ (I −Qφ) ◦ [H(I −Q)F ](u+ ũ) =: F̃ (u, ũ).

Furthermore, the set of the solutions (u, ũ) ∈ R × C̃1
# of problem (3) contains a

continuum C whose projection on R is R and projection on C̃1
# is contained in an

open ball Bρ.

Proof. The fixed point reformulation of (3) follows from Proposition 2. Let m ∈ R

be a constant such that

||F (u)||∞ ≤ m for all u ∈ C1.

It follows that there is ρ > 0 such that for each (u, ũ) ∈ R × C̃1
#, we have

‖F̃ (u, ũ)‖ = ‖F̃ (u, ũ)‖∞ + ‖(F̃ (u, ũ))′‖∞ < ρ. (4)

It follows from (4) that, for each u ∈ R, any possible fixed point ũ of F̃ (u, ·) is
such that

‖ũ‖ < ρ. (5)

Furthermore, for each λ ∈ [0, 1], each possible fixed point ũ of

F̃(λ, ũ) := H ◦ φ−1 ◦ (I −Qφ) ◦ [λH(I −Q)F ](ũ)

satisfies, for the same reasons, inequality (5), which implies that

dLS [I − F̃ (0, ·), Bρ, 0] = dLS [I − F̃(1, ·), Bρ, 0] (6)

= dLS [I − F̃(0, ·), Bρ, 0] = dLS [I,Bρ, 0] = 1.

Relations (5), (6) and Theorem 1.2 in [6] or Lemma 2.3 in [7] then imply the
existence of C. �
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We finally need some concepts and results from the method of lower and
upper solutions taken from [2, 3]. Consider the periodic boundary value problem

(φ(u′))′ = f(t, u), u(0) − u(T ) = 0 = u′(0) − u′(T ). (7)

where f : [0, T ] × R → R is a continuous function.

Definition 1 A strict lower solution α (resp. strict upper solution β) of (7) is a
function α ∈ C1 such that ‖α′‖∞ < a, φ(α′) ∈ C1, α(0) = α(T ), α′(0) ≥ α′(T )
(resp. β ∈ C1, ‖β′‖∞ < a, φ(β′) ∈ C1, β(0) = β(T ), β′(0) ≤ β′(T )) and

(φ(α′(t)))′ > f(t, α(t)) (resp. (φ(β′(t)))′ < f(t, β(t)))

for all t ∈ [0, T ].

Proposition 3 If (7) has a strict lower solution α and a strict upper solution β
such that α(t) ≤ β(t) for all t ∈ [0, T ], then problem (7) has a solution u such that
α(t) < u(t) < β(t) for all t ∈ [0, T ]. Moreover,

dLS [I −Mf
#,Ω

r
α,β , 0] = −1,

where

Ωr
α,β = {u ∈ C1

# : α(t) < u(t) < β(t) for all t ∈ [0, T ], ‖u′‖∞ < r},

Mf
# is the fixed point operator associated to (7) and r is sufficiently large.

3 Proof of Theorem 1

Let us return to problem (2). Consider

Sj = {s ∈ R : (2) has at least j solutions } (j ≥ 1).

Lemma 2 If s ∈ S1, then 0 < s ≤ ||g||∞.
Proof. Assumptions (H2) and (H3) imply that g is bounded and 0 < g(u) ≤ ||g||∞
for all u ∈ R. Hence, if u is a solution of (2) then, using (H1), it follows that

1
T

∫ T

0
g(u(t))dt = s, (8)

and 0 < s ≤ ||g||∞. �

For s ∈ R, we define the continuous nonlinear operator Ns : C1 → C by

Ns(u)(t) = e(t) + s− g(u(t)) (t ∈ [0, T ]).
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Using Proposition 2, it follows that u ∈ C1
# is a solution of (2) if and only if

u = Pu+QNs(u) +H ◦ φ−1 ◦ (I −Qφ) ◦ [H(I −Q)Ns](u) =: G(s, u),

and the nonlinear operator G(s, ·) : C1
# → C1

# is completely continuous.
Let M : C1 → C be the continuous mapping with bounded range defined by

M(u)(t) = e(t) − g(u(t)) (t ∈ [0, T ]),

and M̃ : R × C̃1
# → C̃1

# be the completely continuous operator defined by

M̃(u, ũ) = H ◦ φ−1 ◦ (I −Qφ) ◦ [H(I −Q)M ](u+ ũ).

If u is a solution of (2), then (8) holds and ũ = M̃(u, ũ). Reciprocally, if (u, ũ) ∈
R × C̃1

# is such that ũ = M̃(u, ũ), then u = u + ũ is a solution of (2) with

s = 1
T

∫ T

0 g(u(t))dt.
Using Lemma 1, we deduce the following useful result.

Lemma 3 The set of the solutions (u, ũ) ∈ R × C̃1
# of problem

(φ(ũ′))′ + g(u+ ũ) = e(t) +
1
T

∫ T

0
g(u+ ũ(t)) dt (9)

contains a continuum C whose projection on R is R and projection on C̃1
# is

contained in an open ball Bρ.

Let γ : R × C̃1
# → R be the continuous function defined by

γ(u, ũ) =
1
T

∫ T

0
g(u+ ũ(t)) dt.

Lemma 4 S1 �= ∅.

Proof. Let (u, ũ) ∈ C. Then u = u+ ũ is a solution of (2) with s = γ(u, ũ). �

Let us consider
s∗(e) = supS1.

Lemma 5 We have that 0 < s∗(e) ≤ ||g||∞ and s∗(e) ∈ S1.

Proof. The first assertion follows from Lemma 2. Let {sn} be a sequence belonging
to S1 which converges to s∗(e). Let un = un + ũn be a solution of (2) with s =
sn = γ(un, ũn). It follows that ũn = M̃(un, ũn) and {ũn} belongs to Bρ. Hence,
if up to a subsequence un → ±∞, then using (H3) it follows that γ(un, ũn) → 0,
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which means that s∗(e) = 0, contradiction. We have proved that {(un, ũn)} is
a bounded sequence in R × C̃1

#. Because M̃ is completely continuous, we can

assume, passing to a subsequence, that M̃(un, ũn) → ũ and un → u. We deduce
that ũ = M̃(u, ũ), γ(u, ũ) = s∗(e) and u is a solution of (2) with s = s∗(e). �

Arguing as in the proof of Lemma 5 we deduce the following a priori estimate
result.

Lemma 6 Let 0 < s1 < s∗(e). Then, there is ρ′ > 0 such that any possible
solution u of (2) with s ∈ [s1, s∗(e)] belongs to Bρ′ .

Lemma 7 We have (0, s∗(e)) ⊂ S2.

Proof. Let s1, s2 ∈ R such that 0 < s1 < s∗(e) < s2. Using Lemma 2, Lemma 6
and the invariance property of Leray-Schauder degree, it follows that there is ρ′ >
0 sufficiently large such that dLS [I−G(s, ·), Bρ′ , 0] is well defined and independent
of s ∈ [s1, s2]. However, using Lemma 2 we deduce that u − G(s2, u) �= 0 for all
u ∈ C1

#. This implies that dLS [I − G(s2, ·), Bρ′ , 0] = 0, so that
dLS [I − G(s1, ·), Bρ′ , 0] = 0 and, by excision property of Leray-Schauder degree,

dLS [I − G(s1, ·), Bρ′′ , 0] = 0 if ρ′′ ≥ ρ′. (10)

Let u∗ be a solution of (2) with s = s∗(e) (using Lemma 5). Then, u∗ is a strict
lower solution of (2) with s = s1. Using Lemma 3 and (H3), there is (u∗, ũ∗) ∈ C
such that u∗ = u∗ + ũ∗ > u∗ on [0, T ] and γ(u∗, ũ∗) < s1. It follows that u∗ is an
upper solution of (2) with s = s1. So, using Proposition 3, we have that

dLS [I − G(s1, ·),Ωr
u∗,u∗ , 0] = −1, (11)

for some r > 0, and (2) has a solution in Ωr
u∗,u∗ . Taking ρ′′ sufficiently large and

using (10) and (11), we deduce from the additivity property of Leray-Schauder
degree that

dLS [I − G(s1, ·), Bρ′′\Ωr
u∗,u∗ , 0] = dLS [I − G(s1, ·), Bρ′′ , 0]

−dLS [I − G(s1, ·),Ωr
u∗,u∗ , 0] = −dLS [I − G(s1, ·),Ωr

u∗,u∗ , 0] = 1,

and (2) with s = s1 has a second solution in Bρ′′ \ Ωr
u∗,u∗ . �

Proof of Theorem 1. The conclusion of Theorem 1 follows from Lemmas 2, 5
and 7. �

Remark 1 When φ : (−a, a) → R and 0 < a < +∞, it follows from the version
of the method of lower and upper solutions given in [3] that the proof given here
remains valid for the more general problem

(φ(u′))′ + g(u, u′) = e(t) + s, u(0) − u(T ) = 0 = u′(0) − u′(T ),

when (H2) and (H3) are replaced by
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(H2’) g(u, v) > 0 for all (u, v) ∈ R
2.

(H3’) limu→±∞ g(u, v) = 0 uniformly in v ∈ (−a, a).

Example 1 Let e be a continuous function on [0, T ] such that
∫ T

0 e(t)dt = 0. If
b > 0 then, from Theorem 1, there is s∗ > 0 such that the periodic boundary
value problem

(|u′|p−2u′)′ +
b

1 + |u| = e(t) + s, u(0) − u(T ) = 0 = u′(0) − u′(T ),

has zero, at least one or at least two solutions according to s /∈ (0, s∗], s = s∗ or
s ∈ (0, s∗).

Notice that, even for p = 2, Ward result does not apply because (H4) is not
satisfied.

Example 2 Let e be a continuous function on [0, T ] such that
∫ T

0 e(t)dt = 0. If
b > 0 and c ≥ 0 then, from Remark 1, there is s∗ > 0 such that the periodic
boundary value problem(

u′
√

1 − u2

)′
+
cu

′4 + b

1 + |u| = e(t) + s, u(0) − u(T ) = 0 = u′(0) − u′(T ),

has zero, at least one or at least two solutions according to s /∈ (0, s∗], s = s∗ or
s ∈ (0, s∗).

4 Proof of Theorem 2

To deal with the case where φ : R → (−a, a) (0 < a < +∞) is an increasing
homeomorphism such that φ(0) = 0 and prove Theorem 2, we use a modification
argument introduced in [2], which requires the obtention of some a priori bounds
for the possible solutions.

Lemma 8 Let ψ : R → (−a, a) be an increasing homeomorphism such that
ψ(0) = 0 and 0 < a ≤ ∞. Consider the periodic boundary value problem

(ψ(u′))′ + g(u) = e(t) + s, u(0) − u(T ) = 0 = u′(0) − u′(T ), (12)

where g : R → R, e : [0, T ] → R are continuous functions and s ∈ R is a
parameter. Assume that (H1)-(H3) hold and that

||e||∞ ≤ ||g||∞ <
a

2T
. (13)

Then, any possible solution of (12) satisfies the a priori estimate

||u′||∞ ≤ m := max{|ψ−1(±2T ||g||∞)|}.
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Proof. Let u be a solution of (12). As in Lemma 2 we have that (8) holds and
0 < s ≤ ||g||∞. It follows that we have

e(t) − g(u) + s ≤ e(t) + ||g||∞ for all (t, u) ∈ [0, T ] × R,

which together with (13) imply that

|e(t) − g(u) + s| ≤ e(t) − g(u) + s+ 2[e(t) + ||g||∞]+

= 3e(t) − g(u) + s+ 2||g||∞ (14)

for all (t, u) ∈ [0, T ] × R. Using (8), (12), (H1) and (14) it follows that∫ T

0
|(ψ(u′(t)))′|dt ≤ 2T ||g||∞. (15)

Because u ∈ C1 is such that u(0) = u(T ), there exists ξ ∈ [0, T ] such that
u′(ξ) = 0, which implies ψ(u′(ξ)) = 0 and

ψ(u′(t)) =
∫ t

ξ

(ψ(u′(t)))′ dt (t ∈ [0, T ]).

Using the equality above and (15) we have that

|ψ(u′(t))| ≤ 2T ||g||∞ (t ∈ [0, T ]),

and hence ‖u′‖∞ ≤ m. �

Proof of Theorem 2. Let ψ : R → R be a homeomorphism which coincides
with φ on [−(m+ 1),m+ 1]. Using Lemma 8 it follows that u is a solution of (2)
if and only if u is a solution of (12). Now the result follows from Theorem 1. �

Example 3 Let e be a continuous function on [0, T ] such that
∫ T

0 e(t)dt = 0. If
||e||∞ ≤ b < 1

2T then, from Theorem 2, there is s∗ > 0 such that the periodic
boundary value problem(

u′
√

1 + u2

)′
+ b exp(−u2) = e(t) + s, u(0) − u(T ) = 0 = u′(0) − u′(T ),

has zero, at least one or at least two solutions according to s /∈ (0, s∗],
s = s∗ or s ∈ (0, s∗).

Added in proof. When this paper was under printing, we learned that the
multiplicity result for the special case of equation (1) had already been proved by
J. Angel Cid and L. Sanchez in J. Math. Anal. Appl. 288 (2003), 349–364, using
a combinatin of Ward’s existence result and lower-upper solutions technique of De
Coster-Tarallo.
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