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Abstract. Systems of differential equations of the form

(φ(u′))′ = f(t, u, u′)

with φ a homeomorphism of the ball Ba ⊂ Rn onto Rn are considered,
under various boundary conditions on a compact interval [0, T ]. For non-
homogeneous Cauchy, terminal and some Sturm–Liouville boundary condi-
tions including in particular the Dirichlet–Neumann and Neumann–Dirichlet
conditions, existence of a solution is proved for arbitrary continuous right-
hand sides f. For Neumann boundary conditions, some restrictions upon f
are required, although, for Dirichlet boundary conditions, the restrictions are
only upon φ and the boundary values. For periodic boundary conditions, both
φ and f have to be suitably restricted. All the boundary value problems con-
sidered are reduced to finding a fixed point for a suitable operator in a space
of functions, and the Schauder fixed point theorem or Leray–Schauder degree
are used. Applications are given to the relativistic motion of a charged particle
in some exterior electromagnetic field.
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1. Introduction

In this note, we extend some existence results given in [2] for Dirichlet and Neu-
mann problems for scalar quasilinear equations of the form

(φ(u′))′ = f(t, u, u′),

when φ : ]−a, a[→ R is an increasing homeomorphism such that φ(0) = 0, to the
case of systems of such equations, and other boundary conditions.
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For the Cauchy boundary conditions on [0, T ]

u(0) = A, φ[u′(0)] = B,

the terminal boundary conditions on [0, T ]

u(T ) = A, φ[u′(T )] = B,

and the mixed Sturm–Liouville boundary conditions

Cu(0)−Dφ[u′(0)] = A, Eu(T )−Fφ[u′(T )] = B,

with the (n × n)-matrices C = I, D = O and F invertible, or E = I, F = O
and D invertible, we prove the existence of at least one solution for a general
homeomorphism φ and any right-hand member (f,A,B) (Theorems 1–4). This
contains as special cases the Dirichlet–Neumann boundary conditions (C = −F =
I, D = E = O),

u(0) = A, φ[u′(T )] = B

and the Neumann–Dirichlet boundary conditions (C = F = O, E = −D = I),

φ[u′(0)] = A, u(T ) = B

(Corollaries 1–4).
For the Neumann boundary conditions

φ[u′(0)] = A, φ[u′(T )] = B,

we prove the existence of at least one solution for a general homeomorphism φ and
some conditions upon the right-hand member (f,A,B) (Theorem 5).

For the Dirichlet boundary conditions

u(0) = A, u(T ) = B,

we prove the existence of at least one solution for homeomorphisms φ = ∇Φ,
with Φ : Ba → ]−∞, 0] strictly convex, any f and A,B such that |A − B| < aT
(Theorem 6).

Finally, for the periodic boundary conditions

u(0)− u(T ) = 0 = u′(0)− u′(T ),

we prove the existence of at least one solution for the class of homeomorphisms
φ = ∇Φ of the Dirichlet case, and the class of f introduced in the homogeneous
Neumann case (Theorem 7).

In all cases, fixed point problems equivalent to the various boundary value
problems are constructed, and studied using the Schauder fixed point theorem or
Leray–Schauder degree. The reason in the difference of assumptions for φ between
the Dirichlet or periodic boundary conditions and the other ones lies in the fact
that the construction of the fixed point operator in those cases requires the unique
solvability of some finite-dimensional system, which is proved using convex analysis
(Lemma 2). It is likely that the class of admissible φ could be increased by using
monotone operator theory [4].
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Applications are given to 3-dimensional systems of the form(
r′(t)√

1− |r′(t)|2

)′
= − e

2

~c
[Eext(t, r(t)) + r′(t)×Bext(t, r(t))],

which is a good approximation for the motion of a charged particle with high speed
but gentle acceleration (Theorem 8). See [3, 6], and also [7] for the case of constant
Eext and Hext.

2. Notations and general assumptions

In Rn, we denote the usual inner product by 〈·, ·〉 and the corresponding Euclidian
norm by | · |. We denote the usual norm in L1[(0, T ),Rn] by ‖ · ‖1. Let C denote
the Banach space of continuous functions from [0, T ] into Rn, endowed with the
uniform norm ‖ · ‖∞, C1 the Banach space of continuously differentiable functions
from [0, T ] into Rn, equipped with the norm ‖u‖ = ‖u‖∞ + ‖u′‖∞, and Br the
open ball of centre 0 and radius r in any normed space.

We introduce the continuous linear operator H : C → C1 defined by

Hu(t) =
∫ t

0

u(s) ds (t ∈ [0, T ]), (1)

and the continuous linear operator K : C → C1 defined by

Ku(t) = −
∫ T

t

u(s) ds (t ∈ [0, T ]). (2)

We will use the following general assumptions:
(Hφ) φ is a homeomorphism from Ba ⊂ Rn onto Rn.
(HF ) F : C1 → C is continuous and takes bounded sets into bounded sets.
(Hf ) f : [0, T ]× Rn × Rn → Rn is continuous.
To such a continuous function f , we associate its Nemytskĭı operator Nf : C1 → C
defined by

Nf (u)(t) = f(t, u(t), u′(t)) (t ∈ [0, T ]). (3)

It is easy to show that Nf is continuous and takes bounded sets into bounded sets.

3. Cauchy and terminal boundary conditions

Given A,B ∈ Rn, let us consider the Cauchy problem on [0, T ]

(φ(u′))′ = f(t, u, u′) (t ∈ [0, T ]), u(0) = A, φ[u′(0)] = B. (4)

Notice that the initial conditions can be written in the more classical form

u(0) = A, u′(0) = C ∈ Ba,

with C = φ−1(B).
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The following result shows that the Cauchy problem on [0, T ] is solvable for
any f, A and B.

Theorem 1. If Assumptions (Hφ) and (Hf ) hold, then problem (4) has at least one
solution.

Proof. Problem (4) is equivalent to

φ(u′) = B +HNf (u), u(0) = A,

i.e. to
u′ = φ−1 ◦ [B +HNf (u)], u(0) = A,

i.e. to the fixed point problem

u = A+H ◦ φ−1 ◦ [B +HNf (u)] =: MC(u).

It is easy to see that MC is a completely continuous mapping of C1 into itself, and
that, for each u ∈ C1,

‖(MC(u))′‖∞ = ‖φ−1 ◦ [B +HNf (u)]‖∞ < a.

Hence,
‖MC(u)‖∞ ≤ |A|+ T‖M ′C(u)‖∞ < |A|+ aT,

and MC maps C1 into its ball B|A|+a(T+1). The existence of a fixed point follows
from the Schauder fixed point theorem. �

Theorem 1 implies in particular that if f is defined for all t ∈ R, the solution
of the Cauchy problem never explodes in finite time.

Remark 1. Problem (4) can be written in the equivalent normal form

u′ = φ−1(v), v′ = f [t, u, φ−1(v)], u(0) = A, v(0) = B, (5)

from which one can deduce in a standard way that the Cauchy problem (4) is
locally uniquely solvable if φ−1 and f(t, ·, ·) are locally Lipschitzian.

A similar existence result holds for the terminal problem on [0, T ]

(φ(u′))′ = f(t, u, u′) (t ∈ [0, T ]), u(T ) = A, φ[u′(T )] = B. (6)

Theorem 2. If Assumptions (Hφ) and (Hf ) hold, then problem (6) has at least one
solution.

Proof. Problem (6) is equivalent to

φ(u′) = B +KNf (u), u(T ) = A,

i.e. to
u′ = φ−1 ◦ [B +KNf (u)], u(T ) = A,

i.e. to the fixed point problem

u = A+K ◦ φ−1 ◦ [B +KNf (u)] =: MT (u).

Again MT is a completely continuous mapping of C1 into itself, which maps C1

into B|A|+a(T+1). The existence of a fixed point follows from the Schauder fixed
point theorem. �
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4. Some Sturm–Liouville boundary conditions

Given A,B ∈ Rn, and (n×n)-matrices C, D, E and F , let us consider the Sturm–
Liouville problem

(φ(u′))′ = f(t, u, u′) (t ∈ [0, T ]),

Cu(0)−Dφ[u′(0)] = A, Eu(T )−Fφ[u′(T )] = B.
(7)

Let us introduce the following assumptions:

(SL1) C and F are invertible,
(SL2) D and E are invertible,

and define Ωj+1 := {u ∈ C1 : |u′(jT )| < a} (j = 0, 1).

Proposition 1. If Assumptions (Hφ), (Hf ) and (SL1) hold, then u is a solution to
problem (7) if and only if u ∈ Ω1 is a fixed point of the operator M1 : Ω1 → C1

defined by

M1(u) := C−1{Dφ[u′(0)] +A}+H ◦ φ−1 ◦ {F−1[Eu(T )−B] +KNf (u)}.

If Assumptions (Hφ), (Hf ) and (SL2) hold, then u is a solution to problem (7) if
and only if u ∈ Ω2 is a fixed point of the operator M2 : Ω2 → C1 defined by

M2(u) := E−1{Fφ[u′(T )] +B}+K ◦ φ−1 ◦ {D−1[Cu(0)−A] +HNf (u)}.

Furthermore, M1 and M2 are completely continuous, and

‖(Mj)′(u)‖∞ < a (8)

for all u ∈ Ωj (j = 1, 2).

Proof. Assume first that Assumption (SL1) holds. Problem (7) is equivalent to

φ(u′) = F−1[Eu(T )−B] +KNf (u), Cu(0)−Dφ[u′(0)] = A,

i.e. to

u′ = φ−1 ◦ [F−1[Eu(T )−B] +KNf (u)], Cu(0)−Dφ[u′(0)] = A,

i.e. to

u = C−1{Dφ[u′(0)] +A}+H ◦ φ−1 ◦ [F−1[Eu(T )−B] +KNf (u)]

=: M1(u).

It is easy to see that M1 is a completely continuous mapping of Ω1 into itself, and
that, for each u ∈ Ω1,

‖(M1(u))′‖∞ = ‖φ−1 ◦ [F−1[Eu(T )−B] +KNf (u)]‖∞ < a.

The case where Assumption (SL2) holds is similar and left to the reader. �

Proposition 1 allows us to prove existence theorems for any (f,A,B) in the
case of some particular Sturm–Liouville boundary conditions.
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Theorem 3. If Assumptions (Hφ) and (Hf ) hold, and if F is invertible, then the
problem

(φ(u′))′ = f(t, u, u′) (t ∈ [0, T ]),

u(0) = A, Eu(T )−Fφ[u′(T )] = B,
(9)

has at least one solution.

Proof. Assumption (SL1) holds and the corresponding fixed point operator M1

reduces here to the operator MDSL defined by

MDSL(u) := A+H ◦ φ−1 ◦ {F−1[Eu(T )−B] +KNf (u)}. (10)

It follows from Proposition 1 that MDSL maps C1 into the ball B|A|+(1+T )a, and
the existence of a fixed point follows from Schauder’s fixed point theorem. �

The special case where E = O and F = −I corresponds to the Dirichlet–
Neumann conditions.

Corollary 1. If Assumptions (Hφ) and (HF ) hold, then the problem

(φ(u′))′ = F (u), u(0) = A, φ[u′(T )] = B, (11)

has at least one solution.

Corollary 2. If Assumptions (Hφ) and (Hf ) hold, then the problem

(φ(u′))′ = f(t, u, u′), u(0) = A, φ[u′(T )] = B,

has at least one solution.

Theorem 4. If Assumptions (Hφ) and (Hf ) hold, and if D is invertible, then the
problem

(φ(u′))′ = f(t, u, u′) (t ∈ [0, T ]),

Cu(0)−Dφ[u′(0)] = A, u(T ) = B,
(12)

has at least one solution.

Proof. It is similar to that of Theorem 3 and left to the reader. The corresponding
fixed point operator is given by

MSLD(u) := B +K ◦ φ−1 ◦ {D−1[Cu(0)−A] +HNf (u)}. �

The special case where C = O and D = −I corresponds to the Neumann–
Dirichlet conditions.

Corollary 3. If Assumptions (Hφ) and (HF ) hold, then the problem

(φ(u′))′ = F (u), φ[u′(0)] = A, u(T ) = B, (13)

has at least one solution.

Corollary 4. If Assumptions (Hφ) and (Hf ) hold, then the problem

(φ(u′))′ = f(t, u, u′), φ[u′(0)] = A, u(T ) = B,

has at least one solution.
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5. Neumann boundary conditions

The counterexample (with n = 1)

(φ(u′))′ = 0, φ[u′(0)] = 0, φ[u′(T )] = 1,

which has no solution, shows that no result corresponding to Corollary 1 or 3 exists
for the Neumann boundary conditions

φ[u′(0)] = A, φ[u′(T )] = B.

To construct the equivalent fixed point problem, we first study the simple system

(φ(u′))′ = e(t), φ[u′(0)] = A, φ[u′(T )] = B. (14)

with e ∈ C and φ satisfying Assumption (Hφ). We define the linear projectors P
and Q on C by

Pu = u(0), Qu =
1
T

∫ T

0

u(t) dt. (15)

We also introduce the linear mapping

Q̂ : C × R2 → C × R2, (u,A,B) 7→ (Qu− T−1(B −A), 0, 0). (16)

We have

Q̂2(u,A,B) = Q̂(Qu− T−1(B −A), 0, 0) = (Q(Qu− T−1(B −A)), 0, 0)

= (Qu− T−1(B −A), 0, 0) = Q̂(u,A,B),

and hence Q̂ is a projector.
The elementary proof of the following proposition is entirely similar to the

one given for the scalar case in [2], and will not be repeated here.

Proposition 2. If Assumption (Hφ) holds, then problem (14) has a solution if and
only if

Qe = T−1(B −A), (17)

i.e. if and only if

Q̂(e,A,B) = 0, (18)

in which case the solutions of (14) are given by the family

u = Pu+H ◦ φ−1 ◦ [A+He]. (19)

Remark 2. Proposition 2 means that (e,A,B) belongs to the range of the nonlinear
mapping u 7→ [(φ(u′))′, φ[u′(0)], φ[u′(T )]] if and only if Q̂(e,A,B) = 0.

Proposition 3. If Assumptions (Hφ) and (HF ) hold, then u is a solution of the
problem

(φ(u′))′ = F (u), φ[u′(0)] = A, φ[u′(T )] = B, (20)

if and only if u ∈ C1 is a fixed point of the operator MN defined on C1 by

MN (u) := Pu+Q[F (u)− T−1(B −A)] +H ◦ φ−1 ◦ [H(I −Q)F (u) + cA,B ],
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where

cA,B(t) :=
(

1− t

T

)
A+

t

T
B (t ∈ [0, T ]). (21)

Furthermore, ‖(MN (u))′‖∞ < a for all u ∈ C1, and MN is completely continuous.

Proof. Problem (20) can be written in the equivalent form

(φ(u′))′ = F (u)−Q[F (u)− T−1(B −A)], (22)

Q[F (u)− T−1(B −A)] = 0. (23)

Now,
Q{F (u)−Q[F (u)− T−1(B −A)]} = T−1(B −A),

so that, by Proposition 2, equation (22) is equivalent to

u = Pu+H ◦ φ−1 ◦ {A+H[F (u)−QF (u) + T−1(B −A)]},

which can be written as

u− Pu−H ◦ φ−1 ◦ [H(I −Q)F (u) + cA,B ] = 0. (24)

As the left-hand members of (23) and (24) take values in direct summands of C1,
they can be written as the single equation

u− Pu−Q[F (u)− T−1(B −A)]−H ◦ φ−1 ◦ [H(I −Q)F (u) + cA,B ] = 0. �

Consider now the Neumann boundary value problems

(φ(u′))′ = f(t, u, u′), φ[u′(0)] = A, φ[u′(T )] = B. (25)

In order to apply Leray–Schauder degree to the equivalent fixed point operator,
we introduce, for λ ∈ [0, 1], the family of abstract nonlinear Neumann boundary
value problems

[(φ(u′))′, φ[u′(0)], φ[u′(T )]] = λ[Nf (u), A,B] + (1− λ)Q̂[Nf (u), A,B], (26)

where Q̂ is defined in (16), or, in a more explicit form,

(φ(u′))′ = λNf (u) + (1− λ)[QNf (u)− T−1(B −A)],
φ[u′(0)] = λA, φ[u′(T )] = λB.

Notice that (26) coincides with (25) for λ = 1. Furthermore, if u is a solution of
(26), then, applying Q̂ to both members and using Remark 2, we see that

0 = λQ̂[Nf (u), A,B] + (1− λ)Q̂[Nf (u), A,B] = Q̂[Nf (u), A,B]

and hence (26) can be written equivalently as

[(φ(u′))′, φ[u′(0)], φ[u′(T )]] = λ[Nf (u), A,B],

Q̂[Nf (u), A,B] = 0,
(27)
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or, in a more explicit way,

(φ(u′))′ = λNf (u), (28)
φ[u′(0)] = λA, φ[u′(T )] = λB,

0 = QNf (u)− T−1(B −A). (29)

For each λ ∈ [0, 1], the nonlinear operator MN on C1 associated to (26) by
Proposition 3 is the operator M(λ, ·), where M is defined on [0, 1]× C1 by

M(λ, u) = Pu+Q{λNf (u) + (1− λ)QNf (u)− (1− λ)T−1(B −A)}
−T−1(λB − λA)
+H ◦ φ−1 ◦ {H(I −Q)[λNf (u) + (1− λ)QNf (u)

− (1− λ)T−1(B −A)] + λcA,B}
= Pu+QNf (u)− T−1(B −A)

+H ◦ φ−1 ◦ [λH(I −Q)Nf (u) + λcA,B ], (30)

where cA,B is defined in (21). Using Arzelà–Ascoli’s theorem it is not difficult to
see that M : [0, 1]× C1 → C1 is completely continuous.

The first lemma gives a priori bounds for the possible fixed points. We in-
troduce the following assumption:

(Hf,A,B) There exist R > 0 such that∫ T

0

f(t, u(t), u′(t)) dt 6= B −A (31)

for all u ∈ C1 satisfying mint∈[0,T ] |u(t)| ≥ R and ‖u′‖∞ < a.

Lemma 1. If Assumptions (Hφ), (Hf ) and (Hf,A,B) hold, and if (λ, u) ∈ [0, 1]×C1

is such that u =M(λ, u), then

‖u‖ < R+ a(T + 1). (32)

Proof. Let (λ, u) ∈ [0, 1]× C1 be such that u =M(λ, u). Then

u′ = [M(λ, u)]′ = φ−1 ◦ [λH(I −Q)Nf (u) + λcA,B ],

so that

‖u′‖∞ < a. (33)

Then taking t = 0 we get QNf (u)− T−1(B −A) = 0, i.e.∫ T

0

f(t, u(t), u′(t)) dt = B −A. (34)

From (33), (34) and (31), it follows that

min
t∈[0,T ]

|u(t)| < R, (35)
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and hence, if |u(t0)| = mint∈[0,T ] |u(t)|,

|u(t)| ≤ |u(t0)|+
∣∣∣∣∫ t

t0

|u′(s)| ds
∣∣∣∣ < R+ aT (t ∈ [0, T ]),

which, together with (33), gives (32). �

We can now prove an existence theorem for (25). We denote by dB the
Brouwer degree and by dLS the Leray–Schauder degree [5, 8], and define the map-
ping F : Rn → Rn by

F : Rn → Rn, c 7→
∫ T

0

f(t, c, 0) dt. (36)

Theorem 5. If Assumptions (Hφ), (Hf ) and (Hf,A,B) hold, then for all sufficiently
large ρ > 0,

dLS [I −M(1, ·), Bρ, 0] = (−1)ndB [F,BR, B −A].

If furthermore

dB [F,BR, B −A] 6= 0, (37)

then problem (25) has at least one solution.

Proof. It follows from Assumption (Hf,A,B) applied to constant functions c that
F (c) 6= B −A for |c| ≥ R, and hence the Brouwer degree dB [F,Bρ, B −A] is well
defined for any ρ ≥ R. LetM be the operator given by (30) and let ρ > R+a(T+1).
Lemma 1 and the homotopy invariance of Leray–Schauder degree imply that

dLS [I −M(0, ·), Bρ, 0] = dLS [I −M(1, ·), Bρ, 0]. (38)

On the other hand, we have

dLS [I −M(0, ·), Bρ, 0] = dLS [I − (P +QNf − T−1(B −A)), Bρ, 0]. (39)

But the range of the mapping

u 7→ Pu+QNf (u)− T−1(B −A)

is contained in the subspace of constant functions, isomorphic to Rn, so, using a
reduction property of Leray–Schauder degree and excision [5, 8], we obtain

dLS [I − (P +QNf − T−1(B −A)), Bρ, 0]

= dB [I − (P +QNf − T−1(B −A))|Rn , Bρ, 0]

= dB [−QNf + T−1(B −A), Bρ, 0]

= (−1)ndB [F,Bρ, B −A] = (−1)ndB [F,BR, B −A] 6= 0.

Then, from the existence property of Leray–Schauder degree, there exists u ∈ Bρ
such that u =M(1, u), which is a solution for (25). �
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Corollary 5. If n ≥ 2 and Assumptions (Hφ) and (Hf ) hold, and if there exists
R > 0 such that

〈f(t, u+ w, v)− T−1(B −A), u〉 6= 0 (40)

for all t ∈ [0, T ], |u| ≥ R, |w| < aT and |v| < a, then problem (25) has at least one
solution.

Proof. Elementary considerations show that (40) implies (Hf,A,B) and

dB [F,BR, B −A] = dB [±I,BR, B −A] = ±1. �

Example 1. If Assumption (Hφ) holds, e ∈ C, c, d ∈ R, p > 1, q ≥ 0, then the
Neumann problem

(φ(u′))′ = (c+ d|u′|q)|u|p−2u+ e(t), φ[u′(0)] = A, φ[u′(T )] = B,

has at least one solution if |c| > |d|aq.

6. A class of homeomorphisms

As we shall see, the case of Dirichlet conditions is more delicate to treat and
requires a technical lemma proved here for a special class of homeomorphisms φ.
Let us assume that

(HΦ) φ is a homeomorphism from Ba onto Rn such that φ(0) = 0, φ = ∇Φ, with
Φ : Ba ⊂ Rn → ]−∞, 0] of class C1, and strictly convex.

So, φ is strictly monotone on Ba.

If Φ∗ : Rn → R is the Legendre–Fenchel transform of Φ [9] defined by

Φ∗(v) = 〈φ−1(v), v〉 − Φ[φ−1(v)] = sup
u∈Ba

{〈u, v〉 − Φ(u)},

then Φ∗ is also strictly convex,

Φ∗(v) ≤ a|v| − inf
|v|<a

Φ ◦ φ−1 =: a|v|+ d, (41)

and, using the nonnegativity of Φ,

Φ∗(v) ≥ sup
u∈Ba

〈v, u〉 = a|v|, (42)

so that Φ∗ is coercive on Rn. Adapting the reasoning of Proposition 2.4 in [9], we
find that Φ∗ is of class C1. Hence

φ−1 = ∇Φ∗,

so that

v = ∇Φ(u) = φ(u), u ∈ Ba ⇔ u = φ−1(v) = ∇Φ∗(v), v ∈ Rn.
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Given h ∈ C and b ∈ Rn, define

F (b;h) =
∫ T

0

φ−1[h(t)− b] dt =
∫ T

0

∇bΦ∗[h(t)− b] dt

= ∇b
∫ T

0

Φ∗[h(t)− b] dt = ∇bf(b;h),

where

f(b;h) =
∫ T

0

Φ∗[h(t)− b] dt.

Lemma 2. If φ = ∇Φ, with Φ satisfying Assumption (HΦ), then, for each h ∈ C
and each e ∈ BaT ⊂ Rn, the system∫ T

0

φ−1[h(t)− b] dt = e (43)

has a unique solution b := Qφ(h, e). Moreover, Qφ : C ×BaT → Rn is continuous,
and, for each fixed e ∈ BaT , Qφ(·, e) takes bounded subsets of C into bounded
subsets of Rn.

Proof. For each b, c ∈ Rn and any λ ∈ ]0, 1[, we have

f [(1− λ)b+ λc] =
∫ T

0

Φ∗[(1− λ)(b− h(t)) + λ(c− h(t))] dt

<

∫ T

0

{(1− λ)Φ∗(b− h(t)) + λΦ∗(c− h(t))} dt

≤ (1− λ)f(b;h) + λf(c;h),

so that f(·;h) is strictly convex on Rn for each h ∈ C. Hence, F (·;h) = ∇bf(·;h)
is strictly monotone on Rn for each h ∈ C. On the other hand, using (41) and
(42), we get

aT |b| − ‖h‖1 ≤ f(b;h) ≤ T (a|b|+ d) + ‖h‖1, (44)

so that, for each h ∈ C and each e ∈ BaT ,
f(b;h)− 〈e, b〉 ≥ aT |b| − ‖h‖1 − |e| |b| = (aT − |e|)|b| − ‖h‖1

is coercive. Consequently, for each h ∈ C, f(·;h)−〈e, ·〉 admits a unique minimum
b := Qφ(h, e), which is the unique critical point of f(·;h)−〈e, ·〉. This implies that,
for each h ∈ C and each e ∈ BaT , the system

F (b;h) = e (45)

has a unique solution b = Qφ(h, e).
Let us now show that Qφ is continuous. Let (hn, en) be a sequence converging

in C×Rn to (h, e) ∈ C×BaT . Then (hn, en) is bounded. Without loss of generality,
we can assume that en ∈ Ba(|d|+T )/2. Let bn = Qφ(hn, en). Then, by convexity,

f(0;hn) ≥ f(bn;hn)− 〈∇bf(bn;hn), bn〉 = f(bn;hn)− 〈en, bn〉
≥ (aT − |en|)|bn| − ‖hn‖1 ≥ [(aT − |e|)/2]|bn| − ‖hn‖1,
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so that
|bn| ≤ [2/(aT − |e|)][‖hn‖1 + f(0;hn)]

which shows that (bn) is bounded. Passing to a subsequence if necessary, we can
assume that (bn) converges to β. From the relations∫ T

0

φ−1[hn(t)− bn] dt = en (n ∈ N),

and the dominated convergence theorem, we deduce that∫ T

0

φ−1[h(t)− β] dt = e,

i.e. by the uniqueness of the solutions, β = Qφ(h, e), a limit independent of the
subsequence. Hence

Qφ(h, e) = lim
n→∞

Qφ(hn, en),

and Qφ is continuous. Notice also that Qφ(0, 0) = 0.
Finally, given e ∈ BaT , to show that Qφ(·, e) takes bounded subsets of C into

bounded subsets of Rn, we use again convexity and (44) to obtain

f(0;h) ≥ f(b;h)− 〈∇bf(b;h), b〉 = f(b, h)− 〈e, b〉 ≥ (aT − |e|)|b| − ‖h‖1,

and hence, using again (44),

|Qφ(h, e)| = |b| ≤ (aT − |e|)−1[2T (‖h‖∞ + d)]. �

Example 2. Let us consider the C∞-mapping

Φ : B1 ⊂ Rn → R, u 7→ −
√

1− |u|2, (46)

so that
−1 ≤ Φ(u) ≤ 0 (u ∈ B1),

and

φ(u) = ∇Φ(u) =
u√

1− |u|2
(u ∈ B1). (47)

As u 7→ |u|2 is strictly convex on Rn, it follows that Φ is strictly convex on B1.
Furthermore, φ : B1 → Rn is a homeomorphism such that, for any v ∈ Rn.

φ−1(v) =
v√

1 + |v|2
= ∇Φ∗(v), (48)

where

Φ∗(v) =
√

1 + |v|2 (49)

is strictly convex and of class C∞. Hence, u 7→ u/
√

1− |u|2 satisfies Assumption
(HΦ) with a = 1.
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7. Dirichlet boundary conditions

Let φ satisfy Assumption (HΦ). To construct the fixed point operator associated
to Dirichlet boundary conditions, we follow the approach in [1], and we first study
the solvability of the forced system

(φ(u′))′ = e(t), u(0) = A, u(T ) = B, (50)

with e ∈ C, A,B ∈ Rn. We introduce the assumption

(HABT ) |B −A| < aT.

Proposition 4. If φ satisfies Assumption (HΦ), then problem (50) has a unique
solution if and only if Assumption (HABT ) holds, in which case the solution of
(50) is given by

u = A+H ◦ φ−1 ◦ [Hf −Qφ(He,B −A)], (51)

where Qφ is defined in Lemma 2.

Proof. Problem (50) is equivalent to

φ(u′) = c+He, u(0) = A, u(T ) = B,

i.e. to

u′ = φ−1(c+He), u(0) = A, u(T ) = B,

i.e. to

u = A+H ◦ φ−1(c+He), u(T ) = B. (52)

Hence one must have

A+
∫ T

0

φ−1[c+He(t)] dt = B,

i.e., using Lemma 2,

c = −Qφ(He,B −A),

which inserted in (52) gives (51). �

Remark 3. Assumption (HABT ) has a physical interpretation, if we consider the
differential system in (50) as an equation of motion where the speed is limited
by a. The maximum distance travelled in time T is aT , and hence one can only
go from A to B in time T if |B −A| < aT.

For F : C1 → C satisfying Assumption (HF ), we now construct a nonlinear
operator on C1 whose fixed points are the solutions of

(φ(u′))′ = F (u), u(0) = A, u(T ) = B. (53)
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Proposition 5. Assume that Assumptions (HΦ), (HF ) and (HABT ) hold. Then u
is a solution of problem (53) if and only if u ∈ C1 is a fixed point of the operator
MD defined on C1 by

MD(u) := A+H ◦ φ−1 ◦ [HF (u)−Qφ(HF (u), B −A)]. (54)

Furthermore,

‖(MD(u))′‖∞ < a (55)

for all u ∈ C1, and MD is completely continuous.

Proof. It is an easy consequence of Proposition 4. �

A consequence of Proposition 5 is the solvability, for any F : C1 → C satis-
fying (HF ), of the nonlinear Dirichlet problem (53). However, in contrast to the
Cauchy, terminal, Dirichlet–Neumann and Neumann–Dirichlet cases, some restric-
tion upon A and B is required, namely Assumption (HABT ).

Theorem 6. If Assumptions (HΦ), (HF ) and (HABT ) hold, then problem (53) has
at least one solution.

Proof. It suffices to prove that the operator MD defined in (54) has a fixed point.
Using (55) we also have

‖MD(u)‖∞ < |A|+ aT (u ∈ C1). (56)

Hence MD maps C1 into B|A|+(a+1)T ⊂ C1, and has at least one fixed point by
the Schauder fixed point theorem. �

Corollary 6. If Assumptions (HΦ), (Hf ) and (HABT ) hold, then the problem

(φ(u′))′ = f(t, u, u′), u(0) = A, u(T ) = B, (57)

has at least one solution.

8. Periodic boundary conditions

We now deal with the case of periodic boundary conditions, which, in some sense,
cumulates the difficulties of Dirichlet and of Neumann problems. The proofs of the
following two propositions are analogous to those given for the scalar case in [2],
and are not repeated here. We assume that φ satisfies Assumption (HΦ) and define
Q̃φ : C → C by

Q̃φ(h) = Qφ(h, 0), (58)

where Rn is identified with the subset of C consisting of constant functions.

Proposition 6. If φ satisfies Assumption (HΦ), then the problem

(φ(u′))′ = e(t), u(0)− u(T ) = 0 = u′(0)− u′(T ), (59)
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has a solution if and only if the condition∫ T

0

e(t) ds = 0 (60)

holds, in which case the solutions are given by the family

u(t) = Pu+
∫ t

0

[φ−1 ◦ (I − Q̃φ) ◦He(s)] ds (t ∈ [0, T ]).

Let C1
# = {u ∈ C1 : u(0)− u(T ) = 0 = u′(0)− u′(T )}.

Proposition 7. If Assumptions (HΦ) and (HF ) hold, then u is a solution of the
problem

(φ(u′))′ = F (u), u(0)− u(T ) = 0 = u′(0)− u′(T ),
if and only if u ∈ C1

# is a fixed point of the operator M# defined on C1
# by

M#(u) = Pu+QF (u) +H ◦ φ−1 ◦ (I − Q̃φ) ◦ [H(I −Q)F ](u).

Furthermore, ‖(M#(u))′‖∞ < a for all u ∈ C1
#, and M# is completely continuous.

The counterexample

(φ(u′))′ = 1, u(0)− u(T ) = 0 = u′(0)− u′(T ),

which has no solution, shows that no result corresponding to Theorem 6 exists for
periodic boundary conditions.

Consider the periodic boundary value problem

(φ(u′))′ = f(t, u, u′), u(0)− u(T ) = 0 = u′(0)− u′(T ), (61)

when Assumptions (HΦ) and (Hf ) hold. In order to apply Leray–Schauder degree
to the equivalent fixed point operator M#, we introduce, for λ ∈ [0, 1], the family
of periodic boundary value problems

(φ(u′))′ = λNf (u) + (1− λ)QNf (u), u(0)− u(T ) = 0 = u′(0)− u′(T ). (62)

Notice that (62) coincides with (61) for λ = 1. For each λ ∈ [0, 1], the nonlinear
operator M# on C1

# associated to (62) by Proposition 7 is the operator M(λ, ·),
where M is defined on [0, 1]× C1

# by

M(λ, u) = Pu+QNf (u) +H ◦ φ−1 ◦ (I − Q̃φ) ◦ [λH(I −Q)Nf ](u). (63)

Using Lemma 2 and Arzelà–Ascoli’s theorem it is not difficult to see that M :
[0, 1]× C1

# → C1
# is completely continuous.

The first lemma gives a priori bounds for the possible fixed points. Its proof
is entirely analogous to that of Lemma 1 and is omitted. Let us introduce the
assumption
(Hf,#) There exist R > 0 such that∫ T

0

f(t, u(t), u′(t)) dt 6= 0 (64)

for all u ∈ C1
# satisfying mint∈[0,T ] |u(t)| ≥ R and ‖u′‖∞ < a.
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Lemma 3. Assume that Assumptions (HΦ), (Hf ) and (Hf,#) hold. If (λ, u) ∈
[0, 1]× C1

# is such that u =M(λ, u), then

‖u‖ < R+ a(T + 1).

We can now prove an existence theorem for (61).

Theorem 7. If Assumptions (HΦ), (Hf ) and (Hf,#) hold, then, for all sufficiently
large ρ > 0,

dLS [I −M(1, ·), Bρ, 0] = (−1)ndB [F,BR, 0],
where F is defined in (36). If we assume furthermore that

dB [F,BR, 0] 6= 0, (65)

then problem (61) has at least one solution.

Corollary 7. If n ≥ 2 and Assumptions (HΦ) and (Hf ) hold, and if there exists
R > 0 such that

〈f(t, u+ w, v), u〉 6= 0
for all t ∈ [0, T ], |u| ≥ R, |w| < aT and |v| < a, then problem (61) has at least one
solution.

Example 3. If Assumption (HΦ) holds, e ∈ C, c, d ∈ R, p > 1, q ≥ 0, then the
periodic problem

(φ(u′))′ = (c+ d|u′|q)|u|p−2u+ e(t), u(0)− u(T ) = 0 = u′(0)− u′(T ),

has at least one solution if |c| > |d|aq.

9. An application

When an electron moves at high speed but is only gently accelerated by the radia-
tion field and the static Coulomb field, the asymptotically evolutionary law of the
point electron is Newton’s law of radiation-reaction-free motion, equating the rate
of change of kinematical particle momentum to a Lorenz force in which only the
external (incoming radiation and static Coulomb) fields enter, while the kinemat-
ical particle momentum and particle velocity are related by the special relativity
formula (see e.g. [3, p. 118]). In suitable dimensionless units this becomes (see e.g.
[6, p. 1106])

r′(t) =
p(t)√

1 + |p(t)|2
, p′(t) = − e

2

~c
[E(t, r(t)) + r′(t)×B(t, r(t))],

where r,p : R → R3 denote respectively the position and momentum of the
particle, E,B : R × R3 → R3 are the exterior electrical and magnetic fields, ×
denotes the vector product in R3 and e, ~, c are the usual physical constants. As

r′(t) =
p(t)√

1 + |p(t)|2
⇔ p(t) =

r′(t)√
1− |r′(t)|2

,
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this system can be written(
r′(t)√

1− |r′(t)|2

)′
= − e

2

~c
[E(t, r(t)) + r′(t)×B(t, r(t))]. (66)

Now system (66) is of the form (φ(r′))′ = f(t, r, r′) where

φ(u) =
u√

1− |u|2
= ∇[−

√
1− |u|2] (u ∈ R3),

so that we can take
Φ(u) = −

√
1− |u|2 (u ∈ R3),

which is the 3-dimensional case of Example 2. Using Theorems 1, 2, 3, 4, 6, and
Corollaries 5, 7, we immediately obtain the following result.

Theorem 8. For any continuous E,B : R×R3 → R3, and any T > 0 and A,B ∈ R3

system (66) has at least one solution over [0, T ] satisfying the Cauchy conditions

r(0) = A,
r′(0)√

1− |r′(0)|2
= B,

or the terminal conditions

r(T ) = A,
r′(T )√

1− |r′(T )|2
= B,

or the Sturm–Liouville boundary conditions

r(0) = A, Er(T )−F r′(T )√
1− |r′(T )|2

= B,

with F invertible, or the Sturm–Liouville boundary conditions

Cr(0)−D r′(0)√
1− |r′(0)|2

= A, r(T ) = B,

with D invertible. If
|B−A| < T,

then system (66) has at least one solution satisfying the Dirichlet boundary condi-
tions

r(0) = A, r(T ) = B.
If there exists R > 0 such that

〈E(t,u + w) + v ×B(t,u + w)− T−1(B −A),u〉 6= 0

for all t ∈ [0, T ], |u| ≥ R, |w| < T and |v| < 1, then system (66) has at least one
solution satisfying the Neumann boundary conditions

r′(0)√
1− |r′(0)|2

= A,
r′(T )√

1− |r′(T )|2
= B.

If there exists R > 0 such that

〈E(t,u + w) + v ×B(t,u + w),u〉 6= 0
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for all t ∈ [0, T ], |u| ≥ R, |w| < T and |v| < 1, then system (66) has at least one
solution satisfying the periodic boundary conditions

r(0)− r(T ) = 0 = r′(0)− r′(T ).

Example 4. If there exist β > 0, γ ≥ 1, and R > 0 such that, for all t ∈ [0, T ],
|w| < T and |u| ≥ R, one has

〈E(t,u + w),u〉 ≥ β|u|γ , |B(t,u + w)| ≤ β|u|γ−1,

then, for all t ∈ [0, T ], |u| ≥ R, |w| < T and |v| < 1, one has

〈E(t,u + w) + v ×B(t,u + w),u〉 ≥ β|u|γ − β|v| |u|γ ≥ β(1− |v|)Rγ > 0.

Consequently, system (66) has at least one solution satisfying the homogeneous
Neumann boundary conditions

r′(0)√
1− |r′(0)|2

= 0 =
r′(T )√

1− |r′(T )|2
,

and at least one solution satisfying the periodic boundary conditions

r(0)− r(T ) = 0 = r′(0)− r′(T ).
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