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RADIAL SOLUTIONS FOR SOME NONLINEAR PROBLEMS
INVOLVING MEAN CURVATURE OPERATORS

IN EUCLIDEAN AND MINKOWSKI SPACES

C. BEREANU, P. JEBELEAN, AND J. MAWHIN

(Communicated by Carmen C. Chicone)

Abstract. In this paper, using the Schauder fixed point theorem, we prove
existence results of radial solutions for Dirichlet problems in the unit ball and
in an annular domain, associated to mean curvature operators in Euclidean
and Minkowski spaces.

1. Introduction

The aim of this paper is to present some existence results of radial solutions
for Dirichlet problems in the unit ball and in an annular domain, associated to
mean curvature operators in Euclidean and Minkowski spaces. Those problems
are classical in the Euclidean space (see e.g. [8]). In the flat Minkowski space
L

N+1 = {(x, t) : x ∈ R
N , t ∈ R}, those problems originate from studying, in differ-

ential geometry or relativity, maximal or constant mean curvature hypersurfaces,
i.e. spacelike submanifolds of codimension one in L

N+1, having the property that
their mean extrinsic curvature (trace of its second fundamental form) is respectively
zero or constant.

More specifically, when the searched N -dimensional hypersurface in L
N+1 can

be represented as the graph of a function v : Ω → R with Ω a bounded domain
in {(x, t) ∈ L

N+1 : t = 0} � R
N , one is led, given H : Ω × R → R (which is

zero for maximal hypersurfaces and constant for hypersurfaces of constant mean
curvature), to maximize an integral of the form

I(v) =
∫

Ω

[√
1 − |∇v(x)|2 −

∫ v(x)

0

H(x, t) dt

]
dx

over a suitable class of functions v depending upon the boundary conditions. The
corresponding Euler-Lagrange equation has the form

div

(
∇v(x)√

1 − |∇v(x)|2

)
= H(x, v(x)),
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and we refer to [1] for a discussion, earlier references and existence results when Ω
is arbitrary and H is bounded.

More precisely, the problems we consider here are of the type

div(φN (∇v)) = f(|x|, v,
dv

dr
) in Ω, v = 0 on ∂Ω,(1.1)

where
φN (y) =

y√
1 ± |y|2

(y ∈ R
N ),

with the + sign in the Euclidean case, the − sign in the Minkowski case, Ω denotes
the unit ball B ⊂ R

N or an annular domain A = {x ∈ R
N : 1 < |x| < 2}, the

function f is continuous, | · | denotes the Euclidean norm in R
N and dv

dr stands
for the radial derivative of v. Setting |x| = r and v(x) = u(r), the above Dirichlet
problem becomes

(rN−1φ1(u′))′ = rN−1f(r, u, u′), b(u, u′) = 0,(1.2)

where b(u, u′) = 0 denotes the mixed boundary condition u′(0) = 0 = u(1) or the
Dirichlet boundary condition u(1) = 0 = u(2), according to whether Ω equals B,
respectively A. Notice that (1.1) need not be the Euler-Lagrange equations of a
variational problem.

For this reason, (1.2) is transformed into a fixed point problem to which we apply
the Schauder fixed point theorem. Notice that in the Euclidean space situation,
the corresponding fixed point operator is not defined on the whole space and we
overcome this difficulty by using a cutting method introduced in [2]. For other
results concerning the Euclidean situation, see for example [4]. In the Minkowski
setting, we prove that the problem is solvable for an arbitrary continuous right-hand
member f. The case where N = 1 was already considered in [3].

2. Radial solutions in the unit ball

In this section, B denotes the open unit ball in R
N and f : [0, 1] × R

2 → R is a
continuous function. The first main result concerns the existence of classical radial
solutions of the nonlinear Dirichlet problem associated with the mean extrinsic
curvature operator in Minkowski space

div

(
∇v√

1 − |∇v|2

)
= f(|x|, v,

dv

dr
) in B, v = 0 on ∂B.(2.1)

We have for (2.1) the following ‘universal’ existence result.

Theorem 2.1. Problem (2.1) has at least one classical radial solution for any
continuous right-hand member f.

Notice that, when f(r, u, v) = H (case of constant mean extrinsic curvature),
the radial solution of (2.1) is unique and explicitly given, for any H ∈ R, by

u(r) = 0 (H = 0), u(r) =
N

H

[√
1 +

H2

N2
r2 −

√
1 +

H2

N2

]
(H �= 0).

The second main result of the section deals with the existence of classical radial
solutions of the nonlinear Dirichlet problem associated with the mean curvature
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operator in Euclidean space

div

(
∇v√

1 + |∇v|2

)
= f(|x|, v,

dv

dr
) in B, v = 0 on ∂B.(2.2)

Theorem 2.2. Assume that there exists α > 0 such that α/N < 1 and

|f(r, u, v)| ≤ α for all (r, u, v) ∈ [0, 1] × Rα,

where Rα is the square given by Rα =
[
− α/N√

1−(α/N)2
, α/N√

1−(α/N)2

]2

. Then, problem

(2.2) has at least one classical radial solution.

Notice that, when f(r, u, v) = H (case of constant mean curvature), the radial
solution of (2.2) only exists if |H| < N, is unique and is explicitly given by

u(r) = 0 (H = 0), u(r) =
N

H

[√
1 − H2

N2
−

√
1 − H2

N2
r2

]
(0 < |H| < N).

Hence condition α/N < 1 in Theorem 2.2 is sharp.
When dealing with the radial solutions for (2.1) or (2.2), one is led to study

(setting |x| = r and v(x) = u(r)) the mixed boundary-value problem

(rN−1φ(u′))′ = rN−1f(r, u, u′), u′(0) = 0 = u(1),(2.3)

where φ(y) = y√
1−y2

in the Minkowski case and φ(y) = y√
1+y2

in the Euclidean

case (y ∈ R).
We first reformulate (2.3) as a fixed point problem, for a general class of φ

containing the first example above as special cases, namely φ : (−a, a) → R an
increasing homeomorphism such that φ(0) = 0 and 0 < a ≤ ∞. In this section
C stands for the Banach space of continuous functions defined on [0, 1] endowed
with the usual sup-norm || · ||∞ and C1 denotes the Banach space of continuously
differentiable functions on [0, 1] equipped with the norm ||u|| = ||u||∞ + ||u′||∞.
The subspaces of C1 defined by

C1
M = {u ∈ C1 : u′(0) = 0 = u(1)}

and
C0 = {u ∈ C : u(0) = 0}

are closed. Then, setting

γ(r) = 1/rN−1 (r > 0),

consider the linear operators

S : C → C0, Su(r) = γ(r)
∫ r

0

tN−1u(t)dt (r ∈ (0, 1]),

K : C → C1, Ku(r) =
∫ r

1

u(t)dt (r ∈ [0, 1]).

It is easy to see that K is a bounded operator and standard arguments, invoking
the Arzela-Ascoli theorem, show that S is compact. Now, let Nf : C1 → C be the
Nemytskii operator associated to f , defined by

Nf (u) = f(·, u(·), u′(·)) ∀u ∈ C1.
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Note that Nf is continuous and takes bounded sets into bounded sets. The fol-
lowing result has been proved in [7] if a = ∞. The proof for the case a < ∞ is
completely similar to the one given in [7] and, actually, can be easily deduced from
the properties of the above operators.

Lemma 2.3. The nonlinear operator

M : C1
M → C1

M , M = K ◦ φ−1 ◦ S ◦ Nf

is well defined, compact, and u ∈ C1
M is a solution of (2.3) if and only if M(u) = u.

Proposition 2.4. Assume that 0 < a < ∞ and φ : (−a, a) → R is an increasing
homeomorphism such that φ(0) = 0. Then, problem (2.3) has at least one solution.

Proof. Let u ∈ C1
M and v = M(u). It follows that

||v′||∞ = ||φ−1 ◦ S ◦ Nf (u)||∞ < a.(2.4)

From (2.4) and

||v||∞ = ||K(v′)||∞,

it follows that

||v||∞ < a.

Hence,

||v|| < 2a.

From the above estimate and the Schauder fixed point theorem, we deduce that
there exist u ∈ C1

M such that u = M(u). Using Lemma 2.3, it follows that u is also
a solution of (2.3). �

Proposition 2.5. Let 0 < a ≤ ∞ and φ : R → (−a, a) be an increasing homeo-
morphism such that φ(0) = 0. If there exists α > 0 such that α/N < a and

|f(r, u, v)| ≤ α for all (r, u, v) ∈ [0, 1] × Rα(φ),(2.5)

where Rα(φ) is the rectangle given by

Rα(φ) = [−φ−1(α/N)),−φ−1(−α/N)] × [φ−1(−α/N), φ−1(α/N)],

then problem (2.3) has at least one solution u ∈ Ωα(φ), where

Ωα(φ) = {u ∈ C1
M : (u(r), u′(r)) ∈ Rα(φ), ∀r ∈ [0, 1]}.

Proof. We distinguish two cases.
The case a = ∞. We show that

M(Ωα(φ)) ⊂ Ωα(φ),(2.6)

where M is the fixed point operator associated to (2.3) (see Lemma 2.3). Let
u ∈ Ωα(φ) and v = M(u). Using (2.5), it follows that

|φ(v′(r))| =
∣∣∣∣γ(r)

∫ r

0

tN−1f(t, u(t), u′(t))dt

∣∣∣∣ ≤ α/N

for all r ∈ (0, 1], and because φ(v′(0)) = 0, the homeomorphic character of φ implies
that

v′(r) ∈ [φ−1(−α/N), φ−1(α/N)] for all r ∈ [0, 1].
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Hence, using v = K(v′), we deduce that

v(r) ∈ [−φ−1(α/N)),−φ−1(−α/N)] for all r ∈ [0, 1].

Consequently, v ∈ Ωα(φ) and (2.6) is proved. Now, using the fact that Ωα(φ) is a
closed convex set in C1

M invariant for the compact operator M, it follows by the
Schauder fixed point theorem that there exists u ∈ Ωα(φ) such that M(u) = u,
which is also a solution of (2.3).

The case a < ∞. Since α/N < a, we can construct an increasing homeomor-
phism ψ : R → R such that

ψ(u) = φ(u) for all u ∈ [φ−1(−α/N), φ−1(α/N)].

It is clear that Rα(φ) = Rα(ψ) and Ωα(φ) = Ωα(ψ). Hence, by the first step,
problem

(rN−1ψ(u′))′ = rN−1f(r, u, u′), u′(0) = 0 = u(1),

has at least one solution u ∈ Ωα(ψ), which is also a solution of (2.3). �
The proofs of Theorems 2.1 and 2.2. Taking v(x) = u(|x|) for all x ∈ B, we have
that Theorem 2.1 follows from Proposition 2.4 (with φ(u) = u√

1−u2 ) and Theo-
rem 2.2 follows from Proposition 2.5 (with φ(u) = u√

1+u2 ).

Remark 2.6. Taking in Proposition 2.5, φ(u) = |u|p−2u (p > 1) and v(x) = u(|x|)
for all x ∈ B, we recover an existence result already proved in [5].

When f is independent of du
dr , it is easy to formulate simple uniqueness conditions

for the solution of (2.3), and hence for the radial solutions of (2.1) and (2.2).

Theorem 2.7. If f : [0, 1] × R → R is such that f(r, ·) is nondecreasing for each
fixed r ∈ [0, 1], then problem

(rN−1φ(u′))′ = rN−1f(r, u), u′(0) = 0 = u(1)(2.7)

has at most one solution, and the same is true for the radial solutions of problems

div

(
∇v√

1 − |∇v|2

)
= f(|x|, v) in B, v = 0 on ∂B

and

div

(
∇v√

1 + |∇v|2

)
= f(|x|, v) in B, v = 0 on ∂B.

Proof. Assume that u and w are solutions of (2.7), and that u �= w. It follows from
the boundary conditions that E := {r ∈ [0, 1] : u′(r) �= w′(r)} has positive measure.
Now, multiplying the identity[

rN−1(φ(u′) − φ(w′))
]′

= rN−1[f(r, u) − f(r, w)]

by u − w, integrating over [0, 1], integrating by parts and using the boundary con-
ditions and the increasing character of φ, we get

0 > −
∫

E

[φ(u′(r)) − φ(w′(r))][u′(r) − w′(r)]rN−1 dr

=
∫ 1

0

[f(r, u(r)) − f(r, w(r))][u(r)− w(r)] dr ≥ 0,

a contradiction. �
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3. Radial solutions in an annular domain

In this section, A denotes the annular domain {x ∈ RN : 1 < |x| < 2} and
f : [1, 2] × R

2 → R is a continuous function. The first main result concerns the
existence of classical radial solutions of the nonlinear Dirichlet problem associated
with the mean extrinsic curvature operator in Minkowski space

div

(
∇v√

1 − |∇v|2

)
= f(|x|, v,

dv

dr
) in A, v = 0 on ∂A.(3.1)

We have the following ‘universal’ existence result.

Theorem 3.1. Problem (3.1) has at least one classical radial solution for any
continuous right-hand member f.

The following result concerns the existence of radial solutions for the nonlinear
Dirichlet problem associated with the mean curvature operator in Euclidean space

div

(
∇v√

1 + |∇v|2

)
= f(|x|, v,

dv

dr
) in A, v = 0 on ∂A.(3.2)

Theorem 3.2. Assume that there exists α > 0 such that αN := 2α(2N−1)
N < 1 and

|f(r, u, v)| ≤ α for all (r, u, v) ∈ [1, 2] × Pα,

where Pα is the square given by Pα =
[
− αN√

1−α2
N

, αN√
1−α2

N

]2

. Then, problem (3.2)

has at least one classical radial solution.

When dealing with the radial solutions for problems (3.1) or (3.2), we are led to
consider the nonlinear Dirichlet problem

(rN−1φ(u′))′ = rN−1f(r, u, u′), u(1) = 0 = u(2),(3.3)

where φ(u) = u√
1−u2 or φ(u) = u√

1+u2 , respectively.
As in the preceding section we start with the case where φ : (−a, a) → R is an

increasing homeomorphism such that φ(0) = 0 and 0 < a ≤ ∞. In this situation
we reformulate (3.3) as a fixed point problem.

In this section C stands for the Banach space of continuous functions defined on
[1, 2] endowed with the norm ||·||∞. On the other hand, C1 denotes the Banach space
of continuously differentiable functions on [1, 2] equipped with the norm ||u|| =
||u||∞ + ||u′||∞ and C1

D denotes the closed subspace of C1 defined by

C1
D = {u ∈ C1 : u(1) = 0 = u(2)}.

Consider the linear operators

L : C → C, Lu(r) = γ(r)
∫ r

1

tN−1u(t)dt (r ∈ [1, 2]),

H : C → C1, Hu(r) =
∫ r

1

u(t)dt (r ∈ [1, 2]).

It is not difficult to prove that H is a bounded operator and L is compact. Then,
let Nf be the Nemitskii operator associated to f defined as in the previous section.
The following lemma is the key ingredient used in the construction of the fixed
point operator associated to (3.3).
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Lemma 3.3. For each h ∈ C there exists a unique α := Qφ(h) ∈ R such that∫ 2

1

φ−1(h(r) − Qφ(h)γ(r))dr = 0.(3.4)

Moreover, the function Qφ : C → R is continuous and satisfies

|Qφ(h)| ≤ ||h/γ||∞ for all h ∈ C.(3.5)

Proof. Let h ∈ C. We first prove uniqueness. Let αi ∈ R be such that∫ 2

1

φ−1(h(r) − αiγ(r))dr = 0 (i = 1, 2).

It follows that there exists r0 ∈ [1, 2] such that

φ−1(h(r0) − α1γ(r0)) = φ−1(h(r0) − α2γ(r0)),

and using the injectivity of φ−1 we deduce that α1 = α2. For the existence, it is
clear that the function

F : [−||h/γ||∞, ||h/γ||∞] → R, t →
∫ 2

1

φ−1(h(r) − tγ(r))dr

is continuous and F (−||h/γ||∞)F (||h/γ||∞) ≤ 0. Hence, there exists a unique α :=
Qφ(h) ∈ [−||h/γ||∞, ||h/γ||∞] such that F (α) = 0, which means that (3.4) and (3.5)
hold. The continuity of Qφ follows immediately from the dominated convergence
theorem. �

The following result is a fixed point reformulation of (3.3) when φ : (−a, a) → R

is an increasing homeomorphism such that φ(0) = 0 and 0 < a ≤ ∞. In the case
a = ∞, a different fixed point operator associated to (3.3) has been used in [6] in
order to obtain a multiplicity result.

Lemma 3.4. Consider the nonlinear operator

D : C1
D → C1

D, D = H ◦ φ−1 ◦ (I − γQφ) ◦ L ◦ Nf .

Then, D is well defined, compact and u ∈ C1
D is a solution of (3.3) if and only if

D(u) = u.

Proof. Let u ∈ C1
D. It is clear that D(u)(1) = 0. On the other hand, applying

Lemma 3.3 with h = (L ◦ Nf )(u), it follows that D(u)(2) = 0. Hence, D is well
defined. Now, we know that the operators which compose D are continuous and
take bounded sets into bounded sets. Moreover, the linear operator L is compact.
This implies the compactness of D.

Let u ∈ C1
D be such that D(u) = u. This implies that u satisfies the Dirichlet

boundary condition on [1, 2], ||u′||∞ < a and

φ(u′)(r) = γ(r)
∫ r

1

tN−1Nf (u)(t)dt − γ(r)Qφ[(L ◦ Nf )(u))]

for all r ∈ [1, 2]. This implies that u satisfies the differential equation in (3.3). The
remaining part of the proof is obvious. �

The following result is an immediate consequence of the above fixed point re-
duction and the Schauder fixed point theorem.

Proposition 3.5. Assume that 0 < a < ∞ and φ : (−a, a) → R is an increasing
homeomorphism such that φ(0) = 0. Then, problem (3.3) has at least one solution.
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Proof. See the proof of Proposition 2.4. �

Proposition 3.6. Let φ : R → (−a, a) be an increasing homeomorphism such that
φ(0) = 0 and 0 < a ≤ ∞. If there exists α > 0 such that αN := 2α(2N−1)

N < a and

|f(r, u, v)| ≤ α for all (r, u, v) ∈ [1, 2] × Rα(φ),(3.6)

where Rα(φ) is the square given by

Rα(φ) = [φ−1(−αN ), φ−1(αN )]2,

then problem (3.3) has at least one solution u ∈ Ωα(φ), where

Ωα(φ) = {u ∈ C1
D : (u(r), u′(r)) ∈ Rα(φ), ∀r ∈ [1, 2]}.

Proof. We distinguish two cases.
The case a = ∞. We show that

D(Ωα(φ)) ⊂ Ωα(φ),(3.7)

where D is the fixed point operator associated to (3.3) (see Lemma 3.4). Let
u ∈ Ωα(φ) and v = D(u). It follows that

φ(v′) = (L ◦ Nf )(u) − γQφ[(L ◦ Nf )(u)].

Using Lemma 3.3 and (3.6), we infer

||γQφ[(L ◦ Nf )(u)]||∞ ≤ αN/2.

Hence
||φ(v′)||∞ ≤ αN .

This implies that v ∈ Ωα(φ) and (3.7) holds. The result follows now from the
Schauder fixed point theorem.

The case a < ∞. To prove the result in this case, use the first step and similar
arguments as in the proof of Proposition 2.5. �

The proofs of Theorems 3.1 and 3.2. Taking v(x) = u(|x|) for all x ∈ A,
we have that Theorem 3.1 follows from Proposition 3.5 (with φ(u) = u√

1−u2 ) and
Theorem 3.2 follows from Proposition 3.6 (with φ(u) = u√

1+u2 ).
When f is independent of du

dr , proceeding exactly as in Section 2, we can prove
the following simple uniqueness conditions for the solution of (3.3), and hence for
the radial solution of (3.1) and of (3.2).

Theorem 3.7. If f : [0, 1] × R → R is such that f(r, ·) is nondecreasing for each
fixed r ∈ [0, 1], then problem

(rN−1φ(u′))′ = rN−1f(r, u), u(1) = 0 = u(2)

has at most one solution, and the same is true for the radial solutions in A of
problems

div

(
∇v√

1 − |∇v|2

)
= f(|x|, v) in A, v = 0 on ∂A

and

div

(
∇v√

1 + |∇v|2

)
= f(|x|, v) in A, v = 0 on ∂A.
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Remark 3.8. As noticed by the referee, some results about (1.2) can be extended
to equations of the form

(p(r)φ(u′))′ = p(r)f(r, u, u′)

under suitable conditions upon the positive function p(r).
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