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Dedicated to George Dincǎ for his 70th anniversary

Abstract

We use the critical point theory for convex, lower semicontinuous perturbations of C1-functionals to
establish existence of multiple radial solutions for some one parameter Neumann problems involving the
operator v �→ div( ∇v√

1−|∇v|2 ). Similar results for periodic problems are also provided.
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1. Introduction

This paper is motivated by the existence of nontrivial solutions for the Neumann problems:
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−div

( ∇v√
1 − |∇v|2

)
+ α|v|p−2v = f

(|x|, v) + λb
(|x|)|v|q−2v in A,

∂v

∂ν
= 0 on ∂A, (1)

−div

( ∇v√
1 − |∇v|2

)
+ λ|v|m−2v = f

(|x|, v) + h
(|x|) in A,

∂v

∂ν
= 0 on ∂A (2)

and for the periodic problems:

−
(

u′√
1 − |u′|2

)′
+ α|u|p−2u = f (r,u) + λb(r)|u|q−2u in [R1,R2],

u(R1) − u(R2) = 0 = u′(R1) − u′(R2), (3)

−
(

u′√
1 − |u′|2

)′
+ λ|u|m−2u = f (r,u) + h(r) in [R1,R2],

u(R1) − u(R2) = 0 = u′(R1) − u′(R2), (4)

where 0 � R1 < R2 and A = {x ∈ R
N : R1 � |x| � R2}.

We assume the following hypothesis on the data.

(Hf ) The functions f : [R1,R2] × R → R, b,h : [R1,R2] → R are continuous; the constants
α > 0, p > q � 2, m � 2 are fixed and λ is a real positive parameter.

Viewing the radial symmetry, we shall look for radial solutions of problems (1) and (2).
So, letting r = |x| and v(x) = u(r), we reduce (1) and (2) to the one-dimensional Neumann
problems [

rN−1φ
(
u′)]′ = rN−1[α|u|p−2u − f (r,u) − λb(r)|u|q−2u

]
in [R1,R2],

u′(R1) = 0 = u′(R2), (5)

and [
rN−1φ

(
u′)]′ = rN−1[λ|u|m−2u − f (r,u) − h(r)

]
in [R1,R2],

u′(R1) = 0 = u′(R2), (6)

where φ(y) = y√
1−y2

, ∀y ∈ (−1,1). Also, it is clear that problems (3) and (4) can be rewritten

as [
φ
(
u′)]′ = α|u|p−2u − f (r,u) − λb(r)|u|q−2u in [R1,R2],

u(R1) − u(R2) = 0 = u′(R1) − u′(R2), (7)
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and [
φ
(
u′)]′ = λ|u|m−2u − f (r,u) − h(r) in [R1,R2],

u(R1) − u(R2) = 0 = u′(R1) − u′(R2), (8)

with the same choice of φ.
More generally, in this paper the mapping φ : (−a, a) → R entering in the above boundary

value problems will be an increasing homeomorphism with φ(0) = 0. Following [7], this type of
φ is called singular. Precisely, we assume the following hypothesis on φ introduced in [8] (see
also [5,6,9]):

(HΦ) Φ : [−a, a] → R is continuous, of class C1 on (−a, a), Φ(0) = 0 and φ := Φ ′ :
(−a, a) → R is an increasing homeomorphism such that φ(0) = 0.

Denoting by F the indefinite integral of f with respect to the second variable, it is easy to see
that if F satisfies

lim sup
|x|→0

pF(r, x)

|x|p < α uniformly in r ∈ [R1,R2], (9)

then f (r,0) = 0 for all r ∈ [R1,R2], meaning that problems (5)–(8) admit the trivial solution
u = 0 provided that h ≡ 0. If, in addition, F satisfies the Ambrosetti–Rabinowitz type condi-
tion [4]:

(AR) there exists θ > p and x0 > 0 such that

0 < θF(r, x) � xf (r, x) for all r ∈ [R1,R2] and |x| � x0, (10)

then problems (5) and (7) with λ = 0 or problems (6) and (8) with h ≡ 0 have at least one
nontrivial solution (see [5]).

We prove in Theorem 1 and Theorem 2 that if, in addition to (9) and (10) we assume:

(i) either

lim inf
x→0−

F(r, x)

|x|p � 0 uniformly in r ∈ [R1,R2] (11)

or

lim inf
x→0+

F(r, x)

xp
� 0 uniformly in r ∈ [R1,R2]; (12)

(ii) it holds

R2∫
R1

rN−1b(r) dr > 0,
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then problems (5) and (7) have at least two nontrivial solutions for sufficiently small values of
the parameter λ. It is easy to see that those assumptions correspond to problems with convex–
concave nonlinearities initiated in 1994 for semilinear Dirichlet problems by Ambrosetti, Brezis
and Cerami [2], extended to quasilinear Dirichlet problems involving the p-Laplacian by Am-
brosetti, Garcia Azorero, Peral [3] and Garcia Azorero, Peral, Manfredi [13]. Radial solutions
with Dirichlet conditions have been considered independently by Kormann [16], using bifurca-
tion theory and by Tang [31] using ordinary differential equations methods.

One the other hand, under the hypotheses:

(i)′ there exists k1, k2 > 0 and 0 < σ < m such that

−l(r) � F(r, x) � k1|x|σ + k2, for all (r, x) ∈ [R1,R2] × R, (13)

where l � 0 is measurable and
∫ R2
R1

rN−1l(r) dr < +∞;
(ii)′ one has that either

lim|x|→∞

R2∫
R1

rN−1F(r, x) dr = +∞, (14)

or the limits F±(r) = limx→±∞ F(r, x) exist for all r ∈ [R1,R2] and

F(r, x) < F+(r), ∀r ∈ [R1,R2], x � 0,

F (r, x) < F−(r), ∀r ∈ [R1,R2], x � 0; (15)

(iii)′ it holds

R2∫
R1

rN−1h(r) dr = 0,

we prove in Theorem 3 (see also Theorem 4 for the periodic case) that problem (6) has at least
three solutions for sufficiently small values of the parameter λ. Results of this type in the clas-
sical case, called multiplicity results near resonance, have been initiated in [23] (for N = 1),
using bifurcation from infinity and Leray–Schauder degree theory. A variational approach was
introduced by Sanchez in [28] to attack such multiplicity problems, and conditions of type (i)′
and (ii)′ were introduced by Ma, Ramos and Sanchez in [27,20] for semilinear and quasilinear
Dirichlet problems involving the p-Laplacian. See also [21,19,24,10,26] for a similar variational
treatment of various semilinear or quasilinear equations, systems or inequalities with Dirichlet
conditions, [25] for perturbations of p-Laplacian with Neumann boundary conditions, and [18]
for periodic solutions of perturbations of the one-dimensional p-Laplacian. The existence of at
least two solutions near resonance at a nonprincipal eigenvalue have been first obtained in [22]
using a topological approach and then for semilinear or quasilinear problems using critical point
theory in [11,15,29], but this question seems to be meaningless for the singular φ considered
here because resonance only occurs at 0.
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The main used tools are some abstract local minimization results combined with mountain
pass techniques in the frame of the Szulkin’s critical point theory [30]. The rest of the paper is
organized as follows. In Section 2 we give some abstract results (Proposition 1 and Proposition 2)
which we need in the sequel. The concrete functional framework and the variational setting,
employed in the treatment of the above problems, are described in Section 3. Sections 4 and 5
are devoted to the proofs of the main multiplicity results.

2. Preliminaries

Let (X,‖ · ‖) be a real Banach space and I be a functional of the type

I = F + ψ,

where ψ : X → (−∞,+∞] is proper (i.e., D(ψ) := {v ∈ X: ψ(v) < +∞} 
= ∅), convex, lower
semicontinuous (in short, l.s.c.) and F ∈ C1(X;R).

According to Szulkin [30], a point u ∈ X is said to be a critical point of I if it satisfies the
inequality

〈
F ′(u), v − u

〉 + ψ(v) − ψ(u) � 0, ∀v ∈ X.

A number c ∈ R such that I−1(c) contains a critical point is called a critical value of I .
The functional I is said to satisfy the Palais–Smale (in short, (PS)) condition if every sequence

{un} ⊂ X for which I (un) → c ∈ R and

〈
F ′(un), v − un

〉 + ψ(v) − ψ(un) � −εn‖v − un‖, ∀v ∈ X,

where εn → 0 (called (PS)-sequence), possesses a convergent subsequence.

Proposition 1. Suppose that I satisfies the (PS) condition and there exists an open set U such
that

−∞ < inf
U

I < inf
∂U

I. (16)

Then I has at least one critical point u ∈ U such that I (u) = infU I .

Proof. Let

c0 = inf
U

I (17)

and {εn} be a sequence with εn → 0 and

0 < εn < inf I − c0 for all n ∈ N. (18)

∂U
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Using Ekeland’s variational principle, applied to I |U , for each n ∈ N, we can find vn ∈ U such
that

I (vn) � c0 + εn (19)

and

I (v) � I (vn) − εn‖v − vn‖ for all v ∈ U. (20)

From (18) and (19) it follows I (vn) < inf∂U I, which ensures that vn ∈ U , for all n ∈ N. Let
v ∈ X, n ∈ N be arbitrarily chosen and t0 := t0(v,n) ∈ (0,1) be so that vn + t (v − vn) ∈ U , for
all t ∈ (0, t0). Using (20) and the convexity of ψ , we get

F (vn + t (v − vn)) − F (vn)

t
+ ψ(v) − ψ(vn) � −εn‖v − vn‖

and, letting t → 0+, one obtains〈
F ′(vn), v − vn

〉 + ψ(v) − ψ(vn) � −εn‖v − vn‖ for all v ∈ X. (21)

On the other hand, from (19) it is clear that

I (vn) → c0. (22)

Since I satisfies the (PS) condition, (21) and (22) ensure that {vn} contains a subsequence, still
denoted by {vn}, convergent to some u ∈ U .

By the lower semicontinuity of ψ it holds

ψ(u) � lim inf
n→∞ ψ(vn) (23)

and, on account of F ∈ C1(X;R), one obtains

lim
n→∞

〈
F ′(vn), v − vn

〉 = 〈
F ′(u), v − u

〉
for all v ∈ X. (24)

From (21), (23) and (24) we deduce〈
F ′(u), v − u

〉 + ψ(v) − ψ(u) � 0 for all v ∈ X. (25)

Also, from (17), (22) and (23) we have

c0 � I (u) � lim
n→∞ F (vn) + lim inf

n→∞ ψ(vn) = lim inf
n→∞ I (vn) = c0,

hence I (u) = c0 and from (16), u ∈ U . This together with (25) shows that c0 is a critical value
of I. �

For σ > 0, we shall denote Bσ = {v ∈ X: ‖v‖ < σ } and by Bσ its closure.
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Proposition 2. Suppose that I satisfies the (PS) condition together with

(i) I (0) = 0 and there exists ρ > 0 such that

−∞ < inf
Bρ

I < 0 < inf
∂Bρ

I ; (26)

(ii) I (e) � 0 for some e ∈ X \ Bρ .

Then I has at least two nontrivial critical points.

Proof. From the Mountain Pass Theorem [30, Theorem 3.2] there exists a first nontrivial critical
point u0 ∈ X with I (u0) > 0. On the other hand, using Proposition 1 with U = Bρ and (26), it
follows that infBρ

I is a critical value of I . This implies the existence of a second critical point
u1 with I (u1) < 0. We have that u1 is nontrivial and different from u0 because I (0) = 0 and
I (u0) > 0. �
Remark 1.

(i) It is a simple matter to check that if, in addition ψ and F are even, then I has at least four
nontrivial critical points.

(ii) If the operator F ′ : X → X∗ maps bounded sets into bounded sets, then condition −∞ <

infBρ
I in (26) is automatically satisfied. Indeed, in this case, by the mean value theorem one

has

∣∣F (u) − F (0)
∣∣ � ρ sup

v∈Bρ

∥∥F ′(v)
∥∥ for all u ∈ Bρ,

showing that F is bounded on Bρ . On the other hand, we know that the proper, convex and
l.s.c. function ψ is bounded from below by a continuous affine function.

(iii) Proposition 2 is implicitly employed in [17] to derive the existence of at least two nontrivial
solutions for a variational inequality on the half line.

3. Hypotheses and the functional framework

Throughout this paper we assume that hypotheses (Hf ) and (HΦ) from Section 1 hold true.
Clearly, from (HΦ) we have that Φ is strictly convex and Φ(x) � 0 for all x ∈ [−a, a]. Also,
it is worth noticing that choosing Φ(y) = 1 − √

1 − y2, ∀y ∈ [−1,1], one has φ(y) = y√
1−y2

,

∀y ∈ (−1,1), as it is particularly involved when dealing with problems (1)–(4).
The approaches for problems (5) and (7) (resp. (6) and (8)) are based on the Szulkin’s critical

point theory and are quite similar. That is why we shall treat in detail problem (5) (resp. (6))
and we restrict ourselves to only point out the corresponding adaptations for the treatment of
problem (7) (resp. (8)).

We set C := C[R1,R2], L1 := L1(R1,R2), L∞ := L∞(R1,R2) and W 1,∞ := W 1,∞(R1,R2).
The usual norm ‖ · ‖∞ is considered on C and L∞. The space W 1,∞ is endowed with the norm
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‖v‖ = ‖v‖∞ + ∥∥v′∥∥∞, v ∈ W 1,∞.

Denoting

L1
N−1 :=

{
v : (R1,R2) → R measurable:

R2∫
R1

rN−1
∣∣v(r)

∣∣dr < +∞
}

,

each v ∈ L1
N−1 can be written v(r) = v + ṽ(r), with

v := N

RN
2 − RN

1

R2∫
R1

v(r)rN−1 dr,

R2∫
R1

ṽ(r)rN−1 dr = 0.

If v ∈ W 1,∞ then ṽ vanishes at some r0 ∈ (R1,R2) and

∣∣ṽ(r)
∣∣ = ∣∣ṽ(r) − ṽ(r0)

∣∣ �
R2∫

R1

∣∣v′(t)
∣∣dt � (R2 − R1)

∥∥v′∥∥∞,

so, one has that

‖̃v‖∞ � (R2 − R1)
∥∥v′∥∥∞. (27)

Putting

K := {
v ∈ W 1,∞:

∥∥v′∥∥∞ � a
}
,

it is clear that K is a convex subset of W 1,∞.
Let Ψ : C → (−∞,+∞] be defined by

Ψ (v) =
{∫ R2

R1
rN−1Φ(v′) dr, if v ∈ K,

+∞, otherwise.

Obviously, Ψ is proper and convex. On the other hand, as shown in [6] (also, see [5]), K ⊂ C is
closed and Ψ is lower semicontinuous on C.

Next, denoting by F : [R1,R2] × R → R the primitive of f , i.e.,

F(r, x) :=
x∫

0

f (r, ξ) dξ, (r, x) ∈ [R1,R2] × R,

we define Fλ : C → R by
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Fλ(u) =
R2∫

R1

rN−1
[

α

p
|u|p − F(r,u) − λ

q
b(r)|u|q

]
dr, u ∈ C

and F̂λ : C → R by

F̂λ(u) =
R2∫

R1

rN−1
[

λ

m
|u|m − F(r,u) − h(r)u

]
dr, u ∈ C.

A standard reasoning (also see [14, Remark 2.7]) shows that Fλ and F̂λ are of class C1 on C and

〈
F ′

λ(u), v
〉 = R2∫

R1

rN−1[α|u|p−2u − f (r,u) − λb(r)|u|q−2u
]
v dr, u, v ∈ C,

〈
F̂ ′

λ(u), v
〉 = R2∫

R1

rN−1[λ|u|m−2u − f (r,u) − h(r)
]
v dr, u, v ∈ C.

Then it is clear that Iλ, Îλ : C → (−∞,+∞] defined by

Iλ = Fλ + Ψ, Îλ = F̂λ + Ψ

have the structure required by Szulkin’s critical point theory. At this stage, the search of solutions
of problem (5) (resp. (6)) reduces to finding critical points of the energy functional Iλ (resp. Îλ)
by the following Proposition which is proved in [5, Proposition 1].

Proposition 3. If u ∈ C is a critical point of Iλ (resp. Îλ), then u is a solution of (5) (resp. (6)).

In the case of the periodic problems (7) and (8), taking N = 1, one works with

KP := {
v ∈ W 1,∞:

∥∥v′∥∥∞ � a, v(R1) = v(R2)
}

instead of K , and ΨP : C → (−∞,+∞] given by

ΨP (v) =
{∫ R2

R1
Φ(v′), if v ∈ KP ,

+∞, otherwise

instead of Ψ . With FP,λ, F̂P,λ : C → R defined by

FP,λ(u) =
R2∫ [

α

p
|u|p − F(r,u) − λ

q
b(r)|u|q

]
dr, u ∈ C,
R1
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F̂P,λ(u) =
R2∫

R1

[
λ

m
|u|m − F(r,u) − h(r)u

]
dr, u ∈ C,

the energy functionals IP,λ, ÎP,λ : C → (−∞,+∞] will be now IP,λ = ΨP + FP,λ and ÎP ,λ =
ΨP + F̂P,λ. We have (see [5, Proposition 2]) the following

Proposition 4. If u ∈ C is a critical point of IP,λ (resp. ÎP ,λ), then u is a solution of (7)
(resp. (8)).

4. Nontrivial solutions for problems (5) and (7)

4.1. The Neumann problem (5)

Toward the application of Proposition 2, we have to know that the energy functional satisfies
the (PS) condition. In this respect, we need the following inequalities which are proved in [5,
Lemma 4].

Lemma 1. Let s � 1 be a real number. Then∣∣u(r)
∣∣s � |u|s − sa(R2 − R1)|u|s−1, ∀u ∈ K, ∀r ∈ [R1,R2] (28)

and there are constants k1, k2 � 0 such that∣∣u(r)
∣∣s � |u|s + k1|u|s−1 + k2, ∀u ∈ K, ∀r ∈ [R1,R2]. (29)

The following lemma states that under the hypothesis (AR) the functional Iλ satisfies the (PS)
condition and is anticoercive on the subspace of constant functions.

Lemma 2. If (10) holds, then Iλ satisfies the (PS) condition and

Iλ(c) → −∞ as |c| → ∞, c ∈ R, (30)

for any λ > 0.

Proof. We shall denote by ci a generic constant, which may depend on λ. Also, we shall invoke
the positive constant

A = α(RN
2 − RN

1 )

pN
. (31)

Let {un} ⊂ K be a sequence for which Iλ(un) → c ∈ R and〈
F ′

λ(un), v − un

〉 + Ψ (v) − Ψ (un) � −εn‖v − un‖∞, ∀v ∈ C, (32)

where εn → 0.
We claim that {un} is bounded.
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To see this, let j ∈ (max{p − 1, q},p) be fixed. From (28), (29) we infer

R2∫
R1

rN−1
[

α

p
|un|p − λ

q
b(r)|un|q

]
dr � A|un|p − c1|un|j − c2

and, since {Iλ(un)} and Φ are bounded, it follows

A|un|p − c1|un|j −
R2∫

R1

rN−1F(r,un) � c3 for all n ∈ N. (33)

Letting v = un ± 1 in (32), as εn → 0, we may assume that

−1 �
R2∫

R1

rN−1[α|un|p−2un − f (r,un) − λb(r)|un|q−2un

]
dr � 1,

for all n ∈ N, hence, setting

β(un) :=
R2∫

R1

rN−1[α|un|p−2un − λb(r)|un|q−2un

]
dr,

we have

−1 − β(un) � −
R2∫

R1

rN−1f (r,un) dr � 1 − β(un) for all n ∈ N. (34)

Using (29) and taking into account that j −1 ∈ (max{p−2, q −1},p−1) we obtain the estimate∣∣β(un)
∣∣ � pA|un|p−1 + c4|un|j−1 + c5,

which, by virtue of (34), gives

∣∣∣∣∣
R2∫

R1

rN−1f (r,un) dr

∣∣∣∣∣ � pA|un|p−1 + c4|un|j−1 + c6 for all n ∈ N. (35)

Clearly, we have

∣∣∣∣∣1

θ

R2∫
rN−1f (r,un)un dr

∣∣∣∣∣ � pA

θ
|un|p + c7|un|j + c8|un| for all n ∈ N. (36)
R1
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Now, suppose, by contradiction, that {|un|} is not bounded. Then, there is a subsequence of {|un|},
still denoted by {|un|}, with |un| → ∞. Let n0 ∈ N be such that |un| � x0 + a(R2 − R1) for all
n � n0. Condition (10) ensures that

signun = signun(r) = signf
(
r, un(r)

)
for all r ∈ [R1,R2], n � n0.

As {un} ⊂ K , using (27) and (35) we obtain

∣∣∣∣∣1

θ

R2∫
R1

rN−1f (r,un)ũn dr

∣∣∣∣∣ � c9|un|p−1 + c10|un|j−1 + c11 for all n � n0. (37)

From (10) it holds

−
R2∫

R1

rN−1F(r,un) dr � −1

θ

R2∫
R1

rN−1f (r,un)un dr − 1

θ

R2∫
R1

rN−1f (r,un)̃un dr,

for all n � n0. Then, on account of (36) and (37), we get

−
R2∫

R1

rN−1F(r,un) dr � −pA

θ
|un|p − γ (|un|) for all n � n0,

where

γ
(|un|

) := c9|un|p−1 + c7|un|j + c10|un|j−1 + c8|un| + c11.

This together with θ > p imply

A|un|p − c1|un|j −
R2∫

R1

rN−1F(r,un)

� A
θ − p

p
|un|p − c1|un|j − γ

(|un|
) → +∞ as n → ∞,

contradicting (33). Consequently, {un} is bounded, as claimed.
Since {un} ⊂ K, the sequence {un} is bounded in W 1,∞. By the compactness of the embed-

ding W 1,∞ ⊂ C, we deduce that {un} has a convergent subsequence in C. Therefore, Iλ satisfies
the (PS) condition.

Condition (10) implies (see [12]) that there exists γ ∈ C, γ > 0, such that

F(r, x) � γ (r)|x|θ for all r ∈ [R1,R2] and |x| � x0.

We infer (see (31)):
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Iλ(c) = A|c|p −
R2∫

R1

rN−1F(r, c) dr − λ

q
|c|q

R2∫
R1

rN−1b(r) dr

� A|c|p − |c|θ
R2∫

R1

rN−1γ (r) − λ

q
|c|q

R2∫
R1

rN−1b(r) dr,

for all c ∈ R with |c| � x0. Then, (30) follows from θ > p > q and γ > 0. �
Lemma 3. If b > 0 and either condition (11) or condition (12) holds true, then

inf
Bη

Iλ < 0, (38)

for all η, λ > 0.

Proof. Let us suppose that (11) holds true. A similar argument works under assumption (12).
Condition (11) means that

lim
ε→0+ inf

x∈(−ε,0)

F (r, x)

|x|p = h(r), uniformly in r ∈ [R1,R2] and h � 0 on [R1,R2].

This yields the existence of some ε1 > 0 so that

F(r, x) � −|x|p for all r ∈ [R1,R2], x ∈ (−ε1,0]. (39)

Clearly, we may assume that η < ε1. For c ∈ (−η,0) ⊂ (−ε1,0], using (39) and b > 0, we
estimate Iλ(c) as follows (see (31)):

Iλ(c) = A|c|p −
R2∫

R1

rN−1F(r, c) − λ

q

( R2∫
R1

rN−1b(r) dr

)
|c|q

� A

(
1 + p

α

)
|c|p − λ

q

( R2∫
R1

rN−1b(r) dr

)
|c|q

= |c|q
[
A

(
1 + p

α

)
|c|p−q − λ

q

( R2∫
R1

rN−1b(r) dr

)]
< 0,

provided that |c| > 0 is small enough. Obviously, this implies (38) and the proof is complete. �
Lemma 4. If b > 0 and (9) holds true, then there exist ρ, λ0 > 0 such that

inf
∂Bρ

Iλ > 0, (40)

for all λ ∈ (0, λ0).
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Proof. Assumption (9) ensures that there are constants ε, ρ > 0 such that

F(r, x) � α − ε

p
|x|p for all r ∈ [R1,R2] and |x| � ρ. (41)

We know (see the proof of Lemma 7 in [5]) that

β0 := inf
u∈K∩∂Bρ

R2∫
R1

rN−1|u|p dr > 0.

Also, from b > 0 it follows

β1 :=
R2∫

R1

rN−1b+(r) dr > 0.

We set

λ0 := εp−1β0

ρqq−1β1
(> 0).

Using (41), for arbitrary λ ∈ (0, λ0) and u ∈ K ∩ ∂Bρ one obtains

Iλ(u) � α

p

R2∫
R1

rN−1|u|p dr −
R2∫

R1

rN−1F(r,u) dr − λ

q

R2∫
R1

rN−1b+(r)|u|q dr

� ε

p

R2∫
R1

rN−1|u|p dr − λ
ρq

q

R2∫
R1

rN−1b+(r) dr

� ε

p
β0 − λ

ρq

q
β1 = ρq

q
β1(λ0 − λ) =: cλ > 0.

Then (40) follows from

inf
∂Bρ

Iλ = inf
u∈K∩∂Bρ

Iλ(u) � cλ. �

Theorem 1. Assume (10), (9) and that b > 0. If either (11) or (12) holds true, then there exists
λ0 > 0 such that problem (5) has at least two nontrivial solutions for any λ ∈ (0, λ0).

Proof. It is clear that Iλ is bounded from below on bounded subsets of C. Then, the conclusion
follows from Proposition 2, Lemmas 2–4 and Proposition 3. �
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Remark 2. On account of Remark 1(i) it is easy to see that under the hypotheses of Theorem 1,
if, in addition, Φ is even and f (r, ·) is odd for all r ∈ [R1,R2], then (5) has at least four nontrivial
solutions for any λ ∈ (0, λ0).

Corollary 1. Assume (10) and that b > 0. If

0 � lim
x→0

F(r, x)

|x|p <
α

p
uniformly in r ∈ [R1,R2], (42)

then there exists λ0 > 0 such that problem (1) has at least two nontrivial solutions for any λ ∈
(0, λ0). If, in addition, f (r, ·) is odd for all r ∈ [R1,R2], then (1) has at least four nontrivial
radial solutions for any λ ∈ (0, λ0).

Example 1. If α > 0, θ > p > q � 2 are constants and γ, b ∈ C, γ > 0, b > 0, then there exists
λ0 > 0 such that the Neumann problem

−div

( ∇v√
1 − |∇v|2

)
+ α|v|p−2v = γ

(|x|)|v|θ−2v + λb
(|x|)|v|q−2v in A,

∂v

∂ν
= 0 on ∂A

has at least four nontrivial radial solutions for any λ ∈ (0, λ0).

4.2. The periodic problem (7)

It is easy to check that Lemma 2 remains valid with IP,λ instead of Iλ. Also, if condition
“b > 0” is replaced by

R2∫
R1

b(r) dr > 0 (43)

then Lemmas 3 and 4 remain true with IP,λ instead of Iλ. Thus, we obtain the following.

Theorem 2. Assume (10), (9) and (43). If either (11) or (12) holds true, then there exists λ0 > 0
such that problem (7) has at least two nontrivial solutions for any λ ∈ (0, λ0).

Corollary 2. Assume (10) and (43). If (42) holds true, then there exists λ0 > 0 such that problem
(3) has at least two nontrivial solutions for any λ ∈ (0, λ0). If, in addition, f (r, ·) is odd for all
r ∈ [R1,R2], then (3) has at least four nontrivial solutions for any λ ∈ (0, λ0).

Example 2. Let α > 0, θ > p > q � 2 be constants and γ, b ∈ C, γ > 0 and b satisfying (43).
Then there exists λ0 > 0 such that the periodic problem

−
(

u′√
1 − |u′|2

)′
+ α|u|p−2v = γ (r)|u|θ−2u + λb(r)|u|q−2u in [R1,R2],

u(R1) − u(R2) = 0 = u′(R1) − u′(R2)

has at least four nontrivial solutions for any λ ∈ (0, λ0).
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5. Multiple solutions for problems (6) and (8)

5.1. The Neumann problem (6)

The following existence result, inspired from [27,20] provides a useful tool in obtaining mul-
tiple solutions.

Lemma 5. We assume h = 0 and there exists k1, k2 > 0 and 0 < σ < m such that

−l(r) � F(r, x) � k1|x|σ + k2, for all (r, x) ∈ [R1,R2] × R+, (44)

with some l ∈ L1
N−1, l � 0, together with either

lim
x→+∞

R2∫
R1

rN−1F(r, x) dr = +∞, (45)

or the limit F+(r) = limx→+∞ F(r, x) exists for all r ∈ [R1,R2] and

F(r, x) < F+(r), ∀r ∈ [R1,R2], x � 0. (46)

Then there exists λ+ > 0 such that problem (6) has at least one solution uλ > 0 for any 0 <

λ < λ+ which minimize Îλ on C+ = {v ∈ C: v � 0}. Moreover, uλ is a local minimum for Îλ.

Proof. First, notice that from (27) it holds

‖ũ‖∞ � a(R2 − R1) for all u ∈ K. (47)

This implies that

u − a(R2 − R1) � u(r) � u + a(R2 − R1) for all u ∈ K, (48)

hence

u → +∞ as ‖u‖∞ → ∞, u ∈ C+ ∩ K. (49)

Also, it is clear that∣∣u(r)
∣∣ � |u| + a(R2 − R1) for all u ∈ K, r ∈ [R1,R2]. (50)

From (44) it follows that

Îλ(u) �
R2∫

rN−1
[

λ

m
|u|m − k1|u|σ − k2 − ‖h‖∞|u|

]
dr,
R1
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for all u ∈ C+. Hence, using (28), (50), (49) and σ < m, we deduce immediately that

Îλ(u) → +∞ whenever ‖u‖∞ → ∞, u ∈ C+, (51)

that is Îλ is coercive on C+. This immediately implies that Îλ is bounded from below on C+.

Now, let {un} ⊂ C+ ∩ K be a minimizing sequence, Îλ(un) → infC+ Îλ as n → ∞. Then, from
(51) it follows that {un} is bounded in C, and using that {un} ⊂ K , we infer that {un} is bounded
in W 1,∞. But W 1,∞ is compactly embedded in C, hence {un} has a convergent subsequence
in C to some uλ ∈ C+ ∩ K. By the lower semicontinuity of Îλ it follows

Îλ(uλ) = inf
C+ Îλ.

We claim that

uλ → +∞ as λ → 0. (52)

Assuming this for the moment, it follows from (48) and (52) that there exists λ+ > 0 such that
uλ > 0 for any 0 < λ < λ+, implying that uλ is a local minimum for Îλ. Consequently, from
Proposition 1.1 in [30], uλ is a critical point of Îλ, and hence a solution of (6) (by Proposition 3)
for any 0 < λ < λ+.

In order to prove the claim, assume first that (45) holds true. Then, consider M > 0 and
xM > 0 such that

R2∫
R1

rN−1F(r, xM)dr > 2M. (53)

On the other hand, as h = 0, one has that for all λ > 0,

Îλ(x) = λ(RN
2 − RN

1 )

Nm
|x|m −

R2∫
R1

rN−1F(r, x) dr (x ∈ R). (54)

So, choosing λM > 0 such that

λM(RN
2 − RN

1 )

Nm
xm
M < M,

and using (53), (54), it follows that

Îλ(xM) < −M for all 0 < λ < λM.

Consequently, one has that

inf
C+ Îλ → −∞ as λ → 0,

which, together with (48) imply (52), as claimed.
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Now, let (46) hold true, and assume also by contradiction that there exists λn → 0 such that
{uλn} is bounded. On account of (48) and of the compactness of the embedding in W 1,∞ ⊂ C,
one can assume, passing if necessary to a subsequence, that {uλn} is convergent in C to some
u ∈ C+. Using (46) and Fatou’s lemma it follows that

R2∫
R1

rN−1F(r,u) dr <

R2∫
R1

r−1F+(r) dr � lim inf
s→∞

R2∫
R1

rN−1F(r, s + ũ ) dr,

which imply that there exists s0 > 0 sufficiently large, with s0 + ṽ ∈ C+ for all v ∈ K, and ρ > 0
such that

R2∫
R1

rN−1[F(r,u) − F(r, s0 + ũ )
]
dr < −ρ.

So, for n sufficiently large, we have

R2∫
R1

rN−1[F(r,uλn) − F(r, s0 + ũλn)
]
dr < −ρ. (55)

On the other hand, using (47) and (48) it follows

R2∫
R1

rN−1 λn

m

[|s0 + ũλn |m − |uλn |m
]
dr → 0 as n → ∞. (56)

Notice that, as h = 0, for all λ > 0 and s ∈ R, one has

Îλ(s + ũλ) =
R2∫

R1

rN−1Φ
(
u′

λ

)
dr +

R2∫
R1

rN−1 λ

m
|s + ũλ|m dr

−
R2∫

R1

rN−1F(r, s + ũλ) dr −
R2∫

R1

rN−1h(r)̃uλ dr.

Then, by (55) and (56) we obtain

Îλn(s0 + ũλn) < Îλn(uλn),

for n sufficiently large, contradicting the definition of uλn. This proves the claim and the proof is
complete. �
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Theorem 3. Assume that conditions h = 0, (13) and either (14) or (15) hold true. Then there
exists λ0 > 0 such that problem (6) has at least three solutions for any λ ∈ (0, λ0).

Proof. From Lemma 5, it follows that there exists λ+ > 0 such that Îλ has a local minimum at
some uλ,1 > 0 for any 0 < λ < λ+. Using exactly the same strategy, we can find λ− > 0 such
that Îλ has a local minimum at some uλ,2 < 0 for any 0 < λ < λ−. Taking λ0 = min{λ−, λ+} it
follows that Îλ has two local minima for any λ ∈ (0, λ0). On the other hand, from the proof of
Lemma 5, it is easy to see that Îλ is coercive on C, implying that Îλ satisfies the (PS) condition
for any λ > 0. Hence, from Corollary 3.3 in [30] we infer that Îλ has at least three critical points
for all λ ∈ (0, λ0) which are solutions of (6) (Proposition 3). �
Corollary 3. Under the assumptions of Theorem 3, there exists λ0 > 0 such that problem (2) has
at least three radial solutions for any λ ∈ (0, λ0).

Remark 3.

(i) When f is bounded, it is well known [1] that the Ahmad–Lazer–Paul condition (14) gener-
alizes the Landesman–Lazer condition

R2∫
R1

rN−1f −(r) dr < 0 <

R2∫
R1

rN−1f+(r) dr,

where f −(r) = lim supx→−∞ f (r, x) and f+(r) = lim infx→+∞ f (r, x).

(ii) Condition (15) holds true whenever one has the sign condition

xf (r, x) > 0 for all r ∈ [R1,R2] and x 
= 0.

(iii) The condition:
there exists 0 < θ < m such that

xf (r, x) − θF (r, x) → −∞ as |x| → ∞, uniformly in r ∈ [R1,R2],
introduced in [28,21], together with the sign condition

xf (r, x) > 0 for all r ∈ [R1,R2] and |x| � x0

for some x0 > 0, imply (13) and (14).

Example 3. Let m ∈ N be even and h ∈ C be with h = 0. Then, using Corollary 3 and Re-
mark 3(iii), it follows that there exists λ0 > 0 such that the Neumann problem

−div

( ∇v√
1 − |∇v|2

)
+ λ|v|m−2v = vm−1

1 + vm
+ h

(|x|) in A,

∂v

∂ν
= 0 on ∂A,

has at least three radial solutions for all λ ∈ (0, λ0).
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5.2. The periodic problem (8)

Using exactly the same strategy as above, but with ÎP ,λ instead of Îλ, we have the following

Theorem 4. Assume that conditions

R2∫
R1

h(r) dr = 0, (57)

(13), and either (14) or (15) hold true for N = 1. Then there exists λ0 > 0 such that problem (8)
has at least three solutions for any λ ∈ (0, λ0).

Corollary 4. Under the assumptions of Theorem 4, there exists λ0 > 0 such that problem (4) has
at least three solutions for any λ ∈ (0, λ0).

Example 4. Let m ∈ N be even and h ∈ C satisfying (57). Then there exists λ0 > 0 such that the
periodic problem

−
(

u′√
1 − |u′|2

)′
+ λ|u|m−2u = um−1

1 + um
+ h(r),

u(R1) − u(R2) = 0 = u′(R1) − u′(R2)

has at least three solutions for all λ ∈ (0, λ0).
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