
DISCRETE AND CONTINUOUS doi:10.3934/dcds.2013.33.47
DYNAMICAL SYSTEMS
Volume 33, Number 1, January 2013 pp. 47–66

MULTIPLE CRITICAL POINTS FOR A CLASS OF PERIODIC

LOWER SEMICONTINUOUS FUNCTIONALS

Cristian Bereanu

Institute of Mathematics “Simion Stoilow”, Romanian Academy
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Dedicated to Jean Mawhin with great esteem for his 70th anniversary

Abstract. We deal with a class of functionals I on a Banach space X, having

the structure I = Ψ +G, with Ψ : X → (−∞,+∞] proper, convex, lower semi-

continuous and G : X → R of class C1. Also, I is G-invariant with respect to
a discrete subgroup G ⊂ X with dim (span G) = N . Under some appropriate

additional assumptions we prove that I has at least N + 1 critical orbits. As

a consequence, we obtain that the periodically perturbed N -dimensional rela-
tivistic pendulum equation has at least N + 1 geometrically distinct periodic

solutions.

1. Introduction. In the recent paper [4], Brezis and Mawhin show that the forced
pendulum like problem

(φ(u′))′ = f(t, u) + h(t), u(0)− u(T ) = 0 = u′(0)− u′(T ), (1)

has at least one solution, provided that f : [0, T ]× R→ R is a continuous function
for which there exists ω > 0 such that

F (t, u) = F (t, u+ ω), ∀(t, u) ∈ [0, T ]× R,

where F : [0, T ]× R→ R is defined by

F (t, u) =

∫ u

0

f(t, ξ)dξ, ∀(t, u) ∈ [0, T ]× R,

h : [0, T ]→ R is a continuous function satisfying∫ T

0

h(t)dt = 0,

and φ : (−a, a) → R (0 < a < ∞) is an increasing homeomorphism with φ(0) = 0
and there exists Φ : [−a, a]→ R a continuous function with Φ(0) = 0, Φ of class C1
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on (−a, a) and Φ′ = φ. They consider the action functional I : K# → R associated
to (1), given by

I(u) =

∫ T

0

{Φ(u′) + F (t, u) + hu}dt, (u ∈ K#),

where

K# = {u ∈ Lip(R) : |u′(t)| ≤ a for a.e. t ∈ R, u is T − periodic},
and prove that I has at least one minimizer u in K# satisfying the variational
inequality∫ T

0

[Φ(v′)− Φ(u′)] +

∫ T

0

[f(t, u) + h][v − u] ≥ 0, ∀v ∈ K#. (2)

Then, using (2) and a topological result from [1], they show that any minimizer of
I on K# is a solution of (1). Hence, (1) has at least one solution. Notice that the
corresponding classical result (φ = idR) was proved by Hamel [13] and rediscovered
independently by Dancer [7] and Willem [26]. Also, Brezis and Mawhin extend their
result from [4] to systems in their subsequent paper [5].

In [2] it is emphasized that Szulkin’s critical point theory [24] is an appropriate
functional framework for problems of this type. More precisely, set

K̂ = {u ∈W 1,∞(0, T ) : ‖u′‖∞ ≤ a, u(0) = u(T )}
and let Ψ : C[0, T ]→ (−∞,+∞],

Ψ(u) =

∫ T

0

Φ(u′) if u ∈ K̂, Ψ(u) = +∞ if u ∈ C[0, T ] \ K̂,

and F : C[0, T ]→ R,

F(u) =

∫ T

0

{F (t, u) + hu}dt, (u ∈ C[0, T ]).

Then, Ψ is a lower semicontinuous, convex functional and F is of class C1. Hence,

the action Î : C[0, T ] → (−∞,+∞] defined by Î = Ψ + F , has the structure

required by Szulkin’s critical point theory. In this context, a critical point of Î
means a function u ∈ K̂ such that (2) holds true. Then, using some ideas from

[4], it is shown that any critical point of Î is a solution of (1). Note that C[0, T ] is
not reflexive, so the direct method in the calculus of variations cannot be applied.
Nevertheless, a substitute for this is provided, namely, it is shown that if there exists

ρ > 0 such that infK̂ρ Î = infK̂ Î, where

K̂ρ = {u ∈ K̂ :

∣∣∣∣∣
∫ T

0

u

∣∣∣∣∣ ≤ ρ},
then Î is bounded from below on C[0, T ] and attains its infimum at some u ∈ K̂ρ

which solves (1). The Brezis-Mawhin result is an immediate consequence of this
result.

Another proof of Brezis-Mawhin result is given by Manásevich and Ward in [15].
The main idea is to introduce the change of variable φ(u′) = v. Then, problem (1)
becomes

u′ = φ−1(v), v′ = f(t, u) + h(t), u(0)− u(T )− 0 = v(0)− v(T ). (3)
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Letting

φ̂(v) =

∫ v

0

φ−1(s)ds, w = (u, v),

with the Hamiltonian function H(t, w) = −φ̂(v) + F (t, u) + h(t)u, system (3) takes
the Hamiltonian form

w′ = J∇wH(t, w), w(0) = w(T ),

where J is the standard symplectic matrix. The classical saddle point theorem of
Rabinowitz is then applied to a sequence of approximating problems, obtaining a
sequence of critical points. A subsequence of these critical points converges to a
solution. Notice that the action functional associated to the above Hamiltonian
system is strongly indefinite and the classical saddle point theorem does not apply
to it.

A second geometrically distinct solution of problem (1) is obtained in [3] using
the functional framework introduced in [2] and a mountain pass type argument
(Corollary 3.3 from [24]). We note that the corresponding classical result was proved
by Mawhin and Willem in [21] using a modified version of the Mountain Pass
Theorem. Another proof of the Mawhin-Willem result was given by Franks [12]
using a generalization of the Poincaré -Birkhoff theorem. Very recently Fonda and
Toader [10] prove the results from [3, 21] in a unified way, using Ding’s version of the
Poincaré -Birkhoff theorem (see [8]). Using Franks’s generalization of the Poincaré
-Birkhoff theorem, Maró [16] give another proof of the main result from [3].

In the very recent paper [19], Mawhin obtains multiplicity of solutions for the
N -dimensional analogous of (1):

(φ(u′))′ = ∇uF (t, u) + h(t), u(0)− u(T ) = 0 = u′(0)− u′(T ), (4)

under the following hypotheses:

(Hφ) φ is a homeomorphism from B(a) ⊂ RN onto RN such that φ(0) = 0,

φ = ∇Φ, with Φ : B(a) → R of class C1 on B(a), continuous, strictly convex on

B(a), and such that Φ(0) = 0;

(HF ) F : [0, T ]× RN → R is continuous, ωi−periodic (ωi > 0) with respect to
each ui (1 ≤ i ≤ N) and ∇uF exists and is continuous on [0, T ]× RN ;

(Hh) h : [0, T ]→ RN is continuous and∫ T

0

h(t)dt = 0.

Under the above assumptions, Mawhin shows that (4) has a Hamiltonian formula-
tion, then applies a generalized saddle point theorem for strongly indefinite func-
tionals due to Szulkin [25] (see also [9, 14]) in order to prove that (4) has at least
N + 1 geometrically distinct solutions. The corresponding classical result has been
proved independently, using Lusternik-Schnirelman theory in Hilbert manifolds or
variants of it, by Chang [6], Mawhin [17] and Rabinowitz [23]. The case N = 2 has
been discussed by Fournier and Willem in [11]. It is interesting to note that the
Hamiltonian system associated to (4) is spatially periodic like in [9], but the results
in [9] cannot be applied to it because the superlinearity condition (H3) in [9] with
respect to the spatial variable is not satisfied in this relativistic case.
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For a nice presentation of the classical forced pendulum equation we refer the
reader to the paper [18].

The aim of this paper is to give a different proof of Mawhin’s result in [19],
based upon a Lusternik-Schnirelman type approach for Szulkin functionals. More
precisely, we will consider functionals I : X → (−∞,+∞] in a Banach space X such
that I = Ψ+G, Ψ is proper, convex, lower semicontinuous and G is of class C1. Also,
I will be G-invariant with respect to a discrete subgroup G with dim (span G) = N
and bounded from below. Under some additional assumptions, which are auto-
matically satisfied by the Lagrangian action associated to (4), we prove that I has
N + 1 critical orbits (Theorem 7.1). With this aim, we use a Deformation Lemma
(Proposition 5.2) together with Ekeland’s variational principle and the classical
Lusternik-Schnirelman category in order to prove that one has critical value at the
levels (introduced in [23] for C1-functionals),

cj = inf
A∈Aj

sup
A
I (1 ≤ j ≤ N + 1),

where

Aj = {A ⊂ X : A is compact and catπ(X)(π(A)) ≥ j},

and π : X → X/G denotes the canonical projection. The corresponding abstract
result for C1-functionals is proved in [22]. We point out that we use also some ideas
from the proof of Theorem 4.3 in [24], but the deformation obtained in Proposition
2.3 from [24] can not be employed in our case because it is not “G-invariant” (see
Proposition 5.2 (ii)).

The paper is organized as follows. In Section 2 we show that the action functional
associated to problem (4) has the structure required by Szulkin’s critical point
theory and present the main properties involved in the proof of the existence of at
least N + 1 geometrically distinct solutions for (4). In Section 3 we introduce some
notations and the hypotheses. In Section 4 we prove a technical result (Proposition
4.9); this is the key ingredient in the proof of the deformation lemma (Proposition
5.2) which is given in Section 5. The next Section is a resume of the main tools
of the proof of the main result: Ekeland’s variational principle and the classical
Lusternik-Schnirelman category. In the last Section we prove the main result of the
paper (Theorem 7.1).

2. A nonsmooth variational approach for problem (4). Consider the peri-
odic boundary value problem (4) under the hypotheses (Hφ), (HF ) and (Hh). The
following variational setting is taken from [2] when N = 1 and [20] in the general
case.

We set C = C([0, T ],RN ) and W 1,∞ = W 1,∞([0, T ],RN ). The usual norm || · ||∞
is considered on C and L∞. Setting

C̃ := {u ∈ C :

∫ T

0

u(t)dt = 0},

we can split

C = RN ⊕ C̃
and each v ∈ C can be uniquely written as

u = u+ ũ, with u ∈ RN , ũ ∈ C̃.
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Also, note that setting

Gp :=

{
N∑
k=1

kiωiei : ki ∈ Z, 1 ≤ i ≤ N

}
,

one has that Gp ' ZN and span Gp = RN . Putting

K̂ = {v ∈W 1,∞ : ||v′||∞ ≤ a, v(0) = v(T )},

we have that K̂ is a convex and closed set in C.

Let Ψp : C → (−∞,+∞] be defined by

Ψp(v) =

∫ T

0

Φ(v′) if v ∈ K̂, Ψp(v) = +∞ if v ∈ C \ K̂.

and Gp : C → R be defined by

Gp(v) =

∫ T

0

F (t, u)dt+

∫ T

0

h(t)u (u ∈ C).

The following hold true.

(p1) Gp ∈ C1(C,R) and G′p takes bounded sets into bounded sets; Ψp is convex,

lower semicontinuous and D(Ψp) = {u ∈ C : Ψp(u) < +∞} = K̂ is a closed set in
C. Note also that

Gp(u+ g) = Gp(u) and Ψp(u+ g) = Ψp(u) ∀u ∈ C, g ∈ Gp.
(p2) One has that Ψp(0) = 0 and

Ψp(u) = Ψp(ũ) for all u ∈ C.
(p3) There exists ρ > 0 such that

||ũ||∞ ≤ ρ, |Ψ(u)| ≤ ρ for all u ∈ K̂.

(p4) Any sequence {un} ⊂ K̂ with {un} bounded, has a convergent subsequence.

With Ψp and Gp as above, we define Ip := Ψp + Gp.

Proposition 2.1. If u ∈ C is a critical point of Ip, i.e.,

〈G′p(u), v − u〉+ Ψp(v)−Ψp(u) ≥ 0, ∀v ∈ C,
then u is a solution of problem (4).

3. Notations and hypotheses. The space RN (N ≥ 1) will be endowed with the
norm

|u| = N
max
i=1
|ui| for all u = (u1, ..., uN ) ∈ RN .

Let (X, || · ||X) be a real Banach space with the dual denoted by X∗ and G be a
discrete subgroup of X. We denote by π : X → X/G the canonical projection. The
following definitions are taken from [22] and are classical. A set A ⊂ X is said to
be G-invariant if

A = π−1(π(A)).

Notice that a set A is G-invariant if and only if u+ g ∈ A for all u ∈ A and g ∈ G.
If M is an arbitrary set and f : X →M is a function, then f is called G-invariant
if

f(u+ g) = f(u) for all u ∈ X, g ∈ G.
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For any G-invariant functional G ∈ C1(X,R), one has that G′ : X → X∗ is G-
invariant. In what follows we assume that

dim (span G) = N.

Then, we have

G ' ZN , X ' RN ⊕ Y,
where Y is a closed subspace of X. So, any u ∈ X can be uniquely decomposed as

u = u+ ũ, with u ∈ RN , ũ ∈ Y,
and the mappings u 7→ u, u 7→ ũ are bounded linear projections. We will consider
on X the equivalent norm

||u|| = |u|+ ||ũ||X (u ∈ X).

In the sequel we assume the following hypotheses.

(H1) The functional G ∈ C1(X,R) is G-invariant and G′ takes bounded sets
into bounded sets. On the other hand, Ψ : X → (−∞,+∞] is G-invariant, convex,
lower semicontinuous and D(Ψ) = {u ∈ X : Ψ(u) < +∞} is a closed nonempty
set.

(H2) One has that Ψ(0) = 0 and

Ψ(u) = Ψ(ũ) for all u ∈ X.
(H3) There exists ρ > 0 such that

||ũ|| ≤ ρ, |Ψ(u)| ≤ ρ for all u ∈ D(Ψ).

(H4) Any sequence {un} ⊂ D(Ψ) with {un} bounded, has a convergent subse-
quence.

Note that from (H2) it follows that Ψ is G-invariant and

Ψ(u) = 0 for all u ∈ RN .
With Ψ and G as above, we shall consider the functional

I = Ψ + G. (5)

According to Szulkin [24], a point u ∈ X is said to be a critical point of I if u ∈ D(Ψ)
and it holds

〈G′(u), v − u〉+ Ψ(v)−Ψ(u) ≥ 0 for all v ∈ X. (6)

For any c ∈ R, we shall use the notations:

K = {u ∈ X : u is a critical point}, Kc = {u ∈ K : I(u) = c}.
Since G′ and Ψ are G-invariant, it follows immediately that if u ∈ K, then π−1(π(u))
⊂ K. In this case the set π−1(π(u)) is called a critical orbit of I. Moreover, using
that I is G-invariant, it follows that if u ∈ Kc, then π−1(π(u)) ⊂ Kc.

If N is an open neighborhood of Kc and ε > 0, we denote

Nε = {u ∈ X \ N : |u| ≤ 2, I(u) ≤ c+ ε}.
If Kc = ∅, then we will consider N = ∅. Notice that Nε is a compact set. Indeed,
using that I is lower semicontinuous, it follows that Nε is closed. If {un} is a
sequence in Nε, then {un} ⊂ D(Ψ) and {un} is bounded. Hence from (H4) it
follows that {un} has a convergent subsequence. So, if Nε 6= ∅, we can define

α = max
u∈Nε

|〈G′(u), u〉|. (7)
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4. Some auxiliary results. Below, all the neighborhoods will be assumed to be
open.

Lemma 4.1. Let c ∈ R and N be a G-invariant neighborhood of Kc. Then, for each
ε > 0, there exists ε ∈ (0, ε] such that for any u0 ∈ X \N with c− ε ≤ I(u0) ≤ c+ ε,
there exists v0 ∈ X satisfying

〈G′(u0), v0 − u0〉+ Ψ(v0)−Ψ(u0) < −3ε.

Proof. By contradiction, assume that for any positive integer n there exists un ∈
X \ N with

c− 1/n ≤ I(un) ≤ c+ 1/n,

and

〈G′(un), v − un〉+ Ψ(v)−Ψ(un) ≥ −3/n, ∀v ∈ X. (8)

Clearly, one has that {un} ⊂ D(Ψ). On the other hand, using that G′,Ψ and N
are G-invariant, we may assume that {un} ⊂ [0, 1)N . So, using (H4), passing if
necessary to a subsequence, it follows that {un} converges to some u ∈ D(Ψ). We
deduce that

G(un)→ G(u) and Ψ(un)→ c− G(u).

As Ψ is lower semicontinuous, it follows that

c− G(u) = lim inf
n→∞

Ψ(un) ≥ Ψ(u).

On the other hand, taking in (8) v = u we obtain

lim sup
n→∞

Ψ(un) ≤ Ψ(u).

Hence,
Ψ(un)→ Ψ(u)

and using (8), we infer that u ∈ K. But, I(un) → I(u) and I(un) → c, hence
I(u) = c and u ∈ Kc. This is in contradiction with un → u, {un} ⊂ X \ N and N
is a neighborhood of Kc.

Lemma 4.2. Let c ∈ R and N be a G-invariant neighborhood of Kc. Then, for
each ε > 0, there exists ε ∈ (0, ε] such that for any u0 ∈ X \ N with I(u0) ≤ c+ ε,
there are ε0 ∈ (0, ε], v0 ∈ X and U0 a neighborhood of u0, satisfying

〈G′(u), v0 − u〉+ Ψ(v0)−Ψ(u) ≤ 1, ∀u ∈ U0, (9)

and

〈G′(u), v0 − u〉+ Ψ(v0)−Ψ(u) ≤ −2ε0, ∀u ∈ U0 with I(u) ≥ c− ε. (10)

Proof. Let ε > 0 and the corresponding ε ∈ (0, ε] be given in Lemma 4.1. We have
to consider the following three cases.

Case 1 : u0 ∈ K. In this case, we shall prove the assertions with v0 = u0. We have

〈G′(u0), u− u0〉+ Ψ(u)−Ψ(u0) ≥ 0 for all u ∈ X.
Then, from the continuity of G′, we infer that

〈G′(u), u0 − u〉+ Ψ(u0)−Ψ(u) ≤ 〈G′(u)− G′(u0), u0 − u〉
≤ ||G′(u)− G′(u0)|| ||u− u0||
≤ 1,
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for all u ∈ U1, where U1 is a sufficiently small neighborhood of u0. On the other
hand, using Lemma 4.1, it follows

[u ∈ K, c− ε ≤ I(u) ≤ c+ ε]⇒ u ∈ N ,

which ensures that

I(u0) < c− ε.

Next, we prove that there exists U2 a neighborhood of u0 and ε0 ∈ (0, ε] such
that

Ψ(u)−Ψ(u0) > 3ε0, ∀u ∈ U2, I(u) ≥ c− ε.
Assume by contradiction that there exists a sequence {un} converging to u0, with

I(un) ≥ c− ε, Ψ(un)−Ψ(u0) ≤ 1/n

for all n ≥ 1. This, together with the lower semicontinuity of Ψ imply that Ψ(un)→
Ψ(u0), hence I(un) → I(u0). But I(u0) < c − ε and I(un) ≥ c − ε, which give a
contradiction. Note that, as G′ takes bounded sets into bounded sets, we may
assume

||G′(u)|| ||u− u0|| ≤ ε0, ∀u ∈ U2.

It follows that

〈G′(u), u0 − u〉+ Ψ(u0)−Ψ(u) ≤ ||G′(u)|| ||u− u0|| − 3ε0 ≤ −2ε0,

for all u ∈ U2 with I(u) ≥ c− ε. So, in this case we take U0 = U1 ∩ U2.

Case 2 : u0 /∈ K, I(u0) < c− ε. Let v0 ∈ D(Ψ) be with the property

〈G′(u0), v0 − u0〉+ Ψ(v0)−Ψ(u0) < 0. (11)

We may assume that v0 is arbitrarily close to u0. Indeed, consider t ∈ (0, 1) and
w0 = tv0 + (1− t)u0. Then, from (11) and the convexity of Ψ, it follows that

〈G′(u0), w0 − u0〉+ Ψ(w0)−Ψ(u0) < 0.

The assertion follows by taking t→ 0+.
First, we deal with (10). Using that I(u0) < c− ε and arguing exactly as in the

previous case, there exists U3 a neighborhood of u0 and ε0 ∈ (0, ε] such that

Ψ(u)−Ψ(u0) > 4ε0, ∀u ∈ U3, I(u) ≥ c− ε.

Using that G′ takes bounded sets into bounded sets, it follows that there exists
M0 > ε0/2 with

||G′(u)|| < M0, ∀u ∈ X, ||u− u0|| ≤ 1.

Now, let us consider v0 satisfying (11) and ||v0 − u0|| < ε0/(2M0). From the choice
of M0, it follows

||G′(u)|| ||v0 − u0|| ≤
ε0
2

and ||G′(u)|| ||u− u0|| ≤
ε0
2
,

for all u ∈ X with ||u− u0|| ≤ ε0/(2M0). Set U4 = U3 ∩B(u0, ε0/(2M0)). One has
the following estimates:

Ψ(v0)−Ψ(u) = (Ψ(v0)−Ψ(u0)) + (Ψ(u0)−Ψ(u))

< 〈G′(u0), u0 − v0〉+ (Ψ(u0)−Ψ(u))

≤ ||G′(u0)|| ||v0 − u0||+ (Ψ(u0)−Ψ(u))

≤ ε0/2− 4ε0 < −3ε0,
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for all u ∈ U4 with I(u) ≥ c− ε. We infer

〈G′(u), v0 − u〉+ Ψ(v0)−Ψ(u) ≤ ||G′(u)|| (||v0 − u0||+ ||u0 − u||)− 3ε0

≤ ε0/2 + ε0/2− 3ε0 = −2ε0,

for all u ∈ U4, I(u) ≥ c− ε, and (10) is proved.
Next, we have in view (9). Let δ0 > 0 be such that

〈G′(u0), v0 − u0〉+ Ψ(v0)−Ψ(u0) = −2δ0.

Using the continuity of G′, it follows that there exists a neighborhood of u0 denoted
by U5 such that

||G′(u)− G′(u0)|| ||v0 − u|| < δ0/4 and ||G′(u0)|| ||u− u0|| < δ0/4,

for all u ∈ U5. We get

〈G′(u), v0 − u〉 = 〈G′(u)− G′(u0), v0 − u〉
+ 〈G′(u0), v0 − u0〉+ 〈G′(u0), u0 − u〉
≤ ||G′(u)− G′(u0)|| ||v0 − u||
+ 〈G′(u0), v0 − u0〉+ ||G′(u0)|| ||u− u0||
≤ δ0/2 + 〈G′(u0), v0 − u0〉,

for all u ∈ U5. On the other hand, by the lower semicontinuity of Ψ, there exists U6

a neighborhood of u0 such that

Ψ(u0)−Ψ(u) ≤ δ0/2, ∀u ∈ U6.

Consequently, taking U7 = U5 ∩ U6, one has

〈G′(u), v0 − u〉+ Ψ(v0)−Ψ(u) ≤ δ0/2 + 〈G′(u0), v0 − u0〉+ Ψ(v0)−Ψ(u0)

+Ψ(u0)−Ψ(u) ≤ −δ0,

for all u ∈ U7, and (9) is proved. Therefore, in this case U0 will be U4 ∩ U7.

Case 3 : u0 /∈ K, I(u0) ≥ c− ε. From Lemma 4.1, there exists v0 ∈ X satisfying

〈G′(u0), v0 − u0〉+ Ψ(v0)−Ψ(u0) < −3ε.

Now, arguing exactly as in the proof of (9) in Case 2, it follows that there exists U0

a neighborhood of u0 such that

〈G′(u), v0 − u〉 ≤ ε/2 + 〈G′(u0), v0 − u0〉 and Ψ(u0)−Ψ(u) ≤ ε/2,

for all u ∈ U0. Also, an argument similar to that used in the proof of (9) in Case 2
yields

〈G′(u), v0 − u〉+ Ψ(v0)−Ψ(u) ≤ −2ε ∀u ∈ U0.

Lemma 4.3. Let c ∈ R and N be a G-invariant neighborhood of Kc. Then, for
each ε > 0, there exist ε ∈ (0, ε], Mε > 0, ε′ ∈ (0, ε] such that: ∀u0 ∈ Nε, ∃v0 ∈ X
with ||v0|| ≤Mε, ∃U0 a neighborhood of u0 satisfying (9) and

〈G′(u), v0 − u〉+ Ψ(v0)−Ψ(u) ≤ −2ε′, ∀u ∈ U0 with I(u) ≥ c− ε. (12)
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Proof. Let ε > 0 and the corresponding ε ∈ (0, ε] be given by Lemma 4.2. For each
u0 ∈ Nε, let ε0, v0 and U0 constructed in Lemma 4.2. The sets U0 cover Nε. Using
that Nε is compact, it follows that there exists (Uj)

l
j=1 a finite subcovering. Let

uj , εj , vj be related to Uj in the same way as u0, ε0, v0 are related to U0. We set

Mε =
l

max
j=1
||vj || and ε′ =

l
min
j=1

εj .

Then, for u0 ∈ Nε, there exists Uj0 such that u0 ∈ Uj0 . We take v0 = vj0 and
U0 = Uj0 . The proof follows now from Lemma 4.2.

Lemma 4.4. Let u0 ∈ D(Ψ) be such that

G′(u0)|RN 6= 0. (13)

Then, for any r > 0, there exists vr ∈ X and U0 a neighborhood of u0 such that

〈G′(u+ g), vr − (u+ g)〉+ Ψ(vr)−Ψ(u+ g) ≤ −r, (14)

for all g ∈ G with |g| ≤ 6 and u ∈ U0.

Proof. Since G′ is bounded on bounded subsets of X, we can fix some ρ0 > 0 such
that

|〈G′(u), g〉| ≤ ρ0, ∀u ∈ B(u0, 1) and g ∈ G with |g| ≤ 6.

On the other hand, one has that there exists some ej = (0, ..., 1, ..., 0) ∈ RN with

〈G′(u0), ej〉 6= 0.

We may assume that
〈G′(u0), ej〉 > 0.

Let r > 0 and consider vr = u0 + vr ∈ D(Ψ), where vr = (0, ..., wr, ..., 0), (wr ∈ R).
We have

〈G′(u0), vr − u0〉 = 〈G′(u0), vr〉 = wr〈G′(u0), ej〉.
It follows that there is some wr < 0 such that

〈G′(u0), vr − u0〉 < −r − 2(ρ0 + 2ρ),

with ρ entering in (H3). Then, for u ∈ X, we write

〈G′(u), vr − u〉 ≤ ||G′(u)− G′(u0)|| ||vr − u||+ ||G′(u0)|| ||u0 − u||
+ 〈G′(u0), vr − u0〉.

Using the continuity of G′, it follows that there exists Ur ⊂ B(u0, 1) a neighborhood
of u0 such that

||G′(u)− G′(u0)|| ≤ ρ0 + 2ρ

2(|wr|+ 1)
, ∀u ∈ Ur.

Also, we may assume that

||G′(u0)|| ||u0 − u|| ≤
ρ0 + 2ρ

2
, ∀u ∈ Ur.

Then, from
||vr − u|| ≤ |wr|+ 1

we obtain

||G′(u)− G′(u0)|| ||vr − u|| ≤
ρ0 + 2ρ

2
, ∀u ∈ Ur.

Hence,

〈G′(u), vr − u〉 ≤ −r − (ρ0 + 2ρ), ∀u ∈ Ur.
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Now, the result follows immediately from the G-invariance of G′ and Ψ and from
(H3).

Lemma 4.5. Let c ∈ R and N be a neighborhood of Kc. Then, for any ε, r > 0, there
exists Mε,r > 0 such that ∀u0 ∈ Nε, satisfying (13), ∃v0 ∈ X with ||v0|| ≤ Mε,r,
∃U0 a neighborhood of u0 such that (14) holds true, for all g ∈ G with |g| ≤ 6 and
u ∈ U0.

Proof. Using that the set Nε ⊂ D(Ψ) is compact, the argument is similar to that
employed in the proof of Lemma 4.3, but with Lemma 4.4 instead of Lemma 4.2.

Remark 4.6. Let U be an open subset of X u0 ∈ U. Using that G is discrete, there
exists µ0 ∈ (0, 1] such that the square

D(u0, µ0) = {u ∈ X : |u− u0| < µ0, ||ũ− ũ0|| < µ0}
satisfies D(u0, µ0) ⊂ U and

u ∈ D(u0, µ0)⇒ u+ g /∈ D(u0, µ0) ∀g ∈ G \ {0}. (15)

It follows that U0 in the above Lemmas 4.2 - 4.5 can be supposed to be such a
square.

Remark 4.7. (i) Let u0 ∈ X be such that

G′(u0)|RN = 0. (16)

From the continuity of G′ in u0, we infer that for any η > 0, there exists δη > 0 so
that

|〈G′(u), v〉| ≤ η|v|, ∀v ∈ RN , ∀u ∈ X with ||u− u0|| ≤ δη.
(ii) Let U0 = D(u0, µ0) be as in Lemma 4.3 (see also Remark 4.6) with ε ≤ 1.
Assume that u0 is such that (16) holds true. Let η = ε′/12 and δη > 0 be the
corresponding number associated to η by (i). Consider also ν0 ∈ (0,min{µ0, δη/2}),
and note that D(u0, ν0) ⊂ B(u0, δη) ∩D(u0, µ0). It is clear that

|〈G′(u+ g), v〉| ≤ (ε′/12)|v|, (17)

for all g ∈ G, v ∈ RN and u ∈ D(u0, ν0). Then, for all g ∈ G with |g| ≤ 6 and
u ∈ D(u0, ν0), one has

|〈G′(u+ g),−g〉| ≤ ε′/2.
This, together with Lemma 4.3 and the G-invariance of G′ and Ψ, imply that

〈G′(u+ g), v0 − (u+ g)〉+ Ψ(v0)−Ψ(u+ g) ≤ 2, (18)

for all g ∈ G with |g| ≤ 6 and u ∈ D(u0, ν0). If, moreover, I(u) ≥ c− ε, then

〈G′(u+ g), v0 − (u+ g)〉+ Ψ(v0)−Ψ(u+ g) ≤ −ε′. (19)

Remark 4.8. Let α be defined in (7) and ε > 0. Then, taking in Lemma 4.5,
r = ε+ α, we obtain that there exists M ′ε := Mε,ε+α > 0 such that for any u0 ∈ Nε
satisfying (13), ∃v0 ∈ X with ||v0|| ≤M ′ε, ∃D(u0, µ0), such that

〈G′(u+ g), v0 − (u+ g)〉+ Ψ(v0)−Ψ(u+ g) ≤ −(ε+ α), (20)

for all g ∈ G with |g| ≤ 6 and u ∈ D(u0, µ0).

The main result of this Section is the following

Proposition 4.9. Let c ∈ R and N be a G-invariant neighborhood of Kc. Then,
for each ε ∈ (0, 1] there exist ε ∈ (0, ε], mε > 0 and ε′ ∈ (0, ε] with the following
properties.
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10 For any u0 ∈ Nε with G′(u0)|RN = 0, ∃v0 ∈ X with ||v0|| ≤ mε, ∃µ0 > 0, such
that

(i) (17) holds true for all g ∈ G, v ∈ RN and u ∈ D(u0, µ0);
(ii) (18) holds true for all g ∈ G with |g| ≤ 6 and u ∈ D(u0, µ0);
(iii) (19) holds true for all g ∈ G with |g| ≤ 6 and u ∈ D(u0, µ0) with

I(u) ≥ c− ε.
20 For any u0 ∈ Nε with G′(u0)|RN 6= 0, ∃v0 ∈ X with ||v0|| ≤ mε, ∃µ0 > 0, such

that (20) holds true for all g ∈ G with |g| ≤ 6 and u ∈ D(u0, µ0).

Note that µ0 above is taken such that (15) holds true.

Proof. For 10 one applies Lemma 4.3 and Remark 4.7, while 20 follows from Lemma
4.5 and Remark 4.8; one takes mε = max{Mε,M

′
ε}.

5. A deformation lemma.

Lemma 5.1. Let c ∈ R and N be a G-invariant neighborhood of Kc. Then, for
each ε ∈ (0, 1] there exist ε ∈ (0, ε], dε > 0, ε′ ∈ (0, ε] and η : [0, t] × Nε → X a
continuous function, with the following properties.

(i) η(0, ·) = idNε .
(ii) η(t, u+ g) = η(t, u) + g, ∀(t, u) ∈ [0, t]×Nε, ∀g ∈ G with u+ g ∈ Nε.

(iii) ||η(t, u)− u|| ≤ dεt, ∀(t, u) ∈ [0, t]×Nε.
(iv) I(η(t, u))− I(u) ≤ dεt, ∀(t, u) ∈ [0, t]×Nε.
(v) I(η(t, u))− I(u) ≤ −ε′t/2, ∀(t, u) ∈ [0, t]×Nε with I(u) ≥ c− ε.

(vi) If A is a closed subset of Nε with c ≤ sup
A
I, then

sup
u∈A

I(η(t, u))− sup
u∈A

I(u) ≤ −ε′t/2, ∀t ∈ [0, t].

Proof. Covering. Let ε ∈ (0, 1] and the corresponding ε ∈ (0, ε], mε > 0 and
ε′ ∈ (0, ε] be given in Proposition 4.9. Also, for each u0 ∈ Nε, let v0, µ0 and
D(u0, µ0) be as in Proposition 4.9. Since the sets D(u0, µ0) cover the compact set
Nε, it follows that there exists (Dj)

l
j=1 a finite subcovering. Below, uj , vj , µj will

be related to Dj in the same way as u0, v0, µ0 are related to D(u0, µ0).
Partition of unity. Let ρ1i : X → [0,∞) be a continuous function (we can take

the distance function d(·, X \Di)) such that

ρ1i (u) > 0, ∀u ∈ Di and ρ1i (u) = 0, ∀u ∈ X \Di.

Consider the G-invariant set

Vi =
⋃
g∈G

(Di + g).

Note that, from the choice of the squares Di (see (15)), one has that the sets Di+g
(g ∈ G) are mutually disjoint. It follows that, the function ρ2i : X → [0,∞) given
by ρ2i (u + g) = ρ1i (u) for all u ∈ Di, g ∈ G, and ρ2i (u) = 0 for all u ∈ X \ Vi is
correctly defined, continuous and G-invariant.

Now, let us define

D =

l⋃
i=1

Di

and

σi : D → [0, 1], σi =
ρ2i∑l
j=1 ρ

2
j

.
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One has that σi is correctly defined, continuous and G-invariant in the sense that

σi(u+ g) = σi(u), ∀u ∈ D, g ∈ G with u+ g ∈ D.

Also, we have
l∑
i=1

σi = 1

and

σi(w) 6= 0 ⇔ w = wi + gi with some wi ∈ Di, gi ∈ G. (21)

Deformation. Consider the function η : [0, 1]×Nε → X given by

η(t, u) = (1− t)u+ t
l∑
i=1

σi(u)vi + tu ((t, u) ∈ [0, 1]×Nε).

It is clear that η is continuous and η(0, ·) = idNε .
To prove (ii), let (t, u) ∈ [0, 1]×Nε and g ∈ G be with u+g ∈ Nε. Then, we have

η(t, u+ g) = (1− t)(u+ g) + t

l∑
i=1

σi(u+ g)vi + t[u+ g]

= (1− t)u+ (1− t)g + t

l∑
i=1

σi(u)vi + tu+ tg

= η(t, u) + g.

In order to prove (iii), let us consider (t, u) ∈ [0, 1]×Nε. Using (H3) and denoting
d1ε = mε + ρ, one has:

||η(t, u)− u|| = t||
l∑
i=1

σi(u)vi − ũ||

≤ t

[
l∑
i=1

σi(u)||vi||+ ||ũ||

]

≤ t

[
mε

l∑
i=1

σi(u) + ρ

]
= td1ε .

Estimations. Let us consider (t, u) ∈ [0, 1]×Nε. Setting

w :=

l∑
i=1

σi(u)vi − ũ,

we have ‖w‖ ≤ d1ε and

η(t, u) = u+ tw.

By the mean value theorem, we can write

G(u+ tw)− G(u) = t〈G′(u+ θtw), w〉,

with some θ ∈ (0, 1). Hence,

I(η(t, u)) = G(u) + t〈G′(u+ θtw), w〉+ Ψ(u+ tw). (22)
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On the other hand, from (H2) and the convexity of Ψ we get

Ψ(u+ tw) = Ψ

(
(1− t)u+ t

l∑
i=1

σi(u)vi + tu

)

= Ψ

(
(1− t)u+ t

l∑
i=1

σi(u)vi

)

≤ (1− t)Ψ(u) + t

l∑
i=1

σi(u)Ψ(vi).

Then, using (22), it follows

I(η(t, u))− I(u) ≤ t

l∑
i=1

σi(u) [Ψ(vi)−Ψ(u)] + t〈G′(u+ θtw), w〉

= t

l∑
i=1

σi(u) [〈G′(u), vi − u〉+ Ψ(vi)−Ψ(u)]

+ t [〈G′(u+ θtw), w〉 − 〈G′(u), w〉+ 〈G′(u), u〉]

≤ t

l∑
i=1

σi(u) [〈G′(u), vi − u〉+ Ψ(vi)−Ψ(u)]

+ t
[
(‖G′(u+ θtw)− G′(u)‖)d1ε + 〈G′(u), u〉

]
Next, as G′ is continuous and Nε is compact, there exists δ = δ(ε, ε′) > 0 such

that

||G′(v)− G′(u)|| ≤ ε′/(4d1ε), ∀u ∈ Nε, v ∈ X with ||v − u|| ≤ δ.
Then, denoting

t1 := δ/d1ε ,

it follows

||G′(u+ θtw)− G′(u)|| ≤ ε′/(4d1ε), ∀t ∈ [0, t1], ∀u ∈ Nε.
So, we obtain

I(η(t, u))− I(u) ≤ t

l∑
i=1

σi(u) [〈G′(u), vi − u〉+ Ψ(vi)−Ψ(u)]

+ t [ε′/4 + 〈G′(u), u〉] (23)

for all t ∈ [0, t1] and u ∈ Nε.
Let us prove (iv). Consider (t, u) ∈ [0, t1] × Nε. From (21), if σi(u) 6= 0 then

u = u′i + gi, with u′i ∈ Di and gi ∈ G. In this situation we have

|gi| ≤ |u|+ |u′i| ≤ |u|+ |u′i − ui|+ |ui| ≤ 2 + µi + 2 ≤ 6

and, from Proposition 4.9 (ii) it follows

〈G′(u), vi − u〉+ Ψ(vi)−Ψ(u) ≤ 2.

This, together with (7) and (23) yield

I(η(t, u))− I(u) ≤ t(α+ 3).

To prove (v), let (t, u) ∈ [0, t1] ×Nε be such that I(u) ≥ c − ε. We rewrite (23)
as follows
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I(η(t, u))− I(u) ≤ (24)

t

l∑
i=1

σi(u) [〈G′(u), vi − u〉+ Ψ(vi)−Ψ(u) + 〈G′(u), u〉] + tε′/4.

As above, if σi(u) 6= 0 then u = u′i + gi, with u′i ∈ Di, gi ∈ G and |gi| ≤ 6. From
Proposition 4.9, if G′(ui)|RN = 0, then

〈G′(u), vi − u〉+ Ψ(vi)−Ψ(u) ≤ −ε′,
and

|〈G′(u), u〉| ≤ ε′/6,
while, if G′(ui)|RN 6= 0, then

〈G′(u), vi − u〉+ Ψ(vi)−Ψ(u) ≤ −ε− α.
In both cases, one has that

〈G′(u), vi − u〉+ Ψ(vi)−Ψ(u) + 〈G′(u), u〉 ≤ −ε′ + (ε′/6).

This, together with (24) give

I(η(t, u))− I(u) ≤ t
l∑
i=1

σi(u)[−ε′ + (ε′/6)] + tε′/4 < −ε′t/2.

In order to prove (vi), we set t := min{t1, 1/2, ε
2(α+3)} and let A ⊂ Nε be closed

such that c ≤ sup
A
I. For t ∈ [0, t], we have two cases.

If
sup
u∈A

I(η(t, u)) ≤ c− (ε/2),

then, using that t ≤ 1/2, it follows

sup
u∈A

I(η(t, u))− sup
u∈A

I(u) ≤ −εt ≤ −ε′t.

If
sup
u∈A

I(η(t, u)) > c− (ε/2),

then, putting
B := {u ∈ A : I(u) ≥ c− ε},

it follows

I(η(t, u)) ≤ I(u) + (α+ 3)t < c− ε+ (α+ 3)t ≤ c− (ε/2),

for all u ∈ A \B. We infer that

sup
u∈A

I(η(t, u)) = sup
u∈B

I(η(t, u)).

Consequently,

sup
u∈A

I(η(t, u))− sup
u∈A

I(u) ≤ sup
u∈B

I(η(t, u))− sup
u∈B

I(u)

≤ sup
u∈B

[I(η(t, u))− I(u)]

≤ −ε′t/2.
Now, to finish the proof it suffices to take dε := max{d1ε , α+ 3}.

The main result of this Section is the following
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Proposition 5.2. Let c ∈ R and N be a G-invariant neighborhood of Kc. Then,
for each ε > 0 there exist d > 0, ε′′ ∈ (0, ε] with 2dε′′ < ε, and η : [0, t]×Nε′′ → X
a continuous function, with the following properties.

(i) η(0, ·) = idNε′′ .
(ii) η(t, u+ g) = η(t, u) + g, ∀(t, u) ∈ [0, t]×Nε′′ , ∀g ∈ G with u+ g ∈ Nε′′ .

(iii) ||η(t, u)− u|| ≤ dt, ∀(t, u) ∈ [0, t]×Nε′′ .
(iv) If A is a closed subset of Nε′′ with c ≤ supA I, then

sup
u∈A

I(η(t, u))− sup
u∈A

I(u) ≤ −ε′′t, ∀t ∈ [0, t].

Proof. The result follows immediately from Lemma 5.1 taking

0 < ε′′ < min{ε′/2, ε/2dε}.
Note that Nε′′ ⊂ Nε.

Lemma 5.3. Let η be as in Proposition 5.2. Then η̂ : [0, t] × π(Nε′′) → π(X)
defined by

η̂(t,Γ) = π(η(t, v)), for v ∈ Nε′′ with π(v) = Γ (t ∈ [0, t])

is well defined and continuous.

Proof. Let (t,Γ) ∈ [0, t] × π(Nε′′). It follows that there exists u ∈ Nε′′ such that
π(u) = Γ. Assume that u1, u2 ∈ Nε′′ are such that π(u1) = Γ = π(u2). It follows
that u2 = u1 + g, for some g ∈ G. Then, using Proposition 5.2 (ii), we get

η(t, u2) = η(t, u1 + g) = η(t, u1) + g,

which means that π(η(t, u1)) = π(η(t, u2)) and η̂ is well defined.
For the continuity of η̂, consider a sequence {(tk,Γk)} ⊂ [0, t]×π(Nε′′) converging

to some (t,Γ) ∈ [0, t]×π(Nε′′). It follows that there exists {uk} ⊂ X with π(uk) = Γk
such that uk → u ∈ X and π(u) = Γ. Note that ũk → ũ and uk → u. On the other
hand, uk = vk+gk with some vk ∈ Nε′′ and gk ∈ G. So, using that I is G-invariant,
we deduce I(uk) ≤ c+ε′′. Similarly, u = v+g with v ∈ Nε′′ , g ∈ G and I(u) ≤ c+ε′′.
Consider g′ ∈ G with u+ g′ ∈ [0, 1)N . Then, we may assume that |uk + g′| ≤ 2 for
all k ∈ N. Using that N and I are G-invariant, it follows that wk := uk + g′ ∈ Nε′′
and w := u+ g′ ∈ Nε′′ . By the continuity of η and π, we have

η̂(tk,Γk) = π(η(tk, wk))→ π(η(t, w)) = η̂(t,Γ)

and the proof is complete.

Remark 5.4. If A ⊂ [0, 1)N + Y is compact, b ∈ X and infa∈A ||b− a|| ≤ 1, then
|b| ≤ 2. Indeed, using the compactness of A, it follows that there exists a0 ∈ A such

that ||b − a0|| = infa∈A ||b − a||. As ||b − a0|| = |b − a0| + ||̃b − ã0||X , one has that
|b− a0| ≤ 1. It follows that |b| ≤ |b− a0|+ |a0| ≤ 2.

6. Main tools. The results in this section are proved in [22].

1. Lusternik-Schnirelman category. Recall, a subset C of a topological spaces
E is called contractible in E if there exists a continuous function h : [0, 1]×C → E
and e ∈ E such that

h(0, ·) = idC , h(1, ·) = e.

A subset A of a topological space E is said to has category k in E if k is the least
integer such that A can be covered by k closed sets contractible in E. The category
of A in E is denoted by catE(A).
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The main properties of the Lusternik-Schnirelman category are given in the fol-
lowing

Lemma 6.1. Let E be a topological space and let A,B ⊂ E.
(i) If A ⊂ B, then catE(A) ≤ catE(B).

(ii) catE(A ∪B) ≤ catE(A) + catE(B).
(iii) If A is closed and B = η(t, A), where η : [0, t] × A → E is a continuous

function such that η(0, ·) = idA, then catE(A) ≤ catE(B).

Remark 6.2. In the functional framework from the previous section, if A =
[0, 1]N + {0} (⊂ X = RN ⊕ Y ), then catπ(X)(π(A)) = N + 1.

2. Ekeland variational principle. Let (E, d) be a complete metric space and
γ : E → (−∞,+∞] a proper, lower semi-continuous function bounded from below.
Given δ, λ > 0, and x ∈ E with

γ(x) ≤ inf
E
γ + δ,

there exists y ∈ E such that

γ(y) ≤ γ(x),

d(x, y) ≤ 1/λ,

γ(z)− γ(y) ≥ −δλd(y, z), ∀z ∈ E.

3. Hausdorff distance and a complete metric space. On account of Remark
6.2, it follows that, for 1 ≤ j ≤ N + 1, the set

Aj = {A ⊂ X : A is compact and catπ(X)(π(A)) ≥ j}
is nonempty. In order to apply Ekeland’s variational principle, we need the following

Lemma 6.3. Let 1 ≤ j ≤ N + 1 be fixed.

(i) The space Aj with the Hausdorff distance

δ(A,B) = max{sup
a∈A

dist(a,B), sup
b∈B

dist(b, A)}

is a complete metric space.
(ii) If I : X → (−∞,+∞] is lower semicontinuous, then the function γ : Aj →

(−∞,+∞], defined by

γ(A) = sup
A
I (A ∈ Aj) (25)

is lower semicontinuous.

7. Main result. The main abstract result of the paper is the following

Theorem 7.1. Under the assumptions (H1)− (H4), the functional I defined in (5)
is bounded from below and has at least N + 1 critical orbits.

Proof. First, let us note that, D(Ψ) closed and (H4) imply that {u ∈ D(Ψ) : |u| ≤
1} is a compact set. This, together with the G-invariance and the continuity of G,
imply that G is bounded on D(Ψ). So, from (H3), we deduce that I is bounded from
below on X.

For 1 ≤ j ≤ N + 1, let γ : Aj → (−∞,+∞] be defined by (25) and

cj := inf
A∈Aj

γ(A).
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Using also that Aj+1 ⊂ Aj , one has that

−∞ < inf
X
I ≤ c1 ≤ ... ≤ cN+1.

Moreover, from Remark 6.2 one has A = [0, 1]N + {0} ∈ AN+1, and using (H2), we
have that I(u) = G(u) for all u ∈ A. This together with the continuity of G and the
compactness of A imply that

cN+1 <∞.
We will show that Kcj 6= ∅. By contradiction, assume that Kcj = ∅. Then, let
d, ε′′, η be given by Proposition 5.2 with N = ∅ and ε = 1/2. Consider B ∈ Aj with

γ(B) ≤ cj + ε′′
2
.

Using the G-invariance of I, we may assume that B ⊂ [0, 1)N + Y. Using Ekeland’s

variational principle (see Lemma 6.3) with δ = ε′′
2

and λ = 1/2ε′′d, it follows that
there exists CB ∈ Aj such that

γ(CB) ≤ γ(B) ≤ cj + ε′′
2
, (26)

δ(B,CB) ≤ 2ε′′d < 1/2,

γ(D)− γ(CB) ≥ − ε
′′

2d
δ(CB , D), ∀D ∈ Aj . (27)

In particular, one has that δ(B,CB) < 1 and γ(CB) ≤ cj + ε′′, which together with
B ⊂ [0, 1)N +Y and Remark 5.4 imply CB ⊂ Nε′′ . So, we can consider the compact
set DB := η(t, CB). Then, with η̂ introduced in Lemma 5.3, we have

π(DB) = η̂(t, π(CB))

and from Lemma 6.1 (iii) it follows

catπ(X)(π(DB)) ≥ catπ(X)(π(CB)) ≥ j,

showing that DB ∈ Aj . So, γ(DB) ≥ cj . On the other hand, from Proposition 5.2,
one has

δ(CB , DB) ≤ dt, γ(DB)− γ(CB) ≤ −ε′′t.

Consequently,

−ε′′t ≥ γ(DB)− γ(CB) ≥ − ε
′′

2d
δ(CB , DB) ≥ − ε

′′

2d
dt,

giving 1 ≤ 1/2, a contradiction.
It suffices to prove that, if ck = cj = c for some 1 ≤ j < k ≤ N + 1, then Kc

contains at least k−j+1 critical orbits. By contradiction, assume that Kc contains
at most n ≤ k − j critical orbits denoted by π−1(π(u1)), ..., π−1(π(un)). Note that,
from the above step it follows that n ≥ 1. Let ρ ∈ (0, 1) be such that π restricted

to B(um, ρ) is injective. We introduce the G-invariant set

Mρ :=

n⋃
m=1

⋃
g∈G

B(um + g, ρ),

which, clearly is an open neighborhood of Kc.
Let d, ε′′, and η be given by Proposition 5.2 with N =Mρ/2 and ε = ρ/2. Pick

A ∈ Ak such that

γ(A) ≤ c+ ε′′
2
.
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Using the G-invariance of I, we may assume that A ⊂ [0, 1)N + Y. Setting B =
A \Mρ and using Lemma 6.1, we have

k ≤ catπ(X)(π(A))

≤ catπ(X)(π(B) ∪ π(Mρ))

≤ catπ(X)(π(B)) + catπ(X)(π(Mρ)).

Since from the injectivity of π on B(um, ρ) and Lemma 6.1 (ii), one has that
catπ(X)(π(Mρ)) ≤ n, it follows

k ≤ catπ(X)(π(B)) + n ≤ catπ(X)(π(B)) + k − j,
hence B ∈ Aj . It is clear that

γ(B) ≤ γ(A) ≤ c+ ε′′
2
.

By Ekeland’s variational principle with δ = ε′′
2

and λ = 1/2ε′′d, there exists CB ∈
Aj such that (26), (27) hold true and

δ(B,CB) ≤ 2ε′′d < ρ/2.

Note that B∩Mρ = ∅ and δ(B,CB) < ρ/2 imply CB∩Mρ/2 = ∅. Then CB ⊂ Nε′′ ,
and reasoning as above we arrive at the same contradiction (1 ≤ 1/2), and the proof
is completed.

Corollary 7.2. Under the hypothesis (Hφ), (HF ) and (Hh), the differential system
(4) has at least N + 1 geometrically distinct solutions.

Proof. It follows immediately from the Theorem 7.1 and the results of Section 2.
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