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Abstract. In this paper, using Leray–Schauder degree arguments, criti-
cal point theory for lower semicontinuous functionals and the method of
lower and upper solutions, we give existence results for periodic prob-

lems involving the relativistic operator u �→
(

u′√
1−u′2

)′
+ r(t)u with

∫ T

0
r dt �= 0. In particular we show that in this case we have non-reso-

nance, that is periodic problem(
u′

√
1 − u′2

)′
+ r(t)u = e(t), u(0) − u(T ) = 0 = u′(0) − u′(T ),

has at least one solution for any continuous function e : [0, T ] → R. Then,
we consider Brillouin and Mathieu-Duffing type equations for which r(t)
≡ b1 + b2 cos t and b1, b2 ∈ R.
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1. Introduction

Consider a particle which moves on a straight line, subject to a restoring force
F. Physically, we are assuming the following basic principle: the mass varies
with the speed of the particle according to the familiar formula given by the the-
ory of special relativity. Accordingly (see e.g. [8,9,11]), we have the differential
equation of motion ⎛

⎝ m0u
′√

1 − u′2
c2

⎞
⎠

′

= F,
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where m0 is the rest-mass of the particle and c is the speed of light in the
vacuum. In the sequel we normalize, assuming that m0 = c = 1.

In this paper we consider restoring forces of the form

F (t, u, u′) = −r(t)u + f(t, u, u′)

with r being a continuous function having a non zero mean value on [0, T ].
In the first main result (Theorem 1) we prove, using Leray–Schauder

degree, that the periodic boundary value problem(
u′

√
1 − u′2

)′
+r(t)u=f(t, u, u′), u(0) − u(T ) = 0 = u′(0) − u′(T ),

has at least one solution when r : [0, T ] → R and f : [0, T ] × R
2 → R are

continuous,
∫ T

0
r �= 0 and f is bounded on [0, T ] × R × (−1, 1). In the special

case r constant, this result has been proved in [4].
Then, combining Theorem 1 with a cutting method, we show (Example 3)

that the Brillouin beam-focusing equation with relativistic effects(
u′

√
1 − u′2

)′
+ (b1 + b2 cos t)u =

1
uν

, u(0) − u(2π) = 0 = u′(0) − u′(2π),

has at least one solution if 0 < ν < 1 (the weak singularity case), 0 < b1 < 1
π1+ν

and b2 ∈ [−b1, b1]. The case ν ≥ 1 is discussed in [1] using the upper and lower
solution method. The corresponding result in the Newtonian case is proved
in [14] using a totaly different approach based upon Krasnoselskii fixed point
theorem on compression and expansion in cones.

On the other hand, using Szulkin’s critical point theory for lower semi-
continuous functionals, we show that the following Mathieu-Duffing equation
with relativistic effects(

u′
√

1 − u′2

)′
+(b1 + b2 cos t)u+cu3 = 0, u(0)−u(2π)=0 = u′(0) − u′(2π),

has at least one nontrivial solution provided that c < 0 < b1, b2 ∈ R or
b1 < b2 < 0 < c. In the first situation we use a minimization procedure and
in the second one the Mountain Pass Theorem. The classical case is discussed
in [14].

The paper is organized as follows. In Sect. 2 we introduce some notation
and auxiliary results, in Sect. 3 we deal with bounded and sub-superlinear
perturbations and in the last section we prove existence of nontrivial periodic
solutions of Mathieu-Duffing type periodic problems.

2. Some notations and auxiliary results

Let C be the Banach space of continuous functions on [0, T ] endowed with the
uniform norm ||·||∞, C1 denote the Banach space of continuously differentiable
functions on [0, T ] equipped with the norm

||u|| = ||u||∞ + ||u′||∞ (u ∈ C1).
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The corresponding open ball (in C or C !) with center in zero and radius ρ is
denoted by Bρ. Let P,Q : C → C be the continuous projectors defined by

Pu(t) = u(0), u = Qu(t) =
1
T

∫ T

0

u(τ)dτ (t ∈ [0, T ]),

and define the continuous linear operator H : C → C1 by

Hu(t) =
∫ t

0

u(τ) dτ (t ∈ [0, T ]).

If u ∈ C we write

ũ = u − u, uL = min
[0,T ]

u, uM = max
[0,T ]

u,

and we shall consider the following closed subspace of C1 :

C1
� = {u ∈ C1 : u(0) − u(T ) = 0 = u′(0) − u′(T )}.

Notice that

uM − uL ≤ T

2
||u′||∞ for all u ∈ C1

� (1)

holds true (see [1]).
The following assumption upon φ (called singular) is made throughout

the paper:
(Hφ)φ : (−a, a) → R is an increasing homeomorphism such that φ(0) = 0 and
0 < a < ∞.

The model example is

φ(s) =
s√

1 − s2
(s ∈ (−1, 1)).

We recall the following technical result given as Lemma 1 from [4].

Lemma 1. For each h ∈ C there exists a unique Qφ(h) ∈ R such that

Q ◦ φ−1 ◦ (I − Qφ) ◦ h = 0.

Moreover, the function Qφ : C → R is continuous.

We recall also the following fixed point result introduced in [4].

Lemma 2. Let F : C1 → C be a continuous operator which takes bounded sets
into bounded sets and consider the abstract periodic problem

(φ(u′))′ = F (u), u(0) − u(T ) = 0 = u′(0) − u′(T ). (2)

A function u is solution of (2) if and only if u ∈ C1
� is a fixed point of the

completely continuous operator MF : C1
� → C1

� defined by

MF = P + QF + H ◦ φ−1 ◦ (I − Qφ) ◦ [H(I − Q)F ].

Furthermore, ||(MF (u))′||∞ < a for all u ∈ C1
� and

||ũ||∞ < aT, (3)

for any solution u of (2).
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To each continuous function f : [0, T ] × R
2 → R, we associated its Ne-

mytskii operator Nf : C1 → C given by

Nf (u) = f(·, u(·), u′(·)) (u ∈ C1).

One has that Nf is continuous and takes bounded sets into bounded sets.
Next, consider the periodic boundary value problem

(φ(u′))′ = Nf (u), u(0) − u(T ) = 0 = u′(0) − u′(T ). (4)

If u, v ∈ C are such that u(t) ≤ v(t) for all t ∈ [0, T ], we write u ≤ v. One has
the following (see Definition 1 [4])

Definition 1. A lower solution α (resp. upper solution β) of (4) is a function
α ∈ C1 such that ||α′||∞ < a, φ(α′) ∈ C1, α(0) = α(T ), α′(0) ≥ α′(T ) (resp.
β ∈ C1, ||β′||∞ < a, φ(β′) ∈ C1, β(0) = β(T ), β′(0) ≤ β′(T )) and

(φ(α′))′ ≥ Nf (α) (resp. (φ(β′))′ ≥ Nf (β)). (5)

We need also the following result (see Theorem 3 from [4] and Theorem 1
from [1]).

Lemma 3. Assume that (4) has a lower solution α and an upper solution β. If
α ≤ β, then (4) has a solution u such that α ≤ u ≤ β. If there exists τ ∈ [0, T ]
such that α(τ) > β(τ), then (4) has a solution u such that

min{α(tu), β(tu)} ≤ u(tu) ≤ max{α(tu), β(tu)},

for some tu ∈ [0, T ].

The following result, proved in [1], gives a method to construct lower
solutions for problems of the type

(φ(u′))′ = g0(t, u), u(0) − u(T ) = 0 = u′(0) − u′(T ) (6)

where g0 : [0, T ] × R → R is a continuous function.

Lemma 4. Let us assume that there exists x1 ∈ R and c ∈ C such that

g0(t, x) ≤ c(t), for (t, x) ∈ [0, T ] ×
[
x1, x1 +

aT

2

]
. (7)

If c ≤ 0, then (6) has a lower solution α such that x1 ≤ α < x1 + aT
2 .

3. Bounded and super-sub linear perturbations

In this section we will study problems of the type

(φ(u′))′ + r(t)u = f(t, u, u′), u(0) − u(T ) = 0 = u′(0) − u′(T ) (8)

where r ∈ C and f : [0, T ] × R
2 → R is a continuous nonlinearity.

In the following theorem we prove that if r �= 0 and f is bounded on
[0, T ] × R × (−a, a), then (8) has at least one solution. So, resonance occurs
only when r = 0. The case r constant is considered in [4]. We use the strategy
introduced in the proof of Theorem 3.1 from [12].

Theorem 1. If r �= 0 and f is bounded on [0, T ] × R × (−a, a), then (8) has at
least one solution.
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Proof. Let p > 0 be a constant such that

|f(t, x, y)| ≤ p for all (t, x, y) ∈ [0, T ] × R × (−a, a).

For any λ ∈ [0, 1] let us consider the periodic problem

(φ(u′))′ = λ[Nf (u) − r(t)u] + (1 − λ)[QNf (u) − Q(ru)],
u(0) − u(T ) = 0 = u′(0) − u′(T ). (9)

Let M(λ, ·) : C1
� → C1

� be the fixed point operator associated to (9) by
Lemma 2. Notice that if u ∈ C1

� is such that u = M(λ, u), then (3) is satisfied
and

QNf (u) = Q(ru),

implying that

u =
1
r
Q[Nf (u) − r̃ũ].

So, one has that

|u| <
p + aT ||r̃||∞

r
.

Then, for any ρ > 0 sufficiently large, one has that

u �= M(λ, u) for all (λ, u) ∈ [0, 1] × ∂Bρ.

The invariance under homotopy of the Leray–Schauder degree implies that

dLS [I − M(0, ·), Bρ, 0] = dLS [I − M(1, ·), Bρ, 0].

Notice that from Q2 = Q, it follows that

M(0, u) = Pu + Q[Nf (u) − ru] (u ∈ C1
� ).

So, the range of the operator M(0, ·) is contained in the space of constant
functions which is isomorphic to R. Hence, using the reduction property of the
Leray–Schauder degree we deduce that, for ρ sufficiently large,

dLS [I − M(0, ·), Bρ, 0] = dB [I − M(0, ·)|R, (−ρ, ρ), 0],

which together with the fact that f is bounded and

[I − M(0, ·)|R](x) = rx − 1
T

∫ T

0

f(t, x, 0) dt (x ∈ R),

imply that

dLS [I − M(0, ·), Bρ, 0] = sign r.

We infer that

dLS [I − M(1, ·), Bρ, 0] �= 0,

and the existence property of the Leray–Schauder degree implies that M(1, ·)
has at least one fixed point u which is also a solution of (8). �
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Example 1. Let g : R → R be a continuous function and r, e ∈ C with r �= 0.
Then, problem(

u′
√

1 − u′2

)′
+ g(u′) + r(t)u = e(t), u(0) − u(T ) = 0 = u′(0) − u′(T ),

has at least one solution.

Remark 1. Consider the non-homogeneous Neumann problem with a singular
φ-Laplacian (

tu′
√

1 − u′2

)′
= t(κu + λ), u′(0) = 0, u′(T ) = γ,

where T > 0, κ, λ ∈ R and γ ∈ (−1, 1). If κ �= 0 (the case κ = 0 follows imme-
diately by a direct integration), then it is proved, by a shooting argument, in
Theorems 4.2 and 6.9 from [10] that the above Neumann problem has at least
one solution. Now, using the fixed point operator given in Lemma 3 from [2]
and a similar strategy like in the proof of Theorem 1, one can show that the
Neumann problem(

tN−1u′
√

1 − u′2

)′
= tN−1(κ(t)u + h(t, u, u′)), u′(0) = 0, u′(T ) = γ,

has at least one solution if N ≥ 1 is an integer, κ ∈ C satisfies
∫ T

0
tN−1κ(t) dt �=

0 and the continuous perturbation h : [0, T ] × R
2 → R is bounded on [0, T ] ×

R× (−1, 1). For the geometric motivation of the above problems see the paper
[10].

In the following theorem we assume for example that f is superlinear at
zero and sublinear at infinity and prove that (8) has at least one nontrivial
solution if r > 0. The corresponding result in the classical case (u 
→ u′′) is
proved in [14] (see also [6,7] for Sturm–Liouville boundary value problems).

Theorem 2. Assume that in (8), f does not depends on u′. If one has that
r > 0 and

lim inf
x→0+

f(t, x)
x

> rM ≥ r > lim sup
x→+∞

f(t, x)
x

,

uniformly in t ∈ [0, T ], then (8) has at least one nontrivial solution.

Proof. First of all, our assumption implies that there exists β > 0 such that

r(t)β ≤ f(t, β) for all t ∈ [0, T ].

This means that β is an upper solution of (8).
On the other hand from our assumption it follows also that there exists

ε > 0 and x1 > max{aTr+/2ε, β} such that

f(t, x) ≤ (r − ε)x for all t ∈ [0, T ], x ≥ x1.

We will apply Lemma 4 with g0(t, x) = f(t, x) − r(t)x and

c(t) = −r(t)x1 +
aT

2
r−(t) + max

[x1,x1+
aT
2 ]

f(t, ·),
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for all t ∈ [0, T ], x ∈ R. Notice that

−r(t)x = r−(t)x − r+(t)x

≤ r−(t)
(

x1 +
aT

2

)
− r+(t)x1

= −r(t)x1 +
aT

2
r−(t),

for all (t, x) ∈ [0, T ] × [x1, x1 + aT
2 ], implying that (7) holds true. Next, we

have

c ≤ −x1r +
aT

2
r− + (r − ε)

(
x1 +

aT

2

)
≤ 0.

Hence, from Lemma 4 we deduce that (8) has a lower solution α such that
x1 ≤ α < x1 + aT

2 . In particular β ≤ α, and using Lemma 3, we infer that (8)
has at least one solution u such that β ≤ u(tu), for some tu ∈ [0, T ], which is
also nontrivial. �

Corollary 1. If one has that r > 0 and

lim
x→0+

f(t, x)
x

= +∞, lim
x→+∞

f(t, x)
x

= 0,

uniformly in t ∈ [0, T ], then (8) has at least one nontrivial solution.

Example 2. If r > 0 and ν ∈ (0, 1), then problem(
u′

√
1 − u′2

)′
+ r(t)u = |u|ν , u(0) − u(T ) = 0 = u′(0) − u′(T ),

has at least one nontrivial solution.

4. Singular perturbations

In this section we will apply Theorem 1 to study singular problems of type

(φ(u′))′ + r(t)u − m(t)
uν

= e(t), u(0) − u(T ) = 0 = u′(0) − u′(T ), (10)

where r,m, e ∈ C and ν > 0. Applications are given to Brillouin beam-focusing
type equations with relativistic effects.

Theorem 3. Assume that r > 0, m ≥ 0 with m �= 0 and

e >
aT

2
r+ − m

(
2

aT

)ν

. (11)

Then, (10) has at least one positive solution.

Proof. Let us define the (auxiliary) continuous and increasing functions

Ψ1(x) =
aT

2
r+ − m

xν
, Ψ2(x) = xr+ − m

xν
(x > 0).
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From (11) it follows that e > Ψ2(aT
2 ), and there exists ε > 0 such that

e > Ψ2

(
aT

2
+ ε

)
. (12)

Now, consider the continuous function g : [0, T ] × R → R given by

g(t, x) =

{
m(t)
xν , x ≥ ε,

m(t)
εν , x < ε,

and consider the modified problem

(φ(u′))′ + r(t)u − g(t, u) = e(t), u(0) − u(T ) = 0 = u′(0) − u′(T ). (13)

Using that g is bounded and r �= 0, it follows from Theorem 1 that (13) has a
solution u.

We will show that uL > ε.
Integrating (13) on [0, T ] we deduce that

Te =
∫ T

0

r+(t)u dt −
∫ T

0

r−(t)u dt −
∫ T

0

g(t, u) dt, (14)

which together with (1) imply that

e ≤ aT

2
r+ + ruL − 1

T

∫ T

0

g(t, u) dt. (15)

On the other hand, using that m > 0, one has that

Ψ2

(
aT

2
+ ε

)
≥ aT

2
r+ + εr − m

εν
. (16)

Let us assume that uM ≤ ε. Then, using (15) and r > 0, we infer that

e ≤ aT

2
r+ + rε − m

εν
,

contradicting (12) and (16). So, uM > ε.
Next, using (15), (11), (1) and m ≥ 0, it follows that

0 ≤ Ψ1(uM ) − e + ruL

≤ Ψ1(uM ) − Ψ1

(
aT

2

)
+ ruL

< Ψ1

(
uL +

aT

2

)
− Ψ1

(
aT

2

)
+ ruL,

which together with r > 0, imply that uL > 0.
Using then (12) and (14) we deduce that

Ψ2

(
aT

2
+ ε

)
< e ≤ Ψ2(uM ),

implying that aT
2 + ε < uM . This together with (1) imply that uL > ε, and

our claim is proved. Consequently, u is also a solution of (10) and the proof is
completed. �
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Example 3. Consider the Brillouin beam-focusing equation with relativistic
effects(

u′
√

1 − u′2

)′
+ (b1 + b2 cos t)u =

1
uν

, u(0) − u(2π) = 0 = u′(0) − u′(2π),

where b1 > 0 and b2 ∈ R. We have shown in [1] that the above problem has
at least one solution provided that ν ≥ 1. Now, in the weak case, 0 < ν < 1,
using Theorem 3, it follows that the above problem has at least one solution
if the additional conditions b1 < 1

π1+ν and b2 ∈ [−b1, b1] hold true.

5. Mathieu-Duffing type perturbations

In this section we consider Mathieu-Duffing type equations

(φ(u′))′ + (b1 + b2 cos t)u + cu3 = 0, u(0) − u(2π) = 0 = u′(0) − u′(2π),
(17)

where b1, b2, c ∈ R. We assume that (Hφ) holds true and
(HΦ) there exists Φ : [−a, a] → R such that Φ(0) = 0, Φ is continuous, of

class C1 on (−a, a), with Φ′ = φ.
Clearly, Φ(x) ≥ 0 for all x ∈ [−a, a].
Following [3], one has that the action functional I : C → (−∞,+∞]

associated to (17) is given by I = Ψ + G, where

Ψ(v) =

⎧⎨
⎩

∫ 2π

0

Φ(v′) dt, v ∈ K,

+∞, otherwise,

with

K = {v ∈ W 1,∞ : ||v′||∞ ≤ a, v(0) = v(2π)}
and

G(v) = −
∫ 2π

0

[
1
2
(b1 + b2 cos t)v2 +

c

4
v4

]
dt (v ∈ C).

Then, from [3] (see also [5]) it holds that Ψ is proper (with a closed domain K),
convex and lower semi-continuous and G is of class C1. So, the functional I
has the structure required by Szulkin’s critical point theory (see [13]). In this
context, a critical point of I means a function u ∈ K such that∫ 2π

0

[Φ(v′)−Φ(u′)] dt−
∫ 2π

0

[(b1 + b2 cos t)u+cu3][v − u] dt≥0 for all v∈K.

From Proposition 2 in [3] one has that

Lemma 5. If u ∈ K is a critical point of I, then u is a solution of (17).

In the proof of the first main result of this section we will use the follow-
ing minimization procedure which is a substitute, in this context, of the direct
method of the calculus of variations in reflexive spaces.
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Lemma 6. Assume that there is some ρ > 0 such that infKρ
I = infK I, where

Kρ = {v ∈ K : |v| ≤ ρ}. Then I is bounded from below on C and attains its
infimum at some u ∈ Kρ, which is a critical point of I and solves (17).

The first main result of this section is the following

Theorem 4. If c < 0 < b1, then (17) has at least one nontrivial solution for
any b2 ∈ R.

Proof. First of all, notice that

I(v) =
∫ 2π

0

Φ(v′) dt −
∫ 2π

0

[
1
2
(b1 + b2 cos t)v2 +

c

4
v4

]
dt (v ∈ K).

Then, using that Φ is positive on [−a, a] and

||ṽ||∞ ≤ 2πa for all v ∈ K, (18)

we infer that

I(v) ≥ −cπ

2
v4 + p(|v|) for all v ∈ K,

where p is a polynomial with deg p = 3. On the other hand, from (18) one has
that ||v||∞ → ∞, v ∈ K if and only if |v| → ∞, v ∈ K. So,

I(v) → +∞ as ||v||∞ → ∞, v ∈ K,

implying that there is some ρ > 0 such that infKρ
I = infK I. Then, by

Lemma 6, (17) has a solution u such that I(u) = infK I.
Let us show that u is nontrivial. Using Φ(0) = 0, one has that

I(x) = −x2π
[ c

2
x2 + b1

]
(x ∈ R),

implying that I(x) < 0 for all sufficiently small x ∈ R, which together with
I(0) = 0, imply that u �= 0 and the proof is completed. �

The main tool used in the proof of the second main result of this section
is the Non-smooth Mountain Pass Theorem due to Szulkin (Theorem 3.2 in
[13]). Towards the application of this minimax result to our action functional
I, we have to know when I satisfies the compactness Palais-Smale (in short
(PS)) condition.

Viewing the definition of I and following Szulkin, we say that a sequence
(un) ⊂ K is a (PS)-sequence if I(un) → δ ∈ R and∫ 2π

0

[Φ(v′) − Φ(u′
n)] dt −

∫ 2π

0

[(b1 + b2 cos t)un + cu3
n][v − un] dt

≥ −εn||v − un||∞ for all v ∈ K,

where εn → 0+. The functional I is said to satisfy the (PS)-condition if any
(PS)-sequence has a convergent subsequence in C.

Notice that from Lemma 3 (ii) in [3] one has that if (un) ⊂ K is a (PS)-
sequence with (un) bounded, then (un) has a convergent subsequence in C.
We recall for the convenience of the reader the following
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Mountain Pass Theorem. Suppose that I(0) = 0, I satisfies (PS)-condition
and

(i) there exists δ, ρ > 0 such that I|∂Bρ
≥ δ,

(ii) I(e) ≤ 0 for some e /∈ Bρ.

Then I has at least one nontrivial critical point.

The second main result of this section is the following

Theorem 5. If b1 < b2 < 0 < c, then (17) has at least one nontrivial solution.

Proof. First of all, recall that

I(x) = −x2π
[ c

2
x2 + b1

]
(x ∈ R),

which together with c > 0 imply that

I(x) → −∞ as |x| → ∞. (19)

Next, consider ρ > 0 and (un) ⊂ ∂Bρ ∩ K such that I(un) → inf∂Bρ
I.

Clearly, (un) is bounded in W 1,∞ which is compactly embedded in C. So, pass-
ing if necessarily to a subsequence, we can assume that there exists u ∈ ∂Bρ∩K
(recall that K is closed in C) such that un → u in C and I(u) ≤ lim inf I(un).
Then, one has that I(u) = inf∂Bρ

I. Now, using that b2 < 0 < c, we infer that
∫ 2π

0

u2
(
b1 + b2 cos t +

c

2
u2

)
dt ≤

∫ 2π

0

u2
(
b1 − b2 +

c

2
ρ2

)
dt,

which together with b1 < b2 imply that
∫ 2π

0

u2
(
b1 + b2 cos t +

c

2
u2

)
dt < 0,

if ρ is small enough. Hence,

I(u) ≥ −1
2

∫ 2π

0

u2
(
b1 + b2 cos t +

c

2
u2

)
dt > 0,

implying that

∃δ > 0 : I|∂Bρ
≥ δ. (20)

So, from (19) and (20) it follows that I satisfies condition (i), (ii) from Moun-
tain Pass Theorem. Now, let us check that I satisfies (PS)-condition. Let (un)
be a (PS)-sequence. Using that

I(un) ≤ −cπ

2
u4

n + p(|un|),

where p is a polynomial of degree three, and c > 0, it follows that (un) is
bounded. So, (un) has a convergent subsequence in C and I satisfies (PS)-
condition. Then, by Mountain Pass Theorem, I has a nontrivial critical point
which is also a solution of (17). �
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Example 4. Taking

Φ(x) = 1 −
√

1 − x2 (x ∈ [−1, 1]),

it follows from Theorems 4 and 5 that problem(
u′

√
1 − u′2

)′
+(b1 + b2 cos t)u+cu3 = 0, u(0) − u(2π)=0 = u′(0) − u′(2π),

has at least one nontrivial solution provided that c < 0 < b1, b2 ∈ R or
b1 < b2 < 0 < c.
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