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Non-resonant boundary value problems
with singular ¢-Laplacian operators
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Abstract. In this paper, using Leray—Schauder degree arguments, criti-
cal point theory for lower semicontinuous functionals and the method of
lower and upper solutions, we give existence results for periodic prob-

’
lems involving the relativistic operator u — ( 1“/ /2> + r(t)u with
—u

fOTrdt # 0. In particular we show that in this case we have non-reso-
nance, that is periodic problem

(\/%) +rt)u=et), u(0)—u(T)=0=1u(0)—u(T),

has at least one solution for any continuous function e : [0, 7] — R. Then,
we consider Brillouin and Mathieu-Duffing type equations for which r(t)
= b1 + bacost and b1, b2 € R.
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1. Introduction

Consider a particle which moves on a straight line, subject to a restoring force
F. Physically, we are assuming the following basic principle: the mass varies
with the speed of the particle according to the familiar formula given by the the-
ory of special relativity. Accordingly (see e.g. [8,9,11]), we have the differential
equation of motion
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where mg is the rest-mass of the particle and c is the speed of light in the
vacuum. In the sequel we normalize, assuming that mg = c = 1.
In this paper we consider restoring forces of the form

F(t,u,u') = —r(t)u+ f(t,u,u)

with r being a continuous function having a non zero mean value on [0, 7.
In the first main result (Theorem 1) we prove, using Leray—Schauder
degree, that the periodic boundary value problem

(ﬂliT> +r(tyu=f(tu,w), u(0) —u(T) = 0=u'(0) —/(T),

has at least one solution when r : [0,7] — R and f : [0,7] x R? — R are
continuous, fOT r # 0 and f is bounded on [0,7] x R x (=1,1). In the special
case r constant, this result has been proved in [4].

Then, combining Theorem 1 with a cutting method, we show (Example %)
that the Brillouin beam-focusing equation with relativistic effects

A R ! 2 / ‘(2

<m> + (b1 + ba cost)u = L u(0) —u(27r) =0 = ' (0) — u'(27),

has at least one solution if 0 < v < 1 (the weak singularity case), 0 < b; < le
and be € [—by,b1]. The case v > 1 is discussed in [1] using the upper and lower
solution method. The corresponding result in the Newtonian case is proved
in [14] using a totaly different approach based upon Krasnoselskii fixed point
theorem on compression and expansion in cones.

On the other hand, using Szulkin’s critical point theory for lower semi-
continuous functionals, we show that the following Mathieu-Duffing equation
with relativistic effects

, /
<\/IU—W> +(by + by cost)utcu® =0, u(0)—u(2r)=0 = u'(0) — u/(27),
has at least one nontrivial solution provided that ¢ < 0 < by,b2 € R or
b1 < by < 0 < c. In the first situation we use a minimization procedure and
in the second one the Mountain Pass Theorem. The classical case is discussed
in [14].

The paper is organized as follows. In Sect. 2 we introduce some notation
and auxiliary results, in Sect. 3 we deal with bounded and sub-superlinear
perturbations and in the last section we prove existence of nontrivial periodic
solutions of Mathieu-Duffing type periodic problems.

2. Some notations and auxiliary results

Let C be the Banach space of continuous functions on [0, T] endowed with the
uniform norm ||-||s, C' denote the Banach space of continuously differentiable
functions on [0, T] equipped with the norm

ull = [Julloe + [[t]|loc  (uwe€CH).
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The corresponding open ball (in C or C') with center in zero and radius p is
denoted by B,. Let P, Q) : C' — C be the continuous projectors defined by

1

T
Pu(t) = u(0), 7 =Qult) = /O w(F)dr (¢ € [0,T)),

and define the continuous linear operator H : C' — C! by

Hu(t) :/0 u(r)dr (t €[0,T]).

If uw € C we write

U=u—T1u, ur=minu, Uy = maxu,
[0,77] [0,77]

and we shall consider the following closed subspace of C* :
Cf ={ueC:u0) —u(l)=0=1u'(0)—u(T)}
Notice that
T
uM—uL§§||u’||Oo for all u € C (1)

holds true (see [1]).

The following assumption upon ¢ (called singular) is made throughout
the paper:
(Hy)¢ : (—a,a) — R is an increasing homeomorphism such that ¢(0) = 0 and
0<a<oo.

The model example is

o) = s (€ (1)),

We recall the following technical result given as Lemma 1 from [4].

Lemma 1. For each h € C there exists a unique Qg(h) € R such that
Qogp to(I—Qy)oh=0.
Moreover, the function Qg4 : C' — R is continuous.
We recall also the following fixed point result introduced in [4].

Lemma 2. Let F : C' — C be a continuous operator which takes bounded sets
into bounded sets and consider the abstract periodic problem

(@) = F(u), u(0)—u(T)=0=1u(0)—u(T). (2)
A function u is solution of (2) if and only if u € C'ﬁl s a fived point of the
completely continuous operator My : C’ﬁl — Cﬁl defined by
Mp=P+QF +Hog¢ 'o(I—Qy)o[H(I—-Q)F).
Furthermore, ||(Mr(u)) ||lco < a for all u € C'nl and
[[ulloe < aT, (3)

for any solution u of (2).
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To each continuous function f : [0,7] x R? — R, we associated its Ne-
mytskii operator Ny : C! — C' given by
Ny(u) = f(oul-),u'(r) (welh).
One has that Ny is continuous and takes bounded sets into bounded sets.
Next, consider the periodic boundary value problem

(6(u)" = N¢(w), w(0) —u(T) =0=u'(0) —u/(T). (4)
If u,v € C are such that u(t) < v(t) for all t € [0,T], we write u < v. One has
the following (see Definition 1 [4])

Definition 1. A lower solution a (resp. upper solution ) of (4) is a function

a € C! such that ||o/||o < a, ¢(a/) € Ct, a(0) = (T ), o/ (0) > o/(T) (resp.
BeC 1Bl <a, (8) € C, B(0) = B(T), F'(0) < B'(T)) and

(6(a'))" = Ny(e)  (resp. (6(5)" = N¢(B)). (5)

We need also the following result (see Theorem 3 from [4] and Theorem 1

from [1]).

Lemma 3. Assume that (4) has a lower solution a and an upper solution 3. If
a < 3, then (4) has a solution u such that o < u < (3. If there exists T € [0,T]
such that a(1) > (1), then (4) has a solution u such that

minfa(t,), B(t.)} < u(t) < max{a(t,), 4t)},
for some t,, € [0,T].

The following result, proved in [1], gives a method to construct lower
solutions for problems of the type

(6(u)" = go(t,w), u(0) —u(T) =0=1u(0) - u'(T) (6)
where go : [0,7] x R — R is a continuous function.

Lemma 4. Let us assume that there exists ©1 € R and ¢ € C such that

go(t,x) <c(t), for (t,x)€[0,T] x [ml,xl + (127“} . (7)

Ife <0, then (6) has a lower solution « such that x1 < a < z1 + %

3. Bounded and super-sub linear perturbations

In this section we will study problems of the type
(@) +rt)u=ft,u,v), u(0)—u(T)=0=1u(0)—u(T)  (8)
where r € C and f : [0,T] x R? — R is a continuous nonlinearity.
In the following theorem we prove that if 7 # 0 and f is bounded on
[0,7] x R x (—a,a), then (8) has at least one solution. So, resonance occurs

only when 7 = 0. The case r constant is considered in [4]. We use the strategy
introduced in the proof of Theorem 3.1 from [12].

Theorem 1. If 7 # 0 and f is bounded on [0,T] X R x (—a,a), then (8) has at
least one solution.
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Proof. Let p > 0 be a constant such that
lf(t,z,y)| <p forall (t,z,y) € [0,T] X R X (—a,a).
For any A € [0, 1] let us consider the periodic problem
(8()Y = MNp(w) — (B + (1 - N@Ny(w) — QUru,
w(0) — u(T) =0 =u'(0) —u/(T). (9)

Let M(),) : Cf — C} be the fixed point operator associated to (9) by
Lemma 2. Notice that if u € C’ﬂl is such that u = M(\, u), then (3) is satisfied
and

QN (u) = Q(ru),
implying that
1 e
u = %Q[Nf(u) — ).
So, one has that
Tl
T

[l
Then, for any p > 0 sufficiently large, one has that
u# M(Au) forall (A u)€0,1] x 0B,.
The invariance under homotopy of the Leray—Schauder degree implies that
dislL = M(0,), B,.0) = dislI — M(1,-), B, 0]
Notice that from Q2 = @, it follows that
M(0,u) = Pu+ Q[N¢(u) —ru] (u€ Cy).

So, the range of the operator M(0,-) is contained in the space of constant
functions which is isomorphic to R. Hence, using the reduction property of the
Leray—Schauder degree we deduce that, for p sufficiently large,

drsll — M(0,), By, 0] = dpll — M(0,")[r, (—p, p),0],
which together with the fact that f is bounded and

1 T
1= MO =72 - 7 [ fa0)dt @eR),
0
imply that
drs[l — M(0,-),B,,0] = sign .
We infer that
dLS[I - M(17 ')7Bp70] 7é 07

and the existence property of the Leray—Schauder degree implies that M(1, )
has at least one fixed point « which is also a solution of (8). O
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Example 1. Let g : R — R be a continuous function and r,e € C' with 7 # 0.
Then, problem

Qiﬁ) +g(u) +r(tju=e(t), u(0)—u(T)=0=u'(0) —'(T),

has at least one solution.

Remark 1. Consider the non-homogeneous Neumann problem with a singular
¢-Laplacian

(\/ﬁﬁ) =t(ku+N), o (0)=0, ' (T) =1,

where T > 0, k, A € Rand v € (—1,1). If k # 0 (the case k = 0 follows imme-
diately by a direct integration), then it is proved, by a shooting argument, in
Theorems 4.2 and 6.9 from [10] that the above Neumann problem has at least
one solution. Now, using the fixed point operator given in Lemma 3 from [2]
and a similar strategy like in the proof of Theorem 1, one can show that the
Neumann problem

tN_lu' /
(12> =t (k(t)u + (tuu'),  u'(0) =0, W'(T) =7,

—u
has at least one solution if N > 1 is an integer, k € C' satisfies fOT tN=1k(t) dt #
0 and the continuous perturbation h : [0, 7] x R? — R is bounded on [0, T] x
R x (—1,1). For the geometric motivation of the above problems see the paper

[10].

In the following theorem we assume for example that f is superlinear at
zero and sublinear at infinity and prove that (8) has at least one nontrivial
solution if 7 > 0. The corresponding result in the classical case (u — u”) is
proved in [14] (see also [6,7] for Sturm—Liouville boundary value problems).
Theorem 2. Assume that in (8), f does not depends on u'. If one has that
7 >0 and

t 4
liminfM > ry > T > limsup M,
z—04 X T— 400 X

uniformly in t € [0,T], then (8) has at least one nontrivial solution.

Proof. First of all, our assumption implies that there exists § > 0 such that
r(t)8 < f(t,8) forallte|0,T].

This means that § is an upper solution of (8).
On the other hand from our assumption it follows also that there exists
e >0 and x; > max{aTr*/2e, 3} such that

ft,2) < (F—¢e)xz forallte[0,T], z> 1.
We will apply Lemma 4 with go(¢,2) = f(t,z) — r(t)z and
c(t) = —r(t)z + ﬂ7”_(t) + max _ f(¢,-),

2 [z1,21+2L]
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for all t € [0,T],z € R. Notice that
—r(t)r =r (t)r —rT(t)x
T
<r=(¢) <x1 + a2> — 7 (t)y
T
=—r(t)z + %r‘(t),
for all (t,z) € [0,T] x [21,z1 + % ], implying that (7) holds true. Next, we
have

_ _ . al'— aT
cg—xlr—l—?r——k(r—e) x1+? <0.

Hence, from Lemma 4 we deduce that (8) has a lower solution a such that
1 <a<z+ % In particular § < «, and using Lemma 3, we infer that (8)
has at least one solution u such that 8 < u(t,), for some ¢, € [0,T], which is
also nontrivial. 0

Corollary 1. If one has that T > 0 and
f(t ) f(t,@)

lim ——= = 400, lim =0,
x—04 x r——00 x

uniformly in t € [0,T], then (8) has at least one nontrivial solution.
Ezample 2. If 7> 0 and v € (0,1), then problem
o '
—— | +r(u= |y, u(0)—uw(T)=0=1u(0)—u(T),
(s ) + =1l ()~ () =0=4/(0) - u'(T)

has at least one nontrivial solution.

4. Singular perturbations

In this section we will apply Theorem 1 to study singular problems of type

()Y +riyu— "0 = o), (o) —u(T) = 0 = u(0) (1), (10

where r,m,e € C'and v > 0. Applications are given to Brillouin beam-focusing
type equations with relativistic effects.

Theorem 3. Assume that 7 > 0, m > 0 with m # 0 and
al — 2 \"
> —rt — il
e> 5t —m (aT) . (11)
Then, (10) has at least one positive solution.

Proof. Let us define the (auxiliary) continuous and increasing functions

T -
\111(1:):%7’*7%, \Ilg(x):szf;nj (x > 0).
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From (11) it follows that e > Wo(%L), and there exists € > 0 such that
T
e> U, (C‘2+5). (12)

Now, consider the continuous function g : [0,7] x R — R given by

m(t) > e
t,x) = P - &,
g( ) { 77;(})’ T <e,

and consider the modified problem

(@) +r(t)u —g(t,u) = e(t), u(0) —u(T) =0="1u'(0) —u'(T). (13)
Using that g is bounded and 7 # 0, it follows from Theorem 1 that (13) has a
solution w.

We will show that uy, > €.

Integrating (13) on [0, 7] we deduce that

Te:/OTr+(t>udt—/0T7~—(t)udt—/OTg(t,u) dt, (14)

which together with (1) imply that

T— e
e< s + Tuy, — —/ g(t,u)dt. (15)
2 T Jo
On the other hand, using that m > 0, one has that
aTl al — m
\I’Q <2+€> Z?T_‘——FEF—;. (16)
Let us assume that ups < e. Then, using (15) and 7 > 0, we infer that
R L
81/

contradicting (12) and (16). So, ups > €.
Next, using (15) (11), (1) and m > 0, it follows that

)
Uy (up) — €+ Tur
Wy (

al -~
upn) — () +Tur
2
T T
< WUy <U,L + Cl2> — Uy (a2> +Truyp,

which together with 7 > 0, imply that uy > 0.
Using then (12) and (14) we deduce that

T
Uy <612 +6> <e< \IJQ(UM),
implying that 2L + ¢ < uys. This together with (1) imply that uy > ¢, and
our claim is proved Consequently, u is also a solution of (10) and the proof is
completed. O
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Example 3. Consider the Brillouin beam-focusing equation with relativistic
effects

u’ '
<m) + (b1 + ba cost)u =
where by > 0 and by € R. We have shown in [1] that the above problem has
at least one solution provided that v > 1. Now, in the weak case, 0 < v < 1,
using Theorem 3, it follows that the above problem has at least one solution
if the additional conditions b; < 771% and by € [—b1,b;] hold true.

i, w(0) —u(2m) =0 =/ (0) — u'(27),

ul/

5. Mathieu-Duffing type perturbations
In this section we consider Mathieu-Duffing type equations
(d(u)) + (by +bycost)u + cu® =0, u(0) —u(27) =0 = u'(0) —u'(27),
(17)

where by, b2, ¢ € R. We assume that (Hy) holds true and

(Hg) there exists @ : [—a,a] — R such that ®(0) =0, ® is continuous, of
class Ct on (—a,a), with ' = ¢.

Clearly, ®(z) > 0 for all z € [—a,al.

Following [3], one has that the action functional I : C' — (—o0, +]
associated to (17) is given by I = ¥ + G, where

27
o0 )dt, veEK,
sy [ )
~+00, otherwise,

with
K={veW"™: |||l <a, v(0)=v(2m)}

and
27 1 c
G(v) = —/ [2(b1 +bycosth? + vt dt (veC).
0

Then, from [3] (see also [5]) it holds that ¥ is proper (with a closed domain K),
convex and lower semi-continuous and G is of class C'. So, the functional I
has the structure required by Szulkin’s critical point theory (see [13]). In this
context, a critical point of I means a function u € K such that

2 2m
/ [®(v)—®(u)] dtf/ [(by + by cost)utcu®][v —u]dt>0 for all vEK.
0 0

From Proposition 2 in [3] one has that
Lemma 5. If u € K is a critical point of I, then u is a solution of (17).

In the proof of the first main result of this section we will use the follow-
ing minimization procedure which is a substitute, in this context, of the direct
method of the calculus of variations in reflexive spaces.
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Lemma 6. Assume that there is some p > 0 such that infg, I = infg I, where
K,={ve K : [v] <p}. Then I is bounded from below on C' and attains its
infimum at some u € K,, which is a critical point of I and solves (17).

The first main result of this section is the following

Theorem 4. If ¢ < 0 < by, then (17) has at least one nontrivial solution for
any by € R.

Proof. First of all, notice that

27 2m 1
I(v) = / D(v') dt — / {2(1)1 + by cos t)v? + 21}4 dt (veK).
0 0

Then, using that ® is positive on [—a,a] and
[[P]|oo < 2ma  for all v € K, (18)
we infer that
T _y _

I(v) > 50 +p(jv]) for allv € K,
where p is a polynomial with deg p = 3. On the other hand, from (18) one has
that ||v||ec — 00, v € K if and only if [v] — oo, v € K. So,

I(v) = 400 as ||[v||eoc — 00,v € K,

implying that there is some p > 0 such that infx, I = infx I. Then, by
Lemma 6, (17) has a solution u such that I(u) = infx I.
Let us show that w is nontrivial. Using ®(0) = 0, one has that

I(z) = —2?n Fx2 + bl} (x € R),

2
implying that I(z) < 0 for all sufficiently small € R, which together with
I1(0) = 0, imply that u # 0 and the proof is completed. O

The main tool used in the proof of the second main result of this section
is the Non-smooth Mountain Pass Theorem due to Szulkin (Theorem 3.2 in
[13]). Towards the application of this minimax result to our action functional
I, we have to know when I satisfies the compactness Palais-Smale (in short
(PS)) condition.

Viewing the definition of I and following Szulkin, we say that a sequence
(upn) C K is a (PS)-sequence if I(u,) — J € R and

27 27
/ D) — B(ar, )] dt — / [(b1 -+ b cos ) + cud][v — un] dt
0 0
> —ep]|v —upllee  forallv e K,

where g, — 04. The functional I is said to satisfy the (PS)-condition if any
(PS)-sequence has a convergent subsequence in C.

Notice that from Lemma 3 (ii) in [3] one has that if (u,) C K is a (PS)-
sequence with (u,) bounded, then (u,) has a convergent subsequence in C.
We recall for the convenience of the reader the following
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Mountain Pass Theorem. Suppose that 1(0) = 0, I satisfies (PS)-condition
and

(i) there exists 0,p > 0 such that I|pp, > 9,
(ii) I(e) <0 for some e ¢ B,,.

Then I has at least one nontrivial critical point.
The second main result of this section is the following
Theorem 5. If by < by < 0 < ¢, then (17) has at least one nontrivial solution.

Proof. First of all, recall that
I(x) = —2*n EmQ + bl} (x € R),
which together with ¢ > 0 imply that

I(z) —» —o0 as |z| — 0. (19)

Next, consider p > 0 and (u,) C 0B, N K such that I(u,) — infap, I.
Clearly, (uy,) is bounded in W° which is compactly embedded in C. So, pass-
ing if necessarily to a subsequence, we can assume that there exists u € 0B,NK
(recall that K is closed in C) such that u,, — u in C and I'(u) < liminf I'(u,,).
Then, one has that I(u) = infsp, I. Now, using that by < 0 < ¢, we infer that

27 c 27 c
/ u? (b1 + by cost + fuz) dt < / u? <b1 — by + fpz) dt,
0 2 0 2

which together with b; < by imply that

27
/ u? (b1 + by cost + guz) dt <0,
0

if p is small enough. Hence,

1 27
I(U)Zfi/ u? <b1+b2cost+gu2> dt >0,
0

implying that
346 > 0: I|BBp > 0. (20)

So, from (19) and (20) it follows that I satisfies condition (4), (i¢) from Moun-
tain Pass Theorem. Now, let us check that I satisfies (PS)-condition. Let (u,)
be a (PS)-sequence. Using that

CcT

2

where p is a polynomial of degree three, and ¢ > 0, it follows that (@,) is
bounded. So, (u,) has a convergent subsequence in C and I satisfies (PS)-
condition. Then, by Mountain Pass Theorem, I has a nontrivial critical point
which is also a solution of (17). O

I(up) < =y, + p([in]),
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Ezample 4. Taking

O(x)=1—+1— a2 (x € [-1,1]),

it follows from Theorems 4 and 5 that problem

1—
has at least one nontrivial solution provided that ¢ < 0 < by,b2 € R or
by <by<0<e

/ /
<ul2> +(by + by cost)utcu® =0, u(0) —u(2r)=0 = u'(0) — u'(27),
u
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