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In this paper, using Leray—Schauder degree arguments and the method of lower and
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singular nonlinearities arising in nonlinear elasticity or of Rayleigh—Plesset type.
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1. Introduction

In [1] it is proven that the periodic problem with an attractive nonlinearity

u | / /
(cs) k=t ) ) =0 =0~ )

where e € C([0,T]) and A > 0, has at least one solution if and only if € := =+
0. Assuming that A > 1, in the same paper [1] it is shown that problem

(ﬁ) - uix =e(t), u(0)—u(T)=0=u'(0) - u/(T),
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has at least one solution if and only if € < 0. The corresponding classical results (for
the operator u +— u”) are obtained in the seminal paper of Lazer and Solimini [13].
On the other hand, in [6] the authors give a Fredholm alternative-like result for
the periodic problem
u’ 4 ru— ui’\ =e(t), u(0)—u(T)=0=u(0)—d(T), (1)
where r is a constant, e € C([0,7]) and A > 1. More precisely, they show, using
Leray—Schauder degree theory, that (1) has at least one solution if r # (k7w /T)? for
all k € Z. The first existence result for r € (0, (7/T)?] and A > 0 (including also the
weak case 0 < A < 1) appears in [16]. Under this assumptions, in the mentioned
paper, it is proved, using the method of lower and upper solutions, that (1) has at
least one solution if

b
7T2—’I“T2 +1
i —(1+ XN | ——— .
e >~ ()

In case r € (0, (7/T)?), the main result in [18] provides the alternative condition

min e
mine < 0, maxe < ——ons g Sin(\/FT)[rélin e]”

[0,7] 01 ~ ot (@T) [0,7]

1
A .

The main tool used in [18] is Krasnoselskii fixed point theorem on compressions
and expansions of cones. In the weak case 0 < A < 1, if r € (0, (7/T)?], and

maxe < 0, mine > (\* — 1)[7)‘/\%]%,
[0,7] [0,7]
then, it is shown in [19], using Schauder fixed point theorem, that (1) has at least
one solution.
It is interesting to remark that, in contrast to the classical case, the periodic
problem with relativistic acceleration

’ /
(V%W) tru=e(t), u(0)—u(T)=0=u(0)—u(T),
has at least one solution for any r # 0 and any continuous forcing term e (see [1,
Corollary 3]). For this type of problems see, e.g., [12]. We will show that, in some
sense, the same situation occurs also if we add a singular nonlinearity.

In order to explain the main results of the paper, let us introduce some notation.
If z € R, then we write 7 = max{z,0} and 2= = max{—z,0}. For e € C([0,71])
we put

T T
E= / e(t)dt, Fi= / ex(t)dt,
0 0
and note that F = FE; — E_.

1250063-2



Periodic Solutions for Singular Perturbations of the Singular ¢-Laplacian Operator

Motivated by the above results from [1, 6, 16, 18, 19], we consider the periodic
problem

(\/%W) +r(t)u — u% =e(t), u(0)—u(T)=0=1u(0)—u'(T),

where r,e € C([0,T]) and A > 1. If either 7 > 0 or 7 = 0 and € < —RQ—’, then we
prove that the above problem has at least one solution (see Example 2). In case
7 < 0, we show (see Example 4) that the periodic problem

(V%W) +r(t)u — W;(At) =e(t), w(0) —u(T)=0=1u'(0) - u'(T),

with A > 0 (so, the weak case is included) and m € C([0,T]) such that m > 0, is
solvable provided that

1
|R‘>‘M T+ T
> + 5 R

—E>(1+)\)[

On the other hand, in the attractive case, we consider the problem

/ /
t
(\/%7) +r(t)u + W;()\) =e(t), u(0)—u(T)=0=1d'(0)—d(T), (2)
where r,m,e € C([0,T]) with m > 0 and A > 0. If either 7 < 0 or r = 0, and in
both cases,

A
2 T
E<M(%) —=R-

then, we show (see Example 5 and Proposition 1) that the above problem has at
least one solution. Moreover, in the pure attractive case, that is m > 0, one has
that (2) is solvable if either 7 < 0 or ¥ = 0 and E > LR, (Proposition 2).

The paper is organized as follows. In Sec. 2 we introduce some notation and
auxiliary results (almost all taken from [1]). In Sec. 3 we improve Theorem 4 from [1]
and give two applications. In the first one we consider strong repulsive nonlinearities
and in the second one we study nonlinearities null at infinity. In Sec. 4 we introduce
some methods to construct lower and upper solutions and in the last section we
prove the previous results. We also consider some singular nonlinearities arising in
nonlinear elasticity or of Rayleigh—Plesset type.

If Q is an open bounded subset in a Banach space X and S : @ — X is compact,
with 0 ¢ (I —5)(99), then dis[I — S, Q, 0] will denote the Leray—Schauder degree of
S with respect to 2 and 0. For the definition and properties of the Leray—Schauder
degree we refer the reader to, e.g., [5].

For other results concerning periodic solutions of nonlinear perturbations of the

, /
relativistic operator u — (#) see, e.g., [3, 4, 7, 14, 20].
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2. Some Notation and Auxiliary Results

Let C° denote the Banach space of continuous functions on [0,7] endowed with
the uniform norm || - ||, C' denote the Banach space of continuously differentiable
functions on [0, T] equipped with the norm

[ul = lullo + W ]loc  (uwe€ CH).
Let P,Q : C° — C° be the continuous projectors defined by

1

T
Pu(t) =u(0), w=Qu(t)= f/o u(r)dr (t€[0,77),

and define the continuous linear operator H : C° — C' by

HMﬂ:Au@m (t € [0,7)).

If u € C° we write
u=u—T1,
and we shall consider the following closed subspaces of C':
Cf ={ueC":u(0) —u(T)=0=u'(0)—u/(T)},
éﬁl:{ueCul :u=0}.
The following assumption upon ¢ (called singular) is made throughout the paper:

(Hg) ¢ : (—a,a) — R is an increasing homeomorphism such that ¢(0) = 0 and
0<a<oo.

The model example is
S

We recall the following technical result given as Lemma 1 from [1].

Lemma 1. For each h € C° there exists a unique Qys(h) € R such that
Qo¢ ' o(I—Qy)oh=0.
Moreover, the function Qg : C° — R is continuous.

We recall also the following fixed point result introduced in [1].

Lemma 2. Let F': C' — C° be a continuous operator which takes bounded sets
into bounded sets and consider the abstract periodic problem

((u) = F(u), u(0) —u(T) =0=1u'(0) — u/(T). 3)

1250063-4
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A function u is solution of (3) if and only if u € Cﬂl is a fixed point of the completely
continuous operator Mp : Cﬂl — Cﬁl defined by

Mp=P+QF + Hod ' o(I-Qy)o[H(I - QF)
Furthermore, ||(Mp(u))||co < a for all u € C'ul and
[i]loe < aT, (4)
for any solution u of (3).

To each continuous function f : [0,7] x R? — R, we associated its Nemytskii
operator Ny : C1 — C given by

Ny(u) = f(ul),u'() (ueC).

One has that Ny is continuous and takes bounded sets into bounded sets.
Next, consider the periodic boundary value problem

(¢(u')" = Ng(u), u(0) —u(T)=0=u'(0)—u(T). (5)

We will write My instead of My, the fixed point operator associated to (5), given
by Lemma 2.

If u,v € CY are such that u(t) < v(t) for all ¢t € [0,7T], we write u < v. Also,

we write u < v if u(t) < v(t) for all ¢t € [0,7]. One has the following (see [1,
Definition 1]).

Definition 1. A lower solution « (respectively, an upper solution ) of (5) is a
function o € C! such that ||o/[| < a, ¢(¢/) € CL, a(0) = a(T), &/(0) > (T
(respectively, B € C*, ||l < a, ¢(8') € C*, B(0) = B(T), 5'(0) < '(T)) and

(¢(a”)) = Ny() (vespectively, (6(5')" < Ny(B)). (6)
Such a lower or an upper solution is called strict if the inequality (6) is strict.

We need also the following result given as in [1, Theorem 3].

Lemma 3. If (5) has a lower solution o and an upper solution [ such that o < 3,
then (5) has a solution u such that o < u < 3. Moreover, if a and 3 are strict, then
a<u<f, and

dus[I — My, Q4 5,0] = —1,
where
Qo5 = {uECﬁl ra<u< B, |u]le < a}.

An easy adaption of the proof of [1, Theorem 3] provides the following useful
result.

Lemma 4. Assume that (5) has a lower solution o and an upper solution 3 such
that a < 8 and

u## Ms(u) for all u € 004, 5. (7)
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Then, one has that
dis[I — My, Qq,5,0] = —1.

The following result is a particular case of [1, Lemma 4] and is a direct con-
sequence of Schauder’s fixed point theorem applied to the equivalent fixed point
problem.

Lemma 5. The periodic problem
(¢(@)) = (I = Q)Nys(o + 1), ueC], (8)
has at least one solution for all o € R.

The next result is an elementary estimation of the oscillation of a periodic
function.

Lemma 6. If u: R — R is a continuously differentiable and T-periodic function,
then

inw < |l
maxu — minu — | .
[0,7] o7 — 2" '

Proof. Let t, € [0,T) be such that u(t.) = minjg 7 u and t* € [t.,t. +T] be such
that u(t*) = max[ ) u. One has that

ul(t*) - u(t,) = / W ()ds < [l oo (£ — 1),

tutT
w(t*) — uft.) = _/ W ()ds < |||t + T — t*).
t*
Then, multiplying both inequalities and using that zy < (x+y)?/4 for all 2,y € R,

it follows that
/ 2
e o ()
(u(t*) — u(t))? < W=

and the proof is completed. O

3. Non-Well-Ordered Lower and Upper Solution and Applications

In [1] it is proved that problem (5) has at least one solution if it has a lower and
an upper solution. In the following result we prove some additional information
concerning the location of the solution. In particular we have some a posteriori
estimations which will be very useful in the sequel (see Remark 1). We use some
ideas from the proof of [15, Theorem 8.10].
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Theorem 1. Assume that (5) has a lower solution « and an upper solution 3 such
that
A7 €[0,T]: a(r) > B(7). 9)
Then, (5) has at least one solution u such that
min{(ty), B(tu)} < u(tu) < max{a(ty), B(tu)}, (10)
for some t,, € [0,T].

Proof. Consider
= llallsc + [I8llcc + aT,
m = max{|f(¢t,u,v)| +1: (t,u,v) € [0,T] X [—u* — 2,u* 4+ 2] X [—a,al]},
and define the continuous function h : [0, 7] x R? — R by

_m_17 US—U*—l,

fltu,0) + (u+u*)(m+1+ f(t,u,v)), —u*—1<u<—u,

)
h(t,u,v) = (t u U)7 _u* g U S u*7
fltu,v) + (u—u)m ut <u<u*+1,
flt,u,v) + u>u*+ 1.

Next, consider the modified periodic problem
(¢(u')" = h(t,u, ), u(0) —u(T)=0=1u'(0)—u(T), (11)

and let M), be the fixed point operator associated to (11).

One has that « is a lower solution and [ is an upper solution of the modified
problem (11). Moreover, ay = —u* — 2 is a lower solution of (11) and f; = u* + 2
is an upper solution of (11). Notice that

a1 < min{e, 8} < max{a, 8} < 1,

which together with (9) imply that
Qo sUQas CQaysrs QarpgNQap = 0.
So, we can consider the open bounded set
Q= Q0,6 \[Qar,8 U Qa ]
It follows that
Q={u€ Qg :ulty) > B(ty), u(sy) < a(sy) for some t,,s, € [0,T]}
and
0N =000, .5, U, g U045 .

One has that any constant function between (7) and «(7) is contained in €, so

is a non-empty set.
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Next, let us consider u € 9 such that My, (u) = u and ||u|lcc = u* + 2. Notice
that one has ||u/||c < a. This implies that there exists ¢g € [0, T such that u(ty) =
max(o 7] u = u* +2 or u(tg) = miny y) u = —u* — 2. In the first case we can assume
that to € [0,7") and then u'(¢y) = 0 and there exists € > 0 such that u(t) > u* +1
for all ¢ € [to, o + £]. So,

(o' (1)) = f(t,u(t),u'(t)) + m >0 for all t € [t,to + €],

implying that «’ is strictly increasing on [tg,tg + €] and then u/(t) > 0 for all ¢t €
(to, to+e]. It follows that u is strictly increasing on [to, to + ¢, which is a contradic-
tion. Analogously, one can obtain a contradiction in the second case. Consequently,

[u € dQ, Mp(u) =u] = ||uflco <u*+2. (12)

Now, let u € 9% be such that My (u) = u. It follows from (12) that ||ulec <
u* 42, |[u']|oo < a, and u € 9Ny, g U Iy, 5,. We infer that there exists ¢o € [0, T
such that u(tg) = a(ty) or u(ty) = B(to), implying that |u(to)| < |lalleo + [|B]loo-
Then,

T
lu(t)| < |u(to)] —|—/ |u/(t)]dt < u* for all t € [0,T],
0

and, consequently,
[u€ dQ, Mp(u) =u] = ||ul|e < u™. (13)
We have two cases.

Case 1. Assume that there exists u € 9Q such that My (u) = u. Using (13),
we deduce that ||ull < w*, implying that u is a solution of (5) and (10) holds
true. Actually, in this case there exists ¢, € [0,7] such that u(t,) = a(t,) or
u(tu) = B(tu).

Case 2. Assume that My (u) # wu for all u € 99Q. Then, from Lemma 4 applied to
h, it follows that

dis[l — My, Qa, 8,,0] = dis[I — My, Qa, 3, 0]
=dps[I — Mp,Q04.5,,0]
=—1.
This together with the additivity property of the Leray—Schauder degree imply that
drs[I — My, Q,0] =1,

which together with the existence property of the Leray—Schauder degree imply that
there exists u € € such that Mj(u) = u. It follows that there exists ¢1,t2 € [0, T
such that u(t1) < «a(t1) and u(t2) > B(t2). Then, using once again that ||u']|. < a,
it follows that ||ullcc < u*, and w is a solution of (5). Moreover, from u € it
follows that (10) holds true. O

1250063-8
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Remark 1. Assume that (5) has a lower solution a and an upper solution . From
Lemma 3 and Theorem 1, we deduce that (5) has at least one solution u satisfying
(10). In particular,

[ulloo < llalloo +[|Blloo + aT-

3.1. Lower and upper solutions method for strong singular
problems

In our first application of the previous theorem we deal with singular strong non-
linearities. Consider the periodic problem

(@) + h(upu" = g(u) + f(t,u,u'),  w(0) —w(T) =0=1u'(0) —u/(T), (14)

where f: [0,7] x R* — R and h, g : (0,00) — R are continuous functions such that
the following strong force condition is satisfied

1
/ g(t)dt = +o0, (15)
0
and assume that h > 0. Under those assumptions we have the following theorem.

Theorem 2. Assume that (14) has a lower solution o > 0 and an upper solution
B> 0. Then (14) has at least one solution u which satisfies (10).

Proof. If o < 8 then the result follows from Lemma 3 and [1, Remark 8] (without
any additional assumption). Assume now that (9) holds true and define

5:%%min{a7ﬂ}7 B = ||O‘HOO+||6HOO+G'T7

)

B
m = max , KZmTa—l—/ $)ds.
[07T]><[—B,B]><[_a7a]|f| : lg(s)|

From (15) it follows that

5
Jde€(0,0): g(e) >0 and / g(s)ds > K. (16)

o~

Let g, h : R — R be the continuous functions given by

aw:{ﬂw,UZ& mmz{ﬂw,uZa

g(e), u<e,
and consider the modified periodic problem
(@) + h(wp’ = §w) + f(t,uw)),  w(0) = u(T) =0=1u/(0) —u/(T). (17)

From ¢ < § it follows that a and 8 are lower and upper solutions of (17), respec-
tively. Then, using Theorem 1 and Remark 1 it follows that (17) has a solution u

1250063-9
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which satisfies (10) and such that
—B<u<B, |V|w<a. (18)

We shall prove that u > . Consider to,t; € [0,7] such that u(tg) = minjy 7 u and
u(t1) = maxp, ) u. Assume by contradiction that u(tg) < e. From Theorem 1 one
has that

Assume that to < ¢; and notice that u/(tg) = 0 = u/(¢1). Putting © = ¢ o v/, one
has that ' = ¢~ Loz, 2(ty) = 0 = z(t;) and

/ (o (1) (t)dt = / " (06 (w(t))dt

to tO

z(t1) L
/ ¢~ (y)dy
z(to)

0.

Using that x(0) = (7)) and a similar computation, we infer that

T
/0 (6(u (£)))'2 (£)dt = 0.

So, multiplying (17) by ' and integrating on [0, T]\[to, t1], it follows that

~ 1
/ h(u)u'?dt = —/ g(u)u'dt —|—/ Ft,u,u' ) dt,
[0, T\ [to,t1] to [0, T\ [to,t1]

which together with (18) and the positivity of h imply that

u(t1)
/ ., F0d < mTe (20)
u(to

From (16), (19) and (20) we deduce that

5 u(ty) u(t1)
/5 o(t)dt = / ., T —g(E) — () - /5 g(t)dt < K,

which is a contradiction with (16). Similar considerations hold also when t; < g
using integration on [t1, tg]. Consequently, v > €, implying that u is also a solution
of (14). |

Remark 2. The above result holds also with similar arguments when h < 0.
Actually, it can be assumed that & : (0, 00) — R is a continuous function having
limit (finite or not) at 0. It suffices to remark that (14) can be written as

(@) + 1" (wu' —h™ (wp' = g(u) + f(t,u,u),
w(0) —u(T) =0=1/(0) —u/(T),

and, in this case AT or A~ has no singularity at 0.
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3.2. Nonlinearities null at infinity

Next application deal with nonlinearities null at infinity. This type of nonlinearities
has been introduced in [8]. We consider the periodic problem

(W) + f(tu) =s+e(t), u0)—uT)=0=1u'(0)—u(T), (21)

where f:[0,7] x R — R is a continuous function, ¢ € C° with fo t)dt = 0 and
s € R is a parameter. We have the following theorem.

Theorem 3. Assume that
f(t,u) — 0 if |u| — oo uniformly with ¢ € [0, T, (22)
and that there exists u € C° with @ > 0 such that

liminf wf(t,u) > p(t) uniformly with ¢ € [0,T]. (23)

|u|—o00

Then, there exists e1 < 0 < 9 such that (21) has no solutions if s ¢ [e1,€2] and at
least one solution if s € [e1,e2]. Moreover, if s € (e1,£2) and s # 0, then (21) has
at least two solutions.

Proof. For every fixed integer k € Z, let us consider the periodic problem

(G@)) + f(t,k + @) — &t / Frk+ )d

u(0) —u(T) =0=a'(0) —a/'(T).

(24)

Then, taking into account that fo t)dt = 0 it follows from Lemma 5 that (24)
has at least one solution wu; € Cﬁ Notlce that uy := k + @y is a solution of (21)

for s = % fOT f(1,u)dr. So, in particular, there exists at least one s € R such that
(21) has at least one solution.
Next, let us define

S; ={s € R:(21) has at least j solutions} (j =1,2)

and g1 = infS;, ez = supS;. Using that f is bounded on [0,7] x R? and
T fOT f(r,u)dr = s for any solution u of (21), we infer that 1,5 are finite.

Now, we will prove that €1 < 0 < 5. It suffices to prove that there exists § > 0
such that [—4, ] C S1. One has that

1 ("
3]{0217 VSS m: f/o f(’ﬂUk;O)dTZS. (25)

Assume by contradiction that

Vk>1, Elsk<— —/ flrug)dr < sg.

1250063-11
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Using (22), (23) and the fact that ||ug||ec < aT for all k € Z, it follows that there
exists K > 1 such that

1 T
—/ fr up)urdr > [
T Jo

and

==

1T
f/o fr up)updr <

for all k£ > K. It follows that
k[T
0> —/ f(rug)dr — ks
T Jo

1 /T 1 /T
= T/o [ ug)ugdr — T/o f(r ug)ugdr — ksy,

> —, forall k > K,

VIR

which is a contradiction with the assumption 7 > 0. So, (25) holds true. This
implies that ug, is a lower solution of (21) for all s < %. Analogously, it follows
that there exists k1 < —1 such that wuy, is an upper solution of (21) for all s > %.
Then, [—6,0] C Sy, just taking 0 sufficiently small and applying Theorem 4 of [1].

Next, let us prove that (0,e2) C S3. Consider s € (0,e2). It follows that there
exists § > s such that § € Si, so, (21) has at least one solution « for s = &.
Then, « is a strict lower solution of (21). Using once again (22) and the fact that
Uk |loo < aT for all k € Z, it follows that there exists k& > 1 sufficiently large such

that u_p < o < ug and

T
%/0 flruj)dr <s (j=—kk).

It follows that u_, ug are strict upper solutions for (21). Then, from Lemma 3 we
infer that (21) has a solution v; such that o < v; < ug. On the other hand, from
Theorem 1, it follows that (21) has a solution vy such that u_x(t) < ve(t) < a(t) for
some t € [0,T]. Hence, v1 # vz and s € Sy. Analogously, one has that (e2,0) C Ss.

Finally, let us prove that 5 € S;. Consider a sequence {s,} in (0, e2) converging
to e2 and u,, a solution of (21) with s = s,,. Notice that

T
%/ f(ryup)dr =s, (neN),
0

which together with ||ty ||s < aT for all n € N, e > 0 and (22) imply that {@,} is
a bounded sequence. Consequently, {u,} is a bounded sequence in C* and a simple
application of the Arzela-Ascoli’s theorem implies that {u,} has a subsequence
converging uniformly to some u € C° which is a solution of (21) with s = e.
Analogously, one has that e; € 5. O
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Example 1. Let ¢ € C° with fOT €(t)dt = 0 and consider the periodic problem

u’ u o - o ,
( - u’2) + T2 s+e(t), wu(0)—u(T)=0=u(0)—u(T). (26)
There exists €1 < 0 < &2 such that (26) has no solutions if s ¢ [e1,£2] and at least

one solution if s € [e1,e2]. Moreover, if s € (e1,e2) and s # 0, then (26) has at least
two solutions.

Remark 3. Tt is interesting to note that in [2], using a completely different strategy
based upon Leray—Schauder degree arguments, the authors deal with nonlinearities
f null at infinity such that f > 0.

4. Constructing Lower and Upper Solutions

We consider the following periodic problem:
(¢(u))" = go(t,u) +e(t), u(0)—u(T)=0=u'(0) —u'(T), (27)

where go : [0, 7] x (0,00) — R is a continuous singular nonlinearity and e € C°.
The following result gives a method to construct a lower solution to (27), getting
also control on its localization.

Theorem 4. Let us assume that there exist x1 > 0 and ¢ € C° such that

go(t,x) <ec(t), VY(t,z)el0,T]x [acl,xl + g} ) (28)
If
c+e<0, (29)
then (27) has a lower solution o such that
x1§a<x1+£. (30)

2

Proof. Consider the function ¢ = ¢ + e. We have two cases.

Case 1. Assume that ¥ = 0. Taking o = x; and using that ¢+ e < 0, it follows
from (28) that « is a lower solution of (27).

Case 2. Assume that ¥, > 0. Using
T
| v v mw.a=o
0
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and [1, Proposition 1], it follows that there exists w such that
(") =y O ¥ -y~ ()P4, w(0) —w(T)=0=w'(0) —w'(T).
Let us take 29 = 1/¥ and
a=a1+Ho¢" o[l - Qyl(zep(w)) — min{H o ¢~ o [I = Qu](zod(w'))}.
The definition of Q4 implies «(0) = a(T"). On the other hand, one has that

o' = ¢ o [I — Qul(zod(w')),

implying that o/(0) = o/(T'). Then, Lemma 6 implies (30). Now, using (29), it
follows that W, < W_, implying that

(#(a)) = zo(p(w')) = o[ T T — ¢~ T, ] > 4.
From (28) and (30) we deduce that
go(t,a(t)) + e(t) < (t), Vte[0.T).
Consequently
(B(a'(1)))" = golt, at)) +e(t), Vte[0.T],

and the proof is completed. O

Using similar arguments, one can prove the following theorem.

Theorem 5. Let us assume that there exist x5 > 0 and d € C° such that
al
go(t,z) > d(t), V(t,z)e€[0,T] x [J;g,am + 7} .

(31)
If
d+e>0, (32)

then (27) has an upper solution [3 such that

al
To < B < a0+ o>
5. Applications

In this section, combining the method of upper and lower solutions (Lemma 3 and
Theorem 2) with the results from the previous section, we give various existence
and multiplicity results concerning periodic solutions for singular perturbations of

, /
- w
the relativistic operator u — <ﬁ> .
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5.1. Strong repulsive perturbations
Consider the problem
() +rt)u —gu) =e(t), u(0)—u(T)=0=1/(0)—u(T), (33)

where 7,e € C% and g : (0,00) — R is continuous and satisfies

1
lim g(z) = 400, lim g(z) =0, /0 g(x)dx = +o0. (34)

x—0 T—00

The main result of this subsection is the following theorem.
Theorem 6. Assume that (34) holds true. If either
>0

or

aR_
T=0 e<-— ,
T e 5

then problem (33) has at least one solution.

Proof. Notice that from (34) it follows that there exists a constant (§ sufficiently
small such that § is an upper solution of (33).

In order to apply Theorem 4 we introduce some notation. Consider the contin-
uous functions go : [0,7] x (0,00) — R given by

go(t,z) = —r(t)x + g(z),

g* : (0,4+00) — R defined by

and v* : (0,00) — R given by

T
v (r) = —Rx + %R, +Tg"(x).

Case 1. Assume that 7 > 0. This together with (34) imply that
lim v*(x) = —o0,

xr—00

so there exists 1 > 0 such that v*(z1) < —E. In order to apply Theorem 4, let us
take

c(t) =r~(t) (ml + %) —rT (a1 +g* (1) (¢t €[0,7T)). (35)
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It follows that C' = v*(x1) and C'+ E < 0, meaning that condition (29) holds true.
One has that

go(t,x) =r~ () —rT(t)x + g(x)

T
< (1) <x1 + “7) — ()1 + g" (1),
for all (t,z) € [0,7] x [x1,21 + “L]. So, condition (28) is fulfilled. Then, from
Theorem 4 we infer that (33) has a lower solution a. Now the result follows from
Theorem 2.

aR_

Case 2. Assume that 7 = 0 and € < ——5~. It follows that

T T
V(@) = TR +g"(), lim 7" () = TR-.

Then, there exists 21 > 0 such that v*(x1) < —E. The result follows now exactly
like in Case 1. O

Remark 4. Theorem 8 in [1] follows from Theorem 6 just taking r = 0.

Example 2. Consider the problem
u’ ! 1
<7> +rt)u—— =e(t), u(0)—u(T)=0=u'(0)—u(T), (36)
1—u? u¥

where 7,e € CY and v > 1. If either 7 > 0 or 7= 0 and & < —%, then (36) has at
least one solution.

In case » < 0 there exists sop < 0 such that (36) has at least two solutions
provided e < sp holds true. Indeed, in this case problem (36) has two strict upper
solutions 31, B2 > 0 and a strict lower solution av > 0 such that 5; < a < (J3. Hence,
the result follows from Lemma 3 and Theorem 2.

If 0 < v < 1 and r = 0, then, using similar arguments like in [13], it follows that
there exists e € C° such that (36) has no solutions.

Example 3. If v > 1, it follows from the previous example that the Brillouin
beam-focusing equation with relativistic effects

i7 w(0) — u(2r) =0 = u'(0) — u'(27),

uV

/ /
(\/%) + (b1 + ba2 cost)u =
—u

has at least one solution for any b; > 0 and by € R.
In the classical case, it has been proved in [21] that the periodic problem

u” 4+ b1(1 4 cost)u = ui uw(0) — u(27) = 0 =u/(0) — u'(27),

V’

has at least one solution for any 0 < b; < 0,16488. In case v = 1, it is proven in
[17] that the above problem has at least one solution for any 0 < b3 < 1. The main
tool used in [17, 21] is Mawhin’s coincidence degree theory.
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5.2. Mixed singularities

Consider the periodic problem
(@) +rtu+g(tu) =e), u(0)—uT)=0=u'(0)-u(T) (37)
where 7,e € C” and ¢ : [0,T] x (0,00) — R is continuous and satisfies

lim g(¢t,2) =0 uniformly with ¢t € [0, T]. (38)

Let us introduce the continuous functions go : [0,7] x (0,00) — R given by
go(t,x) = —r(t)x — g(t, x),
gx, g% (0,7 x (0,00) — R defined by
g«(t,x) = min g(t,-), g*(t,x) = max g(t ),
[z,a4L] [, x4+ ]

and 7, : (%,oo) — R, v*:(0,00) — R, given by

T
Yu(x) = —Rw + £R+ —/ G (tmc - g) dt,
2 . 2

T T
v (x) = —Rx — %R+ —/ g*(t,z)dt.
0
The key result of this subsection is the following lemma.

Lemma 7. Assume that (38) holds true and consider 4" := inf~,. If T < 0 and
—E > ", then (37) has at least one solution.

Proof. Since —E > ™, there exists z > % such that v,(z) < —F. Let us define
xlzz—%>0and6600by

c(t) =r"(1) (951 + %) — 1T (a1 — gu(t, 21).

Then, it follows that conditions (28) and (29) hold true. Hence, from Theorem 4
we infer that (37) has a lower solution « such that 1 < o <z + %

One the other hand, using that 7 < 0, there exists o > 2z such that v*(x2) >
—E. Consider d € C° by

d(t) =r~ )z — 7 (1) (mz + %) —g*(t,z2).

Then, it follows that conditions (31) and (32) hold true. Hence, from Theorem 5

we infer that (37) has an upper solution 8 such that zo < 5 < 25 + %
Consequently, (37) has a lower solution « and an upper solution § such that

a < (. The result follows now from Lemma 3. O
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Consider now the periodic problem
(d(u") +r(t)u + n(t) =e(t), u(0)—u(T)=0=1u'(0)—u(T), (39)
where r,n,e € C° and A > 0. We have the following theorem.
Theorem 7. If7 < 0 and

RPN
AA

1 1 -
TX T T AN\
—-F > (]. + )\) [ :| + %R, — Ny % + (W) ‘| s (40)

then (39) has at least one solution.

Proof. We have two cases.
Case 1. Assume that N_ = 0. In this case one has that

al N.
v:(2) = —Re+ — Ry — x—;
implying that v7* = ~.(aT/2). So, (40) becomes —E > ~*, and the result follows
from Lemma 7.

Case 2. Assume that N_ > 0. Notice that the minimum of = — —Rx + %RJF +
(%N@ is attained in zg = 2L + [/\lgl—]ﬁ and

al N_ N
Yulwo) < ~Rao + Ry + ———— = —.

e S

But, the right-hand side in the previous inequality is just the right-hand side in
(40). Hence, from (40) we infer that —E > ~7", and the result follows again from
Lemma 7. O

Example 4. Consider the periodic problem with repulsive singularity (possibly
weak!)

(J%W) +r(t)u - "L@ =e(t), u(0)—u(T)=0=1u(0)—u(T),

where r,m,e € C° with m > 0 and A > 0. If 7 < 0 and

1
RPM]™* T
|B| ] i 1R

—E>(1+/\){ o

then the above problem has at least one solution.
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Example 5. Consider the periodic problem with attractive singularity

u’ ' m(t
(7\/@) +r(t)u + —u(/\) =e(t), u(0)—u(T)=0=1u'(0)—u(T), (41)
where r,m,e € C° with m >0 and A > 0. If 7 < 0 and
A
2 T
E<M <T> — 5R77

then the above problem has at least one solution.

In connection with Example 5, if » = 0, then we have the following proposition.

Proposition 1. Consider the periodic problem with attractive singularity
AN m(t) / /
B) + T = e), w(0)—u(T) =0=u©O)~w(T),  (42)
where m,e € C° such that m >0 and X\ > 0. If

9 A
0<E<M(a_T) , (43)

then (42) has at least one solution.

Proof. We will use the same strategy as in the proof of Lemma 7. In this case one

has that go(t,z) = — ™.

X

Using (43) it follows that there exists z > %L such that £ < Mz~*. Let us

define 21 = z — %L > 0 and ¢ € C° by c(t) = —m(t)(z1 + %L)~*. Then, it follows
that conditions (28) and (29) hold true. Hence, from Theorem 4 we infer that (42)
has a lower solution « such that z1 < a < z1 + %

Using again (43) it follows that there exists zp > 2 such that E > Mz, . Let
us define d € C° by d(t) = —m(t)z; . Then, it follows that conditions (31) and
(32) hold true. Hence, from Theorem 5 we infer that (42) has an upper solution 3
such that o < 3 < x5 + %

Consequently, (42) has a lower solution « and an upper solution 3 such that
a < (. The result follows now from Lemma 3. O

In the “pure” attractive case we have the following result concerning (37).
Proposition 2. Assume that (38) and
};ii% g(t,x) = +oo  uniformly with t € [0,T) (44)
hold true. Then (37) has at least one solution provided that either
<0

or

T
=0, E>%R+.
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Proof. Notice that from (44) it follows that any sufficiently small positive constant
« is a lower solution for (37). The construction of an upper solution § > « for (37)
is similar as in Lemma 7. The result follows now from Lemma 3. O

Remark 5. Theorem 7 from [1] follows taking = 0 in Proposition 2.

Example 6. Let us consider again problem (41), assuming that m > 0. If either
F<0or7=0and E > ZR,, then (41) has at least one solution.

5.3. A problem in nonlinear elasticity

The radial oscillations of an elastic spherical membrane made up of a Neo-Hookean
material, subjected to an internal continuous pressure p : R — (0, 00) are governed
by the scalar equation

1
" 2
u =pt)u” —u+ —. 45
p(t) —~ (45)
If relativistic effects are taken into account and looking for T-periodic solutions,
then the above equation becomes

(\/%) — p(t)u? — u+ % u(0) —u(T) =0 =u'(0) —u'(T).  (46)

If

(47)

< 7
then (46) has at least two positive solutions. Indeed, using (47) it follows that
a = 76 is a strict lower solution of (46). On the other hand, clearly there exists
(1,02 > 0 strict upper solution of (46) such that 51 < a < [2. Now the result
follows from Lemma 3 and Theorem 2.

Notice that in [9] it is proved, using variational arguments, that (45) has at least
two T-periodic solutions provided that (47) is satisfied.
Next, let us consider the periodic problem

(@()) = p(t)u’ —u+ uiﬂ u(0) = u(T) = 0 = u'(0) — u'(T), (48)

where p € CY, § > 0 and p > 1. Let 3 > 0 be a constant small enough such that 3
is an upper solution of (48). Putting

go(t,z) = p(t)ac‘S —x+ xiu ((t,x) € [0,T] x (0,00))
and
s
c(t) = pT(t) <x1 + —) —p_(t)x‘ls — 1+ i (t €1[0,77),
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we deduce that (28) holds true for any x1 > 0. One the other hand, in this particular
case, (29) holds true if and only if there exists 1 > 0 such that

s
T T
Poa+2 ) P2l —Tay + = <0
2 xy
So, by virtue of Theorem 4 one has that (48) has a lower solution a. Then, using
Theorem 2 we infer that (48) has at least one solution. This is the case if either
p<0ord<l.

5.4. Rayleigh—Plesset type problems

Let A > 0,4t > 1 be such that u > A. Consider also e € C? with e < 0. Using
Theorem 2 and Remark 2, it follows that the Rayleigh—Plesset type problem with
relativistic effects

(ﬁ) velor Lo Lot (o) - u(m) =0 =v/(0) - w(1)

us u
has at least one solution for any ¢ € R.
For corresponding results in the classical case, see [10, 11].
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