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1 Introduction

The purpose of this paper is to study the periodic solutions of some generalizations of
competition systems, in particular the May-Leonard model, and of prey-predator systems.
In [9], Zanolin has studied the delay-Lotka-Volterra system

(1) = 2i(t) |r() —au@®zi(t) = Y ai(Ba;(t—7) (L.1)
J=1
J#i
(i=1,2,..,n),
where 73, a;; > 0,a;; > 0 (j # 1), (4,7 = 1,...,n) are T-periodic continuous functions,
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7, € R (j=1,2,...,n). If the condition

>0 (i=1,2,...n) (1.2)

is satisfied, where | f|o = sup|f(t)| denotes the maximum norm and f = = fOT f the mean
teR

value of the T-periodic continuous function f, then it is proved that system (1.1) has at least
one T-periodic, positive solution.
The system (1.1) is generalized by Y. Li in [5] to the delay-Lotka-Volterra system

i(t)
= ai(t) |ri(t) — ai(Ozi(t) = Y ai(t)z(t — (2 (t), .. za(t)))
J=1
JFi
(i=1,2,...,n), (1.3)
where 7; € C(R""} R) and 7; (j = 1,2,...,n) are T-periodic with respect to their first

argument. It is shown that, if condition (1 2) is satlsﬁed and system
Z a;jexp(y;) =7, 1=1,2,...,n (1.4)

has only one solution, then system (1.3) has at least one T-periodic positive solution.
In Section 2 we prove that the same conclusion holds if condition (1.2) only is satisfied.
A particular case of system (1.3) is the May-Leonard-type system

z1(t) = x1(®)[1 —21(t) — a1 (t)z2(t — T2(t, 21(F), ..., 23(t)))
= Bi@)zs(t — 73t 21(0), ..., 23(1)))]
i2(t) = @2Vl —Bo(t)2r(t — 1t 21(2), ..., 23()))
— w2(t) —az(t)zs(t — w3t 21(2), ..., 23(t)))] (1.5)
t3(t) = w3(t)[l —az(t)zi(t — 7u(t, fUl(t) s w3(t)))
Bs()za(t — m2(t, 21(1), ..., x3(t))) — 23(t)]

where o, 3; > 0 (i = 1,2, 3) are continuous T-periodic functions, 7; € C(R* R) and 7;
(j = 1,2, 3) are T-periodic with respect to their first argument. In this case condition (1.2)
becomes

a+pBi<l (i=1,23).
In [3] (see also [7]) it is shown that (1.5) has at least one non constant periodic positive
solution if

O<a;<1l<p (i=1,23),
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where «;, 5; (i = 1,2, 3) are constants and 7; = 0 (i = 1, 2, 3). It is shown in [2] that (1.3)
(for n = 3) has at least one T'—periodic positive solutionif 7, =0 (j =1,2,3) and

H . max{ HM [}M} () € 101,223,631}, (16)

where [f], denotes the minimum of f and [f] s denotes the maximum of f. In Section 3 we
prove that (1.3) has at least one T'—periodic positive solution if condition (1.6) is satisfied.
In Section 4 we study the system

at) = u(t)]a(t) —b(t)u(t) — c(t)o(t — B(t, u(t), v(t)))]
o(t) = v@®[dE) + fOult — alt, u(t), v(t))) — g(t)v(t)] (1.7)

where a,b,c,d,f,g are continuous T-periodic functions and «, 3 € C(R3,R) are T-periodic
with respect to their first variable. It is also assumed that a,b,c,f and g are strictly positive.

We prove that if the functions a,b,.. ., g,«, 3 are like above and Gopalsamy’s condition
_ [.ﬂL < Hlln{ [d]L 7[d}L} < HlaX{ [d]M’ [d]]u} < [g]L (18)
(0] nr laln " [a] lalnv” [alL [c]

is satisfied, then system (1.7) has at least one positive T-periodic solution.
On the other hand, in the same section, we study the system

u(t) = u(®)la(t) —b(t)u(t) — c(t)o(t)]
o(t) = T(B)o(d)[ult — alt,u(t), v(t)) — o(t)] (1.9)
where a,b,c,, o are continuous T -periodic strictly positive functions and o € C(R3, R)

is T-periodic with respect to its first variable. We show that system (1.9) has at least one
T-periodic positive solution if condition

la]r, — [b]mlo]ar >0 (1.10)

is satisfied. The autonomous case has been considered in [4].

The main tool used in this paper is Mawhin’s continuation theorem [8], with which we
end this Introduction. Let X,Y be real Banach spaces, let L : D(L) C X — Y bea
Fredholm mapping of index zero, and let P : X — X, and Q : Y — Y be continuous
projectors such that ImP = kerL, ker@ = ImL and X = kerL & kerP,Y = ImL &
Im@. Let J : Im@Q — kerL an isomorphism.

Theorem 1.1 Let Q C X be an open bounded set and let N : X — Y be a continuous
operator which is L-compact on . Assume

i) For each X €]0,1[,x € 002N D(L), Lx # ANz
it) For each x € 00 NkerL, QNz # 0 and deg(JQN, Q2N kerL,0) # 0

Then, Lz = Nz has at least one solution in QN D(L).
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2 Delay-competition systems with Zanolin type con-
dition
LetT > 0 and
Cr = {z : R — R"|z is a continuous T-periodic function}

with the norm |z|g = sup |z(t)]. (Cr, | - |o) is a Banach space.
teR

We search a positive function z € C7 which is a solution of (1.3). To find such a
function, it is sufficient to show that the following system has T-periodic solutions

Ti(t) = ri(t) — ai(t) exp(i(t)) (2.1)

— Z a;j(t) exp [xj (t—7j(t,expxi(t),...,expan,(t)))
j=1
J#i
(i=1,2,..,n)

We reformulate problem (2.1) to use the continuation theorem. Let (L, D(L)) be the
operator defined by

D(L) =CrNC*R,R"), Lz = &
and N : Cy — Cp, Nx = y where

yi(t) = 1i(t) — aiui(t) exp(zi(t))

n

_ Z a;;(t) exp [a:j(t — 7;(t,expxi(t),...,expxn(t)))

j=1
J#i

1=1,2,...,n).
( ) 4y 7)

It is obvious that z € C is a solution of (2.1) if and only if x € D(L) and Lz = Nz.
Define the continuous projectors P, ) as

T
1
Q : Cr—Cr, Qv = T /x(t)dt =T,
0
P CT—>CT, P$:$(0)
We know that

ImP = kerL, ker@Q = ImlL,
Cr = kerL&kerP=ImL® ImQ,
kerL. = Im@Q ~R".
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Consequently, L is a Fredholm operator of index zero (see [8]). It is easy to prove that NV
is an L-compact operator(see [5]). The following lemma is proved in [5].

Lemma 2.1 Suppose that condition (1.2) holds. Then there is a bounded, open set
Q C Cr such that

| {zeD(): Lz = ANz} C Q.
X€]0,1]

Lemma 2.2 Let ¢ : R® — R", p(z) =y, where
Yi =T — Z@exp(mj) (1=1,2,---,n).
j=1

If relation (1.2) holds, then there exists an open, bounded set Q1 C R™ such that
{r e R p(x) =0} C Oy
and deg(p,Q2,0) = (—1)".
Proof. Let H : [0,1] x R — R"™, H(\, z) =y, where
Yi =T — @ exp(z;) — A Z ajjexp(z;) (i=1,2,..,n).

J=1
J#i
Let A € [0,1] and = € R™ such that H(\, z) = 0. It follows that
Ti—aiexp(z) — A Y @jexpla;) =0 (i=1,2,..,n). (2.2)
J=1
J#i
We deduce that 0 < 7; — @y; exp(x;), SO

T T

exp(z;)) < =< |—| , z<ln|— (i=1,2,...,n). (2.3)
% Qi3 | ¢ Q45 |
On the other hand, from (2.2) , (2.3) and (1.2) we get
n n T‘Z
aiexp(xz;) >7; — a;iexp(x;) >r; — ai;i |—| >0
(1) Z jexp(a;) Z Iy .
J=1 J=1
J#i JFi
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which implies that there exists a constant M € R such that
M<z (i=12,,---,n). (2.4)
From (2.3) and (2.4) we obtain the existence of an open, bounded set 2; C R" such that
U {r eR": H(\,z) =0} C Q.
A€[0,1]
Furthermore, H (0, z) = 0 has the unique solution z° with
0 Ty ,
0 _ | —© =1.2. ..
xl n CL7” (Z ) ) ) n)
for which
Tr 0. (%) = (=1)" [ [ (exp a)as.
i=1
Consequently, we have that

deg(@a le O) = deg(H(17 ')7 Ql7 0) = deg(H(Ov ')1 Ql; O) = (_l)n

Theorem 2.1 Assume that relation (1.2) holds. Then system (1.3) has at least one
T-periodic positive solution.

Proof. We have noticed that it is enough to show the existence of an element z € D(L)
such that Lx = Nz. We see that the restriction of QN to R™ is ¢, the function defined
in Lemma 2.2. Using Lemma 2.1, Lemma 2.2 and the continuation theorem, we find an
element x € D(L) such that Lz = Nz.

Theorem 2.2 If
a; +6,<1 (i=1,2,3) (2.5)
then system (1.5) has at least one T-periodic positive solution.

Proof. In this particular case, condition (1.2) is exactly condition (2.5). We apply Theorem
2.1 for:

15(1“‘ (11172,3)

aq; a1z = B1; a1 = Po; a3 = ap;as; = ag; azy = [f3.

T

ai2

3 Delay-competition systems with May-Leonard-
type condition

We keep the notations of Section 2 with n = 3. The proof of the following lemma uses
some techniques of Ahmad [1].
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Lemma 3.1 Suppose that condition (1.6) holds. Then there is a bounded and open
set Q C Cr such that

U {r € D(L): Lx = ANz} C Q.
A€]0,1]

Proof. Let A €]0,1] and = € D(L) such that
Lx = ANz. (3.1)

In what follows C; denotes a fixed constant independent of A and x. Integrating (3.1) we
obtain

T
Tr; = /Oaii(t)expxi(t)dt (3.2)

3 T
+ Z /0 a;j(t) explz;(t — 7;(t,expx1(t), ..., expaxs(t)))]dt

7=1

i F ]
(i=1,2,3).

On the other hand, from (3.1) we have
[Zi()] < 7i(t) + ai(t) expai(t) (3.3)
3
+ Z a;;(t) explz;(t — 7j(t, expx1(¢),. .., expxs(t)))]
j=1
i F ]
(i=1,2,3).

Using (3.2) and (3.3) we deduce that
&l o,y < 2T 121?2(37'7 =Cy (1=1,2,3). (3.4)

Using again (3.2) we obtain 7y > ZS: @15 explx;] 7, which implies the existence of C's > 0,
such that =
[z] <Cs5 (i=1,2,3). (3.5)
By (3.4) and (3.5) we have
[wi]ar < [za]r + |Eil|Lro,r) £ C3 +C2:=Cy (i =1,2,3). (3.6)
We prove the existence of a constant C5 such that
[z > C5 (i=1,2,3). (3.7

Assume, by contradiction, that (3.7) is not true. Then there exists (A, ), C|0, 1], (z™), C
D(L) with Lz™ = X\, Nz"™ such that one of the following three possible situations holds :
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L [0y — —ooforalli € {1,2,3}
IL [27]y — —ooforalli € I C {1,2,3}, |I| =2
I [27]y — —ooforalli e I € {1,2,3}, [I| =1

Let us first deal with situation I. Using (3.2) we obtain that
3
= < _ n
7 < Zlalj exp[r]n — 0,
=

which implies that 7; < 0. But [r1], > 0, so we have obtained the desired contradiction.

Consider now situation II Suppose that I = {2, 3}, the treatment of the other ones
being completely similar. Let Cg be a constant such that

[27]ar = Cs, (n€N) (3.8)
and
[@}]a — —o0 (i = 2,3). (3.9)
In view of (3.4) and (3.8) we have that
(1] = [#1]ar = 127 |22 01) 2 C6 — C2 = C7 (n €N). (3.10)

Integrating the relation Lz™ = A\, Nz™ (n € N) we obtain
T
T = / a;; (t) expay (t)dt (3.11)
0

3 T
+ Y / ai;j(t) explal (t — 7j(t,expal(¢), ..., expa(t)))]dt
j=1"
i F
(neN, :=2,3).
Using (3.9)and (3.11) we deduce the existence of two sequences (A7), A? — 0 such
that

T
r = / ai1(t) explz] (t — (¢, exp aT(t), ... ,exp a5 (t)))]dt + A}
0
(meN, i=23). (3.12)
By (1.6) for (i, 7) = (1,2) we have
?

ag (t) > all(t)% (t €[0,7T)). (3.13)
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From (3.12) and (3.13) it follows that

= T
T7y > ;—2 aq1(t) explz](t — (¢, exp 2t (t),...,expah(¢)))]dt + A (n €N)
1.Jo

which implies that

T —
7 > / a11(t) exp[z} (t — T (t, exp a2t (t), ..., exp i (t)))]dt + %Ag (n €N)

0 2

from which we obtain that
T
—TTsT] < — / Tsa11(t) explz] (t — 11 (t, exp 2] (t), ..., expaf(t)))]dt
0
- ——AY (neN). (3.14)

On the other hand, from (3.12) we have

T
Trsry = / Tras1(t) explz] (t — m1(t, exp T (t), ..., exp x5 (t)))]dt
0
+ AT (neN). (3.15)

By (3.14) and (3.15) we have

T
0 < /o [Fras1(t) — Fsai1(t)] explat (t — 71 (t, expz(t), ..., expay(t)))]dt

+OATF - T;LA; (n € N). (3.16)
2

On the other hand, from (1.6) (for (i, ) = (3,1)) we obtain that
?10/31(0 — Fgau(t) <0 (t c [O,T]) (317)

Using the fact that AT — 0 (¢ = 2,3) and (3.10), (3.16), (3.17) we deduce that 0 < 0,
a contradiction.

We consider now the third situation. Suppose that I = {3}, the other cases being
treated in the same manner. Let Cg be a constant such that

[zl >Cs (neN,i=1,2) (3.18)
and
[5]ar — —o0.
Using (3.4) and (3.18) we have

(2] > [28 ] — 127 ]| 0y = Cs — Co:=Cy (i = 1,2). (3.19)
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Let (1), be a sequence such that

2t (t}) = [27]r (n €N). (3.20)

Using La™ = A, Nz" (n € N) and (3.20) we deduce that

ri(ty) = an(ty)explzt]L
3
+ Y ay () explal (] — (], expal(t)), . .. expaf (])))]
j=1
J#1
(n €N),

which implies
3

[rile < lan]arexplafle + ) lagglwexplaflr (n € N). (3.21)
J=1
J#1
Let (%), be a sequence such that
xzy(t5) = [z5]m (n € N). (3.22)

Using again the relation Lz™ = A, Nz™ (n € N) and (3.22) it follows that
ra(ty) = ag(t3) explry |

3
D az(ty) explef (6 — (15, expat (t3), ... exp k(1)) (n€N),

=1
J#2
which implies
3
laso]p explala + Y lagglrexplaf]n < [ra]m (n €N), (3:23)
j=
J#2

By (3.23) we have that

= [arz]mlrelnm < —[arz]ar[ass]r explry]n
3
— Y law]ulaylrexpla}]L (n€N). (3.24)
j=1
j#2
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From (3.21) we obtain that

[r1]pla22]r < [an]mlaz2]r explzy]L
3
+ Y laglulas]explafly  (n€N). (3.25)
j=1
J#1
In view of (3.24) and (3.25) we have that

[7“1]L[6L22]L - [a12]M[7“2]M < {[all]M[a22]L - [a12]M [a21]L}eXP[$?]L

+  [a3]mlaz2] L explrz]n — [a12]ar[azs]r explzy]r  (n € N). (3.26)
Using the fact that
[25]ar — —o0
n
and the relations (1.6) (for (i,j)=(1,2)), (3.6), (3.19), (3.26) it follows that

0 < [an]mlazz2]r — [a12]arla2i]L. (3.27)

From (3.21) we have that

— la21]ilri]n = —[a21]L]ai1]am explat]L
3

— Z [agl]L[alj}M exp[w?]M (n < N) (328)
j=1
j#1
By (3.23), we have that

[rolalan]nr > [an1]araze]r explry]ar

+ Z [agj]L[all]]w eXp[l‘?]L (’I’L € N) (329)
j=1
j#2
Using (3.28) and (3.29), we deduce that

[relarlari]ar — [a21]nlri]e > {[aw1]arlaze]r — [a21]r]ai2]ar } explzy]ar
+ [a23}L[a11]M exp[xg]L — [agl]L[alg]M exp[:vg]M (TL S N) (330)

From

[25]ar — —o0
n
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and (1.6) (for (i,j)=(1,2)), (3.6), (3.18) and (3.30) we have that

0 > [a]mlazz2]r — [az1]r[ar2]ar- (3.31)

In view of (3.27) and (3.31) we have obtained a contradiction. Consequently relation (3.7)
is true.
From (3.4) and (3.7) we have that

[zl > [xim — |Zill Loy = Cs —C1 (i =1,2,3). (3.32)

By (3.6) and (3.32) we deduce the existence of a constant C' > 0, independent of A €]0, 1]
such that the relation Lz = ANz, x € D(L) implies that |z|y < C.

The following lemma is proved in [2].
Lemma 3.2 Let p; : R — R3, ¢1(x) = y where
3
Yi = T; —Zaij exp(xj) (’i: 172,3).
j=1
Suppose that condition (1.6) holds. Then there exist an open, bounded set £y C
R3such that
{x eR3: ¢1(x) =0} C Q and deg(py,Q,0) # 0.

Theorem 3.1 Assume that relation (1.6) holds. Then system (1.3) has at least one
T-periodic positive solution.

Proof. See the proof of Theorem 2.1.
Theorem 3.2 If
0<a;(t)<1<pBi(t) (tel0,T], i=1,2,3), (3.33)
then system (1.5) has at least one T-periodic, positive solution.
Proof. We apply Theorem 3.1 for
r, = l=a; (i=1,2,3)
a2 = a1, a3 = P, a1 = Pa, azs = az,a31 = as, azz = 3.
4 Delay-prey-predator systems

Let

Cr := {z : R — R?|z is a continuous T-periodic function}.
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It is know that (C, || - ||) is a Banach space with the norm ||z|| = sup |z(t)| . We search
teR

for a positive function = € Cr such that x is a solution of (1.7).
Consider the following system
a(t) = a(t) — b(t)expu(t) — c(t) explv(t — B(t,expu(t), expv(t)))],
o(t) = d(t)+ f(t)explu(t — a(t,expu(t), expv(t)))] — g(t) expuv(t). (4.1)
It is obvious that if system (4.1) has a T-periodic solution, then system (1.7) has a positive
T-periodic solution.

We reformulate problem (4.1) so we can use the continuation theorem. Let (L, D(L))
be the operator defined by

D(L) = Cr NCY(R,R?), L = &
and N : Cp — Cp, Nx = y where
y1(t) = a(t) —b(t) expu(t) — c(t) exp[v(t — B(t,expu(t),expv(t)))],
y2(t) = d(t)+ f(t) explu(t — ot expu(t), expv(t)))] — g(t) expv(t).
It is obvious that x € Cr is a solution of (4.1) iff v € D(L) and Lz = Nz. Define the
continuous projectors P, Q)
P : Cr— Cp, Pxr=1x(0),
Q : Cr—Cpr, Qr=r1.

We know that
ImP = kerL, ker@Q = ImlL,
Cr = kerL&kerP =1ImL&ImQ,
kerL = ImQ ~R2.

Consequently, L is a Fredholm operator of index zero. It is easy to prove that N is an
L-compact operator.

Lemma 4.1 Suppose that condition (1.8) holds. Then there is a bounded, open set
Q C Cr such that
|J {z€D(): Lz = Nz} cQ.
A€]0,1]

Proof. Let A €]0,1] and = € D(L) such that
Lz = ANz. (4.2)

In what follows C; denotes a fixed constant independent of A and x. Integrating (4.2), we
obtain

T T
al = / b(t) expu(t)dt + / c(t) explv(t — B(t, expu(t),expo(t)))]dt, (4.3)
0 0
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dT = — /OT f () explu(t — a(t, expu(t), expv(t)))]dt + /OT g(t)expu(t)dt. (4.4)
On the other hand, from (4.2) we have that
[a(t)] < a(t) + b(t) expu(t) + c(t) explv(t — B(t, expu(t), expv(t)))]- (4.5)
Using (4.3) and (4.5) we deduce that
il 10,1y < 2T := Cs. (4.6)
Using again (4.3) we obtain that
@ > bexplu]r, + Cexp[v]L

which implies the existence of a constant C'3 > 0, such that

[u]r, [v]L < Cs. (4.7)
By (4.6) and (4.7) we have that
[ulpr < [ulr + |l@llL1o,1) < Cs+ Co := Cy. (4.8)
Using (4.4), we have that
T _
0 < [g]L/O expo(t)dt < |d|T (4.9)

T
 flw /0 explu(t — a(t, expu(t), expv(E)]dt < [dT + [f]ns explularT.

From (4.8) and (4.9) we deduce the existence of a constant C's > 0 such that

T
/ expv(t)dt < Cs. (4.10)
0

Using (4.2), (4.8) and (4.10) we obtain, as for (4.6), the existence of a constant Cg > 0
such that

0]l 10,7y < C. (4.11)
From (4.7) and (4.11) we have that
[p < [vlL + 0],y < C3 + Cs := Cy. (4.12)
Now we show the existence of a constant ¢ such that:
(W], o] > €. (4.13)

Assume, by contradiction, that the relation (4.13) is not true. Then there exist (\,,),, C
10,1], (zn, = (un,vn))n C D(L), Lz, = A, Nz, such that one of the three following
situations holds:
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L [up)y — —o0, [up]ly — —00
n n

I [up]y — —00,3Cs, [un]mr > Cs  (n €N)

III. 309, [un]M > Cg, (n S N), ['Un]M — —0Q.
n
Let us first deal with situation I Using (4.3), we obtain that
a < [b]ar explun]ar + [¢]ar explon] v — 0,

but [a] > 0, so we have obtained the desired contradiction.
Consider now the situation I1. Using the relation (4.11) and II we have that

[vn]L > [vn}M — ”i]n”Ll(O,T) > Cg — C5 = Clo (n € N) (414)

From (4.12) and (4.14) we obtain that the sequence (v,), is bounded in C'(0,7) and
equicontinuous (clear from the relations (4.2), (4.8) and (4.12)), so, using Arzela-Ascoli’s
theorem, we can admit that there is a function v € C'(0,T) such that ||v — v, || — 0. We

deal with two situations: IL1 [d]5; > 0.
Consider the sequences (t1),, (t2), C [0, 7] such that

Un (tL) = [unlar, v (t2) = [a]r (n € N). (4.15)
Because [0, T is compact we can assume that there are ¢!, € [0, T'| such that
th— 1t (i=1,2).

Using (4.15) and the fact that ||v — v, || — 0 we deduce that
vn(t) — v(t*) = [v]m
and

Un(trlL - 6(trlzanp Un(trll)anp Un(t}z))) = vn(tn) - u(t).

n

(where £ € [0, T)] such that t,, — % ). So, for every n € N we have
a(tl) = b(tl) explun]ar + c(th) expv(ty),

d(ty) = —f(th) expun(t, — a(th, expun(ty), expva(t7))) + g(t7) explva]ar-
Taking the limit we obtain that
a(t) = c(tY expu(t), d(t?) = g(t?) exp[v] s,

so we have that
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and from (1.8) and II.1 we have that

a d

)

clp 91
a contradiction.

I1.2 [d]ar < 0 : Using the notation in II.1, we obtain that

d(t?) = g(t*) explv]ar,

which is impossible.
Consider now the last possible situation. Using the same method (see IT) we can
show that this situation proves to be also impossible (for example we can use the fact that

Consequently (4.13) is true. Using (4.6), (4.11) and (4.13) we obtain a constant C; such
that

[U]L,[’U]L > 011. (416)
From (4.8), (4.12) and (4.16) we have that there is a constant C';5 such that
[lwl], [[ol] < Cha,
which completes the proof.

Lemma 4.2 Let o : R? — R2, o(z) =y where

y1 = a—bexp(r)—cexp(xs),
y2 = d+ fexp(z1) —gexp(za).
If the relation (1.8) holds, then there is an open, bounded set Q; C R? such that
{z €R?: p(x) =0} C Q and deg(p,2;,0) = 1.

Proof. 1t is obvious that from relation (1.8) we can deduce that

_ f d 19
a>0, |:b:|L <=< HL. (4.17)
We have that
f f 1y g
{b]L = b [E}L = C (4.18)

From (4.17) and (4.18) we have that

ag—de >0, bd+ fa>0. (4.19)
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Because by, cr,, f1, g1, > 0, it follows that
bg +cf > 0. (4.20)

From (4.19) and (4.20) we deduce that there is only one point (29, 29) € R? such that
QP(Z(l)v ZZ) 0.

Furthermore,

—bexp(zy) —cexp(z9)
Jo (29, 29 ! - 2/ = exp(z?) ex bg + fe] >0
80( 1 2) fexp(x) —gexp(:vg) p( 1) p( )[ g f]

0

1
and deg (o, B(0, R),0) = 1. We can choose 2; = B(0, R), R > 0 such that (29, 29) €
B(0, R).

Theorem 4.1 Assume that relation (1.8) holds. Then system (1.7) has at least one
T-periodic positive solution.

Proof. See the proof of Theorem 2.1.

Next we state and prove our second result. As in the case of system (1.7), we consider
the following system

w(t) = a(t) —b(t)expu(t) — c(t) expv(t)
o(t) = 7(t)[explu(t — a(t,expu(t),expv(t)))] — o(t)]. (4.21)

If system (4.21) has a T-periodic solution, then system (1.7) has a positive T-periodic solu-
tion. Let Ny : Cp — Cp, Nyz = y where

y1(t) = a(t) —b(t) expu(t) — c(t) expv(t),
y2(t) = 7(t)[explu(t — a(t,expu(t),expv(t)))] — o(t)].

It is obvious that 2z € Cr is a solution of (4.21) if and only if z € D(L) and Lz = Njx.
We notice that N7 is an L-compact operator.

Lemma 4.3 Suppose that condition (1.10) holds. Then there is a bounded, open set
Q C Cr such that
| {zeD@): Le=ANiz} C Q.
X€]0,1]

Proof. The proof is similar to the proof of Lemma 4.2 and will be omitted.

Lemma 4.4 Let o1 : R? — R2, o1 (x) = y where

y1 =a— bexp(x1) —Cexp(xa), y2 = Tlexp(z1) — 7).
If relation (1.10) is true, then there is an open, bounded set Q; C R? such that

{x €eR?: ¢i(x) =0} C Q and deg(p,Q,0) = 1.
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Proof. From relation (1.10) we deduce that
a—be >0 (4.22)

From the relation (4.22) we obtain that there is only one point (2, 29) such that ¢; (29, 29) =
0. Furthermore

J@(w(l)’ 378) =

— 0 _= 0
bexp(ai) —cexp(az)| _ 7eexp(x)) exp(z9) > 0.
We can choose 2; = B(0, R), R > 0, such that (29, 29) € B(0, R).

7exp(x?) 0

Theorem 4.2 Assume that relation (1.10) holds. Then system (1.9) has at least one
T-periodic positive solution.

Proof. See the proof of Theorem 2.1.
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