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Abstract We show that if 4 ¢ R" is an annulus or a ball centered at zero, the homoge-
neous Neumann problem on A for the equation with continuous data

\Y%
v. (1|UV|2) = g(lx]. v) + A(x])
— v

has at least one radial solution when g(|x|,-) has a periodic indefinite integral and
f 4 h(|x])dx = 0. The proof is based upon the direct method of the calculus of variations,
variational inequalities and degree theory.
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1 Introduction

The study of quasilinear differential equations involving ¢-Laplacian differential operators

(o)) = fx,u,u’)
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submitted to various boundary conditions has been the source of many contributions. Most
of them deal with the case where ¢ : R — R is an increasing homeomorphism and the
paradigm is the p-Laplacian associated to ¢ (s) = |s|?~2s with p > 1. References can be
found in [15]. Another class of problems, motivated by the curvature operator associated to
¢ (s) = s/+/1+ 52, corresponds to homeomorphisms ¢ : R — (—a, a). One can consult
for example the papers [2,3,12,9,8,14] and their references. Finally, the class of ¢ we shall
deal with here is that of homeomorphisms ¢ : (—a, @) — R motivated by the relativistic
acceleration, for which ¢ (s) = s/+/1 — s2. This class already appears in [11], where nonlin-
earities depending upon the derivative are treated, and in [7] in the general case and Neumann
boundary conditions. Slightly more general classes of equations, corresponding to the radial
solutions on a ball or an annulus of quasilinear partial differential equations associated to the
mean extrinsic curvature in Minkowski space [1], have been first considered in [4].

In a recent paper [6], the authors have used topological degree techniques to obtain exis-
tence and multiplicity results for the radial solutions of the Neumann problem

\
V-(v)—f—,usinv:h(lxl) in A, 9,v=0 on 3A )

V1=V
on the ball or annulus
A={xeR": R <|x| <R} (O<Ri <R
i.e., for the equivalent one-dimensional problem

(er ”)’ +rV Vusinu =V ), W (R) =0=u(Ry).

V1—u?

They have proved the existence of at least two radial solutions not differing by a multiple of
27 when

Ry
2(Ry — Ry)) <7 and N h(ryrN'dr| < pcos(Ry — Ry)
2 1 RN _ RN K 2 1),

2 1R1

and the existence of at least one radial solution when 2(R, — Ry) = m and

Ry

/h(r) PN-lar = 0. )

Ry

Condition (2) is easily seen to be necessary for the existence of a radial solution to (1) for
any p > 0 and a natural question is to know if condition

2(R2—Ry) =7 3

can be dropped.
In the analogous problem of the forced pendulum equation

w4+ wsinu = h(t)
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with periodic or Neumann homogeneous boundary conditions on [0, 7], it has been shown
that the corresponding necessary condition

T
/h(t) dr=0 “4)
0

is also sufficient for the existence of at least two solutions not differing by a multiple of 2.
But, in this case, all the known proofs are of variational or symplectic nature (see e.g., the
survey [13]).

Recently, it has been proved in [10] that the “relativistic forced pendulum equation”

(u)/ + wsinu = h(t)
1—u?

has at least one T-periodic solution for any i > 0 when the (necessary) condition (4) is satis-
fied. The approach is essentially variational, but combined with some topological arguments.
The aim of this paper is to adapt the methodology introduced in [10] to the radial Neumann
problem for (1) and prove that, for the existence part, condition (3) can be dropped.

The results are stated and proved, like in [10] but in a slightly different functional frame-
work, for the more general class of equations of the form

PN =N Mgrouw) + h(n)], W' (R) =0=u'(Ry) Q)

where ¢ : (—a,a) — R is a suitable homeomorphism and g belongs to some class of
functions 27 -periodic with respect to its second variable.

2 Hypotheses and function spaces

In what follows, we assume that ® : [—a, a] — R satisfies the following hypothesis:

(Hgp) @ is continuous, of class C!on (—a,a), with¢ := ® : (—a, a) — R an increasing
homeomorphism such that ¢ (0) = 0.

Consequently, @ : [—a, a] — R is strictly convex.
Given 0 < R; < Ry, the function g : [R, Ry] x R — R satisfies the following
hypothesis:

(Hg) g is continuous and its indefinite integral

X

G(r.x) :=/g<r,s)ds, (r.x) € [R1, Ra] x R

0
is 2w —periodic for each r € [Ry, R2].

We set C:= C[Ry, R2],L' := L'(R{,R)),L® := L*®(Ry,Ry) and Wh>® :=
WL(R|, Ry). The usual norm || - ||oo is considered on L>™ and W is endowed with
the norm

ol = lvllos + 1V [leo (v € W),
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Each v € L! can be written v(r) = v + 9(r), with

Ry R

N
V= 7N/v(r)rN71dr, /17(r)rN71dr =0.

RY — Ri
R R

If v € W5 then 9 vanishes at some ro € (R1, Rp) and
Ry
()| = [v(r) —v(ro)| = / [v'(1)]dt < (Ry — RV [|oo- (6)
Ry
We set
K={veW"™ : ||V <a).

K is closed and convex.

Lemmal [f{u,} C K and u € C are such that u,(r) — u(r) forallr € [R1, R], then

(i) uek;
(i) u,’ — u in the w*—topology o (L™, L1).

Proof From the relation
rt
lun(r1) — un(r2)| = /u’n(r) dr| <alri —r2l,
2

letting n — oo, we get
lu(ry) —u(r2)| < alri —r2| (r1,r2 € [R1, R2]),

which yields u € K.

Next, we show that that if {u/;} is a subsequence of {u',} with u’y — v € L in the
w*~topology o (L°°, L") then

v=u' ae.on[Ry, Ry]. @)
Indeed, as
Ry Ry

/u’k(r)f(r) dr — /v(r)f(r) dr forall f e Ll,
R] Rl

taking f = x,,r,, the characteristic function of the interval having the endpoints ry, > €
[Ry, Ry], it follows

rn

r
/u’k(r) dr —» /v(r) dr (r1,r € [R1, R2)).
r

Il
Then, letting k — oo in

r

ug(r2) — ui(ry) = /M/k(’”) dr

r
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we obtain

rn

u(ra) —u(r)) = / v(r)dr (r1,r2 € [Ry, Ra])
n
which, clearly implies (7).
Now, to prove (ii) it suffices to show that if {u’;} is an arbitrary subsequence of {u’,}, then
it contains itself a subsequence {u';} such that u’y — u’ in the w*—topology o (L>°, L').
Since L' is separable and {u';} is bounded in L*® = (L 1y* we know that it has a subsequence

{u't} convergent to some v € L™ in the w*—topology o (L%, L'). Then, as shown before
(see (7)), we have v = /. O

3 A minimization problem

Leth € C and F : K — R be given by

Ry
F(v) :/{Cb[v/(r)] +G@r,v(M) +hrvm)} rVldr (v e K).

Ry

On account of hypotheses (He) and (H,) the functional F is well defined.
Proposition 1 If h = 0 then F has a minimum over K.

Proof Step I. We prove thatif {u,} C K isasequence which converges uniformly on [R{, R3]
to some u € K, then

Ry Ry
1iminf/q>[u’n(r)]rN—1dr > /q>[u’(r)]rN—1dr. ®)
n—oo

Ry Ry

By virtue of (Hg) the function ® is convex, hence for all y € [—a, a] and 7z € (—a, a) one
has

O(y) — @) = @)y —2). ©))
This implies that for any A € [0, 1) it holds

Ry Ry

/GD[u’n(r)]rN_ldr > /GD[AM’(r)]rN_ldr 10)

Ry R

Ry
+/¢[A”/(”)][u/n(1’) — ' (N1 rV " dr.

R
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From Lemma 1 we have that u,’ — u’ in the w*~topology o (L%, Ll). Since the map
r > rN=lg[u'(r)] belongs to L> C L', using (10) we infer that
Ry R>
liminf/¢[u/n(r)]rN71dr > /Cb[)»u’(r)]erldr
n—0o0
R Ry

R
+(1 —x)/¢>[Au’(r)]u’(r)r’v*1dr.
R

As ¢(t)t > 0, forall t € (—a, a), we get
Ry R>
“mi“f/GD[M/n(")]rN*]dr Z/dD[)»u'(r)]rN’ldr,
n—0o0

Ry R

which, using Lebesgue’s dominated convergence theorem, gives (8) by letting A — 1.
Step II. Due to the 2 —periodicity of G(r, -) (see (Hy)) and because of 1 = 0, we have

F(+2m)=F(), YveKk.

Therefore, if # minimizes F over K, then the same is true for u + 2k for any k € Z. This
means that we can search, without loss of generality, a minimizer u € K with u € [0, 27 ].
Thus, the problem reduces to minimize F over

K={vekK :ve[0,2]}.
Ifvek then, using (6) we obtain
[v(P)| < [0] + [v()] < 27 + (R2 — Ry)a.

This, together with ||v'|| oo < a shows that K is bounded in W' and, by the compactness
of the embedding W' C C, the set K is relatively compact in C. Let {u,} C K be a
minimizing sequence for F. Passing to a subsequence if necessary and using Lemma 1, we
may assume that {u,} converges uniformly to some u € K. It is easily seen that actually
uek. By Step I we obtain

inf F = lim F(u,) > F(u),
I% n—oo

showing that ¥ minimizes F over K. O

Remark 1 If {u,} C K and u € C are such that u,,(r) — u(r) for all r € [R], R3], then
by Lemma 1 and the reasoning in Step I of the above proof we have that u € K and (8) still
holds true.

Lemma 2 [f u minimizes F over K then u satisfies the variational inequality

Ry
/ (@[ (] — @[u' ()] + {glr, u()] + h()Hv() —u(@)]) r¥1dr > 0
Ry
forallv € K.
Proof The argument is standard. See for example Lemma 2 in [10]. O

@ Springer
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4 An existence result

We show that the minimizers of F provide classical solutions for the Neumann boundary
value problem

Vo) =N g uw) + h(n)], W' (R) =0=u'(Ry), (11)

under the basic assumptions (Hg) and (H,). Recall that by a solution of (11) we mean a
function u € C'[R}, R,], such that I |loo < a, ¢ (u') is differentiable and (11) is satisfied.
Let us begin with the simpler problem

PN o) =N Mu+ F), W(R) =0=u'(Ro). (12)

Proposition 2 For any f € C, problem (12) has a unique solution iy and U y satisfies the
variational inequality
Ry
/ (PL' ()] = @@ (N +{ip (1) + f M) =T p)]) FMldr =0 (13)
Ry

forallv € K.

Proof The existence part follows from Corollary 2.4 in [5]. If # and v are two solutions of
(12), then

Ry Ry

/ N o/ () — ¢ D [u(r) — v(r)1dr = / [u(r) — v *r¥"dr
R R

and hence, integrating the first term by parts and using the boundary conditions we obtain
Ry
/ P @' () = p ' NI () = V' (D] + @) = v P} r¥~dr = 0.
Ry

The monotonicity of ¢ yields u = v.
From (9) we have

Ry
/ (O ("] — [ p(r) 1 rY~dr

Ry
Ry
> / ol p (MW (r) — @ ()1~ dr
Ry
Ry
= - / PN @ (O o) — @y (r)1dr
Ry
Ry
_ / @) + fOI() — 7)1 r V" dr,
Ry
showing that (13) holds for all v € K. O
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Theorem 1 If hypotheses (Ho) and (H,) hold true, then, forany h € C with h = 0, problem
(11) has at least one solution which minimizes F over K.

Proof For any w € K we set
fwi=gC,w)+h—-—weC.

By Proposition 2, the unique solution i, of problem (12) with f = f,, satisfies the varia-
tional inequality

Ry
/ (O (M) — DLy, (M + [, (1) + foIvE) —dp O dr >0 (14)
Ry

forallv € K. Letu € K be a minimizer of F over K; we know that it exists by Proposition
1. From Lemma 2, u satisfies the variational inequality

Ry

/ (D[ ()] = Bl ()] + [1(r) + foIe) —u@ N Ndr =0 (15)
Ry

for all v € K. Taking v = ﬁfu in (15) and w = v = u in (14) and adding the resulting
inequalities, we get

Ry
/[u(r) —as, P r¥ldr <o.
Ry

It follows that u = % s, . Consequently, the minimizer u solves (11). O

Corollary 1 Forany € R and h € C with h = 0 the problem

/
(rN_lu )’ + VN Vsinu =N @), W'(R) =0 =u'(Ry)

V1—u?

has at least one solution.
Corollary 2 Forany u € R and h € C such that
[ axnax=o.

A
the problem

v
V-(v)—f—,usinv:h(lxl) in A, 9v=0 on 9A

J1— Vo2

has at least one classical radial solution.

Proof Indeed, going to spherical coordinates, we have

p

2 n

/h(|x|)dx = [ heyrNldr
T'(1/2)

A Ry
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Remark 2 1f Dis abounded domain with sufficiently smooth boundary, a necessary condition
for the existence of at least one solution to the Neumann problem

\Y
v +pusinv=~h((x) in D, d,v=0 on 9D (16)
V1 —|Vvl|?
for any n > 0 is that condition
/h(x)dx =0 (17)
D

holds, as it is easily seen by integrating both members of (16) over D and using divergence
theorem and the boundary conditions. It is an open problem to know if condition (17) is
sufficient. A proof of the existence of a minimum for the functional

G(u) = / [—\/1 — |Vo(x)|? + pcosv(x) + h(x)v(x)] dx
D

on the closed convex set
K :={ve Wh*(D): |Vu(x)| < 1ae. onD)

can be done following the lines of the proof of Proposition 1, but our way to go from the
variational inequality to the differential equation seems to be specific to a one-dimensional
situation, i.e., to the radial case.
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