Radial solutions of Neumann problems involving mean extrinsic curvature and periodic nonlinearities

Cristian Bereanu, Petru Jebelean \& Jean Mawhin

Calculus of Variations and Partial Differential Equations

ISSN 0944-2669

Calc. Var.
DOI 10.1007/s00526-011-0476-x

Springer

Your article is protected by copyright and all rights are held exclusively by SpringerVerlag. This e-offprint is for personal use only and shall not be self-archived in electronic repositories. If you wish to self-archive your work, please use the accepted author's version for posting to your own website or your institution's repository. You may further deposit the accepted author's version on a funder's repository at a funder's request, provided it is not made publicly available until 12 months after publication.

Radial solutions of Neumann problems involving mean extrinsic curvature and periodic nonlinearities

Cristian Bereanu • Petru Jebelean • Jean Mawhin

Received: 15 October 2010 / Accepted: 10 November 2011
© Springer-Verlag 2011

Abstract

We show that if $\mathcal{A} \subset \mathbb{R}^{N}$ is an annulus or a ball centered at zero, the homogeneous Neumann problem on \mathcal{A} for the equation with continuous data

$$
\nabla \cdot\left(\frac{\nabla v}{\sqrt{1-|\nabla v|^{2}}}\right)=g(|x|, v)+h(|x|)
$$

has at least one radial solution when $g(|x|, \cdot)$ has a periodic indefinite integral and $\int_{\mathcal{A}} h(|x|) \mathrm{d} x=0$. The proof is based upon the direct method of the calculus of variations, variational inequalities and degree theory.

Mathematics Subject Classification (2000) 35J20 $35 \mathrm{~J} 60 \cdot 35 \mathrm{~J} 93 \cdot 35 \mathrm{~J} 87$

1 Introduction

The study of quasilinear differential equations involving ϕ-Laplacian differential operators

$$
\left[\phi\left(u^{\prime}\right)\right]^{\prime}=f\left(x, u, u^{\prime}\right)
$$

[^0]submitted to various boundary conditions has been the source of many contributions. Most of them deal with the case where $\phi: \mathbb{R} \rightarrow \mathbb{R}$ is an increasing homeomorphism and the paradigm is the p-Laplacian associated to $\phi(s)=|s|^{p-2} s$ with $p>1$. References can be found in [15]. Another class of problems, motivated by the curvature operator associated to $\phi(s)=s / \sqrt{1+s^{2}}$, corresponds to homeomorphisms $\phi: \mathbb{R} \rightarrow(-a, a)$. One can consult for example the papers $[2,3,12,9,8,14]$ and their references. Finally, the class of ϕ we shall deal with here is that of homeomorphisms $\phi:(-a, a) \rightarrow \mathbb{R}$ motivated by the relativistic acceleration, for which $\phi(s)=s / \sqrt{1-s^{2}}$. This class already appears in [11], where nonlinearities depending upon the derivative are treated, and in [7] in the general case and Neumann boundary conditions. Slightly more general classes of equations, corresponding to the radial solutions on a ball or an annulus of quasilinear partial differential equations associated to the mean extrinsic curvature in Minkowski space [1], have been first considered in [4].

In a recent paper [6], the authors have used topological degree techniques to obtain existence and multiplicity results for the radial solutions of the Neumann problem

$$
\begin{equation*}
\nabla \cdot\left(\frac{\nabla v}{\sqrt{1-|\nabla v|^{2}}}\right)+\mu \sin v=h(|x|) \quad \text { in } \quad \mathcal{A}, \quad \partial_{\nu} v=0 \quad \text { on } \quad \partial \mathcal{A}, \tag{1}
\end{equation*}
$$

on the ball or annulus

$$
\mathcal{A}=\left\{x \in \mathbb{R}^{N}: R_{1} \leq|x| \leq R_{2}\right\} \quad\left(0 \leq R_{1}<R_{2}\right)
$$

i.e., for the equivalent one-dimensional problem

$$
\left(r^{N-1} \frac{u^{\prime}}{\sqrt{1-u^{\prime 2}}}\right)^{\prime}+r^{N-1} \mu \sin u=r^{N-1} h(r), \quad u^{\prime}\left(R_{1}\right)=0=u^{\prime}\left(R_{2}\right)
$$

They have proved the existence of at least two radial solutions not differing by a multiple of 2π when

$$
2\left(R_{2}-R_{1}\right)<\pi \quad \text { and } \quad\left|\frac{N}{R_{2}^{N}-R_{1}^{N}} \int_{R_{1}}^{R_{2}} h(r) r^{N-1} \mathrm{~d} r\right|<\mu \cos \left(R_{2}-R_{1}\right)
$$

and the existence of at least one radial solution when $2\left(R_{2}-R_{1}\right)=\pi$ and

$$
\begin{equation*}
\int_{R_{1}}^{R_{2}} h(r) r^{N-1} \mathrm{~d} r=0 . \tag{2}
\end{equation*}
$$

Condition (2) is easily seen to be necessary for the existence of a radial solution to (1) for any $\mu>0$ and a natural question is to know if condition

$$
\begin{equation*}
2\left(R_{2}-R_{1}\right) \leq \pi \tag{3}
\end{equation*}
$$

can be dropped.
In the analogous problem of the forced pendulum equation

$$
u^{\prime \prime}+\mu \sin u=h(t)
$$

with periodic or Neumann homogeneous boundary conditions on [$0, T$], it has been shown that the corresponding necessary condition

$$
\begin{equation*}
\int_{0}^{T} h(t) \mathrm{d} t=0 \tag{4}
\end{equation*}
$$

is also sufficient for the existence of at least two solutions not differing by a multiple of 2π. But, in this case, all the known proofs are of variational or symplectic nature (see e.g., the survey [13]).

Recently, it has been proved in [10] that the "relativistic forced pendulum equation"

$$
\left(\frac{u^{\prime}}{\sqrt{1-u^{\prime 2}}}\right)^{\prime}+\mu \sin u=h(t)
$$

has at least one T-periodic solution for any $\mu>0$ when the (necessary) condition (4) is satisfied. The approach is essentially variational, but combined with some topological arguments. The aim of this paper is to adapt the methodology introduced in [10] to the radial Neumann problem for (1) and prove that, for the existence part, condition (3) can be dropped.

The results are stated and proved, like in [10] but in a slightly different functional framework, for the more general class of equations of the form

$$
\begin{equation*}
\left[r^{N-1} \phi\left(u^{\prime}\right)\right]^{\prime}=r^{N-1}[g(r, u)+h(r)], \quad u^{\prime}\left(R_{1}\right)=0=u^{\prime}\left(R_{2}\right) \tag{5}
\end{equation*}
$$

where $\phi:(-a, a) \rightarrow \mathbb{R}$ is a suitable homeomorphism and g belongs to some class of functions 2π-periodic with respect to its second variable.

2 Hypotheses and function spaces

In what follows, we assume that $\Phi:[-a, a] \rightarrow \mathbb{R}$ satisfies the following hypothesis:
$\left(\mathbf{H}_{\Phi}\right) \quad \Phi$ is continuous, of class C^{1} on $(-a, a)$, with $\phi:=\Phi^{\prime}:(-a, a) \rightarrow \mathbb{R}$ an increasing homeomorphism such that $\phi(0)=0$.

Consequently, $\Phi:[-a, a] \rightarrow \mathbb{R}$ is strictly convex.
Given $0 \leq R_{1}<R_{2}$, the function $g:\left[R_{1}, R_{2}\right] \times \mathbb{R} \rightarrow \mathbb{R}$ satisfies the following hypothesis:
$\left(\mathbf{H}_{\mathrm{g}}\right) \quad g$ is continuous and its indefinite integral

$$
G(r, x):=\int_{0}^{x} g(r, \xi) \mathrm{d} \xi, \quad(r, x) \in\left[R_{1}, R_{2}\right] \times \mathbb{R}
$$

is 2π-periodic for each $r \in\left[R_{1}, R_{2}\right]$.
We set $C:=C\left[R_{1}, R_{2}\right], L^{1}:=L^{1}\left(R_{1}, R_{2}\right), L^{\infty}:=L^{\infty}\left(R_{1}, R_{2}\right)$ and $W^{1, \infty}:=$ $W^{1, \infty}\left(R_{1}, R_{2}\right)$. The usual norm $\|\cdot\|_{\infty}$ is considered on L^{∞} and $W^{1, \infty}$ is endowed with the norm

$$
\|v\|=\|v\|_{\infty}+\left\|v^{\prime}\right\|_{\infty} \quad\left(v \in W^{1, \infty}\right)
$$

Each $v \in L^{1}$ can be written $v(r)=\bar{v}+\tilde{v}(r)$, with

$$
\bar{v}:=\frac{N}{R_{2}^{N}-R_{1}^{N}} \int_{R_{1}}^{R_{2}} v(r) r^{N-1} \mathrm{~d} r, \quad \int_{R_{1}}^{R_{2}} \tilde{v}(r) r^{N-1} \mathrm{~d} r=0 .
$$

If $v \in W^{1, \infty}$ then \tilde{v} vanishes at some $r_{0} \in\left(R_{1}, R_{2}\right)$ and

$$
\begin{equation*}
|\tilde{v}(r)|=\left|\tilde{v}(r)-\tilde{v}\left(r_{0}\right)\right| \leq \int_{R_{1}}^{R_{2}}\left|v^{\prime}(t)\right| \mathrm{d} t \leq\left(R_{2}-R_{1}\right)\left\|v^{\prime}\right\|_{\infty} \tag{6}
\end{equation*}
$$

We set

$$
K=\left\{v \in W^{1, \infty}:\left\|v^{\prime}\right\|_{\infty} \leq a\right\} .
$$

K is closed and convex.
Lemma 1 If $\left\{u_{n}\right\} \subset K$ and $u \in C$ are such that $u_{n}(r) \rightarrow u(r)$ for all $r \in\left[R_{1}, R_{2}\right]$, then
(i) $u \in K$;
(ii) $u_{n}{ }^{\prime} \rightarrow u^{\prime}$ in the w^{*}-topology $\sigma\left(L^{\infty}, L^{1}\right)$.

Proof From the relation

$$
\left|u_{n}\left(r_{1}\right)-u_{n}\left(r_{2}\right)\right|=\left|\int_{r_{2}}^{r_{1}} u_{n}^{\prime}(r) \mathrm{d} r\right| \leq a\left|r_{1}-r_{2}\right|
$$

letting $n \rightarrow \infty$, we get

$$
\left|u\left(r_{1}\right)-u\left(r_{2}\right)\right| \leq a\left|r_{1}-r_{2}\right| \quad\left(r_{1}, r_{2} \in\left[R_{1}, R_{2}\right]\right),
$$

which yields $u \in K$.
Next, we show that that if $\left\{u^{\prime}{ }_{k}\right\}$ is a subsequence of $\left\{u^{\prime}{ }_{n}\right\}$ with $u^{\prime}{ }_{k} \rightarrow v \in L^{\infty}$ in the w^{*}-topology $\sigma\left(L^{\infty}, L^{1}\right)$ then

$$
\begin{equation*}
v=u^{\prime} \quad \text { a.e. on }\left[R_{1}, R_{2}\right] . \tag{7}
\end{equation*}
$$

Indeed, as

$$
\int_{R_{1}}^{R_{2}} u^{\prime}{ }_{k}(r) f(r) \mathrm{d} r \rightarrow \int_{R_{1}}^{R_{2}} v(r) f(r) \mathrm{d} r \text { for all } f \in L^{1},
$$

taking $f \equiv \chi_{r_{1}, r_{2}}$, the characteristic function of the interval having the endpoints $r_{1}, r_{2} \in$ [R_{1}, R_{2}], it follows

$$
\int_{r_{1}}^{r_{2}} u^{\prime}{ }_{k}(r) \mathrm{d} r \rightarrow \int_{r_{1}}^{r_{2}} v(r) \mathrm{d} r \quad\left(r_{1}, r_{2} \in\left[R_{1}, R_{2}\right]\right) .
$$

Then, letting $k \rightarrow \infty$ in

$$
u_{k}\left(r_{2}\right)-u_{k}\left(r_{1}\right)=\int_{r_{1}}^{r_{2}} u^{\prime}{ }_{k}(r) \mathrm{d} r
$$

we obtain

$$
u\left(r_{2}\right)-u\left(r_{1}\right)=\int_{r_{1}}^{r_{2}} v(r) \mathrm{d} r \quad\left(r_{1}, r_{2} \in\left[R_{1}, R_{2}\right]\right)
$$

which, clearly implies (7).
Now, to prove (ii) it suffices to show that if $\left\{u^{\prime}{ }_{j}\right\}$ is an arbitrary subsequence of $\left\{u^{\prime}{ }_{n}\right\}$, then it contains itself a subsequence $\left\{u^{\prime}{ }_{k}\right\}$ such that $u^{\prime}{ }_{k} \rightarrow u^{\prime}$ in the w^{*}-topology $\sigma\left(L^{\infty}, L^{1}\right)$. Since L^{1} is separable and $\left\{u_{j}^{\prime}\right\}$ is bounded in $L^{\infty}=\left(L^{1}\right)^{*}$, we know that it has a subsequence $\left\{u^{\prime}{ }_{k}\right\}$ convergent to some $v \in L^{\infty}$ in the w^{*}-topology $\sigma\left(L^{\infty}, L^{1}\right)$. Then, as shown before (see (7)), we have $v=u^{\prime}$.

3 A minimization problem

Let $h \in C$ and $\mathcal{F}: K \rightarrow \mathbb{R}$ be given by

$$
\mathcal{F}(v)=\int_{R_{1}}^{R_{2}}\left\{\Phi\left[v^{\prime}(r)\right]+G(r, v(r))+h(r) v(r)\right\} r^{N-1} \mathrm{~d} r \quad(v \in K)
$$

On account of hypotheses $\left(H_{\Phi}\right)$ and $\left(H_{g}\right)$ the functional \mathcal{F} is well defined.

Proposition 1 If $\bar{h}=0$ then \mathcal{F} has a minimum over K.

Proof Step I. We prove that if $\left\{u_{n}\right\} \subset K$ is a sequence which converges uniformly on $\left[R_{1}, R_{2}\right]$ to some $u \in K$, then

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} \int_{R_{1}}^{R_{2}} \Phi\left[u_{n}^{\prime}(r)\right] r^{N-1} \mathrm{~d} r \geq \int_{R_{1}}^{R_{2}} \Phi\left[u^{\prime}(r)\right] r^{N-1} \mathrm{~d} r \tag{8}
\end{equation*}
$$

By virtue of $\left(H_{\Phi}\right)$ the function Φ is convex, hence for all $y \in[-a, a]$ and $z \in(-a, a)$ one has

$$
\begin{equation*}
\Phi(y)-\Phi(z) \geq \phi(z)(y-z) \tag{9}
\end{equation*}
$$

This implies that for any $\lambda \in[0,1)$ it holds

$$
\begin{align*}
\int_{R_{1}}^{R_{2}} \Phi\left[u^{\prime}{ }_{n}(r)\right] r^{N-1} \mathrm{~d} r \geq & \int_{R_{1}}^{R_{2}} \Phi\left[\lambda u^{\prime}(r)\right] r^{N-1} \mathrm{~d} r \tag{10}\\
& +\int_{R_{1}}^{R_{2}} \phi\left[\lambda u^{\prime}(r)\right]\left[u_{n}^{\prime}(r)-\lambda u^{\prime}(r)\right] r^{N-1} \mathrm{~d} r
\end{align*}
$$

From Lemma 1 we have that $u_{n}{ }^{\prime} \rightarrow u^{\prime}$ in the w^{*}-topology $\sigma\left(L^{\infty}, L^{1}\right)$. Since the map $r \mapsto r^{N-1} \phi\left[\lambda u^{\prime}(r)\right]$ belongs to $L^{\infty} \subset L^{1}$, using (10) we infer that

$$
\begin{aligned}
\liminf _{n \rightarrow \infty} \int_{R_{1}}^{R_{2}} \Phi\left[u^{\prime}{ }_{n}(r)\right] r^{N-1} \mathrm{~d} r \geq & \int_{R_{1}}^{R_{2}} \Phi\left[\lambda u^{\prime}(r)\right] r^{N-1} \mathrm{~d} r \\
& +(1-\lambda) \int_{R_{1}}^{R_{2}} \phi\left[\lambda u^{\prime}(r)\right] u^{\prime}(r) r^{N-1} \mathrm{~d} r .
\end{aligned}
$$

As $\phi(t) t \geq 0$, for all $t \in(-a, a)$, we get

$$
\liminf _{n \rightarrow \infty} \int_{R_{1}}^{R_{2}} \Phi\left[u_{n}^{\prime}(r)\right] r^{N-1} \mathrm{~d} r \geq \int_{R_{1}}^{R_{2}} \Phi\left[\lambda u^{\prime}(r)\right] r^{N-1} \mathrm{~d} r
$$

which, using Lebesgue's dominated convergence theorem, gives (8) by letting $\lambda \rightarrow 1$.
Step II. Due to the 2π-periodicity of $G(r, \cdot)$ (see $\left(H_{g}\right)$) and because of $\bar{h}=0$, we have

$$
\mathcal{F}(v+2 \pi)=\mathcal{F}(v), \quad \forall v \in K
$$

Therefore, if u minimizes \mathcal{F} over K, then the same is true for $u+2 k \pi$ for any $k \in \mathbb{Z}$. This means that we can search, without loss of generality, a minimizer $u \in K$ with $\bar{u} \in[0,2 \pi]$. Thus, the problem reduces to minimize \mathcal{F} over

$$
\hat{K}=\{v \in K: \bar{v} \in[0,2 \pi]\}
$$

If $v \in \hat{K}$ then, using (6) we obtain

$$
|v(r)| \leq|\bar{v}|+|\tilde{v}(r)| \leq 2 \pi+\left(R_{2}-R_{1}\right) a .
$$

This, together with $\left\|v^{\prime}\right\|_{\infty} \leq a$ shows that \hat{K} is bounded in $W^{1, \infty}$ and, by the compactness of the embedding $W^{1, \infty} \subset C$, the set \hat{K} is relatively compact in C. Let $\left\{u_{n}\right\} \subset \hat{K}$ be a minimizing sequence for \mathcal{F}. Passing to a subsequence if necessary and using Lemma 1, we may assume that $\left\{u_{n}\right\}$ converges uniformly to some $u \in K$. It is easily seen that actually $u \in \hat{K}$. By Step I we obtain

$$
\inf _{\hat{K}} \mathcal{F}=\lim _{n \rightarrow \infty} \mathcal{F}\left(u_{n}\right) \geq \mathcal{F}(u),
$$

showing that u minimizes \mathcal{F} over \hat{K}.
Remark 1 If $\left\{u_{n}\right\} \subset K$ and $u \in C$ are such that $u_{n}(r) \rightarrow u(r)$ for all $r \in\left[R_{1}, R_{2}\right]$, then by Lemma 1 and the reasoning in Step I of the above proof we have that $u \in K$ and (8) still holds true.

Lemma 2 If u minimizes \mathcal{F} over K then u satisfies the variational inequality

$$
\int_{R_{1}}^{R_{2}}\left(\Phi\left[v^{\prime}(r)\right]-\Phi\left[u^{\prime}(r)\right]+\{g[r, u(r)]+h(r)\}[v(r)-u(r)]\right) r^{N-1} \mathrm{~d} r \geq 0
$$

for all $v \in K$.
Proof The argument is standard. See for example Lemma 2 in [10].

4 An existence result

We show that the minimizers of \mathcal{F} provide classical solutions for the Neumann boundary value problem

$$
\begin{equation*}
\left[r^{N-1} \phi\left(u^{\prime}\right)\right]^{\prime}=r^{N-1}[g(r, u)+h(r)], \quad u^{\prime}\left(R_{1}\right)=0=u^{\prime}\left(R_{2}\right), \tag{11}
\end{equation*}
$$

under the basic assumptions $\left(H_{\Phi}\right)$ and $\left(H_{g}\right)$. Recall that by a solution of (11) we mean a function $u \in C^{1}\left[R_{1}, R_{2}\right]$, such that $\left\|u^{\prime}\right\|_{\infty}<a, \phi\left(u^{\prime}\right)$ is differentiable and (11) is satisfied.

Let us begin with the simpler problem

$$
\begin{equation*}
\left[r^{N-1} \phi\left(u^{\prime}\right)\right]^{\prime}=r^{N-1}[u+f(r)], \quad u^{\prime}\left(R_{1}\right)=0=u^{\prime}\left(R_{2}\right) . \tag{12}
\end{equation*}
$$

Proposition 2 For any $f \in C$, problem (12) has a unique solution \widehat{u}_{f} and \widehat{u}_{f} satisfies the variational inequality

$$
\begin{equation*}
\int_{R_{1}}^{R_{2}}\left(\Phi\left[v^{\prime}(r)\right]-\Phi\left[\widehat{u}^{\prime}(r)\right]+\left\{\widehat{u}_{f}(r)+f(r)\right\}\left[v(r)-\widehat{u}_{f}(r)\right]\right) r^{N-1} \mathrm{~d} r \geq 0 \tag{13}
\end{equation*}
$$

for all $v \in K$.
Proof The existence part follows from Corollary 2.4 in [5]. If u and v are two solutions of (12), then

$$
\int_{R_{1}}^{R_{2}}\left\{r^{N-1}\left[\phi\left(u^{\prime}(r)\right)-\phi\left(v^{\prime}(r)\right)\right]\right\}^{\prime}[u(r)-v(r)] \mathrm{d} r=\int_{R_{1}}^{R_{2}}[u(r)-v(r)]^{2} r^{N-1} \mathrm{~d} r
$$

and hence, integrating the first term by parts and using the boundary conditions we obtain

$$
\int_{R_{1}}^{R_{2}}\left\{\left[\phi\left(u^{\prime}(r)\right)-\phi\left(v^{\prime}(r)\right)\right]\left[u^{\prime}(r)-v^{\prime}(r)\right]+[u(r)-v(r)]^{2}\right\} r^{N-1} \mathrm{~d} r=0 .
$$

The monotonicity of ϕ yields $u=v$.
From (9) we have

$$
\begin{aligned}
& \int_{R_{1}}^{R_{2}}\left\{\Phi\left[v^{\prime}(r)\right]-\Phi\left[\widehat{u}_{f}^{\prime}(r)\right]\right\} r^{N-1} \mathrm{~d} r \\
& \quad \geq \int_{R_{1}}^{R_{2}} \phi\left[\widehat{u}_{f}^{\prime}(r)\right]\left[v^{\prime}(r)-\widehat{u}_{f}^{\prime}(r)\right] r^{N-1} \mathrm{~d} r \\
& =-\int_{R_{1}}^{R_{2}}\left\{r^{N-1} \phi\left[\widehat{u}_{f}^{\prime}(r)\right]\right\}^{\prime}\left[v(r)-\widehat{u}_{f}(r)\right] \mathrm{d} r \\
& =-\int_{R_{1}}^{R_{2}}\left[\widehat{u}_{f}(r)+f(r)\right]\left[v(r)-\widehat{u}_{f}(r)\right] r^{N-1} \mathrm{~d} r,
\end{aligned}
$$

showing that (13) holds for all $v \in K$.

Theorem 1 If hypotheses $\left(H_{\Phi}\right)$ and $\left(H_{g}\right)$ hold true, then, for any $h \in C$ with $\bar{h}=0$, problem (11) has at least one solution which minimizes \mathcal{F} over K.

Proof For any $w \in K$ we set

$$
f_{w}:=g(\cdot, w)+h-w \in C .
$$

By Proposition 2, the unique solution $\widehat{u}_{f_{w}}$ of problem (12) with $f=f_{w}$ satisfies the variational inequality

$$
\begin{equation*}
\int_{R_{1}}^{R_{2}}\left\{\Phi\left[v^{\prime}(r)\right]-\Phi\left[\widehat{u}_{f_{w}}{ }^{\prime}(r)\right]+\left[\widehat{u}_{f_{w}}(r)+f_{w}(r)\right]\left[v(r)-\widehat{u}_{f_{w}}(r)\right]\right\} r^{N-1} \mathrm{~d} r \geq 0 \tag{14}
\end{equation*}
$$

for all $v \in K$. Let $u \in K$ be a minimizer of \mathcal{F} over K; we know that it exists by Proposition 1. From Lemma 2, u satisfies the variational inequality

$$
\begin{equation*}
\int_{R_{1}}^{R_{2}}\left\{\Phi\left[v^{\prime}(r)\right]-\Phi\left[u^{\prime}(r)\right]+\left[u(r)+f_{u}(r)\right][v(r)-u(r)]\right\} r^{N-1} \mathrm{~d} r \geq 0 \tag{15}
\end{equation*}
$$

for all $v \in K$. Taking $v=\widehat{u}_{f_{u}}$ in (15) and $w=v=u$ in (14) and adding the resulting inequalities, we get

$$
\int_{R_{1}}^{R_{2}}\left[u(r)-\widehat{u}_{f_{u}}(r)\right]^{2} r^{N-1} \mathrm{~d} r \leq 0 .
$$

It follows that $u=\widehat{u}_{f_{u}}$. Consequently, the minimizer u solves (11).
Corollary 1 For any $\mu \in \mathbb{R}$ and $h \in C$ with $\bar{h}=0$ the problem

$$
\left(r^{N-1} \frac{u^{\prime}}{\sqrt{1-u^{\prime 2}}}\right)^{\prime}+r^{N-1} \mu \sin u=r^{N-1} h(r), \quad u^{\prime}\left(R_{1}\right)=0=u^{\prime}\left(R_{2}\right)
$$

has at least one solution.
Corollary 2 For any $\mu \in \mathbb{R}$ and $h \in C$ such that

$$
\int_{\mathcal{A}} h(|x|) \mathrm{d} x=0,
$$

the problem

$$
\nabla \cdot\left(\frac{\nabla v}{\sqrt{1-|\nabla v|^{2}}}\right)+\mu \sin v=h(|x|) \text { in } \mathcal{A}, \quad \partial_{\nu} v=0 \text { on } \partial \mathcal{A}
$$

has at least one classical radial solution.
Proof Indeed, going to spherical coordinates, we have

$$
\int_{\mathcal{A}} h(|x|) \mathrm{d} x=\frac{2 \pi^{n / 2}}{\Gamma(n / 2)} \int_{R_{1}}^{R_{2}} h(r) r^{N-1} \mathrm{~d} r .
$$

Remark 2 If \mathcal{D} is a bounded domain with sufficiently smooth boundary, a necessary condition for the existence of at least one solution to the Neumann problem

$$
\begin{equation*}
\nabla \cdot\left(\frac{\nabla v}{\sqrt{1-|\nabla v|^{2}}}\right)+\mu \sin v=h(x) \quad \text { in } \quad \mathcal{D}, \quad \partial_{\nu} v=0 \quad \text { on } \quad \partial \mathcal{D} \tag{16}
\end{equation*}
$$

for any $\mu>0$ is that condition

$$
\begin{equation*}
\int_{\mathcal{D}} h(x) \mathrm{d} x=0 \tag{17}
\end{equation*}
$$

holds, as it is easily seen by integrating both members of (16) over \mathcal{D} and using divergence theorem and the boundary conditions. It is an open problem to know if condition (17) is sufficient. A proof of the existence of a minimum for the functional

$$
\mathcal{G}(u)=\int_{\mathcal{D}}\left[-\sqrt{1-|\nabla v(x)|^{2}}+\mu \cos v(x)+h(x) v(x)\right] \mathrm{d} x
$$

on the closed convex set

$$
K:=\left\{v \in W^{1, \infty}(\mathcal{D}):|\nabla v(x)| \leq 1 \text { a.e. on } \mathcal{D}\right\}
$$

can be done following the lines of the proof of Proposition 1, but our way to go from the variational inequality to the differential equation seems to be specific to a one-dimensional situation, i.e., to the radial case.

Acknowledgements Support of C. Bereanu from the Romanian Ministry of Education, Research and Innovation (PN II Program, CNCSIS code RP 3/2008) is gratefully acknowledged.

References

1. Bartnik, R., Simon, L.: Spacelike hypersurfaces with prescribed boundary values and mean curvature. Commun. Math. Phys. 87, 131-152 (1982/83)
2. Benevieri, P., do Ó, J.M., de Souto, E.M.: Periodic solutions for nonlinear systems with mean curvaturelike operators. Nonlinear Anal. 65, 1462-1475 (2006)
3. Benevieri, P., do Ó, J.M., de Souto, E.M.: Periodic solutions for nonlinear equations with mean curva-ture-like operators. Appl. Math. Lett. 20, 484-492 (2007)
4. Bereanu, C., Jebelean, P., Mawhin, J.: Radial solutions for some nonlinear problems involving mean curvature operators in Euclidian and Minkowski spaces. Proc. Am. Math. Soc. 137, 161-169 (2009)
5. Bereanu, C., Jebelean, P., Mawhin, J.: Radial solutions for Neumann problems involving mean curvature operators in Euclidean and Minkowsi spaces. Math. Nachr. 283, 379-391 (2010)
6. Bereanu, C., Jebelean, P., Mawhin, J.: Radial solutions for Neumann problems with ϕ-Laplacians and pendulum-like nonlinearities. Discret. Cont. Dynam. Syst. A 28, 637-648 (2010)
7. Bereanu, C., Mawhin, J.: Nonlinear Neumann boundary value problems with ϕ-Laplacian operators. An. Stiint. Univ. Ovidius Constanta 12, 73-92 (2004)
8. Bereanu, C., Mawhin, J.: Periodic solutions of nonlinear perturbations of ϕ-Laplacian with possibly bounded ϕ. Nonlinear Anal. 68, 1668-1681 (2008)
9. Bonheure, D., Habets, P., Obersnel, F., Omari, P.: Classical and non-classical solutions of a prescribed curvature equation. J. Differ. Equ. 243, 208-237 (2007)
10. Brezis, H., Mawhin, J.: Periodic solutions of the forced relativistic pendulum. Differ. Integr. Equ. 23, 801810 (2010)
11. Girg, P.: Neumann and periodic boundary-value problems for quasilinear ordinary differential equations with a nonlinearity in the derivatives. Electron. J. Differ. Equ. 63, 1-28 (2000)
12. Habets, P., Omari, P.: Multiple positive solutions of a one-dimensional prescribed mean curvature problem. Commun. Contemp. Math. 9, 701-730 (2007)
13. Mawhin, J.: Global results for the forced pendulum equation. In: Cañada, A., Drábek, P., Fonda, A. (eds.) Handbook of Differential Equations. Ordinary Differential Equations, vol. 1, pp. 533-590. Elsevier, Amsterdam (2004)
14. Obersnel, F., Omari, P.: Existence and multiplicity results for the prescribed mean curvature equation via lower and upper solutions. Differ. Integr. Equ. 22, 853-880 (2009)
15. Rachunková, I., Staněk, S., Tvrdý, M.: Solvability of Nonlinear Singular Problems for Ordinary Differential Equations. Hindawi Publishing Corporation, New York (2008)

[^0]: Communicated by A. Malchiodi.
 C. Bereanu

 Institute of Mathematics "Simion Stoilow", Romanian Academy, 21, Calea Griviţei, Sector 1, 010702 Bucharest, Romania
 e-mail: cristian.bereanu@imar.ro
 P. Jebelean

 Department of Mathematics, West University of Timişoara, 4, Boulevard V. Parvan, 300223 Timişoara, Romania
 e-mail: jebelean@math.uvt.ro
 J. Mawhin (\boxtimes)

 Mathématique et Physique, Université Catholique de Louvain, 2, Chemin du Cyclotron, 1348 Louvain-la-Neuve, Belgique
 e-mail: jean.mawhin@uclouvain.be

