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Abstract

Using Leray–Schauder degree theory we obtain various existence and multiplicity results for nonlinear
boundary value problems

(
φ(u′)

)′ = f (t, u,u′), l(u,u′) = 0

where l(u,u′) = 0 denotes the Dirichlet, periodic or Neumann boundary conditions on [0, T ],
φ : ]−a, a[ → R is an increasing homeomorphism, φ(0) = 0. The Dirichlet problem is always solvable.
For Neumann or periodic boundary conditions, we obtain in particular existence conditions for nonlineari-
ties which satisfy some sign conditions, upper and lower solutions theorems, Ambrosetti–Prodi type results.
We prove Lazer–Solimini type results for singular nonlinearities and periodic boundary conditions.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The purpose of this article is to obtain some existence and multiplicity result for nonlinear
problems
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(
φ(u′)

)′ = f (t, u,u′), l(u,u′) = 0 (1)

where l(u,u′) = 0 denotes the periodic, Neumann or Dirichlet boundary conditions on [0, T ],
φ : ]−a, a[ → R is an increasing homeomorphism such that φ(0) = 0 (we call it singular),
and f : [0, T ] × R

2 → R is continuous. For the Neumann problems, this type of equations
has been introduced in [2]. Of course, a solution of (1) is a function u ∈ C1([0, T ]) such that
max[0,T ] |u′| < a and φ ◦ u′ ∈ C1([0, T ]).

The various boundary value problems are reduced to the search of fixed point for some oper-
ators defined on the whole space X of function u ∈ C1([0, T ]) such that l(u,u′) = 0. Those
operators are completely continuous, and a novel feature linked to the nature of the func-
tion φ lies in the fact that those operators map X into the cylinder of functions v ∈ X such
that max[0,T ] |v′| < a. This property greatly simplifies the search of the a priori bounds for
possible fixed points required by a Leray–Schauder approach, and allows existence results un-
der milder conditions than in the corresponding problems with classical φ : R → R or bounded
φ : R → ]−a, a[ considered in earlier papers.

In Section 2, we study the φ-Laplacian operator with a time-dependent forcing term and the
three boundary conditions, and we recall how to reduce, following [9], the nonlinear boundary
value problems to some fixed points problems in X. Those results (and their proofs) are entirely
analogous to the known ones for the case of a classical φ.

A first consequence of this reduction, considered in Section 3, is the somewhat surprising
result that the Dirichlet problem

(
φ(u′)

)′ = f (t, u,u′), u(0) = 0 = u(T )

is solvable for any right-hand member f (Theorem 1).
This is not the case for the other boundary conditions, for which we prove, in Section 4,

existence results when the right-hand member f only satisfies some sign conditions (Theorem 2).
The result is similar to the one proved in [3] when φ : R → ]−a, a[, except that it requires no
one-sided boundedness or growth condition on f . Those sign conditions are specialized into
Landesman–Lazer conditions for bounded or unbounded nonlinearities.

We extend in Section 5 the classical method of upper and lower solutions to this type of
problems for periodic and Neumann conditions (Theorem 3). The methodology of the proof
follows the one introduced in [12], together with an idea inspired by Mawhin’s continuation
theorem (see [11]). It extends to singular φ the results of [14] for the p-Laplacian situation.
Notice that, in contrast to this case, no Nagumo-like growth condition for the dependence of
f (t, u, v) with respect to v is required. We also adapt the Amann, Ambrosetti and Mancini
approach [1] to give an existence result when the lower and upper solutions are not ordered
(Theorem 4).

Combining the method of upper and lower solutions and Leray–Schauder degree, we prove
in Section 6 an Ambrosetti–Prodi type multiplicity result (Theorems 5 and 6). For the proof, we
adapt the ideas of [6] to the present situation. A corresponding Ambrosetti–Prodi type result for
nonlinear perturbations of the p-Laplacian can be found in [14].

In the last section, we study positive solutions of periodic problems for nonlinearities singular
at 0, and prove Lazer–Solimini type results [8] (Theorems 7 and 8), following the methodology
of [13], which has been applied to the p-Laplacian case in [7]. The case of φ : R → R has been
recently considered by Rachunková and Tvrdý [17].
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2. Notations and equivalent fixed point problems

We denote the usual norm in L1(0, T ) by ‖ · ‖1. Let C denote the Banach space of continuous
functions on [0, T ] endowed with the uniform norm ‖ · ‖∞, C1 denote the Banach space of
continuously differentiable functions on [0, T ], equipped with the norm ‖u‖ = ‖u‖∞ + ‖u′‖∞.
We consider its closed subspaces

C1
0 := {

u ∈ C1: u(0) = 0 = u(T )
}
,

C1
† = {

u ∈ C1: u′(0) = 0 = u′(T )
}
,

C1
# = {

u ∈ C1: u(0) = u(T ), u′(0) = u′(T )
}
,

and denote corresponding open balls of center 0 and radius r by Br . We denote by P,Q :C → C

the continuous projectors defined by

P,Q :C → C, Pu(t) = u(0), Qu(t) = 1

T

T∫
0

u(s) ds
(
t ∈ [0, T ]),

and define the continuous linear operator H :C → C1 by

Hu(t) =
t∫

0

u(s) ds
(
t ∈ [0, T ]).

If u ∈ C, we write

u+ = max{u,0}, u− = max{−u,0}, uL = min[0,T ]u, uM = max
[0,T ]

u.

The following assumption upon φ is made throughout the paper:

(Hφ) φ : ]−a, a[ → R is an increasing homeomorphism such that φ(0) = 0.

A technical result is needed for the construction of the equivalent fixed point problems.

Lemma 1. For each h ∈ C, there exists a unique α := Qφ(h) ∈ Rangeh such that

T∫
0

φ−1(h(t) − α
)
dt = 0.

Moreover, the function Qφ :C → R is continuous.

Proof. Let h ∈ C. We first prove uniqueness. Let αi ∈ R be such that
∫ T

0 φ−1(h(t) − αi) dt = 0
(i = 1,2). It follows that there exists t0 ∈ [0, T ] such that φ−1(h(t0) − α1) = φ−1(h(t0) − α2),
and using the injectivity of φ−1 we deduce that α1 = α2. For existence, the function
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γ : [hL,hM ] → R, s 	→
T∫

0

φ−1(h(t) − s
)
dt

is well defined and continuous. On the other hand, because φ−1 is strictly monotone and
φ−1(0) = 0, we see that γ (hL)γ (hM) � 0, and the existence of α ∈ [hL,hM ] such that
γ (α) = 0 follows. Finally, we show that Qφ is continuous on C. Let (hn)n ⊂ C such that
hn → h0 in C. Without loss of generality, passing if necessary to a subsequence, we may
assume that Qφ(hn) → α0. Using the dominated convergence theorem we deduce that∫ T

0 φ−1(h0(t) − α0) dt = 0, so we have that α0 = Qφ(h0). �
Remark 1. Lemma 1 shows that the function Qφ verifies the identity

Q ◦ φ−1 ◦ (I − Qφ) ◦ u = 0 for all u ∈ C. (2)

Furthermore, from the homeomorphic character of φ and φ(0) = 0, we have

Qφ(0) = 0. (3)

To construct the associated fixed point operators, following the approach in [9], we first recall
some easily proved criteria for the solvability, under various boundary conditions, of the forced
equation (

φ(u′)
)′ = f (t) (4)

with f ∈ C.

Proposition 1. For each f ∈ C, problem (4) has a unique solution verifying the boundary con-
ditions

u(0) = 0 = u(T ), (5)

given by

u(t) =
t∫

0

φ−1 ◦ (I − Qφ)Hf (s) ds
(
t ∈ [0, T ]).

Problem (4) has a solution satisfying the conditions

u′(0) = 0 = u′(T )

if and only if

Qf = 0 (6)

in which case the solutions are given by the family
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u(t) = u(0) +
t∫

0

φ−1(Hf (s)
)
ds.

Problem (4) has a solution satisfying the conditions

u(0) − u(T ) = 0 = u′(0) − u′(T )

if and only if condition (6) holds, in which case the solutions are given by the family

u(t) = u(0) +
t∫

0

[
φ−1(I − Qφ)Hf (s)

]
ds

(
t ∈ [0, T ]).

Remark 2. The results above still hold for f ∈ L1(0, T ) if a solution of (φ(u′))′ = f (t) is
defined as a function u ∈ C1 such that max[0,T ] |u′| < a and φ(u′) is absolutely continuous.

We now define fixed point operators which are similar to the ones introduced in [9] and [3] for
φ : R → R and φ : R → ]−a, a[, respectively. The proofs of equivalence of the boundary value
and the fixed point problems are identical and are not repeated here. Assume that

(HF ) F :C1 → C is continuous and takes bounded sets into bounded sets.

Proposition 2. u is a solution of the abstract Dirichlet problem(
φ(u′)

)′ = F(u), u(0) = 0 = u(T ) (7)

if and only if u ∈ C1
0 is a fixed point of the operator M0 defined on C1

0 by

M0(u) := H ◦ φ−1 ◦ (I − Qφ) ◦ [HF ](u). (8)

u is a solution of the abstract Neumann problem(
φ(u′)

)′ = F(u), u′(0) = 0 = u′(T )

if and only if u ∈ C1
† is a fixed point of the operator M† defined on C1

† by

M†(u) := Pu + QF(u) + H ◦ φ−1 ◦ [
H(I − Q)F

]
(u).

u is a solution of the abstract periodic problem(
φ(u′)

)′ = F(u), u(0) − u(T ) = 0 = u′(0) − u′(T )

if and only if u ∈ C1
# is a fixed point of the operator M# defined on C1

# by

M#(u) = Pu + QF(u) + H ◦ φ−1 ◦ (I − Qφ) ◦ [
H(I − Q)F

]
(u).
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Furthermore, ‖(Mj (u))′‖∞ < a for all u ∈ C1
j and Mj is completely continuous on C1

j

(j = 0,†,#).

3. The case of Dirichlet boundary conditions

A somewhat surprising consequence of the above results is a ‘universal’ solvability result for
the nonlinear Dirichlet problem (7).

Theorem 1. For each continuous F :C1
0 → C taking bounded sets into bounded sets, the abstract

nonlinear Dirichlet problem (7) has at least one solution.

Proof. It suffices to prove that the operator M0 defined in (8) has a fixed point. We use Leray–
Schauder degree [5] and consider the homotopy(

φ(u′)
)′ = λF(u), u(0) = 0 = u(T )

(
λ ∈ [0,1]),

which is equivalent to the family of fixed point problems in C1
0

u = H ◦ φ−1 ◦ (I − Qφ) ◦ [λHF ](u) := M(λ,u)
(
λ ∈ [0,1]). (9)

Notice that

M(0, u) = H ◦ φ−1 ◦ (I − Qφ)(0) = 0 (10)

because of (3) and φ−1(0) = 0. If u is a possible solution of (9), then

‖u′‖∞ = ∥∥φ−1 ◦ (I − Qφ) ◦ [λHF ](u)
∥∥∞ < a,

and, using the boundary condition at 0, we have, for all t ∈ [0, T ],

∣∣u(t)
∣∣ =

∣∣∣∣∣
t∫

0

u′(s) ds

∣∣∣∣∣ < aT,

which implies that ‖u‖ < a(T + 1). Hence, the homotopy invariance of Leray–Schauder degree
[5] and (10) give

dLS
[
I −M(1, ·),Ba(T +1),0

] = dLS
[
I −M(0, ·),Ba(T +1),0

]
= dLS

[
I,Ba(T +1),0

] = 1.

The existence of a fixed point of M(1, ·) = M0 follows from the existence property of Leray–
Schauder degree [5]. �
Remark 3. As φ is not homogeneous, it is not clear how to develop a spectral theory for φ with
its various boundary conditions. But Theorem 1 seems to indicate that, for Dirichlet conditions,
such a spectrum should be empty.
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To each continuous function f : [0, T ] × R
2 → R, we associate its Nemytskii operator

Nf :C1 → C defined by

Nf (u)(t) = f
(
t, u(t), u′(t)

)
.

It is easy to show that Nf is continuous and takes bounded sets into bounded sets. Hence an
immediate consequence of Theorem 1 is the following

Corollary 1. For each continuous f : [0, T ] × R
2 → R, the Dirichlet problem(

φ(u′)
)′ = f (t, u,u′), u(0) = 0 = u(T ) (11)

has at least one solution.

Remark 4. When φ is an increasing diffeomorphism, u′ = φ−1 ◦ φ(u′), each solution is of class
C2 and problem (11) can be written in the classical way

u′′ = [
φ′(u′)

]−1
f (t, u,u′), u(0) = 0 = u(T ). (12)

For example, for φ(s) = s/
√

1 − s2, one gets

u′′ = (
1 − u′2)3/2

f (t, u,u′), u(0) = 0 = u(T ), (13)

which shows that the right-hand member, defined for |u′| � 1, tends to zero when u′ → ±1. So
(13) ‘looks like’ the restriction to |u′| < 1 of a problem of the type

u′′ = g(t, u,u′), u(0) = 0 = u(T )

with g(t, u, v) = 0 for |v| � 1, which sheds some light on the ‘universal’ character of the exis-
tence theorem.

Our approach covers nondifferentiable homeomorphisms like φ defined on ]−1,1[, by

φ(s) =

⎧⎪⎨⎪⎩
s for s ∈ [0, 1

2 [,
ns − ∑n−1

k=1
k

k+1 for s ∈ [n−1
n

, n
n+1 [, n = 2,3, . . . ,

−φ(−s) for s ∈ ]−1,0[.
Even in the differentiable case, the treatment using the fixed point reduction of (11) given here
seems much more transparent than a classical fixed point reduction of problem (12).

4. Periodic or Neumann problems with nonlinearities satisfying a sign condition

The counterexamples

(
φ(u′)

)′ = 1, u′(0) = 0 = u′(T ) or u(0) − u(T ) = 0 = u′(0) − u′(T ),
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which have no solution, show that no result corresponding to Theorem 1 exists for the Neumann
or periodic problems. We show that some rather general sign condition upon f suffices to get
existence.

Consider the periodic boundary value problems(
φ(u′)

)′ = f (t, u,u′), u(0) − u(T ) = 0 = u′(0) − u′(T ). (14)

In order to apply Leray–Schauder degree to the equivalent fixed point operator, we introduce, for
λ ∈ [0,1], the family of abstract periodic boundary value problems(

φ(u′)
)′ = λNf (u) + (1 − λ)QNf (u), u(0) − u(T ) = 0 = u′(0) − u′(T ). (15)

Notice that (15) coincide with (14) for λ = 1. For each λ ∈ [0,1], the nonlinear operator M#
on C1

# associated to (15) by Proposition 2 is the operator M(λ, ·), where M is defined on
[0,1] × C1

# by

M(λ,u) = Pu + QNf (u) + H ◦ φ−1 ◦ (I − Qφ) ◦ [
λH(I − Q)Nf

]
(u). (16)

Using Lemma 1 and Arzelá–Ascoli’s theorem it is not difficult to see that M : [0,1] × C1
# → C1

#
is completely continuous.

The first lemma gives a priori bounds for the possible fixed points.

Lemma 2. Assume that there exist R > 0 and ε ∈ {−1,1} such that

ε

T∫
0

f
(
t, u(t), u′(t)

)
dt > 0 if uL � R, ‖u′‖∞ < a,

ε

T∫
0

f
(
t, u(t), u′(t)

)
dt < 0 if uM � −R, ‖u′‖∞ < a. (17)

If (λ,u) ∈ [0,1] × C1
# is such that u = M(λ,u), then ‖u‖ < R + a(T + 1).

Proof. Let (λ,u) ∈ [0,1] × C1
# be such that u = M(λ,u). Then, taking t = 0 we get

QNf (u) = 0 (18)

and from

u′ = (
M(λ,u)

)′ = φ−1 ◦ (I − Qφ) ◦ [
λH(I − Q)Nf

]
(u),

we obtain

‖u′‖∞ < a. (19)

If uM � −R (respectively uL � R) then, from (19) and (17), it follows that
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ε

T∫
0

f
(
t, u(t), u′(t)

)
dt < 0

(
respectively ε

T∫
0

f
(
t, u(t), u′(t)

)
dt > 0

)
.

Using (18) we deduce that

uM > −R and uL < R. (20)

From

uM � uL +
T∫

0

∣∣u′(t)
∣∣dt

and relations (19) and (20), we obtain

−(R + aT ) < uL � uM < R + aT . (21)

Using (19) and (21) it follows that ‖u‖ < R + a(T + 1). �
The following result shows that a solution exists and Leray–Schauder degree is not zero.

Lemma 3. If f satisfies condition (17) of Lemma 2, then dLS[I − M(1, ·),Bρ,0] = −ε, and
problem (14) has at least one solution.

Proof. Let M be the operator given by (16) and let ρ > R + a(T + 1). Lemma 2 and the
homotopy invariance of the Leray–Schauder degree imply that

dLS
[
I −M(0, ·),Bρ,0

] = dLS
[
I −M(1, ·),Bρ,0

]
. (22)

On the other hand, we have that

dLS
[
I −M(0, ·),Bρ,0

] = dLS
[
I − (P + QNf ),Bρ,0

]
. (23)

But the range of P + QNf is contained in the subspace of constant functions, isomorphic to R,
so, using a reduction property of Leray–Schauder degree [11]

dLS
[
I − (P + QNf ),Bρ,0

] = dB

[
I − (P + QNf )|R, ]−ρ,ρ[,0

]
= dB

[−QNf , ]−ρ,ρ[,0
]

= sign(−QNf (ρ)) − sign(−QNf (−ρ))

2
= −ε,

where dB denotes the Brouwer degree. But, using (17) and the fact that ρ > R, we see that
QNf (±ρ) = 1

T

∫ T

0 f (t,±ρ,0) dt have opposite signs, which implies, using (22) and (23) that
dLS[I −M(1, ·),Bρ,0] = −ε. Then, from the existence property of the Leray–Schauder degree,
there exists u ∈ Bρ such that u = M(1, u), which is a solution for (14). �
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A limiting argument allows to weaken the sign condition, but this generalization can also be
proved directly using another approach, used in Section 5, and based upon the following lemma.
Let us decompose any u ∈ C1

# in the form

u = ū + ũ
(
ū = u(0), ũ(0) = 0

)
,

and let

C̃1
# = {

u ∈ C1
# : u(0) = 0

}
.

Lemma 4. The set S of the solutions (ū, ũ) ∈ R × C̃1
# of problem

(
φ(ũ′)

)′ = f (t, ū + ũ, ũ′) − 1

T

T∫
0

f
(
s, ū + ũ(s), ũ′(s)

)
ds,

u(0) − u(T ) = 0 = u′(0) − u′(T ) (24)

contains a continuum C whose projection on R is R and projection on C̃1
# is contained in the

ball Ba(T +1).

Proof. Using an argument similar to the one introduced in Section 2, it is easy to see that, for
each fixed ū ∈ R, problem (24) is equivalent to the fixed point problem in C̃1

#

ũ = H ◦ φ−1 ◦ (I − Qφ) ◦ [
H(I − Q)Nf (ū + ũ)

] := M̃(ū, ũ).

Again, M̃ is completely continuous on R × C̃1
# , and, for each (ū, ũ) ∈ R × C̃1

# , we have∥∥M̃(ū, ũ)
∥∥ = ∥∥M̃(ū, ũ)

∥∥∞ + ∥∥(
M̃(ū, ũ)

)′∥∥∞ < a(T + 1). (25)

It follows from (25) that, for each ū ∈ R, any possible fixed point ũ of M̃(ū, ·) is such that

‖ũ‖ < a(T + 1). (26)

Furthermore, for each λ ∈ [0,1], each possible fixed point ũ of

M̃(λ,0, ·) := H ◦ φ−1 ◦ (I − Qφ) ◦ [
λH(I − Q)Nf (·)]

satisfies, for the same reasons, inequality (26), which implies that

dLS
[
I − M̃(0, ·),Ba(T +1),0

]
= dLS

[
I − M̃(1,0, ·),Ba(T +1),0

]
= dLS

[
I − M̃(0,0, ·),Ba(T +1),0

] = dLS
[
I,Ba(T +1),0

] = 1. (27)

Conditions (26), (27) and Theorem 1.2 in [10] or Lemma 2.3 in [15] then imply the existence
of C. �
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Theorem 2. Assume that there exist R > 0 and ε ∈ {−1,1} such that

ε

T∫
0

f
(
t, u(t), u′(t)

)
dt � 0 if uL � R, ‖u′‖∞ < a,

ε

T∫
0

f
(
t, u(t), u′(t)

)
dt � 0 if uM � −R, ‖u′‖∞ < a. (28)

Then (14) has at least one solution.

Proof. Consider the continuum C given by Lemma 4. If (R + aT , ũ) ∈ C, then, for each
t ∈ [0, T ],

R + aT + ũ(t) > R

and hence, using (28)

ε

T∫
0

f
(
t,R + aT + ũ(t), ũ′(t)

)
dt � 0.

Similarly, if (−R − aT , ũ) ∈ C, then

ε

T∫
0

f
(
t,−R − aT + ũ(t), ũ′(t)

)
dt � 0.

The existence of (ū, ũ) ∈ C such that

ε

T∫
0

f
(
t, ū + ũ(t), ũ′(t)

)
dt = 0,

and hence such that u = ū + ũ is a solution of (14) follows from the intermediate value theorem
for a continuous function on a connected set. �
Corollary 2. Let h : [0, T ] × R

2 → R and g : [0, T ] × R → R be continuous, with h is bounded
on [0, T ] × R × ]−a, a[ and g satisfies condition

lim
u→−∞g(t, u) = +∞, lim

u→+∞g(t, u) = −∞(
respectively lim

u→−∞g(t, u) = −∞, lim
u→+∞g(t, u) = +∞

)
uniformly in t ∈ [0, T ]. Then the problem
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(
φ(u′)

)′ + g(t, u) = h(t, u,u′), u(0) − u(T ) = 0 = u′(0) − u′(T )

has at least one solution.

Corollary 3. Let the continuous function h : [0, T ] × R
2 → R be bounded on [0, T ] × R ×

]−a, a[. Then, for each μ �= 0, the problem(
φ(u′)

)′ + μu = h(t, u,u′), u(0) − u(T ) = 0 = u′(0) − u′(T )

has at least one solution, with associated Leray–Schauder degree equal to sign μ.

Example 1. If e ∈ C, c ∈ R \ 0, d ∈ R, q � 0 and p > 1, the problem(
u′

√
1 − u′2

)′
+ d|u′|q + c|u|p−1u = e(t),

u(0) − u(T ) = 0 = u′(0) − u′(T ),

has at least one solution.

Another easy consequence is a Landesman–Lazer type existence condition.

Corollary 4. Let g : R → R be continuous. Then problem(
φ(u′)

)′ + g(u) = e(t), u(0) − u(T ) = 0 = u′(0) − u′(T )

has at least one solution for each e ∈ C such that

lim sup
u→−∞

g(u) <
1

T

T∫
0

e(s) ds < lim inf
u→+∞g(u)

or

lim sup
u→+∞

g(u) <
1

T

T∫
0

e(s) ds < lim inf
u→−∞g(u).

Remark 5. Using the family of equations(
φ(u′)

)′ = λNf (u) + (1 − λ)QNf (u), u′(0) = 0 = u′(T )

which gives the completely continuous homotopy M : [0,1] × C1
† → C1

† defined by

M(λ,u) = Pu + QNf (u) + H ◦ φ−1 ◦ [
λH(I − Q)Nf

]
(u),

and similar a priori estimates as in the periodic case, it is not difficult to see that the above
theorems hold also for Neumann boundary conditions.
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Remark 6. Any possible reasonable concept of spectrum for φ with Neumann or periodic bound-
ary conditions should reduce to {0}.

5. Upper and lower solutions

In this section, we extend the method of upper and lower solutions (see e.g. [4]) to the periodic
boundary value problem(

φ(u′)
)′ = f (t, u,u′), u(0) − u(T ) = 0 = u′(0) − u′(T ). (29)

Definition 1. A lower solution α (respectively upper solution β) of (29) is a function α ∈ C1 such
that ‖α′‖∞ < a, φ(α′) ∈ C1, α(0) = α(T ), α′(0) � α′(T ) (respectively β ∈ C1, ‖β ′‖∞ < a,
φ(β ′) ∈ C1, β(0) = β(T ), β ′(0) � β ′(T )) and(

φ
(
α′(t)

))′ � f
(
t, α(t), α′(t)

) (
respectively

(
φ
(
β ′(t)

))′ � f
(
t, β(t), β ′(t)

))
(30)

for all t ∈ [0, T ]. Such a lower or upper solution is called strict if the inequality (30) is strict for
all t ∈ [0, T ].

Theorem 3. If (29) has a lower solution α and an upper solution β such that α(t) � β(t)

for all t ∈ [0, T ], then problem (29) has a solution u such that α(t) � u(t) � β(t) for all t ∈
[0, T ]. Moreover, if α and β are strict, then α(t) < u(t) < β(t) for all t ∈ [0, T ], and dLS[I −
M#,Ωα,β,0] = −1, where

Ωα,β = {
u ∈ C1

# : α(t) < u(t) < β(t) for all t ∈ [0, T ], ‖u′‖ < a
}
,

and M# is the fixed point operator associated to (29).

Proof. Let γ : [0, T ] × R → R be the continuous function defined by

γ (t, u) =
{

β(t) if u > β(t),

u if α(t) � u � β(t),

α(t) if u < α(t),

and define F : [0, T ] × R
2 → R by F(t, u, v) = f (t, γ (t, u), v). We consider the modified prob-

lem (
φ(u′)

)′ = F(t, u,u′) + u − γ (t, u), u(0) − u(T ) = 0 = u′(0) − u′(T ) (31)

and first show that if u is a solution of (31) then α(t) � u(t) � β(t) for all t ∈ [0, T ], so that u is
a solution of (29). Suppose by contradiction that there is some t0 ∈ [0, T ] such that [α − u]M =
α(t0) − u(t0) > 0. If t0 ∈ ]0, T [ then α′(t0) = u′(t0) and there are sequences (tk) in [t0 − ε, t0[
and (t ′k) in ]t0, t0 + ε] converging to t0 such that α′(tk)−u′(tk) � 0 and α′(t ′k)−u′(t ′k) � 0. As φ

is an increasing homeomorphism, this implies (φ(α′(t0)))′ � (φ(u′(t0)))′. Hence, because α is a
lower solution of (29) we obtain
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(
φ
(
α′(t0)

))′ �
(
φ
(
u′(t0)

))′ = f
(
t0, α(t0), α

′(t0)
) + u(t0) − α(t0)

< f
(
t0, α(t0), α

′(t0)
)
�

(
φ
(
α′(t0)

))′
,

a contradiction. If [α − u]M = α(0) − u(0) = α(T ) − u(T ), then α′(0) − u′(0) � 0,
α′(T )−u′(T ) � 0. Using that α′(0) � α′(T ), we deduce that α′(0)−u′(0) = 0 = α′(T )−u′(T ).
This implies that φ(α′(0)) = φ(u′(0)). On the other hand, [α − u]M = α(0) − u(0) implies, rea-
soning in a similar way as for t0 ∈ ]0, T [, that(

φ
(
α′(0)

))′ �
(
φ
(
u′(0)

))′
.

Using the inequality above and α′(0) = u′(0), we can proceed as in the case t0 ∈ ]0, T [ to obtain
again a contradiction. In consequence we have that α(t) � u(t) for all t ∈ [0, T ]. Analogously,
using the fact that β is an upper solution of (29), we can show that u(t) � β(t) for all t ∈ [0, T ].
We remark that if α,β are strict, then α(t) < u(t) < β(t) for all t ∈ [0, T ].

We now apply Corollary 3 to the modified problem (31) to obtain the existence of a solution,
and the relation

dLS[I − M̃,Bρ,0] = −1 (32)

for the equivalent fixed point operator M̃ and all sufficiently large ρ > 0.
Moreover, if α and β are strict, then α(t) < u(t) < β(t) for all t ∈ [0, T ]. If ρ is large enough,

then, using (32) and the additivity–excision property of the Leray–Schauder degree [5], we have

dLS[I − M̃,Ωα,β,0] = dLS[I − M̃,Bρ,0] = −1.

On the other hand, as the completely continuous operator M# associated to (29) is equal to M̃ on
Ωα,β , we deduce that dLS[I − M#,Ωα,β,0] = −1. �
Remark 7. In contrast to the classical p-Laplacian case, no Nagumo type condition is required
upon f in Theorem 3.

Remark 8. A careful analysis of the above proof implies that Theorem 3 holds also if f : [0, T ]×
]0,+∞[ × R → R is continuous.

We now show, using an argument of Amann, Ambrosetti and Mancini [1], that the existence
conclusion in Theorem 3 also holds when the lower and upper solutions are not ordered. See [16]
for the case where φ : R → R.

Theorem 4. If (29) has a lower solution α and an upper solution β , then problem (29) has at
least one solution.

Proof. Let C be given by Lemma 4. If there is some (ū, ũ) ∈ C such that

T∫
f

(
t, ū + ũ(t), ũ′(t)

)
dt = 0,
0
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then ū + ũ solves (29). If

T∫
0

f
(
t, ū + ũ(t), ũ′(t)

)
dt > 0

for all (ū, ũ) ∈ C, then, using (24), ū + ũ is an upper solution for (29) for each (ū, ũ) ∈ C. Then,
for (αM + aT , ũ) ∈ C, αM + aT + ũ(t) � α(t) for all t ∈ [0, T ] is an upper solution and the
existence of a solution to (29) follows from Theorem 3. Similarly, if

T∫
0

f
(
t, ū + ũ(t), ũ′(t)

)
dt < 0

for all (ū, ũ) ∈ C, then (βL − aT , ũ) ∈ C gives the lower solution βL − aT + ũ(t) � β(t) for all
t ∈ [0, T ] and the existence of a solution. �

The choice of constant lower and upper solutions in Theorems 3 and 4 leads to the following
simple existence condition.

Corollary 5. Problem (29) has at least one solution if there exist constants a and b such that

f (t, a,0) · f (t, b,0) � 0

for all t ∈ [0, T ].

Remark 9. All the results of this section hold for Neumann boundary conditions.

6. An Ambrosetti–Prodi type result

In this section, we consider periodic problems of the type(
φ(u′)

)′ + f (t, u,u′) = s, u(0) − u(T ) = 0 = u′(0) − u′(T ) (33)

when s ∈ R and f satisfies the coercivity condition

(Hf ) f (t, u, v) → +∞ if |u| → ∞ uniformly in [0, T ] × ]−a, a[. (34)

We are interested in studying the existence and multiplicity of the solutions of (33) in terms of
the value of the parameter s (Ambrosetti–Prodi problem).

We first obtain an a priori bound for the set of possible solutions.

Lemma 5. For each b ∈ R, there exists ρ = ρ(b) > 0 such that any possible solution u of (33)
with s � b belongs to the open ball Bρ .
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Proof. Let s � b and u be a solution of (33). This implies that u satisfies

‖u′‖∞ < a (35)

and

QNf (u) = s. (36)

Using (34) we can find R > 0 such that

f (t, u, v) > b if |u| � R, (t, v) ∈ [0, T ] × ]−a, a[. (37)

If uL � R, then using (35) and (37), we deduce that QNf (u) > b, which, together with (36),
gives s > b, a contradiction. So we have uL < R. Analogously we can show that uM > −R.
Then using the inequality

uM � uL +
T∫

0

∣∣u′(τ )
∣∣dτ,

we obtain ‖u‖∞ < R + T a. We can take any ρ � R + (T + 1)a. �
Theorem 5. If f satisfies condition (34), there exists s1 ∈ R such that problem (33) has zero, at
least one or at least two solutions according to s < s1, s = s1 or s > s1.

Proof. Let Sj = {s ∈ R: (29) has at least j solutions} (j � 1).
(a) S1 �= ∅.
Take s∗ > maxt∈[0,T ] f (t,0,0) and use (34) to find R∗− < 0 such that

min
t∈[0,T ]f

(
t,R∗−,0

)
> s∗.

Then α ≡ R∗− < 0 is a strict lower solution and β ≡ 0 is a strict upper solution for (33) with
s = s∗. Hence, using Theorem 3, s∗ ∈ S1.

(b) If s̃ ∈ S1 and s > s̃ then s ∈ S1.
Let ũ be a solution of (33) with s = s̃, and let s > s̃. Then ũ is a strict upper solution for

(33). Take now R− < ũL such that mint∈[0,T ] f (t,R−,0) > s: α ≡ R− is a strict lower solution
for (33). From Theorem 3, s ∈ S1.

(c) s1 = infS1 is finite and S1 ⊃ ]s1,∞[.
Let s ∈ R and suppose that (33) has a solution u. Then (35) and (36) hold, implying that s � c,

with c = inf[0,T ]×R×]−a,a[ f . To obtain the second part of claim (c), we apply (b).
(d) S2 ⊃ ]s1,∞[.
Let s3 < s1 < s2. For each s ∈ R, let M(s, ·) be the fixed point operator in C1

# associated to
problem (33). Using Lemma 5 we find ρ such that each possible zero of I − M(s, ·) with s ∈
[s3, s2] is such that u ∈ Bρ . Consequently, the Leray–Schauder degree dLS[I − M(s, ·),Bρ,0]
is well defined and does not depend upon s ∈ [s3, s2]. However, using (c), we see that
u − M(s3, u) �= 0 for all u ∈ C1

# . This implies that dLS[I − M(s3, ·),Bρ,0] = 0, so that
dLS[I − M(s2, ·),Bρ,0] = 0 and, by excision property of Leray–Schauder degree [5], dLS[I −
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M(s2, ·),Bρ′ ,0] = 0 if ρ′ > ρ. Let s ∈ ]s1, s2[ and û be a solution of (33) (using (c)). Then û is a
strict upper solution of (33) with s = s2. Let R < ûL be such that mint∈[0,T ] f (t,R,0) > s2. Then
R is a strict lower solution of (33) with s = s2. Consequently, using Theorem 3, problem (33)
with s = s2 has a solution in ΩR,û and dLS[I − M(s2, ·),ΩR,û,0] = −1. Taking ρ′ sufficiently
large, we deduce from the additivity property of Leray–Schauder degree [5] that

dLS
[
I −M(s2, ·),Bρ′ \ ΩR,û,0

] = dLS
[
I −M(s2, ·),Bρ′ ,0

]
−dLS

[
I −M(s2, ·),ΩR,û,0

] = −dLS
[
I −M(s2, ·),ΩR,û,0

] = 1,

and (33) with s = s2 has a second solution in Bρ′ \ ΩR,û.
(e) s1 ∈ S1.
Let (τk) be a sequence in ]s1,+∞[ converging to s1, and let uk be a solution of (33) with

s = τk given by (c). Using Proposition 2 we deduce that

uk = M(τk, uk). (38)

From Lemma 5, there exists ρ > 0 such that ‖uk‖ < ρ for all k � 1. The complete continuity of
M implies that, up to a subsequence, the right-hand member of (38) converges in C1

# , and hence
(uk) converges to some u ∈ C1

# such that u = M(s1, u), i.e. to a solution of (33) with s = s1. �
A similar proof provides the following dual Ambrosetti–Prodi condition.

Theorem 6. If f satisfies the anticoercivity condition

f (t, u, v) → −∞ if |u| → ∞ uniformly in [0, T ] × ]−a, a[, (39)

there exists s1 ∈ R such that problem (33) has zero, at least one or at least two solutions accord-
ing to s > s1, s = s1 or s < s1.

Corollary 6. Let h : [0, T ] × R
2 → R and g : [0, T ] × R → R be continuous, such that h is

bounded on [0, T ] × R × ]−a, a[ and g satisfies the condition

g(t, u) → +∞ (respectively −∞) if |u| → ∞ uniformly in t ∈ [0, T ].
Then, there exists s1 ∈ R such that the problem(

φ(u′)
)′ + g(t, u) = s + h(t, u,u′), u(0) − u(T ) = 0 = u′(0) − u′(T )

has no solution if s < s1 (respectively s > s1), at least one solution if s = s1 and at least two
solutions if s > s1 (respectively s < s1).

Example 2. For each e ∈ C, p > 0, q � 0, d ∈ R and c > 0 (respectively c < 0), there exists
s1 ∈ R such that the problem(

u′
√

1 − u′2

)′
+ d|u′|q + c|u|p = s + e(t),

u(0) − u(T ) = 0 = u′(0) − u′(T )
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has no solution if s < s1 (respectively s > s1), at least one solution if s = s1 and at least two
solutions if s > s1 (respectively s < s1).

Remark 10. It is not difficult to show that the results proved in this section hold also for Neumann
boundary condition, but, from Theorem 1, it is clear that Ambrosetti–Prodi type results do not
hold for Dirichlet boundary conditions.

7. Singular nonlinearities

In this section we prove the existence of positive solutions for the following periodic problems
with singular attractive restoring force(

φ(u′)
)′ + g(u) = e(t), u(0) − u(T ) = 0 = u′(0) − u′(T ) (40)

or with singular repulsive restoring force(
φ(u′)

)′ − g(u) = e(t), u(0) − u(T ) = 0 = u′(0) − u′(T ) (41)

where e ∈ C and g : ]0,+∞[ → ]0,+∞[ is continuous and such that

g(u) → +∞ as u → 0+, (42)

g(u) → 0 as u → +∞. (43)

Theorem 7. Suppose that g satisfies conditions (42) and (43). Then (40) has at least one solution
if and only if Qe > 0.

Proof. If u is a solution of (40), then Qe = QNg(u) > 0 because g is positive. Conversely,
suppose that Qe > 0. Using (42), there exists ε > 0 such that g(ε) > e(t) for all t ∈ [0, T ].
Hence, α ≡ ε is a strict lower solution for (40). On the other hand, using Proposition 1, there
exists w ∈ C1

# such that (φ(w′))′ = e(t) − Qe. Using (43), there exists some δ > 0 such that
β(t) = δ + w(t) > α(t) and g(β(t)) < Qe for all t ∈ [0, T ]. Then, β is a strict upper solution
for (40) and Theorem 3 and Remark 8 with f = −g + e imply the result. �
Example 3. If μ > 0 and e ∈ C, the problem(

u′
√

1 − u′2

)′
+ 1

uμ
= e(t), u(0) − u(T ) = 0 = u′(0) − u′(T )

has at least one solution if and only if Qe > 0.

To solve (41) we need the following supplementary condition

1∫
0

g(u)du = +∞. (44)
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Lemma 6. Suppose that g satisfies conditions (42)–(44). There exists ε > 0 such that if λ ∈ [0,1]
and u is any positive solution of(

φ(u′)
)′ = (1 − λ)

[
QNg(u) + Qe

] + λg(u) + λe(t),

u(0) − u(T ) = 0 = u′(0) − u′(T ), (45)

then u(t) > ε for all t ∈ [0, T ].

Proof. Let λ ∈ [0,1] and u be a possible positive solution of (45). Then

QNg(u) + Qe = 0 (46)

and hence, if λ ∈ ]0,1], (45) is equivalent to(
φ(u′)

)′ = λg(u) + λe(t), u(0) − u(T ) = 0 = u′(0) − u′(T ). (47)

Using the positivity of g, we deduce that∣∣g(u) + e(t)
∣∣ � g(u) + ∣∣e(t)∣∣ = g(u) + e(t) + 2e−(t) (48)

for all (t, u) ∈ [0, T ] × R. From (47), (46) and (48) it follows that∥∥(
φ(u′)

)′∥∥
1 = λ

∥∥Ng(u) + e
∥∥

1 � 2λ‖e−‖1. (49)

Because u ∈ C1 is such that u(0) = u(T ), there exists η ∈ [0, T ] such that u′(η) = 0, which
implies φ(u′(η)) = 0 and

φ
(
u′(t)

) =
t∫

η

(
φ
(
u′(s)

))′
ds

(
t ∈ [0, T ]).

Using the equality above and (49) we have that∣∣φ(
u′(t)

)∣∣ � 2λ‖e−‖1
(
t ∈ [0, T ]). (50)

Using (42), there exists ξ > 0 such that

g(u) > −Qe for all 0 < u � ξ, (51)

and therefore, by (51) and (46), there exists t1 ∈ [0, T ] such that u(t1) > ξ . Now, let

x(t) = φ
(
u′(t)

)
(52)

which implies

u′(t) = φ−1(x(t)
)

(53)
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for all t ∈ [0, T ]. Introducing (52) in (47) we obtain

x′(t) − λg
(
u(t)

) = λe(t) (54)

for all t ∈ [0, T ]. Multiplying (53) by x′(t) and (54) by u′(t) and subtracting we get

x′(t)φ−1(x(t)
) − λg

(
u(t)

)
u′(t) = λe(t)u′(t),

i.e.

( x(t)∫
0

φ−1(s) ds

)′
− λg

(
u(t)

)
u′(t) = λe(t)u′(t)

for all t ∈ [0, T ]. This implies that

x(t)∫
0

φ−1(s) ds −
x(t1)∫
0

φ−1(s) ds − λ

u(t)∫
u(t1)

g(s) ds = λ

t∫
t1

e(s)u′(s) ds

for all t ∈ [0, T ]. Using the fact that
∫ v

0 φ−1(s) ds � 0 for all v ∈ R, we deduce that

λ

u(t1)∫
u(t)

g(s) ds �
x(t1)∫
0

φ−1(s) ds + λ

t∫
t1

e(s)u′(s) ds (55)

for all t ∈ [0, T ]. Using (50), (52) and (55), we obtain

u(t1)∫
u(t)

g(s) ds � 1

λ

( 2λ‖e−‖1∫
0

φ−1(s) ds +
−2λ‖e−‖1∫

0

φ−1(s) ds

)
+ a‖e‖1

� max
[−2‖e−‖1,2‖e−‖1]

2
∣∣φ−1

∣∣‖e−‖1 + a‖e‖1 := c (56)

for all t ∈ [0, T ]. Using (44) we can find 0 < ε < ξ such that

ξ∫
ε

g(t) dt > c. (57)

Since u(t1) > ξ and g is positive, from (56) and (57) one gets u(t) > ε for all t ∈ [0, T ]. Now,
for λ = 0, the solutions of (45) are the constant functions u solutions of

g(u) + Qe = 0

and they satisfy u > ξ > ε. �
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Theorem 8. Suppose that e ∈ C and g satisfies conditions (42)–(44). Then (41) has at least one
positive solution if and only if Qe < 0.

Proof. If u is a solution, then Qe = −QNg(u) < 0. For sufficiency, we use the homotopy (45)
and the corresponding homotopy for the associated family of fixed point operators M(λ, ·) de-
fined in (16) with f = g + e. Let λ ∈ [0,1] and u be a possible positive solution of (45). We
already know from Lemma 6 that u(t) > ε for some ε > 0 and all t ∈ [0, T ]. From assump-
tion (43) follows easily the existence of R > 0 such that g(u) < −Qe if u � R. Hence, because
of (46), there exists t2 ∈ [0, T ] such that u(t2) < R, which implies u(t) < R + aT (t ∈ [0, T ]).
Hence, all the possible positive solutions of problem (45) are contained in the open bounded set

Ω := {
u ∈ C1

# : ε < u(t) < R + aT (0 � t � T ), ‖u′‖∞ < a
}
.

From the homotopy invariance of Leray–Schauder degree, we obtain

dLS
[
I −M(1, ·),Ω,0

] = dLS
[
I −M(0, ·),Ω,0

]
= dB [g + Qh,Ω ∩ R,0] = dB

[
g + Qh, ]ε,R[,0

] = −1,

so that M(1, ·) has a fixed point. �
Example 4. If μ � 1 and e ∈ C, problem(

u′
√

1 − u′2

)′
− 1

uμ
= e(t), u(0) − u(T ) = 0 = u′(0) − u′(T )

has at least one positive solution if and only if Qe < 0.
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