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Abstract. Using Leray-Schauder degree theory we obtain various exis-
tence results for nonlinear boundary-value problems

(φ(u′))′ = f(t, u, u′), l(u, u′) = 0

where l(u, u′) = 0 denotes the periodic, Neumann or Dirichlet boundary
conditions on [0, T ], φ : R → (−a, a) is a homeomorphism, φ(0) = 0.

1. Introduction

The aim of this article is to obtain existence results for nonlinear boundary
value problems of the form

(φ(u′))′ = f(t, u, u′), l(u, u′) = 0,

where l(u, u′) = 0 denotes the periodic, Neumann or Dirichlet boundary
conditions on [0, T ], φ : R → (−a, a) is a homeomorphism such that φ(0) = 0.
Such homeomorphisms φ are in particular motivated by the one-dimensional
version of mean curvature problems or of capillary surfaces, for which φ(v) =

v√
1+v2

.

Several papers have been recently devoted to the Dirichlet problem for
prescribed mean curvature problems

∇ ·
( ∇u

1 + |∇u|2
)

+ f(x, u) = 0 in Ω, u = 0 on ∂Ω,

and to the corresponding one-dimensional version, with special attention on
positive solutions (see e.g. [7, 18, 16, 4, 17, 3, 10, 1, 8]).

We show in Section 3 that the Dirichlet problem

(φ(u′))′ = f(t), u(0) = 0 = u(T )
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is solvable if and only if there exists τ ∈ [0, T ] such that

‖Fτ‖∞ < a and
∫ T

0
φ−1(Fτ (s)) ds = 0, (1.1)

where

Fτ (t) :=
∫ t

τ
f(s) ds.

This implies in particular that the simple problem( u′
√

1 + u′2

)′
= α, u(0) = 0 = u(T )

is solvable if and only if

|α| <
2
T

.

This contrasts with situations where φ : R → R is a homeomorphism, like
the p-Laplacian case (p > 1)(

|u′|p−2u′)′ = α, u(0) = 0 = u(T ),

and the linear case p = 2

u′′ = α, u(0) = 0 = u(T ),

which are solvable for any α ∈ R.
For the more general problem

(φ(u′))′ = f(t, u, u′), u(0) = 0 = u(T ),

with f : [0, T ] × R
2 → R continuous and such that

|f(t, u, v)| ≤ c for all (t, u, v) ∈ [0, T ] × R
2, (1.2)

we obtain in Section 7 the sufficient condition

c <
a

2T
for solvability.

Mean curvature-like equations with Neumann or periodic boundary con-
ditions seem to have been much less studied. For the Neumann problem

(φ(u′))′ = f(t, u, u′), u′(0) = 0 = u′(T ), (1.3)

with f : [0, T ]×R
2 → R continuous verifying (1.2), it is proved in [2] that a

solution exists when

c <

√
3a

T
(1.4)
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and f satisfies a suitable sign condition. We show in Section 5 that (1.4)
can be improved into

c <
2a

T
, (1.5)

and we use a weaker sign condition, which may be seen as a nonlinear variant
of the first necessary condition∫ T

0
f(s) ds = 0 (1.6)

for the solvability of the simpler problem

(φ(u′))′ = f(t), u′(0) = 0 = u′(T ).

It is shown in Section 3 that a second necessary condition for the solvability
of this problem is

‖F0‖∞ < a. (1.7)

Inequalities (1.2) and (1.5) may be seen as extensions of (1.7) to the more
general problem (1.3).

The periodic problem

(φ(u′))′ = f(t), u(0) − u(T ) = 0 = u′(0) − u′(T ),

which combines the technical difficulties of the Dirichlet and of the Neumann
cases, is shown in Section 3 to be solvable if and only if (1.6) holds and if
there exists τ ∈ [0, T ] such that (1.1) is satisfied. Consequently, existence
conditions for the more general situation

(φ(u′))′ = f(t, u, u′), u(0) − u(T ) = 0 = u′(0) − u′(T ), (1.8)

with f : [0, T ] × R
2 → R continuous and verifying (1.2) should require both

a sign condition on f and a restriction on c. We prove in Section 6 that one
can take

c <
a

T

for the growth restriction.
The proofs in [2] and in Sections 6 and 7 consist in a reduction of the

boundary-value problem to a fixed-point problem in a suitable function
space, to which Leray-Schauder degree is applied using some homotopy.
With respect to the case where φ : R → R is a homeomorphism, which
was treated in this way in [12, 13], new difficulties occur when the range of
φ is not R, from the fact that the function φ−1, occurring in the fixed-point
operator, is no longer defined everywhere. When f verifies the boundedness
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conditions (1.2) and (1.4), it has been shown in [2] for the Neumann problem
that the associated fixed-point operator remains defined everywhere. This is
extended in Section 6, under the more general bound (1.5) and a more gen-
eral sign condition, and to the case of periodic boundary conditions, which
presents similarities with the Neumann problem, but is associated to a more
complicated fixed-point operator.

But the principal aim of this paper is to study the more difficult case
where the nonlinearity f is only bounded from below or from above, both
for periodic and Neumann boundary conditions. The one-sided bound on
f , even if suitably restricted in terms of a and T, does not insure that
the associated fixed-point operator is defined everywhere. In this situation,
the homotopy used in [2], inspired by the basic continuation theorem of
coincidence degree theory [15] and by Theorem 3.1 in [12], only makes sense
when considered on a well chosen open set depending upon the homotopy
parameter. Hence, we need to rely upon the following extended homotopy
invariance property of the Leray-Schauder degree, that we recall for the
convenience of the reader (see [14] for references).

Proposition 1. Let X be a real Banach space, V ⊂ [0, 1] × X be an open,
bounded set and M be a completely continuous operator on V such that
x 	= M(λ, x) for each (λ, x) ∈ ∂V. Then the Leray-Schauder degree

dLS [I −M(λ, ·), Vλ, 0]

is well defined and independent of λ in [0, 1], where Vλ is the open, bounded
(possibly empty) set defined by Vλ = {x ∈ X : (λ, x) ∈ V }.

With this tool and the extension of a priori estimates inspired by a tech-
nique introduced by Ward [19] for semilinear periodic problems, and adapted
to our quasi-linear situation, we are able to prove existence theorems for non-
linearities which are bounded below or above by a constant depending upon
a and T, and which satisfy the sign condition mentioned above (see Theorems
1 and 2 in Sections 4 and 5 for periodic and Neumann boundary conditions
respectively). Several concrete examples are given. The technique for get-
ting a priori estimates does not work for the case of Dirichlet conditions, and
the corresponding solvability problem when the nonlinearity is only bounded
from above or from below remains open.

Because a number of technicalities and preliminary results reach their
maximal difficulty in the case of perturbations bounded only from below or
from above and periodic boundary conditions, we treat this situation first in
Section 4. When considering similar perturbations with Neumann boundary
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conditions in Section 5, and the case of bounded perturbations in Sections 6
and 7, we can then avoid repeating the proofs of some lemmas, as they are
similar, but simpler, to the corresponding ones proved in Section 4.

2. Notation and preliminaries

We first introduce some notation. We denote the usual norms in L1(0, T )
and L∞(0, T ) respectively by ‖·‖1 and ‖·‖∞. Let C denote the Banach space
of continuous functions on [0, T ] endowed with the norm ‖·‖∞, C1 denote the
Banach space of continuously differentiable functions on [0, T ] equipped with
the norm ‖u‖ = ‖u‖∞+‖u′‖∞, C1

0 denotes the closed subspace of C1 defined
by C1

0 = {u ∈ C1 : u(0) = 0 = u(T )}, C1
# denotes the closed subspace of

C1 defined by C1
# = {u ∈ C1 : u′(0) = 0 = u′(T )}, C1

per denotes the closed
subspace of C1 defined by C1

per = {u ∈ C1 : u(0) = u(T ), u′(0) = u′(T )}. We
denote by P, Q the projectors

P, Q : C → C, Pu(t) = u(0), Qu(t) =
1
T

∫ T

0
u(s) ds,

and we define H : C → C1 by

Hu(t) =
∫ t

0
u(s) ds.

If u ∈ C, we write

u+ = max{u, 0}, u− = max{−u, 0}, uL = min
[0,T ]

u, uM = max
[0,T ]

u.

We need the following elementary lemmas. The first one is an inequality
for functions in L∞(0, T ) which is used in Section 5 and improves Lemma
1 of [2] (when the uniform norm is used on both sides of the inequality), in
replacing T/

√
3 by T/2 in the right-hand side of the inequality. An example

shows that this new constant is best possible.

Lemma 1. If w ∈ L∞(0, T ), then

‖H(I − Q)w‖∞ ≤ T

2
‖w‖∞. (2.1)

Proof. If w ∈ L∞(0, T ), we have, for t ∈ [0, T ],

H(I − Q)w(t) =
∫ t

0
w(s) ds − t

T

∫ T

0
w(s) ds (2.2)

=
(
1 − t

T

) ∫ t

0
w(s) ds − t

T

∫ T

t
w(s) ds =

∫ T

0
G(t, s)w(s) ds,
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where

G(t, s) =
{

1 − t
T if 0 ≤ s ≤ t

− t
T if t < s ≤ T.

(2.3)

Hence, for each t ∈ [0, T ], one has

|H(I − Q)w(t)| ≤
∫ T

0
|G(t, s)||w(s)| ds

≤ ‖w‖∞
∫ T

0
|G(t, s)| ds = 2t

(
1 − t

T

)
‖w‖∞ ≤ T

2
‖w‖∞. �

Remark 1. Inequality (2.1) is sharp as shown by the function w ∈ L∞(0, T )
defined by

w(t) =
{

1 if 0 ≤ t ≤ T
2

−1 if T
2 < t ≤ T,

(2.4)

which is such that Qw = 0, ‖w‖∞ = 1, and∫ t

0
w(s) ds =

{
t if 0 ≤ t ≤ T

2
T − t if T

2 ≤ t ≤ T.

Consequently,

‖Hw‖∞ =
T

2
=

T

2
‖w‖∞.

It is sharp also in the space C, as shown by the continuous functions wε

(0 < ε < T
2 ) defined by

wε(t) =

⎧⎨
⎩

1 if 0 ≤ t ≤ T
2 − ε

1
ε

(
T
2 − t

)
if T

2 − ε < t < T
2 + ε

−1 if T
2 + ε < t ≤ T,

(2.5)

which are such that Qwε = 0, ‖wε‖∞ = 1,

∫ t

0
wε(s) ds =

⎧⎨
⎩

t if 0 ≤ t ≤ T
2 − ε

T−ε
2 − 1

2ε

(
T
2 − t

)2 if T
2 − ε < t < T

2 + ε
T − t if T

2 ≤ t ≤ T,

and hence,

‖Hwε‖∞ =
T

2
− ε

2
=

(T − ε

2

)
‖wε‖∞.

The second lemma, used in Sections 3 and 4, gives an inequality similar
to (2.1), except that the norm ‖ · ‖∞ is replaced by the norm ‖ · ‖1 in the
right-hand member. Again, the constant is best possible.
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Lemma 2. If w ∈ L1(0, T ), then

‖H(I − Q)w‖∞ ≤ ‖w‖1. (2.6)

Proof. We use again formula (2.2) with G defined in (2.3). Then, for each
t ∈ [0, T ], we have

|H(I − Q)w(t)| =
∣∣∣(1 − t

T

) ∫ t

0
w(s) ds − t

T

∫ T

t
w(s) ds

∣∣∣
≤

(
1 − t

T

) ∫ t

0
|w(s)| ds +

t

T

∫ T

t
|w(s)| ds ≤ ‖w‖1. �

The third lemma is an adaptation of a result of [12] to the case of a
homeomorphism which is not defined everywhere.

Lemma 3. Let B = {h ∈ C : ‖h‖∞ < a
2}. For each h ∈ B, there exists a

unique α ∈ R such that
∫ T

0
φ−1(h(t) − α) dt = 0.

Moreover, if ‖h‖∞ ≤ ε, then α ∈ [−ε, ε]. The function Qφ : B → R defined
by Qφ(h) := α is continuous.

Proof. Let h ∈ B. We first prove uniqueness. Let αi ∈ R be such that
h(t)−αi ∈ (−a, a) for all t ∈ [0, T ] and

∫ T
0 φ−1(h(t)−αi) dt = 0 (i = 1, 2). It

follows that there exists t0 ∈ [0, T ] such that φ−1(h(t0)− α1) = φ−1(h(t0)−
α2), and using the injectivity of φ−1 we deduce that α1 = α2. For existence,
let 0 < ε < a

2 be such that ‖h‖∞ ≤ ε. It is clear that the function

γ : [−ε, ε] → R, s 
→
∫ T

0
φ−1(h(t) − s) dt

is well defined and continuous. On the other hand, because φ−1 is strictly
monotone and φ−1(0) = 0, we see that γ(−ε)γ(ε) ≤ 0, and the existence
of α ∈ [−ε, ε] such that γ(α) = 0 follows. Finally, we show that Qφ is
continuous on B. Let (hn)n ⊂ B such that hn → h0 in C and h0 ∈ B.
Without loss of generality, we may assume that there is 0 < ε < a

2 such
that (‖hn‖∞)n ⊂ [−ε, ε], and, passing if necessary to a subsequence, we
may assume that Qφ(hn) → α0 ∈ [−ε, ε]. Using the dominated convergence
theorem we deduce that

∫ T
0 φ−1(h0(t) − α0) dt = 0, so we have that α0 =

Qφ(h0). Hence, the function Qφ is continuous. �
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Remark 2. The above result shows that the function Qφ verifies the identity

Q ◦ φ−1 ◦ (I − Qφ) ◦ h = 0 for all h ∈ C with ‖h‖∞ <
a

2
. (2.7)

Finally, to each continuous function f : [0, T ] × R
2 → R, we associate its

Nemytskii operator Nf : C1 → C defined by

Nf (u)(t) = f(t, u(t), u′(t)).

All the above defined operators P, Q, H, Nf are continuous.

Remark 3. All the results below remain true if the continuity of f is re-
placed by Carathéodory conditions. The details are left to the reader.

3. Forced φ-Laplacian with Dirichlet, Neumann or periodic

boundary conditions

To motivate the assumptions of the theorems proved here and the con-
struction of the associated fixed-point operators, we first study the solvability
of the forced equation

(φ(u′))′ = f(t) (3.1)

with f ∈ L1(0, T ), submitted to various boundary conditions. For each
τ ∈ [0, T ], we define Fτ : [0, T ] → R by

Fτ (t) :=
∫ t

τ
f(s) ds, (3.2)

so that

Fτ (t) = F0(t) − F0(τ).

We first consider the Neumann boundary conditions

u′(0) = 0 = u′(T ). (3.3)

Proposition 2. Problem (3.1)-(3.3) has a solution if and only if∫ T

0
f(s) ds = 0 (3.4)

and

‖F0‖∞ < a, (3.5)

in which case problem (3.1)-(3.3) has the family of solutions

u(t) = u(0) +
∫ t

0
φ−1(F0(s)) ds. (3.6)
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Proof. If u is a solution of problem (3.1)-(3.3), then (3.4) follows from
integrating both members of (3.1) on [0, T ] and using the boundary condition
(3.3). If (3.4) holds, we get, by integrating both members of (3.1) on [0, t]
and using the boundary condition (3.3)

φ(u′(t)) = F0(t) (t ∈ [0, T ]), (3.7)

which implies (3.5). Now, if conditions (3.4) and (3.5) hold, problem (3.1)-
(3.3) is equivalent to (3.7), hence to

u′(t) = φ−1(F0(t)) (t ∈ [0, T ]),

which gives (3.6) by integration from 0 to t. �
Example 1. The problem( u′

√
1 + u′2

)′
= α cos t, u′(0) = 0 = u′(π),

is solvable if and only if |α| < 1.

Example 2. The problem( u′
√

1 + u′2

)′
= α

(
t − 1

2

)
, u′(0) = 0 = u′(1),

is solvable if and only if |α| < 8.

Example 3. If w is defined in (2.4), the problem( u′
√

1 + u′2

)′
= αw(t), u′(0) = 0 = u′(T ),

is solvable if and only if |α| < 2
T .

Remark 4. Using the inequality (2.1), we see that if f ∈ L∞(0, T ), the
conditions ∫ T

0
f(s) ds = 0, ‖f‖∞ <

2a

T
, (3.8)

are sufficient for the solvability of problem (3.1)-(3.3). The second inequality
gives |α| < 2

π in Example 1, |α| < 2 in Example 2, and |α| < 2
T in Example 3.

If we consider now the Dirichlet boundary conditions

u(0) = 0 = u(T ), (3.9)

we obtain the following necessary and sufficient conditions for the solvability
of problem (3.1)-(3.9).
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Proposition 3. Problem (3.1)-(3.9) has a solution if and only if there exists
τ ∈ [0, T ] such that

‖Fτ‖∞ < a and
∫ T

0
φ−1(Fτ (s)) ds = 0, (3.10)

in which case problem (3.1)-(3.9) has the solution

u(t) =
∫ t

0
φ−1(Fτ (s)) ds (t ∈ [0, T ]). (3.11)

Proof. If u is a solution of problem (3.1)-(3.9), it follows from (3.9) and
Rolle’s theorem that there exists τ ∈ [0, T ] such that u′(τ) = 0. Then equa-
tion (3.1) gives

φ(u′(t)) = Fτ (t) (t ∈ [0, T ]),

which implies the first condition in (3.10) and the equivalent form

u′(t) = φ−1(Fτ (t)) (t ∈ [0, T ]),

which, using the first boundary condition, gives (3.11). Then the second
boundary condition implies the second condition in (3.10). Now, if condition
(3.10) holds, it is immediate to check that (3.11) solves (3.1)-(3.9). �

Example 4. For the problem
( u′
√

1 + u′2

)′
= α, u(0) = 0 = u(1), (3.12)

Fτ (t) = α(t − τ), and it is easily checked that∫ 1

0

α(s − τ)√
1 − α2(s − τ)2

ds =
1
α

[√
1 − α2τ2 −

√
1 − α2(1 − τ)2

]
= 0

if and only if τ = 1
2 . Consequently, Problem (3.12) is solvable if and only if

|α| < 2. Elementary computations show that the (unique) solution is given
by

u(t) =
1
α

[√
1 − α2

4 −
√

1 − α2(t − 1
2)2

]
(t ∈ [0, 1]).

Remark 5. The computation of τ in conditions (3.10) may be difficult. As
Fτ (τ) = 0, one has the inequalities

1
2
Osc[0,T ]F0 ≤ ‖Fτ‖∞ ≤ Osc[0,T ]F0 ≤ ‖f‖1, (3.13)



Boundary value problems with non-surjective φ-Laplacian 45

which provide the less sharp but more explicit necessary condition for solv-
ability of (3.1)-(3.9)

Osc[0,T ]F0 < 2a,

and the less sharp versions of the first sufficient condition in (3.10)

Osc[0,T ]F0 < a, or ‖f‖1 < a,

or, noticing that, for f ∈ L∞(0, T ), ‖f‖1 ≤ T‖f‖∞,

‖f‖∞ <
a

T
.

In Example 4, all those conditions reduce to |α| < 1.

Remark 6. The existence of τ ∈ [0, T ] such that∫ T

0
φ−1(Fτ (s)) ds = 0

i.e., such that ∫ T

0
φ−1(F0(s) − F0(τ)) ds = 0

is equivalent to the existence of c ∈ Range F0 such that∫ T

0
φ−1(F0(s) − c) ds = 0,

and hence is guaranteed by Lemma 3 when ‖F0‖∞ < a
2 .

Finally, for the periodic boundary conditions

u(0) − u(T ) = 0 = u′(0) − u′(T ) (3.14)

we have the following necessary and sufficient condition for the solvability
of (3.1)-(3.14).

Proposition 4. Problem (3.1)-(3.14) has a solution if and only if∫ T

0
f(s) ds = 0 (3.15)

and if there exists τ ∈ [0, T ] such that

‖Fτ‖∞ < a and
∫ T

0
φ−1(Fτ (s)) ds = 0, (3.16)



46 C. Bereanu and J. Mawhin

in which case problem (3.1)-(3.14) has the family of solutions

u(t) = u(0) +
∫ t

0
φ−1(Fτ (s)) ds (t ∈ [0, T ]). (3.17)

Proof. It is a combination of the ideas of the proofs of the Neumann and
Dirichlet cases, and the details are left to the reader. �
Example 5. Consider the problem( u′

√
1 + u′2

)′
= αw(t), u(0) − u(T ) = 0 = u′(0) − u′(T ), (3.18)

where α ∈ R and w is defined in (2.4). Then for each (t ∈ [0, T ]),

Wτ (t) :=
∫ t

τ
w(s) ds =

∣∣∣τ − T

2

∣∣∣ − ∣∣∣t − T

2

∣∣∣.
Hence, ∫ T

0

αWτ (s)√
1 − α2W 2

τ (s)
ds

=
2
α

[√
1 − α2

(∣∣τ − T

2

∣∣ − T

2

)2
−

√
1 − α2

∣∣τ − T

2

∣∣2] = 0,

if and only if τ = T
4 or τ = 3T

4 . Now

‖WT/4‖∞ = ‖W3T/4‖∞ =
|α|T

4
,

so that Problem (3.18) is solvable if and only |α| < 4
T .

4. Periodic problems with nonlinearities bounded from below

or from above

In this section we are interested in periodic boundary-value problems of
the type

(φ(u′))′ = f(t, u, u′), u(0) − u(T ) = 0 = u′(0) − u′(T ), (4.1)

where φ : R → (−a, a) is a homeomorphism, φ(0) = 0 and f : [0, T ]×R
2 → R

is continuous.
For λ ∈ [0, 1], consider the family of abstract periodic boundary-value

problems

(φ(u′))′ = λNf (u)+(1−λ)QNf (u), u(0)−u(T ) = 0 = u′(0)−u′(T ). (4.2)

Notice that (4.2) coincide, for λ = 1, with (4.1).
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Let

Ω =
{

(λ, u) ∈ [0, 1] × C1
per : ‖λH(I − Q)Nf (u)‖∞ <

a

2

}
. (4.3)

It is clear that Ω is open in [0, 1]×C1
per, and is nonempty because {0}×C1

per ⊂
Ω. So, using Lemma 3, we can define on Ω the operator M by

M(λ, u) = Pu + QNf (u) + H ◦ φ−1 ◦ (I − Qφ) ◦ [λH(I − Q)Nf ](u). (4.4)

Such an operator extends to the present situation of φ : R → (−a, a) the one
introduced in [12] for φ : R → R.

Lemma 4. The operator M : Ω → C1
per is well defined and continuous and

if (λ, u) ∈ Ω is such that u = M(λ, u), then u is a solution of (4.2).

Proof. Let (λ, u) ∈ Ω. It is clear that M(λ, u) ∈ C1. We show that in fact
M(λ, u) ∈ C1

per. Using Remark 2, we deduce that

M(λ, u)(T ) = Pu + QNf (u) + TQ ◦ φ−1 ◦ (I − Qφ) ◦ [λH(I − Q)Nf ](u)
= Pu + QNf (u) = M(λ, u)(0).

On the other hand we have that

(M(λ, u))′ = φ−1 ◦ (I − Qφ) ◦ [λH(I − Q)Nf ](u),

which implies that

(M(λ, u))′(0) = φ−1(−Qφ(λH(I − Q)Nf (u))) = (M(λ, u))′(T ).

Consequently M(λ, u) ∈ C1
per and the operator M : Ω → C1

per is well defined.
Its continuity follows by the continuity of the operators which compose M.

Now suppose that (λ, u) ∈ Ω is such that u = M(λ, u). It follows that

u − Pu − H ◦ φ−1 ◦ (I − Qφ) ◦ [λH(I − Q)Nf ](u) = QNf (u),

which gives

u = Pu + H ◦ φ−1 ◦ (I − Qφ) ◦ [λH(I − Q)Nf ](u), QNf (u) = 0,

so that u ∈ C1
per and u is a solution for (4.2) by differentiating the first

equation, applying φ to both of its members, differentiating again and using
the second equation. �

The following lemma, giving a priori bounds for the possible fixed points
of M, adapts a technique introduced by Ward [19].

Lemma 5. Assume that f satisfies the following conditions.
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(1) There exists c ∈ C such that ‖c−‖1 < a
4 and

f(t, u, v) ≥ c(t) (4.5)

for all (t, u, v) ∈ [0, T ] × R
2.

(2) There exist R > 0 and ε ∈ {−1, 1} such that

ε

∫ T

0
f(t, u(t), u′(t)) dt > 0 if uL ≥ R, ‖u′‖∞ ≤ M,

ε

∫ T

0
f(t, u(t), u′(t)) dt < 0 if uM ≤ −R, ‖u′‖∞ ≤ M, (4.6)

where M = max{|φ−1(2‖c−‖1)|, |φ−1(−2‖c−‖1)}.
If (λ, u) ∈ Ω is such that u = M(λ, u), then ‖λH(I −Q)Nf (u)‖∞ ≤ 2‖c−‖1

and ‖u‖ < R + M(T + 1).

Proof. Let (λ, u) ∈ Ω such that u = M(λ, u). Using Lemma 4 we have that
u is a solution of (4.2), which implies that

QNf (u) = 0, (4.7)

and

(φ(u′))′ = λNf (u), u(0) − u(T ) = 0 = u′(0) − u′(T ). (4.8)

Using the fact that f is bounded from below by c, we deduce the elementary
inequality

|f(t, u, v)| ≤ f(t, u, v) + 2c−(t) for all (t, u, v) ∈ [0, T ] × R
2. (4.9)

From (4.7), (4.8) and (4.9) it follows that

‖(φ(u′))′‖1 = λ‖Nf (u)‖1 ≤
∫ T

0
Nf (u)(s) ds + 2‖c−‖1 = 2‖c−‖1. (4.10)

Using (4.10) and (2.6), it follows that

‖λH(I − Q)Nf (u)‖∞ ≤ 2‖c−‖1 <
a

2
.

Because u ∈ C1 is such that u(0) = u(T ), there exists ξ ∈ [0, T ] such that
u′(ξ) = 0, which implies φ(u′(ξ)) = 0 and

φ(u′(t)) =
∫ t

ξ
(φ(u′(s)))′ ds (t ∈ [0, T ]).

Using the equality above and (4.10) we have that

|φ(u′(t))| ≤ 2‖c−‖1 (t ∈ [0, T ]), (4.11)
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and hence

‖u′‖∞ ≤ M. (4.12)

If uM ≤ −R (respectively uL ≥ R) then, from (4.12) and (4.6), it follows
that

ε

∫ T

0
f(t, u(t), u′(t)) dt < 0 (respectively ε

∫ T

0
f(t, u(t), u′(t)) dt > 0).

Using (4.7) we have that

uM > −R and uL < R. (4.13)

It is clear that

uM ≤ uL +
∫ T

0
|u′(t)| dt. (4.14)

From relations (4.12), (4.13) and (4.14), we obtain that

−(R + MT ) < uL ≤ uM < R + MT. (4.15)

Using (4.12) and (4.15) it follows that ‖u‖ < R + M(T + 1). �

Remark 7. When c+ = 0, inequality (4.9) with c ≤ 0 is indeed equivalent
to inequality (4.5), because (4.9) is equivalent to

f−(t, u, v) ≤ c−(t) = −c(t) ((t, u, v) ∈ [0, T ] × R
2),

and hence to

f(t, u, v) ≥ −f−(t, u, v) ≥ c(t) ((t, u, v) ∈ [0, T ] × R
2).

Let K, ρ ∈ R be such that 2‖c−‖1 < K < a
2 , ρ > R + M(T + 1) and

consider the set

V = {(λ, u) ∈ [0, 1] × C1
per : ‖λH(I − Q)Nf (u)‖∞ < K, ‖u‖ < ρ}.

V is nonempty because V ∩{0}×C1
per = {0}×{u ∈ C1

per : ‖u‖ < ρ}. On the
other hand it is clear that V is open and bounded in [0, 1]×C1

per and V ⊂ Ω.

Using Lemma 4 and Lemma 5 we deduce that the operator M : V → C1
per

is well defined, continuous and

u 	= M(λ, u) for all (λ, u) ∈ ∂V. (4.16)

Lemma 6. The operator M : V → C1
per is completely continuous.
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Proof. Let (λn, un)n ⊂ V . We may assume that λn → λ0. Let vn =
M(λn, un) (n ∈ N). Because ‖λnH(I −Q)Nf (un)‖∞ ≤ K < a

2 for all n ∈ N,
it follows, by Lemma 3, that

‖(I − Qφ) ◦ [λnH(I − Q)Nf ](un)‖∞ ≤ 2K < a (n ∈ N). (4.17)

Using (4.17) we deduce that, for all n ∈ N,

‖φ−1 ◦ (I − Qφ) ◦ [λnH(I − Q)Nf ](un)‖∞
≤ max{|φ−1(−2K)|, |φ−1(2K)|} = M1, (4.18)

which implies that (vn)n is bounded in C. Let t1, t2 ∈ [0, T ]. Then, using
(4.18), we have, for all n ∈ N

|vn(t1) − vn(t2)| =
∣∣∣
∫ t2

t1

φ−1 ◦ (I − Qφ) ◦ [λnH(I − Q)Nf ](un)(s) ds
∣∣∣

≤ M1|t1 − t2|,
which implies that (vn)n is equicontinuous. Applying the Arzela-Ascoli the-
orem, passing if necessary to a subsequence, we may assume that vn → v in
C. On the other hand, for all n ∈ N, we have that

v′n = φ−1 ◦ (I − Qφ) ◦ [λnH(I − Q)Nf ](un) (4.19)

Using (4.18) and (4.19) it follows that ‖v′n‖∞ ≤ M1 for all n ∈ N. Further-
more, if t1, t2 ∈ [0, T ], then

|φ(v′n(t1)) − φ(v′n(t2))| =
∣∣∣
∫ t2

t1

(I − Q)Nf (un)(s) ds
∣∣∣,

so, using the relations (4.17), (4.19) and the uniform continuity of φ−1 on
[−2K, 2K], it follows that (v′n)n is equicontinuous. Applying the Arzela-
Ascoli theorem, we may assume, passing to a subsequence, that v′n → w in
C. It follows that v ∈ C1

per, v′ = w, so that vn → v in C1. �

Theorem 1. Let f be continuous and satisfy condition (1) and (2) of Lemma
5. Then (4.1) has at least one solution.

Proof. Let M be the operator given by (4.4). Using Lemma 6, relation
(4.16) and Proposition 1, we deduce that

dLS [I −M(0, ·), V0, 0] = dLS [I −M(1, ·), V1, 0]. (4.20)

On the other hand, we have that

dLS [I −M(0, ·), V0, 0] = dLS [I − (P + QNf ), Bρ, 0], (4.21)
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where Bρ = {u ∈ C1
per : ‖u‖ < ρ}. But the range of P + QNf is contained

in the subset of constant functions, isomorphic to R, so, using a property of
the Leray-Schauder degree we have that

dLS [I − (P + QNf ), Bρ, 0] = dB[I − (P + QNf )|R, (−ρ, ρ), 0]

= dB[−QNf , (−ρ, ρ), 0] =
sign(−QNf (ρ)) − sign(−QNf (−ρ))

2
,

where dB denotes the Brouwer degree. But, using (4.6) and the fact that
ρ > R, we see that QNf (±ρ) = 1

T

∫ T
0 f(t,±ρ, 0) dt have opposite signs, which

implies, using the relations (4.20) and (4.21) that

|dLS [I −M(1, ·), V1, 0]| = 1.

Then, from the existence property of the Leray-Schauder degree, the set V1

is nonempty and there is u ∈ V1 such that u = M(1, u), which is a solution
for (4.1) by Lemma 4. �

Remark 8. The conclusion of Theorem 1 also holds if f(t, u, v) ≤ c(t) for
some c ∈ C such that ‖c+‖1 < a

4 and all (t, u, v) ∈ [0, T ]×R
2, and f satisfies

the sign condition (4.6). It suffices to replace φ by −φ, f by −f and to apply
Theorem 1.

Remark 9. The conclusions of Theorem 1 and Remark 8 still hold if the
sign condition (4.6) is weakened into

(2’) There exist R > 0 and ε ∈ {−1, 1} such that

ε

∫ T

0
f(t, u(t), u′(t)) dt ≥ 0 if uL ≥ R, ‖u′‖∞ ≤ M,

ε

∫ T

0
f(t, u(t), u′(t)) dt ≤ 0 if uM ≤ −R, ‖u′‖∞ ≤ M, (4.22)

where M > max{|φ−1(2‖c−‖1)|, |φ−1(−2‖c−‖1)|}.
Letting fn(t, u, v) = f(t, u, v) + ε

n
u√

1+u2
, it is easy to see that, for n ≥ N

with N sufficiently large, the problems

(φ(u′))′ = fn(t, u, u′), u(0) − u(T ) = 0 = u′(0) − u′(T ) (4.23)

satisfy the conditions of Theorem 1 for c replaced by a suitable cN with
‖c−N‖1 < a

4 and M by a suitable MN . Consequently, each problem (4.23) for
n ≥ N admits at least one solution un satisfying suitable a priori bounds
which allow us, as in the proof of Lemma 6, to extract a convergent subse-
quence whose limit is a solution of (4.1).
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Notice that, for f = f(t), condition (4.22) reduces to∫ T

0
f(t) dt = 0,

which is necessary for the solvability of

(φ(u′))′ = f(t), u(0) − u(T ) = 0 = u′(0) − u′(T ).

Example 6. Using Theorem 1 and Remark 8, we see that the periodic
boundary value problems( u′

√
1 + u′2

)′
− a(t) expu + h(t) = 0, u(0) − u(T ) = 0 = u′(0) − u′(T ),

( u′
√

1 + u′2

)′
+ a(t) expu − h(t) = 0, u(0) − u(T ) = 0 = u′(0) − u′(T ),

have at least one solution if a ∈ C is positive and h ∈ C is such that

‖h−‖1 < ‖h+‖1 <
1
4
.

This is in particular the case if 0 < hL ≤ hM < 1
4T .

5. Neumann problems with nonlinearities bounded from below

or from above

In this section we are interested in Neumann boundary-value problems of
the type

(φ(u′))′ = f(t, u, u′), u′(0) = 0 = u′(T ), (5.1)

where φ : R → (−a, a) is a homeomorphism, φ(0) = 0 and f : [0, T ] × R
2 →

R is continuous. For λ ∈ [0, 1] consider the family of abstract Neumann
boundary-value problems

(φ(u′))′ = λNf (u) + (1 − λ)QNf (u), u′(0) = 0 = u′(T ). (5.2)

Notice that (5.2) coincides, for λ = 1, with (5.1). Let

Ω = {(λ, u) ∈ [0, 1] × C1
# : ‖λH(I − Q)Nf (u)‖∞ < a}.

It is clear that Ω is open, and nonempty because {0}×C1
# ⊂ Ω. We consider

the operator M given for (λ, u) ∈ Ω by

M(λ, u) = Pu + QNf (u) + H ◦ φ−1 ◦ [λH(I − Q)Nf ](u). (5.3)

When φ : R → R, such an operator has been considered by Garcia-Huidobro,
Manásevich and Zanolin [5].
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Lemma 7. The operator M : Ω → C1
# is well defined, continuous and if

(λ, u) ∈ Ω is such that u = M(λ, u), then u is a solution of (5.2).

Proof. Let (λ, u) ∈ Ω. It is clear that M(λ, u) ∈ C1 and

(M(λ, u))′ = φ−1 ◦ [λH(I − Q)Nf ](u).

Using the relations

H(I − Q)Nf (u)(0) = 0 = H(I − Q)Nf (u)(T ), φ−1(0) = 0,

we deduce that

(M(λ, u))′(0) = 0 = (M(λ, u))′(T ).

So, we have M(Ω) ⊂ C1
#, which implies that the operator M : Ω → C1

#

is well defined. The continuity of M follows from the continuity of the
operators P, Q, H and Nf . Now, consider (λ, u) ∈ Ω such that u = M(λ, u).
It follows that

u − Pu − H ◦ φ−1 ◦ [λH(I − Q)Nf ](u) = QNf (u),

which gives

u = Pu + H ◦ φ−1 ◦ [λH(I − Q)Nf ](u), QNf (u) = 0,

so that u ∈ C1
# and u is a solution for (5.2) by differentiating the first

equation, applying φ to both members, differentiating again and using the
second equation. �

In the next lemma, as in Lemma 5, we extend some techniques of Ward
[19] to obtain the required a priori bounds.

Lemma 8. Assume that f satisfies the conditions
(1) There exists c ∈ C such that ‖c−‖1 < a

2 and f(t, u, v) ≥ c(t) for all
(t, u, v) ∈ [0, T ] × R

2.
(2) There exist R > 0 and ε ∈ {−1, 1} such that

ε

∫ T

0
f(t, u(t), u′(t)) dt > 0 if uL ≥ R, ‖u′‖∞ ≤ M,

ε

∫ T

0
f(t, u(t), u′(t)) dt < 0 if uM ≤ −R, ‖u′‖∞ ≤ M, (5.4)

where M = max{|φ−1(2‖c−‖1)|, |φ−1(−2‖c−‖1)|}.
If (λ, u) ∈ Ω is such that u = M(λ, u), then ‖λH(I −Q)Nf (u)‖∞ ≤ 2‖c−‖1

and ‖u‖ < R + M(T + 1).
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Proof. Let (λ, u) ∈ Ω be such that u = M(λ, u). Using Lemma 7, u is a
solution of (5.2), which implies that

QNf (u) = 0. (5.5)

Hence,

(φ(u′))′ = λNf (u), u′(0) = 0 = u′(T ),

which implies that

φ(u′) = λHNf (u) = λH(I − Q)Nf (u). (5.6)

On the other hand, as in the proof of Lemma 5, using the fact that the
function f is bounded from below by the function c, we deduce that

|f(t, u, v)| ≤ f(t, u, v) + 2c−(t), ((t, u, v) ∈ [0, T ] × R
2). (5.7)

Using (5.5), (5.6), (5.7) and (2.6), it follows that

‖φ(u′)‖∞ = ‖λH(I − Q)Nf (u)‖∞ ≤ ‖Nf (u)‖1

≤
∫ T

0
Nf (u)(s) ds + 2‖c−‖1 = 2‖c−‖1 < a,

which implies ‖u′‖∞ ≤ M. The end of the proof is then entirely similar to
that of Lemma 5. �

Let K, ρ ∈ R be such that 2‖c−‖1 < K < a and ρ > R + M(T + 1).
Consider the set

V = {(λ, u) ∈ [0, 1] × C1
# : ‖λH(I − Q)Nf (u)‖∞ < K, ‖u‖ < ρ}.

It is clear that V is open and bounded in [0, 1] × C1
#, and is nonempty,

because

{0} × {u ∈ C1
# : ‖u‖ < ρ} ⊂ V.

On the other hand V ⊂ Ω, so, we can consider the operator M on V . Using
Lemma 7 and Lemma 8 we have

u 	= M(λ, u) for all (λ, u) ∈ ∂V,

and if (λ, u) ∈ V is such that u = M(λ, u), then u is a solution of (5.2).
Using the same arguments as in the proof of Lemma 6 we show that the
operator M is completely continuous on V . So, with a proof similar to that
of Theorem 1, we obtain the following existence result.

Theorem 2. Let f be continuous and satisfy conditions (1) and (2) of
Lemma 8. Then (5.1) has at least one solution.
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Remark 10. The conclusion of Theorem 2 also holds if f(t, u, v) ≤ c(t) for
some c ∈ C such that ‖c+‖1 < a

2 and all (t, u, v) ∈ [0, T ]×R
2, and f satisfies

the sign condition (5.4). It suffices to replace φ by −φ, f by −f and to apply
Theorem 2.

Remark 11. One can weaken the sign condition (5.4) in a similar way as
in Remark 9.

Example 7. Using Theorem 2 we obtain that the Neumann boundary-value
problems

( u′
√

1 + u′2

)′
− a(t) expu + h(t) = 0, u′(0) = 0 = u′(T ),

( u′
√

1 + u′2

)′
+ a(t) expu − h(t) = 0, u′(0) = 0 = u′(T ),

have at least one solution if a ∈ C is positive and h ∈ C is such that

‖h−‖1 < ‖h+‖1 <
1
2
,

which is in particular the case if 0 < [h]L ≤ [h]M < 1
2T .

6. Periodic or Neumann problems with bounded nonlinearities

Let f : [0, T ] × R
2 → R be continuous and satisfy the condition

|f(t, u, v)| ≤ c <
a

T
for all (t, u, v) ∈ [0, T ] × R

2. (6.1)

Using Lemma 1 and (6.1), it follows that

‖λH(I − Q)Nf (u)‖∞ <
a

2
for all (λ, u) ∈ [0, 1] × C1

per. (6.2)

Using Lemma 3 and (6.2), we see that the operator M given by (4.4) is
well defined and continuous on [0, 1]×C1

per. As in Lemma 4 we show that if
(λ, u) ∈ [0, 1] × C1

per is such that u = M(λ, u), then u is a solution of (4.2),
and as in Lemma 6 we show that the operator M is completely continuous
on [0, 1] × C1

per. On the other hand, we obtain a priori estimates for the
possible fixed points of M(λ, ·).
Lemma 9. If condition (6.1) holds and if there exists R > 0 and ε ∈ {−1, 1}
such that, with

M = max{|φ−1(−cT )|, |φ−1(cT )|},
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one has

ε

∫ T

0
f(t, u(t), u′(t)) dt > 0 if uL ≥ R, |u′|∞ ≤ M,

ε

∫ T

0
f(t, u(t), u′(t)) dt < 0 if uM ≤ R, |u′|∞ ≤ M, (6.3)

then there is a constant ρ > R such that for each λ ∈ [0, 1], each possible
fixed point u of M(λ, ·) verifies the inequality ‖u‖ < ρ.

Proof. Let (λ, u) ∈ [0, 1]×C1
per such that u = M(λ, u). Then, u is a solution

of (4.1), and, as in the proof of Lemma 5 we have (4.8). From (4.8) and (6.1),
it follows that ∫ T

0
|(φ(u′(t)))′| dt ≤ cT. (6.4)

To finish the proof it suffices to use the same arguments as in the proof of
Lemma 5. �

Using now the classical homotopy invariance property of the Leray-Schau-
der degree, we obtain, as in Theorem 1, the following existence result.

Theorem 3. Let f : [0, T ]×R×R → R be continuous and satisfy conditions
(6.1) and (6.3). Then (4.1) has at least one solution.

For the Neumann problem, let f : [0, T ] × R
2 → R be continuous and

satisfy the condition

|f(t, u, v)| ≤ c <
2a

T
for all (t, u, v) ∈ [0, T ] × R

2. (6.5)

Using Lemma 1 and (6.5), it follows that

‖λH(I − Q)Nf (u)‖∞ < a for all (λ, u) ∈ [0, 1] × C1
per. (6.6)

Hence, the operator M given by (5.3) is well defined and continuous on
[0, 1] × C1

per. As in Lemma 7 we show that if (λ, u) ∈ [0, 1] × C1
per is such

that u = M(λ, u), then u is a solution of (5.2), and as in Lemma 6 we show
that the operator M is completely continuous on [0, 1]×C1

per. On the other
hand, using arguments similar to those of Lemma 8 we obtain the analogue
of Lemma 9 with condition (6.1) replaced by condition (6.5). Again the
classical invariance property of Leray-Schauder degree implies the following
result.

Theorem 4. Let f : [0, T ]×R×R → R be continuous and satisfy conditions
(6.5) and (6.3). Then (5.1) has at least one solution.
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Remark 12. Theorem 4 improves Theorem 1 in [2] by weakening both the
bound and the sign conditions upon f.

Remark 13. For f bounded, condition (6.1) is better than the condition

|f(t, u, v)| ≤ c <
a

4T

given by Theorem 1 or Remark 8 in the periodic case, and condition (6.5) is
better than the condition

|f(t, u, v)| ≤ c <
a

2T

given by Theorem 2 or Remark 10 in the Neumann case.

Remark 14. In Theorems 3 and 4, one can weaken the sign condition (6.3)
in a similar way as in Remark 9.

Example 8. Using respectively Theorem 3 and Theorem 4, we obtain that
the periodic boundary-value problem
( u′
√

1 + u′2

)′
= α(arctanu + sin t), u(0) − u(1) = 0 = u′(0) − u′(1),

has at least one solution if |α| ≤ 0.4145, and the Neumann boundary-value
problem

( u′
√

1 + u′2

)′
= α(arctanu + sin t), u′(0) = 0 = u′(1),

has at least one solution if |α| ≤ 0.8290.

Example 9. Using respectively Theorem 3 and Theorem 4, we obtain that
the periodic boundary-value problem

( u′
√

1 + u′2

)′
=

1
4

arctan(u + t) +
1
3

sin(u′ + t2),

u(0) − u(1) = 0 = u′(0) − u′(1),

and the Neumann boundary-value problem
( u′
√

1 + u′2

)′
=

1
2

arctan(u + t) +
2
3

sin(u′ + t2),

u′(0) = 0 = u′(1),

have at least one nonconstant solution.
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7. Dirichlet problems with bounded nonlinearities

We finally consider Dirichlet problems of the form

(φ(u′))′ = f(t, u, u′), u(0) = u(T ) = 0 (7.1)

where φ : R → (−a, a) is a homeomorphism such that φ(0) = 0, f : [0, T ] ×
R

2 → R is continuous and such that

|f(t, u, v)| ≤ c <
a

2T
for all (t, u, v) ∈ [0, T ] × R

2. (7.2)

For λ ∈ [0, 1], consider the family of Dirichlet problems

(φ(u′))′ = λf(t, u, u′), u(0) = u(T ) = 0, (7.3)

which reduces to (7.1) for λ = 1 and to

(φ(u′))′ = 0, u(0) = u(T ) = 0 (7.4)

for λ = 0. This last problem has only the trivial solution.
Notice that if u ∈ C1

0 , it follows from (7.2) that for all t ∈ [0, T ], one has

|H ◦ Nf (u)(t)| =
∣∣∣
∫ t

0
f(s, u(s), u′(s)) ds

∣∣∣ ≤ cT <
a

2
, (7.5)

and hence, using Lemma 3, Qφ ◦H ◦Nf is well defined on C1
0 . Consequently,

the nonlinear operator M given by

M(λ, u) = H ◦ φ−1 ◦ (I − Qφ) ◦ H ◦ (λNf )(u) (7.6)

is well defined on [0, 1] × C1
0 . When φ : R → R, such an operator has been

considered by Garcia-Huidobro, Manásevich and Zanolin [6] and by Huang
and Metzen [9].

Lemma 10. The operator M : [0, 1] × C1
0 → C1

0 is completely continuous
and if (λ, u) ∈ [0, 1] × C1

0 is such that u = M(λ, u), then u is a solution of
(7.3).

Proof. The continuity follows from the continuity of the composing opera-
tors, and the proof of the complete continuity is entirely similar to that of
Lemma 6. Let (λ, u) ∈ Ω. It is clear that M(λ, u) ∈ C1. We show that in
fact M(λ, u) ∈ C1

0 . Using Remark 2, we deduce that

M(λ, u)(T ) = TQ ◦ φ−1 ◦ (I − Qφ) ◦ H ◦ [λNf (u)](s)
= 0 = M(λ, u)(0).

Consequently M(λ, u) ∈ C1
0 . Now suppose that (λ, u) ∈ [0, 1] × C1

0 is such
that u = M(λ, u). It follows that

u′ = φ−1 ◦ (I − Qφ) ◦ H ◦ (λNf )(u)
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φ(u′) = (I − Qφ) ◦ H ◦ (λNf )(u)

(φ(u′))′ = λf(t, u, u′). �

Theorem 5. Let f : [0, T ] × R
2 → R be continuous and satisfy conditions

(7.2). Then (7.1) has at least one solution.

Proof. Let λ ∈ [0, 1] and u be a possible fixed point of M(λ, ·). Then, using
Lemma 3,

‖φ(u′)‖∞ = ‖(I − Qφ) ◦ H ◦ (λNf )(u)‖∞ ≤ cT + cT < a.

Consequently,

‖u′‖∞ < max{|φ−1(−2cT )|, |φ−1(2cT )|} := M

and

‖u‖∞ =
∥∥∥

∫ ·

0
u′(s) ds

∥∥∥
∞

< TM.

Therefore, if Ω = {u ∈ C1
0 : ‖u‖∞ < TM, ‖u′‖∞ < M}, it follows from the

homotopy invariance of Leray-Schauder degree that dLS [I −M(·, λ),Ω, 0] is
independent of λ ∈ [0, 1] so that, if we notice that M(0, ·) = 0,

dLS [I −M(·, 1),Ω, 0] = dLS [I −M(·, 0),Ω, 0] = 1.

Hence, M(1, ·) has a fixed point u, which is a solution of (7.1) by Lemma 10.
�

Example 10. If follows from Theorem 5 that the Dirichlet problem( u′
√

1 + u′2

)′
= α(sinu + cos t), u(0) = 0 = u(π/2)

has at least one solution if |α| < 1
2π .

Remark 15. In contrast to the periodic and Neumann cases, the solvability
of the Dirichlet problem with bounded right-hand side f does not require
any sign condition upon f. This is related to the absence of a necessary
condition like (1.6) for the solvability of the simple Dirichlet problem

(φ(u′))′ = f(t), u(0) = 0 = u(T ).

On the other hand, the approach used in Sections 4 and 5 to study periodic
or Neumann problems with one-sided nonlinearities does not work in the
Dirichlet case.
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