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FUNCTIONAL COMMUTANT LIFTING AND

INTERPOLATION ON GENERALIZED ANALYTIC

POLYHEDRA

CALIN-GRIGORE AMBROZIE

Abstract. We show that for every generalized analytic polyhedron D ⊂ Cn

there exists a suitable functional Hilbert space over D, allowing to ap-

ply the commutant lifting technique to various interpolation problems of

Carathéodory-Féjér type. The existence of those solutions that belong to

the Schur class of fractional transforms (⊂ in the closed unit ball of H∞(D))

is thus characterized in terms of positivity conditions. Also, we show on a

concrete example how to obtain such solutions.

1. Preliminaries

Introduction This work is concerned with applications and extensions of a

functional commutant lifting result obtained in [4]. We remind a few topics with

this respect. As it is known, the commutant lifting theorem for contractions

can be used, by a Sarason’s idea [32], to solve various interpolation problems

for bounded analytic functions on the unit disc D ⊂ C. Namely, consider a

contraction T of class C·0 on a Hilbert space. Then T is unitarily equivalent to

the compression PMTz|M of the operator Tz ∈ B(H2(D, E)) of multiplication by

the variable z to a ∗-invariant closed linear subspace M of H2(D, E) [34]. Here

H2(D, E) ≡ H2(D) ⊗ E is an E-valued Hardy space over the unit disk D, where

E is a Hilbert space. Then a functional version of the commutant lifting theorem

[23], suitable for applications to interpolation problems, says that each operator

X : M → M in the commutant of the compression T = PMTz|M dilates to

an operator from the commutant of Tz (that is, to a multiplication operator Tf
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given by an operator-valued bounded analytic function f : D → B(E)) such that

‖Tf‖ = ‖X‖. Since ‖Tf‖ = ‖f‖∞ (:= supz∈D ‖f(z)‖), we have ‖f‖∞ = ‖X‖.
Moreover, T ∗

f |M = X∗ or, equivalently, XPM = PMTf .

When seeking for bounded analytic functions f : D → B(E) of controlled sup-

norm ‖f‖∞ ≤ 1 and satisfying certain linear interpolation conditions, a commu-

tant lifting setting usually can be associated to the interpolation data, so that the

symbol f of the operator Tf from above is a solution of the interpolation problem

iff ‖X‖ ≤ 1. The simplest example in this sense is the N evanlinna-Pick problem

on the unit disc: given zj ∈ D and wj ∈ C for j = 1, m, one asks to study the exis-

tence of an analytic function f on D with ‖f‖∞ ≤ 1 such that f(zj) = wj for all j.

Consider then the Hardy space H2(D) ⊂ L2(∂D), endowed with the reproducing

kernel C(z, w) = (1 − zw)−1 for z, w ∈ D. The functions Cw ∈ H2(D) defined

by Cw(z) = C(z, w) satisfy the reproducing kernel property: h(w) = 〈h, Cw〉 for

every h ∈ H2(D) and w ∈ D, namely we have h(w) = 1
2π

∫ 2π

0
h(eit) 1

1−we−it dt

via Cauchy’s formula. Then we let M = spm
j=1 Czj

be the linear span of the

reproducing kernels Czj
( · ) and define X : M → M by mean of its adjoint, by

X∗Czj
= wjCzj

for j = 1, m. Whenever f is a solution of the problem, by the re-

producing kernel property we have T ∗
f Czj

= f(zj)Czj
= wjCzj

= X∗Czj
, namely

T ∗
f |M = X∗. Using the intertwining lifting theorem, one checks that a solution

f exists iff ‖X‖ ≤ 1. Explicitely writing that I − XX∗ not
= Γ is nonnegative

on M gives the well known Pick’s condition that the matrix [Γij ]i,j ∈ Mm(C)

defined by 1 − wiwj = Γij(1 − zizj) for i, j = 1, m be nonnegative definite.

Moreover, as it is known, all solutions f can be described as transfer functions

f(z) = d + c(1 − za)−1zb of a linear system described by a unitary operator[
a b

c d

]
on a space of the form K ⊕ C with K = Hilbert space. Similarly we

can treat more general interpolation problems, of Carathéodory-Féjér type for in-

stance, involving given derivatives dkf
dzk (zj) = wkj of f in certain points zj, in which

case the space M is spanned by corresponding partial derivatives ( ∂k

∂wk )(Cw( · )),
while X is suitably defined in terms of wkj etc.

The n-dimensional case Subsequent developments of this technique were

obtained by substituting for D various domains D in n variables z1, . . . , zn and

correspondingly replacing T by appropriate classes of multi–contractions T =

(T1, . . . , Tn), like: for D = the Euclidian unit ball (by [9], [30] and independently,

by [18]); for the unit polydisc [2, 3, 14, 22]; for the noncommutative unit ball [28,

29]; for domains D : ‖d(z)‖ < 1 with matrix-valued analytic defining functions
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d = d(z) ∈ Mp,q(C) [4, 6, 13], see also [10, 15, 21, 31]. We can thus characterize the

existence of those solutions f that belong to the Schur class Sd(E, E·), defined, for

E, E· Hilbert spaces, as the unit ball consisting of all f : D → B(E, E·) analytic

such that ‖f‖S ≤ 1 with respect to the norm ‖f‖S = sup{‖f(Z)‖ : ‖d(Z)‖ < 1}
where Z runs the set of all commuting n-tuples of operators Zj ∈ B(ℓ2) (j = 1, n)

with Taylor joint spectra σ(Z) in the domain of d. Condition ‖d(Z)‖ < 1 implies

that σ(Z) ⊂ D [6, 7], and so f(Z) makes sense by analytic functional calculus

[36]. Note that ‖f‖S is not necessarily finite and generally we have ‖f‖∞ ≤ ‖f‖S .

The equality ‖f‖S = ‖f‖∞ holds for the well known exceptions D = D and

D = D2, by the (generalized) von Neumann inequality [8, 34]. The norm ‖ · ‖S
has been introduced by Agler in the pioneering works [2, 3] concerned with the

unit polydisc D = Dn. For general domains D in Cn, the contractivity type

condition concerning X so that X∗ = T ∗
f |M for an f with ‖f‖S ≤ 1 means that

1M −XX∗ belongs to a positive subcone, defined in terms of d, of the cone of all

nonnegative operators. In various interpolation problems one seeks for solutions

f : D → B(E, E·) that belong to the multiplier space MH(E, E·) (consisting of all

f : D → B(E, E·) analytic such that f (H⊗E) ⊂ H⊗E·) with respect to a suitable

reproducing kernel Hilbert space H of analytic functions on D. By the closed

graph theorem, for each such f the induced multiplication map Tf : h 7→ fh

is necessarily bounded. One seeks then for solutions f with multiplier norm

≤ 1, that is, ‖Tf‖ ≤ 1. As it is known, for H = H2(D) an analytic function f

on C is a multiplier iff f ∈ H∞(D) in which case ‖Tf‖ = ‖f‖. Generally, for

suitable H we have ‖Tf‖ ≤ ‖f‖S [4]. We considered in [4] a generalized analytic

polyhedron D : ‖d(z)‖ < 1 in Cn (see Definition 1), supposed also that there

exists a d-space H of analytic functions on D (see Definition 2), and let then

X ∈ B(M) be an operator commuting with the compressions PMTzj
|M of the

multiplications Tz1 , . . . , Tzn
to a given ∗-invariant subsubpace M ⊂ H⊗E where

E is a a Hilbert space. For given such D, H and X (satisfying also the technical

hypotheses M∼ = M , see Notation 1.7), the main result [4, Theorem 3.7] (here

Theorem 2.1) characterizes the existence of the liftings Tf of X with ‖f‖S ≤ 1.

These solutions f are described as fractional transforms, too. As observed in

[4], Theorem 2.1 applies to interpolation problems over Cartan domains of type

I – III, in which cases suitable examples of d-spaces are known to exist. This

covers the known cases of the unit polydisc and Euclidian unit ball. A natural

question is whether for every domain D : ‖d(z)‖ < 1 one can find a d-space

H – in which case Theorem 2.1 could be applied to interpolation problems over

various such domains. Moreover, the reproducing kernel should have a concrete

form to be used in applications. We give a positive answer to this question by
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Theorem 2.3, making use of the reproducing kernels of the weighted Bergman

spaces of a Cartan domain of type I [26, 35]. Then we can apply the functional

intertwining lifting technique to obtain various interpolation results of Agler-Pick

and Carathéodory-Féjér type, see statements 2.4 – 2.7 and the example in Section

3 that we completely work out to show how the solutions f can be obtained once

the reproducing kernel of H is known.

Notation For every complex Hilbert spaces H and K, we write B(H, K) for

the space of all bounded linear operators from H to K endowed with the uniform

norm, and H ⊗ K for the hilbertian tensor product of H and K.

For p, q positive integers, endow the space Mp,q(C) of the p × q matrices with

the operator norm induced by the identification Mp,q(C) ≡ B(Cq, Cp).

For any complex Hilbert space H , we identify B(Hq, Hp) with the space

Mp,q(B(H)) of all p × q – operator matrices with entries in B(H) = B(H, H)

where Hp = ⊕p
1H .

For every open set U in C
n (n = a fixed integer) and complex Banach space

X , we denote by O(U, X) the Fréchet space of all analytic X-valued functions on

U ; set O(U) = O(U, C). For any compact subset K ⊂ Cn, let O(K) denote the

algebra of germs of analytic functions on open neighborhoods of K.

For any n-tuple T = (T1, . . . , Tn) with Tj ∈ B(X) commuting on a Banach

space X , σ(T ) denotes the Taylor joint spectrum of T on X . We write Φ :

O(σ(T )) → B(X), f 7→ f(T ) for Taylor’s analytic functional calculus of T , see

[20, 36]. As it is known [20], if X is a Hilbert space then for any Hilbert spaces

E, E· and open neighborhood U of σ(T ) there is a unique continuous linear

map ΦE,E·
: O(U, B(E, E·)) ∼= O(U)⊗̃B(E, E·) → B(X ⊗ E, X ⊗ E·) such that

ΦE,E·
(f ⊗ A) = f(T ) ⊗ A for f ∈ O(U) and A ∈ B(E, E·). For simplicity,

set again f(T ) := ΦE,E·
(f). For any commuting tuple T on a Hilbert space H ,

we denote by MT the commuting 2n-tuple consisting of the left multiplications

LTj
: B 7→ TjB and of the right multiplications RT∗

j
: B 7→ BT ∗

j acting on B(H).

It is known [19] that σ(MT ) = σ(T )×σ(T ∗). Then by analytic functional calculus

(f(MT ))(B) makes sens for every function f ∈ O(σ(T ) × σ(T ∗)).

Definition 1. A generalized analytic polyhedron is an bounded open set D ⊂ Cn

with polynomially convex closure D, of the form D = {z ∈ W ; ‖d(z)‖ < 1} where

W ⊂ Cn is open with D ⊂ W and d : W → B(Cq, Cp) is analytic with 0 ∈ W

and d(0) = 0.

Definition 2. Let D : ‖d(z)‖ < 1 be a generalized analytic polyhedron. A

d–space is a Hilbert space H of functions analytic on D such that:
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(i) all the point evaluations h 7→ h(w), w ∈ D are continuous on H (and so we

have vectors Cw ∈ H such that h(w) = 〈h, Cw〉 for every h ∈ H);

(ii) the function C(z, u) = Cu(z) does not vanish on ∆ := {(z, u) : z, u ∈ D}
and 1/C extends analytically on a neighborhood of ∆; assume also C0( · ) ≡ 1;

(iii) H is O(D)–invariant under multiplications h 7→ fh and O(D) is dense in

H;

(iv) the Toeplitz operator Td : Hq → Hp acting on column vectors from Hq as

left multiplication by the p × q matrix–valued function d|D satisfies ‖Td‖ ≤ 1.

It is known that given a space H satisfying (i), the reproducing kernel function

C = C(z, u) defined by (ii) is necessarily analytic. If f ∈ O(D, B(E, E·)) is a

multiplier then it induces a bounded linear multiplication operator Tf : H⊗E →
H⊗E· by g 7→ fg, see [4]. Condition (iii) implies then that all Tf with f ∈ O(D)

are continuous.

Lemma 1.1. Let H be a Hilbert space of analytic functions on D, satisfying

the hypotheses (i) and (ii) of Definition 1. Set (Zjh)(z) = zjh(z) for any h ∈ H,

z ∈ D and let Z = (Z1, . . . , Zn). Condition (iii) is then equivalent to the following

condition:

(iii)’ the space H is invariant under Z, σ(Z) = D and C[z] is dense in H.

If (i)-(iii) hold, then for every f ∈ O(D) we have f(Z) = Tf . Moreover, for

every Hilbert spaces E, E· and function f : U → B(E, E·) analytic on an open

set U ⊃ D, the multiplication operator Tf ⊗ 1E : H ⊗ E → H ⊗ E· given by

h 7→ fh is well defined, continuous and we have f(Z ⊗ 1E) = Tf ⊗ 1E, that is,

((f(Z) ⊗ 1E)h)(z) = f(z)h(z) for h ∈ H⊗ E and z ∈ D.

Proof. (iii) ⇒ (iii)’ . By the reproducing kernel property (i), for every z ∈ D

we have the equalities Z∗
j Cz = zjCz (j = 1, n). This implies z ∈ σ(Z∗), and so

z ∈ σ(Z). Thus D ⊂ σ(Z). To prove the opposite inclusion, let z0 ∈ C
n\D. Since

D is polynomially convex, there is a polynomial p such that |p(z0)| > maxD |p|.
Define f on D by f(z) = (p(z0)−p(z))−1. Thus f ∈ O(D). Now Tf : H → H is the

inverse of the operator p(z0)1H−Tp. Then p(z0) 6∈ σ(Tp). We can easily check the

equality Tp = p(Z). Hence p(z0) 6∈ σ(p(Z)) (= p(σ(Z)) by the spectral mapping

theorem). Then z0 6∈ σ(Z). Therefore we have the inclusion σ(Z) ⊂ D, too. Thus

σ(Z) = D. Let f be analytic on an open subset U of Cn with U ⊃ D. By the

closed graph theorem, the map O(U) →֒ B(H) given by f 7→ Tf is continuous.

The uniqueness property of the analytic functional calculus then gives Tf = f(Z).
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The generalization to operator-valued functions is straightforward. The density

of C[z] in H follows since D is polynomially convex. Namely, D has a basis

of neighborhoods consisting of open polynomial polyhedra P (use [25, lemma

2.7.4]). Fix such a P with P ⊂ U . Now P is a Runge domain, and so, by

the approximation theorem, the polynomials are dense in O(P ) with respect to

the uniform convergence on compact sets. Then use the continuity of the map

f 7→ f(Z) 1 to get C[z] = H. Also, (iii)’ ⇒ (iii) holds by the remarks preceding

[Lemma 1.1, 4]. �

By Lemma 1.1, conditions (i) – (iii) imply that H is densely spanned by the

space C[z] of the analytic polynomial functions on D. Then by a Gram–Schmidt

orthonormalization of all monomials zα (α ∈ Zn
+) in some arbitrary order we can

find an orthonormal basis of H consisting of polynomials ek ∈ C[z] (k ≥ 0) the

linear span of which is C[z].

Notation Let H be a d-space. Let M ⊂ H ⊗ E be a ∗-invariant closed linear

subspace, that is, we have (Zj ⊗ 1E)∗M ⊂ M for all j. Set Tj = PM (Zj ⊗ 1E)|M
where PM denotes the orthogonal projection from H onto M . Then TiTj = TjTi

for all i, j since T ∗
j = (Zj ⊗ 1E)∗|M . Set T = (T1, . . . , Tn). Let M∼ = {m ∈ M :∑

k ‖ek(T )∗m‖2 < ∞}, where (ek)k≥0 is any orthonormal basis of H consisting

of polynomials. The definition of M∼ proves to be independent of the choice of

(ek)k≥0.

Lemma 1.2. [4] Let H be a d-space over the domain D : ‖d(z)‖ < 1. Then:

(a) T is a commuting n–tuple with σ(T ) ⊂ D and for any function f ∈ O(D)

we have f(Z ⊗ 1E)∗M ⊂ M and f(T ) = PMf(Z ⊗ 1E)|M ;

(b) For any h ∈ H ⊗ E, z ∈ D and x ∈ E we have the identity 〈h, Cz ⊗ x〉 =

〈h(z), x〉;
(c) For any f ∈ MH(E, E·), z ∈ D and x ∈ E· we have T ∗

f (Cz ⊗ x) = Cz ⊗
f(z)∗x .

2. Main results

Theorem 2.1. [4] Let D : ‖d(z)‖ < 1 be a generalized analytic polyhedron.

Let H be a d-space, with reproducing kernel C. Let E, E· be Hilbert spaces and

M ⊂ H⊗E, M· ⊂ H⊗E· be ∗-invariant subspaces. Set Tj = PM (Zj ⊗ I)|M and

T·j = PM·
(Zj ⊗ I)|M· for j = 1, n. Let X ∈ B(M, M·) such that XTj = T·jX

for all j. Assume that M∼
· is dense in M· and set T = (T1, . . . , Tn), T· =

(T·1, . . . , T·n). The following are equivalent:
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(i) there exists F : D → B(E, E·) analytic with ‖f‖S ≤ 1 such that XPM =

PM·
TF ;

(ii) there exists a nonnegative operator Γ = [Γij ]
p
i,j=1 ∈ B(Mp

· ) such that

(1) (
1

C
(MT·

) )(1M·
− XX∗) =

p∑

j=1

Γjj −
p∑

i,j=1

q∑

k=1

dik(T·)Γijdjk(T·)
∗;

(iii) there are a Hilbert space K and a unitary operator

U =

(
u11 u12

u21 u22

)
:

Kp

⊕
E

→
Kq

⊕
E·

such that if the function F : D → B(E, E·) is given by

(2) F (z) = u22 + u21(1Kp − d(z) · u11)
−1d(z) · u12

then XPM = PM·
TF , where d(z) : Kq → Kp acts on column vectors

(kj)
q
j=1 ∈ Kq by matrix multiplication to the left,

(kj)
q
j=1 7→ (

q∑

j=1

dij(z)kj)
p
i=1 ∈ Kp .

For every unitary U as in (iii), the function F defined by (2) is a Schur class

multiplier. Hence TF : H⊗ E → H⊗ E· is bounded, with ‖TF‖ ≤ ‖F‖S ≤ 1, see

[4, 7]. We call F as usual a fractional transform. The right hand side of the (1)

can be written as well

(3)
∑

j

Γjj −
∑

i,j,k

dik(T·)Γijdjk(T·)
∗ = (trp ⊗1)

(
Γ
)
− (trq ⊗1)

(
dt(T·) Γ dt(T·)

∗ )

where dt(z) ∈ Mq,p(C) denotes the transposed of the matrix d(z) for z ∈ D, so

that dt(T·) ∈ Mq,p(B(M·)), while (trp ⊗ 1) (A) =
∑p

j=1 Ajj for A ∈ Mp(B(M·))
is the extension of the trace trp : Mp(C) → C to the algebra Mp(B(M·)) ≡
Mp(C) ⊗ B(M·) .

Proposition 2.2. [4] The hypotheses M∼
· = M· in Theorem 2.1 is automati-

cally fulfilled in any of the following cases: if dim M· < ∞; if σ(T·) ⊂ D (in

particular, if M· ⊂ spz∈KCz ⊗ E· for K ⊂ D compact); if M· = spiMi for an

arbitrary family of ∗-invariant subspaces Mi with M∼
i = Mi (in particular, if

M· = spz∈D,α∈Zn
+
ker (T ∗

· − z)α); also, it is not required if p = 1.
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Remind that a function K : Λ × Λ → B(H) (with Λ an arbitrary set and H a

Hilbert space) is called positive definite if
∑k

i,j=1〈K(λi, λj)ci, cj〉 ≥ 0 whenever k

is a positive integer, λ1, . . . , λk ∈ Λ and c1, . . . , ck ∈ H .

Remark. It is known [16, 17] that f ∈ O(D, B(E, E·)) belongs to the closed unit

ball of MH(E, E·) with respect to the multiplier norm f 7→ ‖Tf‖ iff the B(E·)–
valued map defined on D × D by (z, w) 7→ C(w, z)(1E·

− f(w)f(z)∗) is positive

definite.

Example Let Dp,q = {z = [zij ]i,j ∈ Mp,q(C) : ‖z‖ < 1} where p ≤ q. Then Dp,q

is a generalized analytic polyhedron with defining function d : Cpq → Mp,q(C),

d(z) = z. For any integer λ ≥ q, the λ-Bergman space H2
λ(Dp,q) is a d-space

with reproducing kernel C(z, w) = det (1p − zw∗)−λ. Moreover, there exists a

probability measure ν = νλ on Dp,q such that H2
λ(Dp,q) ⊂ L2(ν) isometrically,

and the pq-tuple Z = (Zij)i,j is subnormal (we refer to [12, 26, 35]).

Remark. Any Cartan domain D of type I–III is a generalized analytic polyhedron

and for each integer λ > 0 in the continuous part Wc(D) of the Wallach set [35]

there corresponds a generalized λ–Bergman space H := H2
λ(D). Then H satisfies

conditions (i)–(iii) of Definition 2 and 1/C(z, w) is a concrete polynomial of 2n

variables z, w. Whenever λ is sufficiently large, for example if λ > g − 1 where g

is the genus of D [35], condition (iv) also is fulfilled (it is an interesting question

if this holds for all λ ∈ Wc(D)). The Cartan domains of type I can be realized as

operator unit balls Dp,q of spaces B(Cq, Cp) of p×q matrices z = [zij ]i,j (Example

2.4). In this case Wc(D) = (p − 1,∞) and g = p + q. The Hardy and Bergman

space of Dp,q are obtained for λ = q and p + q, respectively. The Cartan domains

of type II correspond to the operator unit balls of the spaces of the symmetric

matrices, namely we take p = q, n = p(p + 1)/2 and d(z) = [dij(z)]i,j ∈ B(Cp)

where dij(z) = zij if i ≤ j and dij(z) = zji if i > j. The Cartan domains of type

III are the unit balls ‖z‖ < 1 of the skew–symmetric matrices z = −zt ∈ B(Cp).

Theorem 2.3. For every generalized analytic polyhedron D : ‖d(z)‖ < 1 there

exists a d-space H. Moreover, if there exists a map r ∈ O( d(D), Cn) such

that r(d(z)) ≡ z on a neighborhood of D and p ≤ q, then we can let H :=

spz∈D Cz( · ) be the functional Hilbert space with reproducing kernel C(z, w) :=

det(1p − d(z)d(w)∗)−q.

Proof. We can aways assume the existence of a map r as above. To this aim,

fix an ǫ > 0 sufficiently small so that ǫ|zj| < 1 for every z = (z1, . . . , zn) ∈ D

and j = 1, n. Let z̃ be the diagonal n × n matrix with entries z1, . . . , zn. We
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replace, if necessary, the defining function d : W → Mp,q(C) by the map d̃ : W →
Mp+n,q+n(C) given by d̃(z) = (εz̃) ⊕ d(z). Then let r take any (n + p) × (n + q)

matrix [xij ]i,j into ǫ−1(x11, . . . , xnn). Suppose therefore that d has a retraction r

as stated in the enunciation.

For every z, w ∈ D, set C(z, w) = det(1p − d(z)d(w)∗)−q. For each w ∈ D,

define the function Cw : D → C by Cw(z) = C(z, w) for z ∈ D. Let H0 be the

linear span of all functions Cw( · ) with w ∈ D. Thus C = Cp,q ◦ (d, d), where

(d, d)(z, w) = (d(z), d(w)) and Cp,q(x, y) = det(1p − xy∗)−q for x, y ∈ Dp,q is the

reprodcing kernel of the q–Bergman space H2
q (Dp,q) over the Cartan domain Dp,q.

Since Cp,q is positive–definite, the kernel C = Cp,q ◦ (d, d) also is positive definite.

Hence there exists a well defined inner product on H0 given on the generators

(Cw)w∈D by the formula 〈Cw, Cz〉 := Cw(z). Let H be the completion of H0 with

respect to the norm defined by this inner product.

We prove that H is a d-space. The reproducing kernel property h0(z) =

〈h0, Cz〉 (z ∈ D) obviously holds for all h ∈ H0. Hence for any h ∈ H and z ∈ D

there is a uniquely determined complex number, denoted by h(z), defined as the

limit of h0k(z) over a sequence (h0k)k of vectors h0k ∈ H0 such that h0k → h in

H as k → ∞. The limit h(z) is independent of the choice of the sequence (h0k)k.

Also, we obtain h(z) = 〈h, Cz〉 for any h ∈ H and z ∈ D. Then we can associate

a function (h(z))z∈D with any h ∈ H. Moreover this representation of H as a

functional space is injective, due to the density of H0 in H. Therefore there is a

continuous inclusion H ⊂ O(D) and the reproducing kernel of H is C. Condition

(i) of Definition 2 is then fulfilled. Obviously condition (ii) is satisfied, too. Also,

H is densely spanned by Cz ∈ O(D) (z ∈ D).

We prove that H is O(D)–invariant. Let then f ∈ O(D). Thus f ∈ O(U)

where U ⊂ Cn is open with D ⊂ U . Since D is compact, d(D) is compact,

too. Then from d(D) ⊂ d(D) we can derive the inclusion d(D) ⊂ d(D). Hence

r( d(D) ) ⊂ r(d(D)). Now r(d(D)) ⊂ D due to the identity r(d(z)) ≡ z for

z ∈ D. Thus r( d(D) ) ⊂ D. Hence d(D) ⊂ r−1(D) ⊂ r−1(U), that is, d(D) is a

(compact) subset of the open set r−1(U). Then we may set g := f ◦r ∈ O( d(D) ).

Since r◦d = id on a neighbourhood D̃ of D with D̃ ⊂ W , it follows that d| eD is an

analytic embedding. Then we can find an ε > 0 such that the set d(D̃)∩(1+ε)Dp,q

be a closed analytic submanifold of the open set (1 + ε)Dp,q. Now (1 + ε)Dp,q is

a Stein domain. Hence by known cohomological arguments (Cartan’s theorem B,

see for instance [Corollary 4.1.8, 24]), there exists G ∈ O((1 + ε)Dp,q) such that

G|d(D̃)∩(1+ε)Dp,q
= g. Compose the equality f ◦ r|d(D) = g|d(D) = G|d(D) with the

map d to the right, use the identity r◦d = id and derive that f = G◦d on D. Now
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G ∈ O(Dp,q ) and so G is a multiplier on the Hardy space H2
q (Dp,q). Then there

is a finite constant c > 0 such that the map (y, x) 7→ Cp,q(x, y)(c − G(x)G(y)) is

positive definite on Dp,q × Dp,q, see the Remark on the unit ball with respect to

the multiplier norm. Compose this map with (d, d) and use G ◦ d = f . Hence the

map (w, z) 7→ C(z, w)(c − f(z)f(w)) also is positive definite, on D × D. Then f

is a multiplier of H. Thus condition (iii) is fulfilled.

To prove now that ‖d(Z)‖ ≤ 1, we follow the same idea as above. Set

d′(x) = x on Dp,q. Let Z ′ be the pq–tuple of the multiplications by the vari-

ables xij on H2
q (Dp,q). Then we have the the estimate ‖d′(Z ′)‖ ≤ ‖d′‖∞,Dp,q

=

supx∈Dp,q
‖x‖ = 1. The map (y, x) 7→ Cp,q(x, y)(1p − xy∗) is then positive def-

inite. Compose it with (d, d). Hence (w, z) 7→ C(z, w)(1p − d(z)d(w)∗) also is

positive definite. Then d is a B(CqCp)–valued contractive multiplier on H, that

is, ‖d(Z)‖ ≤ 1. Condition (iv) also is thus fulfilled. �

Remark. The class of generalized analytic polyhedra is closed under intersections

D = ∩m
i=1Di for Di ⊂ C

n, cartesian products D =
∏m

i=1 Di for Di ⊂ C
ni ,

intersections D = D′∩L with certain analytic submanifolds L ⊂ C
n (in particular,

with linear subspaces L), and biholomorphic transforms. Whenever there are d-

spaces Hi (resp. H′) over the domains Di (resp. D′), we can define a suitable

d-space H over D, the reproducing kernel of which can be easily expressed in

terms of the kernels of Hi (resp. H′), see [5, 7].

The following Theorem 2.4, concerning the Nevanlinna-Pick problem, has been

directly obtained in [13] (see also [4, 7]). One can also derive it as a corollary of

Theorem 2.1 as shown below.

Theorem 2.4. [13] Let D : ‖d(z)‖ < 1 be a generalized analytic polyhedron. Let

S ⊂ D and f : S → B(E, E·) be arbitrary. Then the following are equivalent:

(i) f extends to a B(E, E·)-valued analytic map from Sd(E, E·);
(ii) there exists a positive definite map Γ : S × S → B(Ep

· ) such that

(4) 1E·
− f(t)f(s)∗ = trp

(
(1p − dt(s)∗dt(t))Γ(s, t)

)

=

p∑

j=1

Γjj(s, t) −
p∑

i,j=1

q∑

k=1

djk(s)dik(t)Γij(s, t) (s, t ∈ S)

where trp is the trace and dt(s) ∈ Mq,p(C) is the transposed of d(s);

(iii) there are a Hilbert space K and a unitary operator

U =

(
u11 u12

u21 u22

)
:

Kp

⊕
E

→
Kq

⊕
E·
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such that for every s ∈ S, f(s) = u22 +u21(1Kp −d(s) · u11)
−1d(s) · u12.

Proof. Let H be any d-space, the existence of which has been established by

Theorem 2.3. Let C = C(z, w) (z, w ∈ D) denote the reproducing kernel of H.

Define the subspaces M := sps∈SCs ⊗ E and M· := sps∈SCs ⊗ E· of H⊗ E and

H ⊗ E·, respectively. Then both M and M· are ∗-invariant. Let the operator

X : M → M· be defined on generators by X∗(Cs ⊗ e·) = Cs ⊗ f(s)∗e· for every

e· ∈ E· and s ∈ S. To obtain the equality (4), apply (1) to Cs ⊗ e· and take then

the inner product with Ct⊗e′· for arbitrary vectors e·, e′· ∈ E· and points s, t ∈ S.

We omit the details. �

Remark. Remind that taking S = D in Theorem 2.4 provides, via (i) ⇔ (iii), the

characterization of the elements of Sd(E, E·) as fractional transforms, see (2).

Given points sk ∈ D and vectors ξk ∈ E and ξ·k ∈ E· for k = 1, m where E, E·
are Hilbert spaces, the tangential Nevanlinna–Pick problem asks for the existence

of a bounded analytic function F : D → B(E, E·) with ‖F‖∞ ≤ 1 such that

F (sk)∗ξ·k = ξk for every k. In this context we have the following proposition.

Proposition 2.5. Let D : ‖d(z)‖ < 1 be a generalized analytic polyhedron. Let

E, E· be Hilbert spaces. Suppose we are given points sk ∈ D and vectors ξk ∈ E,

ξ·k ∈ E· for k = 1, m. The following statements are equivalent:

(a) there is F : D → B(E, E·) analytic with ‖F‖S ≤ 1 such that F (sk)∗ξ·k = ξk

∀k;

(b) there is a nonnegative pm × pm matrix [Gρσ ]ρ,σ of complex numbers, the

indices ρ, σ of which run the set {1, . . . , p} × {1, . . . , m}, such that for all k, l =

1, m

〈ξ·k, ξ·l〉 − 〈ξk, ξl〉 =

p∑

j=1

G(j,l)(j,k) −
p∑

i,j=1

m∑

r=1

dir(sl)djr(sk)G(i,l)(j,k) .

Proof. By Theorem 2.3, there exists a d-space H. Let the subspaces M ⊂ H⊗E

and M· ⊂ H ⊗ E· be defined as the linear spans M = spm
k=1 Csk

⊗ ξk and M· =

spm
k=1 Csk

⊗ξ·k, respectively. By the formula T ∗
F (Cs⊗ξ·) = Cs⊗ (F (s)∗ξ·) where

s ∈ D and ξ· ∈ E· (see Lemma 1.2, (c)), a function F ∈ H∞(D, B(E, E·)) is

a solution of the equation (a) iff T ∗
F (Csk

⊗ ξ·k) = Csk
⊗ ξk for all k = 1, m.

Also, both M and M· are ∗-invariant. Define X : M → M· by means of its

adjoint, according to the formula X∗ (Csk
⊗ ξ·k) = Csk

⊗ ξk for every k. Hence

X∗T ∗
i = T ∗

·iX
∗ for all i = 1, n. The equations F (sk)∗ξ·k = ξk are now equivalent

to XPM = PM·
TF . Moreover M∼

· is dense in M·, see Proposition 2.2. We can

apply then Theorem 2.1. Whenever condition (b) holds, we can obtain an operator
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Γ = [Γij ]
p
i,j=1 ∈ B(Mp

· ) with Γij : M· → M· defined on generators by the formula

〈Γij(Csk
⊗ξ·k), Csl

⊗ξ·l〉 = G(i,l)(j,k) for i, j = 1, p and k, l = 1, m. Since [Gρσ]ρ,σ

is positive definite, Γ ≥ 0. Moreover, a straightforward calculation leads to (1).

Then by the implication (ii) ⇒ (i) we get (a). Conversely, if (a) holds, implication

(i) ⇒ (ii) gives the existence of a nonnegative Γ satisfying (1), which provides a

nonnegative matrix [Gρσ ]ρ,δ by the formula from above. Moreover, condition (b)

is fulfilled. We omit the details, that follow a known line as in the case of the

polydisc [14, 15]. �

Fix a subset S ⊂ D. Suppose that for every s ∈ S, a set As ⊂ Zn
+ of mul-

tiindices α = (α1, . . . , αn) ∈ Zn
+ is given such that whenever α ∈ As, the whole

segment [0, α] ⊂ As, too, where [0, α] := {γ ∈ Zn
+; γ ≤ α} and the order γ ≤ α is

defined componentwise: γi ≤ αi for all i = 1, n. For each s ∈ S, let (cs,α)α∈As
be

a fixed family of operators cs,α ∈ B(E, E·) where E, E· are Hilbert spaces. The

Carathéodory-Féjér problem asks then for the existence of a bounded analytic

function f : D → B(E, E·) with ‖f‖∞ ≤ 1 whose Taylor series in each point

s ∈ S has the form

f(z) =
∑

α∈As

cs,α(z − s)α +
∑

α∈Zn
+\As

(∂αf)(s)

α!
(z − a)α (|z − s| < ε, ε = εs > 0),

namely of a function f with (∂αf)(s)/α! = cs,α for each s ∈ S and α ∈ As. As

usual ∂α = ∂α1
1 · · · ∂αn

n and α! = α1! · · ·αn!.

The following result was proved in [4] for E, E· = C and finite sets S, As under

the additional assumption that there exists a d-space H over D. We know, by

Theorem 2.3, that this hypotheses is redundant.

Theorem 2.6. (see [4]) Let D : ‖d(z)‖ < 1 be a generalized analytic polyhedron.

Let S ⊂ D be a subset. Let As ⊂ Zn
+ (s ∈ S) be sets of multiindices, with the

property that whenever α ∈ As the whole segment [0, α] ⊂ As, too. Let E, E· be

Hilbert spaces. Let cs,α ∈ B(E, E·) be given for each s ∈ S and α ∈ As. Then the

following are equivalent:

(a) there exists a bounded analytic function f : D → B(E, E·) with ‖f‖S ≤ 1

such that (∂αf)(s)/α! = cs,α for every point s ∈ S and multiindex α ∈ As;

(b) there exists a positive definite map G : Λ × Λ → B(E·), G = Gρσ for

ρ, σ ∈ Λ, where Λ := {ρ = (j, s, α) : j = 1, . . . , p ; s ∈ S ; α ∈ As}, such



COMMUTANT LIFTING AND INTERPOLATION ON ANALYTIC POLYHEDRA 531

that for every s, t ∈ S and α ∈ As, β ∈ At we have the equality

(5)

δ(α,β),(0,0)1E·
− cs,αc∗t,β =

p∑

j=1

G(j,s,α)(j,t,β)

−
∑

0≤δ≤α

0≤λ≤β

p∑

i,j=1

(
q∑

k=1

(∂α−δdik)(s)

(α − δ)!

(∂β−λdjk)(t)

(β − λ)!

)
G(i,s,δ)(j,t,λ)

where δ is Kronecker’s symbol, δ(α,β),(0,0) = 1 if (α, β) = (0, 0) and 0

otherwise.

Proof. By Theorem 2.3, there exists a d-space H over D. Then we can apply

Theorem 2.1, following the lines in [4]. To this aim, one shows firstly that for

each w ∈ D and α ∈ Zn
+ there exists a unique function Cα

w ∈ H such that

(6) (∂αf)(w)/α! = 〈f, Cα
w〉 (f ∈ H),

namely Cα
w(z) = (∂αCz)(w) / α! (z ∈ D). Then one proves that for any multiplier

ϕ ∈ O(D) of H, the identity

(7) T ∗
ϕ Cα

w =
∑

0≤γ≤α

(∂α−γf)(w)

(α − γ)!
Cγ

w

holds for any w ∈ D and α ∈ Zn
+ [4, lemma 4.1]. Hence the linear subspaces M :=

sp{Cα
s : s ∈ S ; α ∈ As}⊗E of H⊗E and M· := sp{Cα

s : s ∈ S ; α ∈ As}⊗E· of

H ⊗ E· are ∗-invariant, see Lemma 1.2. Denote by T ∈ B(M)n and T· ∈ B(M·)
the compressions of Z ⊗ 1E and Z ⊗ 1E·

to M and M·, respectively. Define then

X : M → M· by

(8) X∗ (Cα
s ⊗ e·) =

∑

0≤γ≤α

Cγ
s ⊗ (c∗s,α−γe·)

for arbitrary e· ∈ E· and s ∈ S, α ∈ As. Then T ∗
j X∗ = X∗T ∗

·j for any j = 1, n.

We have M∼
· = M∼

· by Proposition 2.2. These data fulfill then the hypotheses

of Theorem 2.1. The existence of a Schur class solution f of (a) is equivalent

to the existence of an f ∈ Sd(E, E·) such that T ∗
f M· ⊂ M· and T ∗

f |M·
= X∗,

or, equivalently, XPM = PMTf . We have (a) ⇒ (i) ⇒ (ii) ⇒ (b) and (b) ⇒
(ii) ⇒ (i) ⇒ (a), where the equivalence (ii) ⇔ (b) holds as follows. Assume (ii),

namely we have a nonnegative Γ = [Γij ]
p
i,j=1 ∈ B(Mp

· ) such that (1) holds, where

Γij ∈ B(M·). Note

(9) 〈ΓijC
β
t , Cα

s 〉 = G(i,s,α)(j,tβ)
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for arbitrary (i, s, α) and (j, t, β) in Λ. A map G = Gρσ for ρ, σ ∈ Λ is thus

defined. Then (b) holds by applying the equality (1) to Cβ
t ⊗ e· and taking the

inner product with Cα
s ⊗ e for arbitrary e ∈ E, e· ∈ E·, s, t ∈ S and α ∈ As,

β ∈ At; use also the equality 〈Cν
t , Cα

s 〉 =
(∂α

1 ∂
ν

2C)(s,t)
α!ν! , see [4]. Since Γ ≥ 0, the

map G = Gρσ is positive definite. Conversely, whenever a positive definite map

G is given as in (b), an operator Γ satisfying (ii) can be defined by (9). We omit

the details. �

In what follows we explicitely write condition (1) for a simple Cartan domain

D endowed with a Bergman-type functional Hilbert space H [26, 35]. Namely, we

consider the case p = q = 2 of Example 2.4. Let D be the domain

D2,2 = {z =

[
z1 z2

z3 z4

]
∈ M2,2(C) : ‖z‖ < 1}.

The Shilov boundary ∂0D of D consists then of all unitary 2 × 2 matrices. Let

ν be the unique probability measure on ∂0D (≡ the unitary group U(2)) that is

invariant under the group GL(D) of all linear automorphisms of D. Namely, ν is

the Haar measure on U(2). Then the Hardy space H2
2 (D) of D is isometrically

imbedded into L2(∂0D, ν), and the reproducing kernel of H2
2 (D) is C(z, w) =

det(12 − zw∗)−2 [35].

Proposition 2.7. Let D = D2,2 be the operator unit ball in M2,2(C). Let H =

H2
2 (D) be the Hardy space of D. Let E be a Hilbert space and M ⊂ H ⊗ E be a

∗-invariant subspace. Let X ∈ B(M) such that XTj = TjX for j = 1, 4 where

Tj = PM (Zj ⊗ I)|M . Suppose M∼ = M , too. Then the following are equivalent:

(i) there exists F : D → B(E) analytic with ‖F‖S ≤ 1 such that XPM =

PMTF ;

(ii) there exists a nonnegative operator Γ = [Γij ]
2
i,j=1 ∈ B(M ⊕ M) such that

1M − XX∗ − 2

4∑

j=1

Tj(I − XX∗)T ∗
j + 2(T1T4 − T2T3)(I − XX∗)(T ∗

1 T ∗
4 − T ∗

2 T ∗
3 )

+
4∑

j,k=1

TjTk(I −XX∗)T ∗
j T ∗

k − 2(T1T4 −T2T3)
4∑

j=1

Tj(I −XX∗)T ∗
j (T ∗

1 T ∗
4 −T ∗

2 T ∗
3 )

+(T1T4−T2T3)
2(I−XX∗)(T ∗

1 T ∗
4−T ∗

2 T ∗
3 )2 = Γ11+Γ22−

2∑

i,j,k=1

T2i+k−2ΓijT
∗
2j+k−2 ;
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(iii) there exist a Hilbert space K and a unitary operator U =
(
a b
c d

)
∈ B(K2⊕

E) such that if F (z) = d+c(1K2 −z ·a)−1 z ·b then XPM = PMTF , where

each z ∈ D (⊂ M2,2(C)) acts on column vectors from K2 as multiplication

to the left by z.

Proof. One verifies that H := H2
2 (D) is a d-space. Since H2

2 (D) ⊂ L2(∂0D, ν),

we have ‖d(Z)‖ ≤ ‖d‖∞ = supz∈D2,2
‖z‖ = 1. The other conditions also are

easily checked. Since the reproducing kernel C of H is given by the formula

C(z, w) = det(12 − zw∗)−2 for z, w ∈ D, we have

1/C(z, w) = (det(12 − zw∗))2 = (1 − tr (zw∗) + det (zw∗))2

= (1 −
4∑

j=1

zjwj + (z1z4 − z3z2)(w1w4 − w3w2))
2 =

1 − 2

4∑

j=1

zjwj + 2(z1z4 − z2z3)(w1w4 − w2w3) +

4∑

j,k=1

zjzkwjwk−

2(z1z4 − z2z3)
4∑

j=1

zjwj(w1w4 − w2w3) + (z1z4 − z2z3)
2(w1w4 − w2w3)

2.

Note also that dij(z) = z2i+j−2 for i, j = 1, 2. The conclusion follows by Theorem

2.1, using that for any polynomial f(z, w) := q(z)q(w), f(MT )(B) = q(T )Bq(T ∗).
�

Remark. Due to condition (iv): ‖d(Z)‖ ≤ 1 of Definition 1, the function (w, z) 7→
C(z, w)(1p − d(z)d(w)∗) is positive definite on D × D. Hence by Kolmogorov’s

theorem it can be factored as

(10) C(z, w)(1p − d(z)d(w)∗) = a(z)a(w)∗

where a = [ail]i,l : D → B(ℓ2, Cp). Moreover, we can take a( · ) analytic on D. To

this aim, use for instance the idea of [lemma 1.12, 1] providing analytic factoriza-

tions on compact subsets of D, together with Montel’s theorem to get one globally.

This factorization is not unique, in general. Suppose that there is a factorization

(10) with all entries ail ∈ O(D) (it is an interesting question if this holds in gen-

eral - to this aim, it would suffice to have it for p× q matrix balls). Then a slight

generalization of Theorem 2.1 could be proved following the lines of [4, 14], so

that the analogous of (1) be I−XX∗ = (trp⊗1B(M·))
(
at(T·)Γat(T·)∗

)
, where the

right hand side term is defined as so− limk→∞
∑k

l=0

∑p
i,j=1 ail(T·)Γijajl(T·)∗; in

particular, it follows that I−XX∗ ≥ 0. In this case the condition M∼
· = M· is not

necessary anymore. Whenever this condition holds, the previous equality would
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be an equivalent version of (1). To show for instance that it implies (1), we apply

above (1/C)(MT·
), then – briefly speaking – apply to (10) the functional calculus

of MT·
and use 1

C
(MT·

) ◦ C(MT·
) = ( 1

C
· C)(MT·

) = I and the representation (3)

of the right hand side of (1).

Remark. Let the domain D, the space H and the operator X : M → M· satisfy

the hypotheses of Theorem 2.1. Let Γ : Mp
· → Mp

· be a nonnegative operator

satisfying (1). Then any F = FU as in (iii) can be obtained by the known

”lurking isometry” trick. In our present case, we proceed as follows [4]. Take

any L ∈ B(Mp
· ) such that Γ = LL∗. Set L = [Lij ]

p
ij,=1 with Lij : M· → M·,

let K0 = Mp
· and write L =




L1

...

Lp


 : K0 → Mp

· where Lj = [Lj1 . . . Ljp] for

j = 1, p. The mapping

(11) V :
( p∑

j=1

L∗
jdjk(T·)

∗h
)q
k=1

⊕ (PE·
h) 7→ (L∗

jh)p
j=1⊕ (PEX∗h) (h ∈ M·)

is a well defined isometry from the linear subspace of Kq
0 ⊕ E· consisting of the

vectors in the left hand side of (11) into Kp
0 ⊕ E. Choose any Hilbert space

K ⊃ K0 and unitary U : Kp ⊕ E → Kq ⊕ E· such that U∗ extends V . Then

set U =

[
u11 u12

u21 u22

]
with u11 : Kp → Kq, u12 : E → Kq, u21 : Kp → E·,

u22 : E → E· and write (2).

3. Obtaining concrete solutions

In what follows we show by an elementary example how Theorems 2.1, 2.6 and

the last Remark from above could be applied to Carathéodory-Féjér interpolation

problems.

Example Let D = {z ∈ C2 : ‖
[

z1 z2

0 z2
1

]
‖ < 1} and a, b, c ∈ C be given with

|a| < 1. We show that the necessary and sufficient condition for the existence

of a function f analytic on D with Schur norm ‖f‖S ≤ 1 (⇒ ‖f‖∞ ≤ 1) such

that f(0) = a, (∂1f)(0) = b and (∂2f)(0) = c is that |a|2 +
√
|b|2 + |c|2 ≤

1. Also, we find below a particular solution f . Define l1, . . . , l6 as follows: if

|a|2 + |b| < 1, set l1 =
√

1 − |a|2, l2 = −ab√
1−|a|2

, l3 =

√
(1−|a|2)2−|b|2√

1−|a|2
, l4 = −ac√

1−|a|2
,

l5 = −bc√
1−|a|2

√
(1−|a|2)2−|b|2

and l6 =

√
1−|a|2

√
(1−|a|2)2−|b|2−|c|2√

(1−|a|2)2−|b|2
. If |a|2 + |b| = 1
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(⇒ c = 0), take l1, l2 as above and let l3, l4, l5 = 0 and l6 := l1. Define also

λ1, . . . , λ4 as follows: if |a|2 +
√
|b|2 + |c|2 < 1, set λ1 =

a
√

(1−|a|2)2−|b|2

(1−|a|2)
√

1+|c|2
, λ2 =

b

(1−|a|2)
√

1+|c|2
, λ3 = c√

(1−|a|2)2−|b|2−|c|2
√

1+|c|2
and λ4 = −

√
(1−|a|2)2−|b|2√

1+|c|2
. If

|a|2 +
√
|b|2 + |c|2 = 1, let λ1, λ2, λ4 = 0, λ3 = 1 for c 6= 0, and λ1, λ3, λ4 = 0,

λ2 = 1 for c = 0. Then for every a, b, c with |a|2 +
√
|b|2 + |c|2 ≤ 1, set

ρ(z) = 1 − (λ2 + l2
l1

) z1 − l6
l1

z6
1 + ( l6

l1
λ2 − l5

l1
λ3 + l2l6

l21
) z7

1 + ( l2
l21

λ2 − l3
l1

λ1) z2
1

+( l3l6
l21

λ1 − l2l6
l21

λ2 + l2l5−l3l4
l21

λ3) z8
1 − l4

l1
z2

and define f on D by the equality

(12)

f(z) = a + 1
ρ(z)

(
b z1 + c z2 + (λ4l3 − bλ2) z2

1 + (λ4l5 − cλ2) z1z2

−b l6
l1

z7
1 + cλ3

l5
l1

z7
1z2 + (cλ3

l3
l1

+ bλ2
l6
l1
− bλ3

l5
l1
− λ4

l3l6
l1

) z8
1

)
.

The solution f from above can be represented also as a fractional transform

(13) f(z) = a + [ v 0 ]

(
1K2 −

[
z1 z2

0 z2
1

]
·
[

r s

t u

])−1 [
z1 z2

0 z2
1

]
·
[

x

y

]

associated with the unitary U from below

U =




[
r s

t u

] [
x

y

]

[ v 0 ] a


 :

K2

⊕
C

→
K2

⊕
C

;

[
r s

t u

]
: K2 → K2

[
x

y

]
: C → K2

[ v 0 ] : K2 → C
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where K = C6 and the mappings r, s, t, u : K → K, x, y : C → K and v : K → C

are given by

r=




l2/l1 l3/l1 0 0 0 0

λ1 λ2 λ3 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 0




s=




0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1 0 0 0 0 0




x=




b/l1
λ4

0

0

0

0




t=




l4/l1 l5/l1 l6/l1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0




u=




0 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1




y=




c/l1
0

0

0

0

0




v=
[

l1 0 0 0 0 0
]

.

Let us see how the function f from above has been obtained. By the equality[
z1 z2

0 z2
1

]
=

[
1 0

0 ei·arg(z2
1)

] [
z1 z2

0 |z2
1 |

]
we see that z ∈ D if and only if

‖
[

z1 z2

0 |z1|2
]
‖ < 1, which easily shows that D is convex. The conditions of

Definition 1.2 are then fulfilled.

Existence of the solutions We use Theorem 2.6. Let S = {0} and A0 =

{(0, 0), (1, 0), (0, 1)}. Set E, E· = C and c(0,(0,0)) = a, c(0,(1,0)) = b, c(0,(0,1)) = c.

Order Λ ≡ {1, 2} × A0 as follows: { (1, (0, 0)), (1, (1, 0)), (1, (0, 1)), (2, (0, 0)),

(2, (1, 0)), (2, (0, 1)) } not
= {1, 2, 3, 4, 5, 6}. Then G = [Gρσ]ρ,σ∈Λ = [Gij]

6
i,j=1 is a

6 × 6 matrix of numbers. Write the equations (5) = (5)αβst for α, β ∈ A0 and

s, t = 0. To this aim, note that d21(z) ≡ 0 and (∂γd22)(0) = (∂γ(z2
1))(0) = 0

for all γ ∈ A0. Hence if the indices i, j ∈ {1, 2} and (i, j) 6= (1, 1), then: either

i = 2 whence (∂γdi1)(0) = (∂γd21)(0) = 0 and (∂γdi2)(0) = (∂γd22)(0) = 0 for

γ ∈ A0, namely (∂γdik)(0) = 0; or j = 2 whence (∂γdj1)(0) = (∂γd21)(0) = 0 and

(∂γdj2)(0) = (∂γd22)(0) = 0, namely (∂γdjk)(0) = 0. Hence the 2nd term, say
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σαβ , in the right hand side of (5) is

σαβ =

∑

δ≤α
λ≤β

2∑

k=1

(∂α−δd1k)(0)

(α − δ)!

(∂β−λd1k)(0)

(β − λ)!
G(1,δ)(1,λ) =

∑

δ≤α

λ≤β

(∂α−δd11)(0)(∂β−λd11)(0)G(1,δ)(1,λ)+
∑

δ≤α

λ≤β

(∂α−δd12)(0)(∂β−λd12)(0)G(1,δ)(1,λ).

Now (∂γd11)(0) = (∂γz1)(0) = 1 if γ = (1, 0), and it is 0 otherwise, while

(∂γd12)(0) = (∂γz2)(0) = 1 if γ = (0, 1), and it is 0 otherwise. Hence σαβ =

G(1,(0,0))(1,(0,0)) if either α = β = (1, 0) or α = β = (0, 1), and it is null otherwise.

Since the matrix [Gρδ]ρ,δ is selfadjoint, equality (5)αβst is identical to (5)βαts. We

write (5)αβ00 as follows:

α β

(0, 0) (0, 0) 1 − |a|2 =
∑2

j=1 G(j,(0,0))(j,(0,0)) = G11 + G44
(0, 0) (1, 0) − ab =

∑2
j=1 G(j,(0,0))(j,(1,0)) = G12 + G45

(0, 0) (0, 1) − ac =
∑2

j=1 G(j,(0,0))(j,(0,1)) = G13 + G46
(1, 0) (1, 0) −|b|2=∑2

j=1 G(j,(1,0))(j,(1,0))−G(1,(0,0))(1,(0,0))=G22+G55−G11
(1, 0) (0, 1) − bc =

∑2
j=1 G(j,(1,0))(j,(0,1)) = G23 + G56

(0, 1) (0, 1) −|c|2=∑2
j=1 G(j,(0,1))(j,(0,1))−G(1,(0,0))(1,(0,0))=G33+G66−G11 .

Note G =

[
g ∗
∗ g′

]
where g = [Gi j]

3
i,j=1 and g′ = [G3+i 3+j]

3
i,j=1 while the sym-

bol ∗ stands for compressions of G the entries Gi j of which are not involved in the

equations (5). We can assume that G =

[
g 0

0 g′

]
. Define the map π on M3(C)

by π [cij ]
3
i,j=1 =




0 0 0

0 c11 0

0 0 c11



 . Therefore (5) means the existence of two

nonnegative 3× 3 matrices g, g′ such that µabc :=




1 − |a|2 −ab −ac

−ab −|b|2 −bc

−ac −bc −|c|2



 =

g − πg + g′. One checks, using π2 = 0, that this is equivalent to saying that

µabc +πµabc (= g) is nonnegative, which leads to condition |a|2+
√
|b|2 + |c|2 ≤ 1.

For general problems of this type, whenever numerical values of data like a, b, c

are given we are lead to the question of finding a matrix G ≥ 0 satisfying a set of

linear restrictions.
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The functional Hilbert space Let H be the d-space with reproducing kernel

C(z, w) = det(12 − d(z)d(w)∗)−2 = det

(
12 −

[
z1 z2

0 z2
1

] [
w1 0

w2 w2
1

])−2

=

∣∣∣∣
1 − z1w1 − z2w2 −z2w

2
1

−z2
1w2 1 − z2

1w2
1

∣∣∣∣
−2

= (1 − z1w1 − z2w2 − z2
1w2

1 + z3
1w3

1)
−2,

see Theorem 2.3. For each α ∈ Z2
+, let Cα

0 ∈ H be the unique function such that

(14) (∂αh)(0)/α! = 〈h, Cα
0 〉 (h ∈ H),

namely Cα
0 (z) = (∂α Cz)(0)/α! (z ∈ D), see (6). Letting h := Cν

0 with ν ∈ Z2
+ in

(14) and using the formula of Cα
0 and the equality C(x, z) = C(z, x) provides us

with

(15) 〈Cν
0 , Cα

0 〉 =
(∂α

1 ∂ν
2 C)(0, 0)

α!ν!
(ν, α ∈ Z

2
+).

The factorization We find an operator L such that Γ = LL∗ where Γ is the

operator in Theorem 2.1, (ii). To this aim, we factorize the matrix g = µabc+πµabc

as g = ll∗ with l ∈ M3(C). For instance, we can search for a triangular matrix

l =




l1 0 0

l2 l3 0

l4 l5 l6


 , the entries l1, . . . , l6 of which we can successively found by

solving the equation ll∗ = µabc +πµabc (this is the case in our example). Then we

follow the proof of Theorem 2.6. Let M = M· = sp {C(0,0)
0 , C

(1,0)
0 , C

(0,1)
0 } ⊂ H.

Let Γ = [Γij ]
2
i,j=1 ∈ B(M2), with Γij : M → M for i, j = 1, 2, be the nonnegative

operator from Theorem 2.1. Remind that Γ provides the nonnegative matrix G

in Theorem 2.6 via the equalities

(16) 〈ΓijC
β
0 , Cα

0 〉 = G(i,α)(j,β) (α, β ∈ A0)

(see (9)). Using (15), we orthonormalize Gram–Schmidt the vectors C
(0,0)
0 , C

(1,0)
0

and C
(0,1)
0 . That is, we compute ∂

(1,0)
2 C and then 〈C(1,0)

0 , C
(0,1)
0 〉 =

(∂
(0,1)
1 ∂

(1,0)
2 C)(0,0)

(0,1)! (1,0)!

etc. It follows that the vectors e(0,0) := C0, e(1,0) := C
(1,0)
0 /

√
2 and e(0,1) :=

C
(0,1)
0 /

√
2 define an orthonormal basis of M . We identify M ≡ C3 so that

e(0,0) ≡ (1, 0, 0), e(1,0) ≡ (0, 1, 0) and e(0,1) ≡ (0, 0, 1). Hence the vectors e(0,0)⊕0,

e(1,0) ⊕ 0, e(0,1) ⊕ 0 and 0⊕ e(0,0), 0⊕ e(1,0), 0⊕ e(0,1) define an orthonormal basis

of M ⊕ M ≡ C
6. Let G′ =

[
G′

(i,α)(j,β)

]

(i,α),(j,β)∈Λ
be the matrix of the operator
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Γ =

[
Γ11 Γ12

Γ21 Γ22

]
∈ B(M ⊕ M) ≡ M6(C) with respect to this basis. Then we

easily check that 〈Γijeβ, eα〉 = G′
(i,α)(j,β) for (i, α), (j, β) ∈ {1, 2} × A0. Now, if a

given basis (Cγ
0 )γ of M provides an orthonormal basis (eα)α as above and we know

the coefficients bαγ such that eα =
∑

γ bαγCγ
0 , then plugging the eα’s in the pre-

vious equality and comparing with (16) gives G′
(i,α)(j,β) =

∑
λ,γ bβλbαγG(i,γ)(j,λ).

Using this equation we easily see that any factorization G = LL∗ of the matrix

G = [Gρδ]ρ,δ∈Λ provides a factorization G′ = LL∗ of the matrix G′ of Γ, that

is, a factorization Γ = LL∗ of the operator Γ ≡ G′ by means of the formulas

L(i,α)(k,ν) =
∑

γ bαγL(i,γ)(k,ν). In our present case, for L =

[
l 0

0 0

]
the oper-

ator Γ (≡ G′) has the form

[
Γ11 0

0 0

]
. Then L =

[
L11 0

0 0

]
, and we obtain

L11 =




l1 0 0

l2/
√

2 l3/
√

2 0

l4/
√

2 l5/
√

2 l6/
√

2



 . Hence

L∗
11e(0,0) = l1e(0,0)

(17) L∗
11e(1,0) =

l2√
2
e(0,0) +

l3√
2
e(1,0)

L∗
11e(0,1) =

l4√
2
e(0,0) +

l5√
2
e(1,0) +

l6√
2
e(0,1) .

The induced isometry The operator L obtained in the previous subsection

will provide now the isometry V , as described by the Remark at the end of Section

2. We compute the values, that we denote by v1, v2 resp. v3, of the vector in left

hand side of (11) for h = e(0,0), e(1,0) resp. e(0,1). Let K0 = K = M ⊕ M. Write

L =

[
L11 0

0 0

]
=

[
L1

L2

]
where L1 = [ L11 0 ] : K → M and L2 = [ 0 0 ] :

K → M. For any h ∈ M we have L∗
1h = (L∗

11h) ⊕ 0 and L∗
2h = 0. Hence

(

2∑

j=1

L∗
jdjk(T )∗h)2k=1 = (L∗

1d1k(T )∗h)2k=1 = ((L∗
11d1k(T )∗h) ⊕ 0)2k=1 =

((L∗
11d11(T )∗h) ⊕ (0, 0, 0) , (L∗

11d12(T )∗h) ⊕ (0, 0, 0)) .

We have d1k(T )∗ = d1k(Z)∗|M = T ∗
d1k

for k = 1, 2. Then using (7) for the

Toeplitz operator of symbol ϕ(z) := d11(z) = z1 we obtain d11(T )∗e(0,0) = 0,

d11(T )∗e(1,0) = 1√
2
e(0,0) and d11(T )∗e(0,1) = 0. Using now (7) for ϕ(z) :=

d12(z) = z2 we obtain d12(T )∗e(0,0) = 0, d12(T )∗e(1,0) = 0 and d12(T )∗e(0,1) =
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1√
2
e(0,0). Also, we have PCe(0,0) = 1, PCe(1,0) = 0 and PCe(0,1) = 0. Using (17)

and the computations of d1k(T )∗eα and PCeα we get

v1 :=(

2∑

j=1

L∗
jdjk(T )∗e(0,0))

2
k=1⊕PCe(0,0) =((0, 0, 0)⊕(0, 0, 0), (0, 0, 0)⊕(0, 0, 0))⊕1,

as well as v2 = (( l1√
2
, 0, 0) ⊕ 03 , 03 ⊕ 03) ⊕ 0 and v3 = (03 ⊕ 03 , ( l1√

2
, 0, 0) ⊕

03) ⊕ 0. We compute now the values w1, w2 and w3 of the right hand side of

(11) for h = e(0,0), e(1,0) and e(0,1) respectively. Using (8), we obtain X∗e(0,0) =

ae(0,0), X∗e(1,0) = 1√
2
be(0,0) + ae(1,0) and X∗e(0,1) = 1√

2
ce(0,0) + ae(0,1). Hence

PCX∗e(0,0) = a, PCX∗e(1,0) = 1√
2
b and PCX∗e(0,1) = 1√

2
c. Also, for any h ∈ M

we have (L∗
jh)2j=1 = (L∗

1h, L∗
2h) = ((L∗

11h) ⊕ 03, 03 ⊕ 03). Then using again (17)

we get

w1 :=(L∗
je(0,0))

2
j=1 ⊕ PCX∗e(0,0) = ((l1, 0, 0)⊕ (0, 0, 0) , (0, 0, 0)⊕ (0, 0, 0)) ⊕ a

and similarly w2 = (( l2√
2
, l3√

2
, 0)⊕ 03, 03 ⊕ 03)⊕ b√

2
, w3 = (( l4√

2
, l5√

2
, l6√

2
)⊕ 03, 03 ⊕

03)⊕ c√
2
. Therefore, the map (11) acts isometricaly between the linear subspaces

sp {v1, v2, v3} ⊂ K2⊕C and sp {w1, w2, w3} ⊂ K2⊕C of the space (K ×K)⊕
C = ((M⊕M)×(M⊕M))⊕C ≡ (C6×C

6)⊕C ≡ C
13 by vj 7→ wj (j = 1, 2, 3).

The solution as fractional transform We extend now the mapping V ob-

tained above to a unitary matrix, that we shall write as U∗, on the whole space

(K × K) ⊕ C. To this aim, we use the canonical basis of C
13 that we denote

by (fj)
13
j=1. Obviously we have v1 = f13, v2 = l1√

2
f1 and v3 = l1√

2
f7, as well as

w1 = l1f1+af13, w2 = l2√
2
f1+

l3√
2
f2+

b√
2
f13 and w3 = l4√

2
f1+

l5√
2
f2+

l6√
2
f3+

c√
2
f13.

Since U∗vj = wj for j = 1, 2, 3, the vectors U∗fj for j = 1, 7, 13 are known, that is,

we set U∗f1 =
√

2
l1

w2, U∗f7 =
√

2
l1

w3 and U∗f13 = w1. Note that sp {v1, v2, v3} =

sp {f1, f7, f13} is 3-dimensional and hence sp {w1, w2, w3} ⊂ sp {f1, f2, f3, f13}
also is 3-dimensional. We shall find a unit vector ω ∈ sp {f1, f2, f3, f13}, say

ω = λ1f1 +λ2f2 + λ3f3 + λ4f13 with λj ∈ C, such that ω ⊥ sp {w1, w2, w3}. Then

set U∗f2 = ω and U∗fj = fj+1 (j = 3, . . . , 6), U∗fj = fj (j = 8, . . . , 12). The

numbers λ1, . . . , λ4 are obtained from 〈ω, fj〉 = 0 for j = 1, 2, 3, 13 and ‖ω‖ = 1.

We can write now the matrix of U∗ (and hence, of U) with respect to the basis

(fj)
13
j=1 of K2 ⊕ C where K = C6. Then by (2) we obtain the solution f = fU

given by (13). Obtaining the representation (12) of f is straightforward.
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Remark. Doing the similar computation for the domain D2 (⊃ D) instead of D

shows that a solution f exists iff µabc can be represented as g − pg + g′ − p′g′ for

g, g′ ≥ 0 where p, p′ are defined by p [cij ]
3
i,j=1 =




0 0 0

0 c11 0

0 0 0



 and p′ [cij ]
3
i,j=1 =




0 0 0

0 0 0

0 0 c11



 respectively. This condition is stronger than the one in section 3:

µabc = g − πg + g′. For example, the triple (a, b, c) = (0, 1/
√

2, 1/
√

2) satisfies

|a|2 +
√
|b|2 + |c|2 ≤ 1 but there are no matrices g, g′ ≥ 0 such that µabc =

g− pg + g′− p′g′, for in this case summing the equations g11 + g′11 = 1− |a|2 = 1,

g22 + g′22 − g11 = −|b|2 = −1/2 and g33 + g′33 − g′11 = −|c|2 = 1 − 1/2 gives

g22 + g33 + g′22 + g′33 = 0, and so g22, g33, g′22, g′33 are null, whence g23, g′23 = 0

too, and hence the equation g23 +g′23 = −bc gives 0 = −1/2. Thus for these a, b, c

there are no solutions f with ‖f‖S ≤ 1 over the bidisc D2. However, there exist

solutions over D, for instance f(z) = (z1/
√

2+z2/
√

2−z7
1z2/2+z8

1)(1+z7
1/
√

2)−1

obtained by replacing a = 0 and b, c = 1/
√

2 in (12).
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