# FUNCTIONAL COMMUTANT LIFTING AND INTERPOLATION ON GENERALIZED ANALYTIC POLYHEDRA 

CALIN-GRIGORE AMBROZIE


#### Abstract

We show that for every generalized analytic polyhedron $D \subset \mathbb{C}^{n}$ there exists a suitable functional Hilbert space over $D$, allowing to apply the commutant lifting technique to various interpolation problems of Carathéodory-Féjér type. The existence of those solutions that belong to the Schur class of fractional transforms ( $\subset$ in the closed unit ball of $H^{\infty}(D)$ ) is thus characterized in terms of positivity conditions. Also, we show on a concrete example how to obtain such solutions.


## 1. Preliminaries

Introduction This work is concerned with applications and extensions of a functional commutant lifting result obtained in [4]. We remind a few topics with this respect. As it is known, the commutant lifting theorem for contractions can be used, by a Sarason's idea [32], to solve various interpolation problems for bounded analytic functions on the unit disc $\mathbb{D} \subset \mathbb{C}$. Namely, consider a contraction $T$ of class $C .0$ on a Hilbert space. Then $T$ is unitarily equivalent to the compression $\left.P_{M} T_{z}\right|_{M}$ of the operator $T_{z} \in B\left(H^{2}(\mathbb{D}, E)\right)$ of multiplication by the variable $z$ to a $*$-invariant closed linear subspace $M$ of $H^{2}(\mathbb{D}, E)$ [34]. Here $H^{2}(\mathbb{D}, E) \equiv H^{2}(\mathbb{D}) \otimes E$ is an $E$-valued Hardy space over the unit disk $\mathbb{D}$, where $E$ is a Hilbert space. Then a functional version of the commutant lifting theorem [23], suitable for applications to interpolation problems, says that each operator $X: M \rightarrow M$ in the commutant of the compression $T=P_{M} T_{z} \mid M$ dilates to an operator from the commutant of $T_{z}$ (that is, to a multiplication operator $T_{f}$

[^0]given by an operator-valued bounded analytic function $f: \mathbb{D} \rightarrow B(E))$ such that $\left\|T_{f}\right\|=\|X\|$. Since $\left\|T_{f}\right\|=\|f\|_{\infty}\left(:=\sup _{z \in D}\|f(z)\|\right)$, we have $\|f\|_{\infty}=\|X\|$. Moreover, $\left.T_{f}^{*}\right|_{M}=X^{*}$ or, equivalently, $X P_{M}=P_{M} T_{f}$.

When seeking for bounded analytic functions $f: D \rightarrow B(E)$ of controlled supnorm $\|f\|_{\infty} \leq 1$ and satisfying certain linear interpolation conditions, a commutant lifting setting usually can be associated to the interpolation data, so that the symbol $f$ of the operator $T_{f}$ from above is a solution of the interpolation problem iff $\|X\| \leq 1$. The simplest example in this sense is the $N$ evanlinna-Pick problem on the unit disc: given $z_{j} \in \mathbb{D}$ and $w_{j} \in \mathbb{C}$ for $j=\overline{1, m}$, one asks to study the existence of an analytic function $f$ on $\mathbb{D}$ with $\|f\|_{\infty} \leq 1$ such that $f\left(z_{j}\right)=w_{j}$ for all $j$. Consider then the Hardy space $H^{2}(\mathbb{D}) \subset L^{2}(\partial \mathbb{D})$, endowed with the reproducing kernel $C(z, \bar{w})=(1-z \bar{w})^{-1}$ for $z, w \in \mathbb{D}$. The functions $C_{w} \in H^{2}(\mathbb{D})$ defined by $C_{w}(z)=C(z, \bar{w})$ satisfy the reproducing kernel property: $h(w)=\left\langle h, C_{w}\right\rangle$ for every $h \in H^{2}(\mathbb{D})$ and $w \in \mathbb{D}$, namely we have $h(w)=\frac{1}{2 \pi} \int_{0}^{2 \pi} h\left(\mathrm{e}^{i t}\right) \frac{1}{1-w \mathrm{e}^{-i t}} d t$ via Cauchy's formula. Then we let $M=s p_{j=1}^{m} C_{z_{j}}$ be the linear span of the reproducing kernels $C_{z_{j}}(\cdot)$ and define $X: M \rightarrow M$ by mean of its adjoint, by $X^{*} C_{z_{j}}=\bar{w}_{j} C_{z_{j}}$ for $j=\overline{1, m}$. Whenever $f$ is a solution of the problem, by the reproducing kernel property we have $T_{f}^{*} C_{z_{j}}=\overline{f\left(z_{j}\right)} C_{z_{j}}=\bar{w}_{j} C_{z_{j}}=X^{*} C_{z_{j}}$, namely $\left.T_{f}^{*}\right|_{M}=X^{*}$. Using the intertwining lifting theorem, one checks that a solution $f$ exists iff $\|X\| \leq 1$. Explicitely writing that $I-X X^{*} \stackrel{\text { not }}{=} \Gamma$ is nonnegative on $M$ gives the well known Pick's condition that the matrix $\left[\Gamma_{i j}\right]_{i, j} \in M_{m}(\mathbb{C})$ defined by $1-w_{i} \bar{w}_{j}=\Gamma_{i j}\left(1-z_{i} \bar{z}_{j}\right)$ for $i, j=\overline{1, m}$ be nonnegative definite. Moreover, as it is known, all solutions $f$ can be described as transfer functions $f(z)=d+c(1-z a)^{-1} z b$ of a linear system described by a unitary operator $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ on a space of the form $K \oplus \mathbb{C}$ with $K=$ Hilbert space. Similarly we can treat more general interpolation problems, of Carathéodory-Féjér type for instance, involving given derivatives $\frac{d^{k} f}{d z^{k}}\left(z_{j}\right)=w_{k j}$ of $f$ in certain points $z_{j}$, in which case the space $M$ is spanned by corresponding partial derivatives $\left(\frac{\partial^{k}}{\partial \bar{w}^{k}}\right)\left(C_{w}(\cdot)\right)$, while $X$ is suitably defined in terms of $w_{k j}$ etc.

The $n$-dimensional case Subsequent developments of this technique were obtained by substituting for $\mathbb{D}$ various domains $D$ in $n$ variables $z_{1}, \ldots, z_{n}$ and correspondingly replacing $T$ by appropriate classes of multi-contractions $T=$ $\left(T_{1}, \ldots, T_{n}\right)$, like: for $D=$ the Euclidian unit ball (by [9], [30] and independently, by [18]); for the unit polydisc [2, 3, 14, 22]; for the noncommutative unit ball [28, 29]; for domains $D:\|d(z)\|<1$ with matrix-valued analytic defining functions
$d=d(z) \in M_{p, q}(\mathbb{C})[4,6,13]$, see also $[10,15,21,31]$. We can thus characterize the existence of those solutions $f$ that belong to the $\operatorname{Schur}$ class $\mathcal{S}_{d}(E, E$.), defined, for $E, E$. Hilbert spaces, as the unit ball consisting of all $f: D \rightarrow B(E, E$. ) analytic such that $\|f\|_{\mathcal{S}} \leq 1$ with respect to the norm $\|f\|_{\mathcal{S}}=\sup \{\|f(\mathcal{Z})\|:\|d(\mathcal{Z})\|<1\}$ where $\mathcal{Z}$ runs the set of all commuting $n$-tuples of operators $\mathcal{Z}_{j} \in B\left(\ell^{2}\right)(j=\overline{1, n})$ with Taylor joint spectra $\sigma(\mathcal{Z})$ in the domain of $d$. Condition $\|d(\mathcal{Z})\|<1$ implies that $\sigma(\mathcal{Z}) \subset D[6,7]$, and so $f(\mathcal{Z})$ makes sense by analytic functional calculus [36]. Note that $\|f\|_{\mathcal{S}}$ is not necessarily finite and generally we have $\|f\|_{\infty} \leq\|f\|_{\mathcal{S}}$. The equality $\|f\|_{\mathcal{S}}=\|f\|_{\infty}$ holds for the well known exceptions $D=\mathbb{D}$ and $D=\mathbb{D}^{2}$, by the (generalized) von Neumann inequality [8, 34]. The norm $\|\cdot\|_{\mathcal{S}}$ has been introduced by Agler in the pioneering works [2,3] concerned with the unit polydisc $D=\mathbb{D}^{n}$. For general domains $D$ in $\mathbb{C}^{n}$, the contractivity type condition concerning $X$ so that $X^{*}=\left.T_{f}^{*}\right|_{M}$ for an $f$ with $\|f\|_{\mathcal{S}} \leq 1$ means that $1_{M}-X X^{*}$ belongs to a positive subcone, defined in terms of $d$, of the cone of all nonnegative operators. In various interpolation problems one seeks for solutions $f: D \rightarrow B\left(E, E\right.$.) that belong to the multiplier space $M_{\mathcal{H}}(E, E$.) (consisting of all $f: D \rightarrow B(E, E$.) analytic such that $f(\mathcal{H} \otimes E) \subset \mathcal{H} \otimes E$.) with respect to a suitable reproducing kernel Hilbert space $\mathcal{H}$ of analytic functions on $D$. By the closed graph theorem, for each such $f$ the induced multiplication map $T_{f}: h \mapsto f h$ is necessarily bounded. One seeks then for solutions $f$ with multiplier norm $\leq 1$, that is, $\left\|T_{f}\right\| \leq 1$. As it is known, for $\mathcal{H}=H^{2}(\mathbb{D})$ an analytic function $f$ on $\mathbb{C}$ is a multiplier iff $f \in H^{\infty}(\mathbb{D})$ in which case $\left\|T_{f}\right\|=\|f\|$. Generally, for suitable $\mathcal{H}$ we have $\left\|T_{f}\right\| \leq\|f\|_{\mathcal{S}}$ [4]. We considered in [4] a generalized analytic polyhedron $D:\|d(z)\|<1$ in $\mathbb{C}^{n}$ (see Definition 1), supposed also that there exists a $d$-space $\mathcal{H}$ of analytic functions on $D$ (see Definition 2), and let then $X \in B(M)$ be an operator commuting with the compressions $\left.P_{M} T_{z_{j}}\right|_{M}$ of the multiplications $T_{z_{1}}, \ldots, T_{z_{n}}$ to a given $*$-invariant subsubpace $M \subset \mathcal{H} \otimes E$ where $E$ is a a Hilbert space. For given such $D, \mathcal{H}$ and $X$ (satisfying also the technical hypotheses $\overline{M^{\sim}}=M$, see Notation 1.7), the main result [4, Theorem 3.7] (here Theorem 2.1) characterizes the existence of the liftings $T_{f}$ of $X$ with $\|f\|_{\mathcal{S}} \leq 1$. These solutions $f$ are described as fractional transforms, too. As observed in [4], Theorem 2.1 applies to interpolation problems over Cartan domains of type I - III, in which cases suitable examples of $d$-spaces are known to exist. This covers the known cases of the unit polydisc and Euclidian unit ball. A natural question is whether for every domain $D:\|d(z)\|<1$ one can find a $d$-space $\mathcal{H}$ - in which case Theorem 2.1 could be applied to interpolation problems over various such domains. Moreover, the reproducing kernel should have a concrete form to be used in applications. We give a positive answer to this question by

Theorem 2.3, making use of the reproducing kernels of the weighted Bergman spaces of a Cartan domain of type I [26, 35]. Then we can apply the functional intertwining lifting technique to obtain various interpolation results of Agler-Pick and Carathéodory-Féjér type, see statements $2.4-2.7$ and the example in Section 3 that we completely work out to show how the solutions $f$ can be obtained once the reproducing kernel of $\mathcal{H}$ is known.

Notation For every complex Hilbert spaces $H$ and $K$, we write $B(H, K)$ for the space of all bounded linear operators from $H$ to $K$ endowed with the uniform norm, and $H \otimes K$ for the hilbertian tensor product of $H$ and $K$.

For $p, q$ positive integers, endow the space $M_{p, q}(\mathbb{C})$ of the $p \times q$ matrices with the operator norm induced by the identification $M_{p, q}(\mathbb{C}) \equiv B\left(\mathbb{C}^{q}, \mathbb{C}^{p}\right)$.

For any complex Hilbert space $H$, we identify $B\left(H^{q}, H^{p}\right)$ with the space $M_{p, q}(B(H))$ of all $p \times q$ - operator matrices with entries in $B(H)=B(H, H)$ where $H^{p}=\oplus_{1}^{p} H$.

For every open set $U$ in $\mathbb{C}^{n}$ ( $n=$ a fixed integer) and complex Banach space $X$, we denote by $O(U, X)$ the Fréchet space of all analytic $X$-valued functions on $U$; set $O(U)=O(U, \mathbb{C})$. For any compact subset $K \subset \mathbb{C}^{n}$, let $O(K)$ denote the algebra of germs of analytic functions on open neighborhoods of $K$.

For any $n$-tuple $T=\left(T_{1}, \ldots, T_{n}\right)$ with $T_{j} \in B(X)$ commuting on a Banach space $X, \sigma(T)$ denotes the Taylor joint spectrum of $T$ on $X$. We write $\Phi$ : $O(\sigma(T)) \rightarrow B(X), f \mapsto f(T)$ for Taylor's analytic functional calculus of $T$, see [20, 36]. As it is known [20], if $X$ is a Hilbert space then for any Hilbert spaces $E, E$. and open neighborhood $U$ of $\sigma(T)$ there is a unique continuous linear $\operatorname{map} \Phi_{E, E}: ~ O(U, B(E, E).) \cong O(U) \tilde{\otimes} B(E, E.) \rightarrow B(X \otimes E, X \otimes E$.) such that $\Phi_{E, E .}(f \otimes A)=f(T) \otimes A$ for $f \in O(U)$ and $A \in B(E, E$.). For simplicity, set again $f(T):=\Phi_{E, E}(f)$. For any commuting tuple $T$ on a Hilbert space $H$, we denote by $M_{T}$ the commuting $2 n$-tuple consisting of the left multiplications $L_{T_{j}}: B \mapsto T_{j} B$ and of the right multiplications $R_{T_{j}^{*}}: B \mapsto B T_{j}^{*}$ acting on $B(H)$. It is known [19] that $\sigma\left(M_{T}\right)=\sigma(T) \times \sigma\left(T^{*}\right)$. Then by analytic functional calculus $\left(f\left(M_{T}\right)\right)(B)$ makes sens for every function $f \in O\left(\sigma(T) \times \sigma\left(T^{*}\right)\right)$.

Definition 1. A generalized analytic polyhedron is an bounded open set $D \subset \mathbb{C}^{n}$ with polynomially convex closure $\bar{D}$, of the form $D=\{z \in W ;\|d(z)\|<1\}$ where $W \subset \mathbb{C}^{n}$ is open with $\bar{D} \subset W$ and $d: W \rightarrow B\left(\mathbb{C}^{q}, \mathbb{C}^{p}\right)$ is analytic with $0 \in W$ and $d(0)=0$.

Definition 2. Let $D:\|d(z)\|<1$ be a generalized analytic polyhedron. A $d$-space is a Hilbert space $\mathcal{H}$ of functions analytic on $D$ such that:
(i) all the point evaluations $h \mapsto h(w), w \in D$ are continuous on $\mathcal{H}$ (and so we have vectors $C_{w} \in \mathcal{H}$ such that $h(w)=\left\langle h, C_{w}\right\rangle$ for every $\left.h \in \mathcal{H}\right)$;
(ii) the function $C(z, u)=C_{\bar{u}}(z)$ does not vanish on $\Delta:=\{(z, u): z, \bar{u} \in D\}$ and $1 / C$ extends analytically on a neighborhood of $\bar{\Delta}$; assume also $C_{0}(\cdot) \equiv 1$;
(iii) $\mathcal{H}$ is $O(\bar{D})$-invariant under multiplications $h \mapsto f h$ and $O(\bar{D})$ is dense in $\mathcal{H}$;
(iv) the Toeplitz operator $T_{d}: \mathcal{H}^{q} \rightarrow \mathcal{H}^{p}$ acting on column vectors from $\mathcal{H}^{q}$ as left multiplication by the $p \times q$ matrix-valued function $\left.d\right|_{D}$ satisfies $\left\|T_{d}\right\| \leq 1$.

It is known that given a space $\mathcal{H}$ satisfying (i), the reproducing kernel function $C=C(z, u)$ defined by (ii) is necessarily analytic. If $f \in O(D, B(E, E)$.$) is a$ multiplier then it induces a bounded linear multiplication operator $T_{f}: \mathcal{H} \otimes E \rightarrow$ $\mathcal{H} \otimes E$. by $g \mapsto f g$, see [4]. Condition (iii) implies then that all $T_{f}$ with $f \in O(\bar{D})$ are continuous.

Lemma 1.1. Let $\mathcal{H}$ be a Hilbert space of analytic functions on $D$, satisfying the hypotheses (i) and (ii) of Definition 1. Set $\left(Z_{j} h\right)(z)=z_{j} h(z)$ for any $h \in \mathcal{H}$, $z \in D$ and let $Z=\left(Z_{1}, \ldots, Z_{n}\right)$. Condition (iii) is then equivalent to the following condition:
(iii)' the space $\mathcal{H}$ is invariant under $Z, \sigma(Z)=\bar{D}$ and $\mathbb{C}[z]$ is dense in $\mathcal{H}$.

If (i)-(iii) hold, then for every $f \in O(\bar{D})$ we have $f(Z)=T_{f}$. Moreover, for every Hilbert spaces $E$, $E$. and function $f: U \rightarrow B(E, E$.) analytic on an open set $U \supset \bar{D}$, the multiplication operator $T_{f} \otimes 1_{E}: \mathcal{H} \otimes E \rightarrow \mathcal{H} \otimes E$. given by $h \mapsto f h$ is well defined, continuous and we have $f\left(Z \otimes 1_{E}\right)=T_{f} \otimes 1_{E}$, that is, $\left(\left(f(Z) \otimes 1_{E}\right) h\right)(z)=f(z) h(z)$ for $h \in \mathcal{H} \otimes E$ and $z \in D$.

Proof. (iii) $\Rightarrow$ (iii)' . By the reproducing kernel property (i), for every $z \in D$ we have the equalities $Z_{j}^{*} C_{z}=\bar{z}_{j} C_{z}(j=\overline{1, n})$. This implies $\bar{z} \in \sigma\left(Z^{*}\right)$, and so $z \in \sigma(Z)$. Thus $\bar{D} \subset \sigma(Z)$. To prove the opposite inclusion, let $z_{0} \in \mathbb{C}^{n} \backslash \bar{D}$. Since $\bar{D}$ is polynomially convex, there is a polynomial $p$ such that $\left|p\left(z_{0}\right)\right|>\max _{\bar{D}}|p|$. Define $f$ on $D$ by $f(z)=\left(p\left(z_{0}\right)-p(z)\right)^{-1}$. Thus $f \in O(\bar{D})$. Now $T_{f}: \mathcal{H} \rightarrow \mathcal{H}$ is the inverse of the operator $p\left(z_{0}\right) 1_{\mathcal{H}}-T_{p}$. Then $p\left(z_{0}\right) \notin \sigma\left(T_{p}\right)$. We can easily check the equality $T_{p}=p(Z)$. Hence $p\left(z_{0}\right) \notin \sigma(p(Z))(=p(\sigma(Z))$ by the spectral mapping theorem). Then $z_{0} \notin \sigma(Z)$. Therefore we have the inclusion $\sigma(Z) \subset \bar{D}$, too. Thus $\sigma(Z)=\bar{D}$. Let $f$ be analytic on an open subset $U$ of $\mathbb{C}^{n}$ with $U \supset \bar{D}$. By the closed graph theorem, the map $O(U) \hookrightarrow B(\mathcal{H})$ given by $f \mapsto T_{f}$ is continuous. The uniqueness property of the analytic functional calculus then gives $T_{f}=f(Z)$.

The generalization to operator-valued functions is straightforward. The density of $\mathbb{C}[z]$ in $\mathcal{H}$ follows since $\bar{D}$ is polynomially convex. Namely, $\bar{D}$ has a basis of neighborhoods consisting of open polynomial polyhedra $P$ (use [25, lemma 2.7.4]). Fix such a $P$ with $P \subset U$. Now $P$ is a Runge domain, and so, by the approximation theorem, the polynomials are dense in $O(P)$ with respect to the uniform convergence on compact sets. Then use the continuity of the map $f \mapsto f(Z) 1$ to get $\overline{\mathbb{C}[z]}=\mathcal{H}$. Also, (iii)' $\Rightarrow$ (iii) holds by the remarks preceding [Lemma 1.1, 4].

By Lemma 1.1, conditions (i) - (iii) imply that $\mathcal{H}$ is densely spanned by the space $\mathbb{C}[z]$ of the analytic polynomial functions on $D$. Then by a Gram-Schmidt orthonormalization of all monomials $z^{\alpha}\left(\alpha \in \mathbb{Z}_{+}^{n}\right)$ in some arbitrary order we can find an orthonormal basis of $\mathcal{H}$ consisting of polynomials $e_{k} \in \mathbb{C}[z](k \geq 0)$ the linear span of which is $\mathbb{C}[z]$.

Notation Let $\mathcal{H}$ be a $d$-space. Let $M \subset \mathcal{H} \otimes E$ be a $*$-invariant closed linear subspace, that is, we have $\left(Z_{j} \otimes 1_{E}\right)^{*} M \subset M$ for all $j$. Set $T_{j}=\left.P_{M}\left(Z_{j} \otimes 1_{E}\right)\right|_{M}$ where $P_{M}$ denotes the orthogonal projection from $\mathcal{H}$ onto $M$. Then $T_{i} T_{j}=T_{j} T_{i}$ for all $i, j$ since $T_{j}^{*}=\left.\left(Z_{j} \otimes 1_{E}\right)^{*}\right|_{M}$. Set $T=\left(T_{1}, \ldots, T_{n}\right)$. Let $M^{\sim}=\{m \in M$ : $\left.\sum_{k}\left\|e_{k}(T)^{*} m\right\|^{2}<\infty\right\}$, where $\left(e_{k}\right)_{k \geq 0}$ is any orthonormal basis of $\mathcal{H}$ consisting of polynomials. The definition of $M^{\sim}$ proves to be independent of the choice of $\left(e_{k}\right)_{k \geq 0}$.

Lemma 1.2. [4] Let $\mathcal{H}$ be a d-space over the domain $D:\|d(z)\|<1$. Then:
(a) $T$ is a commuting n-tuple with $\sigma(T) \subset \bar{D}$ and for any function $f \in O(\bar{D})$ we have $f\left(Z \otimes 1_{E}\right)^{*} M \subset M$ and $f(T)=P_{M} f\left(Z \otimes 1_{E}\right) \mid M$;
(b) For any $h \in \mathcal{H} \otimes E, z \in D$ and $x \in E$ we have the identity $\left\langle h, C_{z} \otimes x\right\rangle=$ $\langle h(z), x\rangle$;
(c) For any $f \in M_{\mathcal{H}}(E, E),. z \in D$ and $x \in E$. we have $T_{f}^{*}\left(C_{z} \otimes x\right)=C_{z} \otimes$ $f(z)^{*} x$.

## 2. Main Results

Theorem 2.1. [4] Let $D:\|d(z)\|<1$ be a generalized analytic polyhedron. Let $\mathcal{H}$ be a d-space, with reproducing kernel C. Let E, E. be Hilbert spaces and $M \subset \mathcal{H} \otimes E, M . \subset \mathcal{H} \otimes E$. be $*$-invariant subspaces. Set $T_{j}=P_{M}\left(Z_{j} \otimes I\right) \mid M$ and $T_{\cdot j}=P_{M .}\left(Z_{j} \otimes I\right) \mid M$. for $j=\overline{1, n}$. Let $X \in B(M, M$.$) such that X T_{j}=T_{\cdot j} X$ for all $j$. Assume that $M^{\sim}$ is dense in $M$. and set $T=\left(T_{1}, \ldots, T_{n}\right), T$. $=$ $\left(T_{\cdot 1}, \ldots, T_{\cdot n}\right)$. The following are equivalent:
(i) there exists $F: D \rightarrow B\left(E, E\right.$.) analytic with $\|f\|_{\mathcal{S}} \leq 1$ such that $X P_{M}=$ $P_{M .} T_{F}$;
(ii) there exists a nonnegative operator $\Gamma=\left[\Gamma_{i j}\right]_{i, j=1}^{p} \in B\left(M_{\cdot}^{p}\right)$ such that

$$
\begin{equation*}
\left(\frac{1}{C}\left(M_{T .}\right)\right)\left(1_{M .}-X X^{*}\right)=\sum_{j=1}^{p} \Gamma_{j j}-\sum_{i, j=1}^{p} \sum_{k=1}^{q} d_{i k}(T .) \Gamma_{i j} d_{j k}(T .)^{*} \tag{1}
\end{equation*}
$$

(iii) there are a Hilbert space $K$ and a unitary operator

$$
U=\left(\begin{array}{ll}
u_{11} & u_{12} \\
u_{21} & u_{22}
\end{array}\right): \begin{aligned}
& K^{p} \\
& \oplus \\
& E
\end{aligned} \rightarrow \begin{aligned}
& K^{q} \\
& E
\end{aligned}
$$

such that if the function $F: D \rightarrow B(E, E$. ) is given by

$$
\begin{equation*}
F(z)=u_{22}+u_{21}\left(1_{K^{p}}-d(z) \cdot u_{11}\right)^{-1} d(z) \cdot u_{12} \tag{2}
\end{equation*}
$$

then $X P_{M}=P_{M} T_{F}$, where $d(z): K^{q} \rightarrow K^{p}$ acts on column vectors $\left(k_{j}\right)_{j=1}^{q} \in K^{q}$ by matrix multiplication to the left,

$$
\left(k_{j}\right)_{j=1}^{q} \mapsto\left(\sum_{j=1}^{q} d_{i j}(z) k_{j}\right)_{i=1}^{p} \in K^{p} .
$$

For every unitary $U$ as in (iii), the function $F$ defined by (2) is a Schur class multiplier. Hence $T_{F}: \mathcal{H} \otimes E \rightarrow \mathcal{H} \otimes E$. is bounded, with $\left\|T_{F}\right\| \leq\|F\|_{\mathcal{S}} \leq 1$, see $[4,7]$. We call $F$ as usual a fractional transform. The right hand side of the (1) can be written as well
(3) $\sum_{j} \Gamma_{j j}-\sum_{i, j, k} d_{i k}(T.) \Gamma_{i j} d_{j k}(T .)^{*}=\left(\operatorname{tr}_{p} \otimes 1\right)(\Gamma)-\left(\operatorname{tr}_{q} \otimes 1\right)\left(d^{t}(T.) \Gamma d^{t}(T .)^{*}\right)$
where $d^{t}(z) \in M_{q, p}(\mathbb{C})$ denotes the transposed of the matrix $d(z)$ for $z \in D$, so that $d^{t}(T.) \in M_{q, p}\left(B\left(M_{.}\right)\right)$, while $\left(\operatorname{tr}_{p} \otimes 1\right)(A)=\sum_{j=1}^{p} A_{j j}$ for $A \in M_{p}(B(M)$. is the extension of the $\operatorname{trace}^{\operatorname{tr}} \mathrm{tr}_{p}: M_{p}(\mathbb{C}) \rightarrow \mathbb{C}$ to the algebra $M_{p}(B(M).) \equiv$ $M_{p}(\mathbb{C}) \otimes B\left(M_{.}\right)$.
Proposition 2.2. [4] The hypotheses $\overline{M_{\sim}^{\sim}}=M$. in Theorem 2.1 is automatically fulfilled in any of the following cases: if $\operatorname{dim} M .<\infty$; if $\sigma(T.) \subset D$ (in particular, if $M . \subset \overline{s p}_{z \in K} C_{z} \otimes E$. for $K \subset D$ compact); if $M .=\overline{s p}_{i} M_{i}$ for an arbitrary family of $*$-invariant subspaces $M_{i}$ with $\overline{M_{i}^{\sim}}=M_{i}$ (in particular, if $\left.M .=\overline{s p}_{z \in D, \alpha \in \mathbb{Z}_{+}^{n}} \operatorname{ker}\left(T_{*}^{*}-\bar{z}\right)^{\alpha}\right)$; also, it is not required if $p=1$.

Remind that a function $K: \Lambda \times \Lambda \rightarrow B(H)$ (with $\Lambda$ an arbitrary set and $H$ a Hilbert space) is called positive definite if $\sum_{i, j=1}^{k}\left\langle K\left(\lambda_{i}, \lambda_{j}\right) c_{i}, c_{j}\right\rangle \geq 0$ whenever $k$ is a positive integer, $\lambda_{1}, \ldots, \lambda_{k} \in \Lambda$ and $c_{1}, \ldots, c_{k} \in H$.
Remark. It is known $[16,17]$ that $f \in O(D, B(E, E$. ) belongs to the closed unit ball of $M_{\mathcal{H}}\left(E, E\right.$. ) with respect to the multiplier norm $f \mapsto\left\|T_{f}\right\|$ iff the $B(E$. $)-$ valued map defined on $D \times D$ by $(z, w) \mapsto C(w, \bar{z})\left(1_{E}-f(w) f(z)^{*}\right)$ is positive definite.

Example Let $\mathbb{D}_{p, q}=\left\{z=\left[z_{i j}\right]_{i, j} \in M_{p, q}(\mathbb{C}):\|z\|<1\right\}$ where $p \leq q$. Then $\mathbb{D}_{p, q}$ is a generalized analytic polyhedron with defining function $d: \mathbb{C}^{p q} \rightarrow M_{p, q}(\mathbb{C})$, $d(z)=z$. For any integer $\lambda \geq q$, the $\lambda$-Bergman space $H_{\lambda}^{2}\left(\mathbb{D}_{p, q}\right)$ is a $d$-space with reproducing kernel $C(z, \bar{w})=\operatorname{det}\left(1_{p}-z w^{*}\right)^{-\lambda}$. Moreover, there exists a probability measure $\nu=\nu_{\lambda}$ on $\overline{\mathbb{D}}_{p, q}$ such that $H_{\lambda}^{2}\left(\mathbb{D}_{p, q}\right) \subset L^{2}(\nu)$ isometrically, and the $p q$-tuple $Z=\left(Z_{i j}\right)_{i, j}$ is subnormal (we refer to [12, 26, 35]).

Remark. Any Cartan domain $D$ of type I-III is a generalized analytic polyhedron and for each integer $\lambda>0$ in the continuous part $W_{c}(D)$ of the Wallach set [35] there corresponds a generalized $\lambda$-Bergman space $\mathcal{H}:=H_{\lambda}^{2}(D)$. Then $\mathcal{H}$ satisfies conditions (i)-(iii) of Definition 2 and $1 / C(z, \bar{w})$ is a concrete polynomial of $2 n$ variables $z, \bar{w}$. Whenever $\lambda$ is sufficiently large, for example if $\lambda>g-1$ where $g$ is the genus of $D$ [35], condition (iv) also is fulfilled (it is an interesting question if this holds for all $\left.\lambda \in W_{c}(D)\right)$. The Cartan domains of type I can be realized as operator unit balls $\mathbb{D}_{p, q}$ of spaces $B\left(\mathbb{C}^{q}, \mathbb{C}^{p}\right)$ of $p \times q$ matrices $z=\left[z_{i j}\right]_{i, j}$ (Example 2.4). In this case $W_{c}(D)=(p-1, \infty)$ and $g=p+q$. The Hardy and Bergman space of $\mathbb{D}_{p, q}$ are obtained for $\lambda=q$ and $p+q$, respectively. The Cartan domains of type II correspond to the operator unit balls of the spaces of the symmetric matrices, namely we take $p=q, n=p(p+1) / 2$ and $d(z)=\left[d_{i j}(z)\right]_{i, j} \in B\left(\mathbb{C}^{p}\right)$ where $d_{i j}(z)=z_{i j}$ if $i \leq j$ and $d_{i j}(z)=z_{j i}$ if $i>j$. The Cartan domains of type III are the unit balls $\|z\|<1$ of the skew-symmetric matrices $z=-z^{t} \in B\left(\mathbb{C}^{p}\right)$.

Theorem 2.3. For every generalized analytic polyhedron $D:\|d(z)\|<1$ there exists a d-space $\mathcal{H}$. Moreover, if there exists a map $r \in O\left(\overline{d(D)}, \mathbb{C}^{n}\right)$ such that $r(d(z)) \equiv z$ on a neighborhood of $\bar{D}$ and $p \leq q$, then we can let $\mathcal{H}:=$ $\overline{s p}_{z \in D} C_{z}(\cdot)$ be the functional Hilbert space with reproducing kernel $C(z, \bar{w}):=$ $\operatorname{det}\left(1_{p}-d(z) d(w)^{*}\right)^{-q}$.

Proof. We can aways assume the existence of a map $r$ as above. To this aim, fix an $\epsilon>0$ sufficiently small so that $\epsilon\left|z_{j}\right|<1$ for every $z=\left(z_{1}, \ldots, z_{n}\right) \in D$ and $j=\overline{1, n}$. Let $\tilde{z}$ be the diagonal $n \times n$ matrix with entries $z_{1}, \ldots, z_{n}$. We
replace, if necessary, the defining function $d: W \rightarrow M_{p, q}(\mathbb{C})$ by the map $\tilde{d}: W \rightarrow$ $M_{p+n, q+n}(\mathbb{C})$ given by $\tilde{d}(z)=(\varepsilon \tilde{z}) \oplus d(z)$. Then let $r$ take any $(n+p) \times(n+q)$ matrix $\left[x_{i j}\right]_{i, j}$ into $\epsilon^{-1}\left(x_{11}, \ldots, x_{n n}\right)$. Suppose therefore that $d$ has a retraction $r$ as stated in the enunciation.

For every $z, w \in D$, set $C(z, \bar{w})=\operatorname{det}\left(1_{p}-d(z) d(w)^{*}\right)^{-q}$. For each $w \in D$, define the function $C_{w}: D \rightarrow \mathbb{C}$ by $C_{w}(z)=C(z, \bar{w})$ for $z \in D$. Let $\mathcal{H}_{0}$ be the linear span of all functions $C_{w}(\cdot)$ with $w \in D$. Thus $C=C_{p, q} \circ(d, d)$, where $(d, d)(z, w)=(d(z), d(w))$ and $C_{p, q}(x, \bar{y})=\operatorname{det}\left(1_{p}-x y^{*}\right)^{-q}$ for $x, y \in \mathbb{D}_{p, q}$ is the reprodcing kernel of the $q$-Bergman space $H_{q}^{2}\left(\mathbb{D}_{p, q}\right)$ over the Cartan domain $\mathbb{D}_{p, q}$. Since $C_{p, q}$ is positive-definite, the kernel $C=C_{p, q} \circ(d, d)$ also is positive definite. Hence there exists a well defined inner product on $\mathcal{H}_{0}$ given on the generators $\left(C_{w}\right)_{w \in D}$ by the formula $\left\langle C_{w}, C_{z}\right\rangle:=C_{w}(z)$. Let $\mathcal{H}$ be the completion of $\mathcal{H}_{0}$ with respect to the norm defined by this inner product.

We prove that $\mathcal{H}$ is a $d$-space. The reproducing kernel property $h_{0}(z)=$ $\left\langle h_{0}, C_{z}\right\rangle(z \in D)$ obviously holds for all $h \in \mathcal{H}_{0}$. Hence for any $h \in \mathcal{H}$ and $z \in D$ there is a uniquely determined complex number, denoted by $h(z)$, defined as the limit of $h_{0 k}(z)$ over a sequence $\left(h_{0 k}\right)_{k}$ of vectors $h_{0 k} \in \mathcal{H}_{0}$ such that $h_{0 k} \rightarrow h$ in $\mathcal{H}$ as $k \rightarrow \infty$. The limit $h(z)$ is independent of the choice of the sequence $\left(h_{0 k}\right)_{k}$. Also, we obtain $h(z)=\left\langle h, C_{z}\right\rangle$ for any $h \in \mathcal{H}$ and $z \in D$. Then we can associate a function $(h(z))_{z \in D}$ with any $h \in \mathcal{H}$. Moreover this representation of $\mathcal{H}$ as a functional space is injective, due to the density of $\mathcal{H}_{0}$ in $\mathcal{H}$. Therefore there is a continuous inclusion $\mathcal{H} \subset O(D)$ and the reproducing kernel of $\mathcal{H}$ is $C$. Condition (i) of Definition 2 is then fulfilled. Obviously condition (ii) is satisfied, too. Also, $\mathcal{H}$ is densely spanned by $C_{z} \in O(\bar{D})(z \in D)$.

We prove that $\mathcal{H}$ is $O(\bar{D})$-invariant. Let then $f \in O(\bar{D})$. Thus $f \in O(U)$ where $U \subset \mathbb{C}^{n}$ is open with $\bar{D} \subset U$. Since $\bar{D}$ is compact, $d(\bar{D})$ is compact, too. Then from $d(D) \subset d(\bar{D})$ we can derive the inclusion $\overline{d(D)} \subset d(\bar{D})$. Hence $r(\overline{d(D)}) \subset r(d(\bar{D}))$. Now $r(d(\bar{D})) \subset \bar{D}$ due to the identity $r(d(z)) \equiv z$ for $z \in \bar{D}$. Thus $r(\overline{d(D)}) \subset \bar{D}$. Hence $\overline{d(D)} \subset r^{-1}(\bar{D}) \subset r^{-1}(U)$, that is, $\overline{d(\underline{D})}$ is a (compact) subset of the open set $r^{-1}(U)$. Then we may set $g:=f \circ r \in O(\overline{d(D)})$. Since $r \circ d=i d$ on a neighbourhood $\widetilde{D}$ of $\bar{D}$ with $\widetilde{D} \subset W$, it follows that $\left.d\right|_{\widetilde{D}}$ is an analytic embedding. Then we can find an $\varepsilon>0$ such that the set $d(\widetilde{D}) \cap(1+\varepsilon) \mathbb{D}_{p, q}$ be a closed analytic submanifold of the open set $(1+\varepsilon) \mathbb{D}_{p, q}$. Now $(1+\varepsilon) \mathbb{D}_{p, q}$ is a Stein domain. Hence by known cohomological arguments (Cartan's theorem B, see for instance [Corollary 4.1.8, 24]), there exists $G \in O\left((1+\varepsilon) \mathbb{D}_{p, q}\right)$ such that $\left.G\right|_{d(\tilde{D}) \cap(1+\varepsilon) \mathbb{D}_{p, q}}=g$. Compose the equality $\left.f \circ r\right|_{d(D)}=\left.g\right|_{d(D)}=\left.G\right|_{d(D)}$ with the map $d$ to the right, use the identity $r \circ d=i d$ and derive that $f=G \circ d$ on $D$. Now
$G \in O\left(\bar{D}_{p, q}\right)$ and so $G$ is a multiplier on the Hardy space $H_{q}^{2}\left(D_{p, q}\right)$. Then there is a finite constant $c>0$ such that the map $(y, x) \mapsto C_{p, q}(x, \bar{y})(c-G(x) \overline{G(y)})$ is positive definite on $\mathbb{D}_{p, q} \times \mathbb{D}_{p, q}$, see the Remark on the unit ball with respect to the multiplier norm. Compose this map with $(d, d)$ and use $G \circ d=f$. Hence the $\operatorname{map}(w, z) \mapsto C(z, \bar{w})(c-f(z) \overline{f(w)})$ also is positive definite, on $D \times D$. Then $f$ is a multiplier of $\mathcal{H}$. Thus condition (iii) is fulfilled.

To prove now that $\|d(Z)\| \leq 1$, we follow the same idea as above. Set $d^{\prime}(x)=x$ on $\mathbb{D}_{p, q}$. Let $Z^{\prime}$ be the $p q$-tuple of the multiplications by the variables $x_{i j}$ on $H_{q}^{2}\left(\mathbb{D}_{p, q}\right)$. Then we have the the estimate $\left\|d^{\prime}\left(Z^{\prime}\right)\right\| \leq\left\|d^{\prime}\right\|_{\infty, \mathbb{D}_{p, q}}=$ $\sup _{x \in \mathbb{D}_{p, q}}\|x\|=1$. The map $(y, x) \mapsto C_{p, q}(x, \bar{y})\left(1_{p}-x y^{*}\right)$ is then positive definite. Compose it with $(d, d)$. Hence $(w, z) \mapsto C(z, \bar{w})\left(1_{p}-d(z) d(w)^{*}\right)$ also is positive definite. Then $d$ is a $B\left(\mathbb{C}^{q} \mathbb{C}^{p}\right)$-valued contractive multiplier on $\mathcal{H}$, that is, $\|d(Z)\| \leq 1$. Condition (iv) also is thus fulfilled.
Remark. The class of generalized analytic polyhedra is closed under intersections $D=\cap_{i=1}^{m} D_{i}$ for $D_{i} \subset \mathbb{C}^{n}$, cartesian products $D=\prod_{i=1}^{m} D_{i}$ for $D_{i} \subset \mathbb{C}^{n_{i}}$, intersections $D=D^{\prime} \cap L$ with certain analytic submanifolds $L \subset \mathbb{C}^{n}$ (in particular, with linear subspaces $L$ ), and biholomorphic transforms. Whenever there are $d$ spaces $\mathcal{H}_{i}$ (resp. $\mathcal{H}^{\prime}$ ) over the domains $D_{i}$ (resp. $D^{\prime}$ ), we can define a suitable $d$-space $\mathcal{H}$ over $D$, the reproducing kernel of which can be easily expressed in terms of the kernels of $\mathcal{H}_{i}\left(\right.$ resp. $\left.\mathcal{H}^{\prime}\right)$, see [5, 7].

The following Theorem 2.4, concerning the Nevanlinna-Pick problem, has been directly obtained in [13] (see also [4, 7]). One can also derive it as a corollary of Theorem 2.1 as shown below.
Theorem 2.4. [13] Let $D:\|d(z)\|<1$ be a generalized analytic polyhedron. Let $S \subset D$ and $f: S \rightarrow B(E, E$.) be arbitrary. Then the following are equivalent:
(i) $f$ extends to a $B\left(E, E\right.$.)-valued analytic map from $\mathcal{S}_{d}(E, E$.);
(ii) there exists a positive definite map $\Gamma: S \times S \rightarrow B\left(E^{p}\right)$ such that

$$
\begin{gather*}
1_{E .}-f(t) f(s)^{*}=\operatorname{tr}_{p}\left(\left(1_{p}-d^{t}(s)^{*} d^{t}(t)\right) \Gamma(s, t)\right)  \tag{4}\\
=\sum_{j=1}^{p} \Gamma_{j j}(s, t)-\sum_{i, j=1}^{p} \sum_{k=1}^{q} \overline{d_{j k}(s)} d_{i k}(t) \Gamma_{i j}(s, t) \quad(s, t \in S)
\end{gather*}
$$

where $\operatorname{tr}_{p}$ is the trace and $d^{t}(s) \in M_{q, p}(\mathbb{C})$ is the transposed of $d(s)$;
(iii) there are a Hilbert space $K$ and a unitary operator

$$
U=\left(\begin{array}{ll}
u_{11} & u_{12} \\
u_{21} & u_{22}
\end{array}\right): \begin{aligned}
& K^{p} \\
& \oplus \\
& E
\end{aligned} \rightarrow \begin{aligned}
& \oplus \\
& \hline
\end{aligned}
$$

$$
\text { such that for every } s \in S, f(s)=u_{22}+u_{21}\left(1_{K^{p}}-d(s) \cdot u_{11}\right)^{-1} d(s) \cdot u_{12}
$$

Proof. Let $\mathcal{H}$ be any $d$-space, the existence of which has been established by Theorem 2.3. Let $C=C(z, \bar{w})(z, w \in D)$ denote the reproducing kernel of $\mathcal{H}$. Define the subspaces $M:=\overline{s p}_{s \in S} C_{s} \otimes E$ and $M .:=\overline{s p}_{s \in S} C_{s} \otimes E$. of $\mathcal{H} \otimes E$ and $\mathcal{H} \otimes E$., respectively. Then both $M$ and $M$. are $*$-invariant. Let the operator $X: M \rightarrow M$. be defined on generators by $X^{*}\left(C_{s} \otimes e.\right)=C_{s} \otimes f(s)^{*} e$. for every $e . \in E$. and $s \in S$. To obtain the equality (4), apply (1) to $C_{s} \otimes e$. and take then the inner product with $C_{t} \otimes e^{\prime}$ for arbitrary vectors $e, e^{\prime} \in E$. and points $s, t \in S$. We omit the details.

Remark. Remind that taking $S=D$ in Theorem 2.4 provides, via (i) $\Leftrightarrow$ (iii), the characterization of the elements of $\mathcal{S}_{d}(E, E$.) as fractional transforms, see (2).

Given points $s_{k} \in D$ and vectors $\xi_{k} \in E$ and $\xi_{\cdot k} \in E$. for $k=\overline{1, m}$ where $E, E$. are Hilbert spaces, the tangential Nevanlinna-Pick problem asks for the existence of a bounded analytic function $F: D \rightarrow B(E, E$. $)$ with $\|F\|_{\infty} \leq 1$ such that $F\left(s_{k}\right)^{*} \xi_{\cdot k}=\xi_{k}$ for every $k$. In this context we have the following proposition.

Proposition 2.5. Let $D:\|d(z)\|<1$ be a generalized analytic polyhedron. Let $E, E$. be Hilbert spaces. Suppose we are given points $s_{k} \in D$ and vectors $\xi_{k} \in E$, $\xi_{\cdot k} \in E$. for $k=\overline{1, m}$. The following statements are equivalent:
(a) there is $F: D \rightarrow B\left(E, E\right.$.) analytic with $\|F\|_{\mathcal{S}} \leq 1$ such that $F\left(s_{k}\right)^{*} \xi_{\cdot k}=\xi_{k}$ $\forall k$;
(b) there is a nonnegative pm $\times$ pm matrix $\left[G_{\rho \sigma}\right]_{\rho, \sigma}$ of complex numbers, the indices $\rho, \sigma$ of which run the set $\{1, \ldots, p\} \times\{1, \ldots, m\}$, such that for all $k, l=$ $\overline{1, m}$

$$
\left\langle\xi_{\cdot k}, \xi_{\cdot l}\right\rangle-\left\langle\xi_{k}, \xi_{l}\right\rangle=\sum_{j=1}^{p} G_{(j, l)(j, k)}-\sum_{i, j=1}^{p} \sum_{r=1}^{m} d_{i r}\left(s_{l}\right) \overline{d_{j r}\left(s_{k}\right)} G_{(i, l)(j, k)}
$$

Proof. By Theorem 2.3, there exists a $d$-space $\mathcal{H}$. Let the subspaces $M \subset \mathcal{H} \otimes E$ and $M . \subset \mathcal{H} \otimes E$. be defined as the linear spans $M=s p_{k=1}^{m} C_{s_{k}} \otimes \xi_{k}$ and $M .=$ $s p_{k=1}^{m} C_{s_{k}} \otimes \xi_{\cdot k}$, respectively. By the formula $T_{F}^{*}\left(C_{s} \otimes \xi\right.$. $)=C_{s} \otimes\left(F(s)^{*} \xi\right.$.) where $s \in D$ and $\xi . \in E$. (see Lemma 1.2, (c)), a function $F \in H^{\infty}(D, B(E, E$.)) is a solution of the equation (a) iff $T_{F}^{*}\left(C_{s_{k}} \otimes \xi_{\cdot k}\right)=C_{s_{k}} \otimes \xi_{k}$ for all $k=\overline{1, m}$. Also, both $M$ and $M$. are $*$-invariant. Define $X: M \rightarrow M$. by means of its adjoint, according to the formula $X^{*}\left(C_{s_{k}} \otimes \xi_{\cdot k}\right)=C_{s_{k}} \otimes \xi_{k}$ for every $k$. Hence $X^{*} T_{i}^{*}=T_{.}^{*} X^{*}$ for all $i=\overline{1, n}$. The equations $F\left(s_{k}\right)^{*} \xi_{\cdot k}=\xi_{k}$ are now equivalent to $X P_{M}=P_{M} T_{F}$. Moreover $M_{\sim}^{\sim}$ is dense in $M$., see Proposition 2.2. We can apply then Theorem 2.1. Whenever condition (b) holds, we can obtain an operator
$\Gamma=\left[\Gamma_{i j}\right]_{i, j=1}^{p} \in B\left(M^{p}\right)$ with $\Gamma_{i j}: M . \rightarrow M$. defined on generators by the formula $\left\langle\Gamma_{i j}\left(C_{s_{k}} \otimes \xi_{\cdot k}\right), C_{s_{l}} \otimes \xi_{\cdot l}\right\rangle=G_{(i, l)(j, k)}$ for $i, j=\overline{1, p}$ and $k, l=\overline{1, m}$. Since $\left[G_{\rho \sigma}\right]_{\rho, \sigma}$ is positive definite, $\Gamma \geq 0$. Moreover, a straightforward calculation leads to (1). Then by the implication (ii) $\Rightarrow$ (i) we get (a). Conversely, if (a) holds, implication (i) $\Rightarrow$ (ii) gives the existence of a nonnegative $\Gamma$ satisfying (1), which provides a nonnegative matrix $\left[G_{\rho \sigma}\right]_{\rho, \delta}$ by the formula from above. Moreover, condition (b) is fulfilled. We omit the details, that follow a known line as in the case of the polydisc $[14,15]$.

Fix a subset $S \subset D$. Suppose that for every $s \in S$, a set $A_{s} \subset \mathbb{Z}_{+}^{n}$ of multiindices $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{Z}_{+}^{n}$ is given such that whenever $\alpha \in A_{s}$, the whole segment $[0, \alpha] \subset A_{s}$, too, where $[0, \alpha]:=\left\{\gamma \in \mathbb{Z}_{+}^{n} ; \gamma \leq \alpha\right\}$ and the order $\gamma \leq \alpha$ is defined componentwise: $\gamma_{i} \leq \alpha_{i}$ for all $i=\overline{1, n}$. For each $s \in S$, let $\left(c_{s, \alpha}\right)_{\alpha \in A_{s}}$ be a fixed family of operators $c_{s, \alpha} \in B(E, E$.) where $E, E$. are Hilbert spaces. The Carathéodory-Féjér problem asks then for the existence of a bounded analytic function $f: D \rightarrow B\left(E, E\right.$.) with $\|f\|_{\infty} \leq 1$ whose Taylor series in each point $s \in S$ has the form
$f(z)=\sum_{\alpha \in A_{s}} c_{s, \alpha}(z-s)^{\alpha}+\sum_{\alpha \in \mathbb{Z}_{+}^{n} \backslash A_{s}} \frac{\left(\partial^{\alpha} f\right)(s)}{\alpha!}(z-a)^{\alpha} \quad\left(|z-s|<\varepsilon, \varepsilon=\varepsilon_{s}>0\right)$,
namely of a function $f$ with $\left(\partial^{\alpha} f\right)(s) / \alpha!=c_{s, \alpha}$ for each $s \in S$ and $\alpha \in A_{s}$. As usual $\partial^{\alpha}=\partial_{1}^{\alpha_{1}} \cdots \partial_{n}^{\alpha_{n}}$ and $\alpha!=\alpha_{1}!\cdots \alpha_{n}!$.

The following result was proved in [4] for $E, E .=\mathbb{C}$ and finite sets $S, A_{s}$ under the additional assumption that there exists a $d$-space $\mathcal{H}$ over $D$. We know, by Theorem 2.3, that this hypotheses is redundant.

Theorem 2.6. (see [4]) Let $D:\|d(z)\|<1$ be a generalized analytic polyhedron. Let $S \subset D$ be a subset. Let $A_{s} \subset \mathbb{Z}_{+}^{n}(s \in S)$ be sets of multiindices, with the property that whenever $\alpha \in A_{s}$ the whole segment $[0, \alpha] \subset A_{s}$, too. Let $E, E$. be Hilbert spaces. Let $c_{s, \alpha} \in B\left(E, E\right.$. ) be given for each $s \in S$ and $\alpha \in A_{s}$. Then the following are equivalent:
(a) there exists a bounded analytic function $f: D \rightarrow B\left(E, E\right.$.) with $\|f\|_{\mathcal{S}} \leq 1$ such that $\left(\partial^{\alpha} f\right)(s) / \alpha!=c_{s, \alpha}$ for every point $s \in S$ and multiindex $\alpha \in A_{s}$;
(b) there exists a positive definite map $G: \Lambda \times \Lambda \rightarrow B(E),. G=G_{\rho \sigma}$ for $\rho, \sigma \in \Lambda$, where $\Lambda:=\left\{\rho=(j, s, \alpha): j=1, \ldots, p ; s \in S ; \alpha \in A_{s}\right\}$, such
that for every $s, t \in S$ and $\alpha \in A_{s}, \beta \in A_{t}$ we have the equality

$$
\begin{aligned}
& \delta_{(\alpha, \beta),(0,0)} 1_{E .}-c_{s, \alpha} c_{t, \beta}^{*}=\sum_{j=1}^{p} G_{(j, s, \alpha)(j, t, \beta)} \\
& -\sum_{\substack{0 \leq \delta \leq \alpha \\
0 \leq \lambda \leq \beta}} \sum_{i, j=1}^{p}\left(\sum_{k=1}^{q} \frac{\left(\partial^{\alpha-\delta} d_{i k}\right)(s)}{(\alpha-\delta)!} \frac{\overline{\left(\partial^{\beta-\lambda} d_{j k}\right)(t)}}{(\beta-\lambda)!}\right) G_{(i, s, \delta)(j, t, \lambda)}
\end{aligned}
$$

where $\delta$ is Kronecker's symbol, $\delta_{(\alpha, \beta),(0,0)}=1$ if $(\alpha, \beta)=(0,0)$ and 0 otherwise.

Proof. By Theorem 2.3, there exists a $d$-space $\mathcal{H}$ over $D$. Then we can apply Theorem 2.1, following the lines in [4]. To this aim, one shows firstly that for each $w \in D$ and $\alpha \in \mathbb{Z}_{+}^{n}$ there exists a unique function $C_{w}^{\alpha} \in \mathcal{H}$ such that

$$
\begin{equation*}
\left(\partial^{\alpha} f\right)(w) / \alpha!=\left\langle f, C_{w}^{\alpha}\right\rangle \quad(f \in \mathcal{H}) \tag{6}
\end{equation*}
$$

namely $C_{w}^{\alpha}(z)=\left(\overline{\left.\partial^{\alpha} C_{z}\right)(w)} / \alpha!\quad(z \in D)\right.$. Then one proves that for any multiplier $\varphi \in O(D)$ of $\mathcal{H}$, the identity

$$
\begin{equation*}
T_{\varphi}^{*} C_{w}^{\alpha}=\sum_{0 \leq \gamma \leq \alpha} \frac{\overline{\left(\partial^{\alpha-\gamma} f\right)(w)}}{(\alpha-\gamma)!} C_{w}^{\gamma} \tag{7}
\end{equation*}
$$

holds for any $w \in D$ and $\alpha \in \mathbb{Z}_{+}^{n}$ [4, lemma 4.1]. Hence the linear subspaces $M:=$ $\operatorname{sp}\left\{C_{s}^{\alpha}: s \in S ; \alpha \in A_{s}\right\} \otimes E$ of $\mathcal{H} \otimes E$ and $M .:=\operatorname{sp}\left\{C_{s}^{\alpha}: s \in S ; \alpha \in A_{s}\right\} \otimes E$. of $\mathcal{H} \otimes E$. are $*$-invariant, see Lemma 1.2. Denote by $T \in B(M)^{n}$ and $T . \in B(M$. the compressions of $Z \otimes 1_{E}$ and $Z \otimes 1_{E}$. to $M$ and $M$., respectively. Define then $X: M \rightarrow M$. by

$$
\begin{equation*}
X^{*}\left(C_{s}^{\alpha} \otimes e .\right)=\sum_{0 \leq \gamma \leq \alpha} C_{s}^{\gamma} \otimes\left(c_{s, \alpha-\gamma}^{*} e .\right) \tag{8}
\end{equation*}
$$

for arbitrary $e, \in E$. and $s \in S, \alpha \in A_{s}$. Then $T_{j}^{*} X^{*}=X^{*} T_{. j}^{*}$ for any $j=\overline{1, n}$. We have $\overline{M^{\sim}}=M^{\sim} \sim$ by Proposition 2.2. These data fulfill then the hypotheses of Theorem 2.1. The existence of a Schur class solution $f$ of (a) is equivalent to the existence of an $f \in \mathcal{S}_{d}\left(E, E\right.$. ) such that $T_{f}^{*} M . \subset M$. and $\left.T_{f}^{*}\right|_{M .}=X^{*}$, or, equivalently, $X P_{M}=P_{M} T_{f}$. We have (a) $\Rightarrow$ (i) $\Rightarrow$ (ii) $\Rightarrow$ (b) and (b) $\Rightarrow$ (ii) $\Rightarrow$ (i) $\Rightarrow(\mathrm{a})$, where the equivalence (ii) $\Leftrightarrow$ (b) holds as follows. Assume (ii), namely we have a nonnegative $\Gamma=\left[\Gamma_{i j}\right]_{i, j=1}^{p} \in B\left(M_{.}^{p}\right)$ such that (1) holds, where $\Gamma_{i j} \in B\left(M_{\text {. }}\right)$. Note

$$
\begin{equation*}
\left\langle\Gamma_{i j} C_{t}^{\beta}, C_{s}^{\alpha}\right\rangle=G_{(i, s, \alpha)(j, t \beta)} \tag{9}
\end{equation*}
$$

for arbitrary $(i, s, \alpha)$ and $(j, t, \beta)$ in $\Lambda$. A map $G=G_{\rho \sigma}$ for $\rho, \sigma \in \Lambda$ is thus defined. Then (b) holds by applying the equality (1) to $C_{t}^{\beta} \otimes e$. and taking the inner product with $C_{s}^{\alpha} \otimes e$ for arbitrary $e \in E$, $e . \in E ., s, t \in S$ and $\alpha \in A_{s}$, $\beta \in A_{t}$; use also the equality $\left\langle C_{t}^{\nu}, C_{s}^{\alpha}\right\rangle=\frac{\left(\partial_{1}^{\alpha} \partial_{2}^{\nu} C\right)(s, \bar{t})}{\alpha!\nu!}$, see [4]. Since $\Gamma \geq 0$, the $\operatorname{map} G=G_{\rho \sigma}$ is positive definite. Conversely, whenever a positive definite map $G$ is given as in (b), an operator $\Gamma$ satisfying (ii) can be defined by (9). We omit the details.

In what follows we explicitely write condition (1) for a simple Cartan domain $D$ endowed with a Bergman-type functional Hilbert space $\mathcal{H}[26,35]$. Namely, we consider the case $p=q=2$ of Example 2.4. Let $D$ be the domain

$$
\mathbb{D}_{2,2}=\left\{z=\left[\begin{array}{ll}
z_{1} & z_{2} \\
z_{3} & z_{4}
\end{array}\right] \in M_{2,2}(\mathbb{C}):\|z\|<1\right\}
$$

The Shilov boundary $\partial_{0} D$ of $D$ consists then of all unitary $2 \times 2$ matrices. Let $\nu$ be the unique probability measure on $\partial_{0} D$ ( $\equiv$ the unitary group $U(2)$ ) that is invariant under the group $G L(D)$ of all linear automorphisms of $D$. Namely, $\nu$ is the Haar measure on $U(2)$. Then the Hardy space $H_{2}^{2}(D)$ of $D$ is isometrically imbedded into $L^{2}\left(\partial_{0} D, \nu\right)$, and the reproducing kernel of $H_{2}^{2}(D)$ is $C(z, \bar{w})=$ $\operatorname{det}\left(1_{2}-z w^{*}\right)^{-2}[35]$.

Proposition 2.7. Let $D=\mathbb{D}_{2,2}$ be the operator unit ball in $M_{2,2}(\mathbb{C})$. Let $\mathcal{H}=$ $H_{2}^{2}(D)$ be the Hardy space of $D$. Let $E$ be a Hilbert space and $M \subset \mathcal{H} \otimes E$ be a *-invariant subspace. Let $X \in B(M)$ such that $X T_{j}=T_{j} X$ for $j=\overline{1,4}$ where $T_{j}=\left.P_{M}\left(Z_{j} \otimes I\right)\right|_{M}$. Suppose $\overline{M^{\sim}}=M$, too. Then the following are equivalent:
(i) there exists $F: D \rightarrow B(E)$ analytic with $\|F\|_{\mathcal{S}} \leq 1$ such that $X P_{M}=$ $P_{M} T_{F}$;
(ii) there exists a nonnegative operator $\Gamma=\left[\Gamma_{i j}\right]_{i, j=1}^{2} \in B(M \oplus M)$ such that

$$
\begin{aligned}
& 1_{M}-X X^{*}-2 \sum_{j=1}^{4} T_{j}\left(I-X X^{*}\right) T_{j}^{*}+2\left(T_{1} T_{4}-T_{2} T_{3}\right)\left(I-X X^{*}\right)\left(T_{1}^{*} T_{4}^{*}-T_{2}^{*} T_{3}^{*}\right) \\
& +\sum_{j, k=1}^{4} T_{j} T_{k}\left(I-X X^{*}\right) T_{j}^{*} T_{k}^{*}-2\left(T_{1} T_{4}-T_{2} T_{3}\right) \sum_{j=1}^{4} T_{j}\left(I-X X^{*}\right) T_{j}^{*}\left(T_{1}^{*} T_{4}^{*}-T_{2}^{*} T_{3}^{*}\right) \\
& +\left(T_{1} T_{4}-T_{2} T_{3}\right)^{2}\left(I-X X^{*}\right)\left(T_{1}^{*} T_{4}^{*}-T_{2}^{*} T_{3}^{*}\right)^{2}=\Gamma_{11}+\Gamma_{22}-\sum_{i, j, k=1}^{2} T_{2 i+k-2} \Gamma_{i j} T_{2 j+k-2}^{*}
\end{aligned}
$$

(iii) there exist a Hilbert space $K$ and a unitary operator $U=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in B\left(K^{2} \oplus\right.$ $E)$ such that if $F(z)=d+c\left(1_{K^{2}}-z \cdot a\right)^{-1} z \cdot b$ then $X P_{M}=P_{M} T_{F}$, where each $z \in D\left(\subset M_{2,2}(\mathbb{C})\right)$ acts on column vectors from $K^{2}$ as multiplication to the left by $z$.

Proof. One verifies that $\mathcal{H}:=H_{2}^{2}(D)$ is a $d$-space. Since $H_{2}^{2}(D) \subset L^{2}\left(\partial_{0} D, \nu\right)$, we have $\|d(Z)\| \leq\|d\|_{\infty}=\sup _{z \in \mathbb{D}_{2,2}}\|z\|=1$. The other conditions also are easily checked. Since the reproducing kernel $C$ of $\mathcal{H}$ is given by the formula $C(z, \bar{w})=\operatorname{det}\left(1_{2}-z w^{*}\right)^{-2}$ for $z, w \in D$, we have

$$
\begin{gathered}
1 / C(z, \bar{w})=\left(\operatorname{det}\left(1_{2}-z w^{*}\right)\right)^{2}=\left(1-\operatorname{tr}\left(\mathrm{zw}^{*}\right)+\operatorname{det}\left(\mathrm{zw}^{*}\right)\right)^{2} \\
=\left(1-\sum_{j=1}^{4} z_{j} \bar{w}_{j}+\left(z_{1} z_{4}-z_{3} z_{2}\right)\left(\bar{w}_{1} \bar{w}_{4}-\bar{w}_{3} \bar{w}_{2}\right)\right)^{2}= \\
1-2 \sum_{j=1}^{4} z_{j} \bar{w}_{j}+2\left(z_{1} z_{4}-z_{2} z_{3}\right)\left(\bar{w}_{1} \bar{w}_{4}-\bar{w}_{2} \bar{w}_{3}\right)+\sum_{j, k=1}^{4} z_{j} z_{k} \bar{w}_{j} \bar{w}_{k}- \\
2\left(z_{1} z_{4}-z_{2} z_{3}\right) \sum_{j=1}^{4} z_{j} \bar{w}_{j}\left(\bar{w}_{1} \bar{w}_{4}-\bar{w}_{2} \bar{w}_{3}\right)+\left(z_{1} z_{4}-z_{2} z_{3}\right)^{2}\left(\bar{w}_{1} \bar{w}_{4}-\bar{w}_{2} \bar{w}_{3}\right)^{2} .
\end{gathered}
$$

Note also that $d_{i j}(z)=z_{2 i+j-2}$ for $i, j=1,2$. The conclusion follows by Theorem 2.1, using that for any polynomial $f(z, \bar{w}):=q(z) q(\bar{w}), f\left(M_{T}\right)(B)=q(T) B q\left(T^{*}\right)$.

Remark. Due to condition (iv): $\|d(Z)\| \leq 1$ of Definition 1 , the function $(w, z) \mapsto$ $C(z, \bar{w})\left(1_{p}-d(z) d(w)^{*}\right)$ is positive definite on $D \times D$. Hence by Kolmogorov's theorem it can be factored as

$$
\begin{equation*}
C(z, \bar{w})\left(1_{p}-d(z) d(w)^{*}\right)=a(z) a(w)^{*} \tag{10}
\end{equation*}
$$

where $a=\left[a_{i l}\right]_{i, l}: D \rightarrow B\left(\ell^{2}, \mathbb{C}^{p}\right)$. Moreover, we can take $a(\cdot)$ analytic on $D$. To this aim, use for instance the idea of [lemma 1.12, 1] providing analytic factorizations on compact subsets of $D$, together with Montel's theorem to get one globally. This factorization is not unique, in general. Suppose that there is a factorization (10) with all entries $a_{i l} \in O(\bar{D})$ (it is an interesting question if this holds in general - to this aim, it would suffice to have it for $p \times q$ matrix balls). Then a slight generalization of Theorem 2.1 could be proved following the lines of [4, 14], so that the analogous of (1) be $I-X X^{*}=\left(\operatorname{tr}_{p} \otimes 1_{B(M .)}\right)\left(a^{t}(T.) \Gamma a^{t}(T .)^{*}\right)$, where the right hand side term is defined as so $-\lim _{k \rightarrow \infty} \sum_{l=0}^{k} \sum_{i, j=1}^{p} a_{i l}(T.) \Gamma_{i j} a_{j l}(T .)^{*}$; in particular, it follows that $I-X X^{*} \geq 0$. In this case the condition $\overline{M_{\sim}^{\sim}}=M$. is not necessary anymore. Whenever this condition holds, the previous equality would
be an equivalent version of (1). To show for instance that it implies (1), we apply above $(1 / C)\left(M_{T}\right)$, then - briefly speaking - apply to (10) the functional calculus of $M_{T}$. and use $\frac{1}{C}\left(M_{T .}\right) \circ C\left(M_{T .}\right)=\left(\frac{1}{C} \cdot C\right)\left(M_{T .}\right)=I$ and the representation (3) of the right hand side of (1).
Remark. Let the domain $D$, the space $\mathcal{H}$ and the operator $X: M \rightarrow M$. satisfy the hypotheses of Theorem 2.1. Let $\Gamma: M^{p} \rightarrow M^{p}$ be a nonnegative operator satisfying (1). Then any $F=F_{U}$ as in (iii) can be obtained by the known "lurking isometry" trick. In our present case, we proceed as follows [4]. Take any $L \in B\left(M_{.}^{p}\right)$ such that $\Gamma=L L^{*}$. Set $L=\left[L_{i j}\right]_{i j,=1}^{p}$ with $L_{i j}: M . \rightarrow M$., let $K_{0}=M^{p}$ and write $L=\left[\begin{array}{c}L_{1} \\ \vdots \\ L_{p}\end{array}\right]: K_{0} \rightarrow M^{p}$ where $L_{j}=\left[L_{j 1} \ldots L_{j p}\right]$ for $j=\overline{1, p}$. The mapping
(11) $V:\left(\sum_{j=1}^{p} L_{j}^{*} d_{j k}(T .)^{*} h\right)_{k=1}^{q} \oplus\left(P_{E .} h\right) \mapsto\left(L_{j}^{*} h\right)_{j=1}^{p} \oplus\left(P_{E} X^{*} h\right) \quad(h \in M$.
is a well defined isometry from the linear subspace of $K_{0}^{q} \oplus E$. consisting of the vectors in the left hand side of (11) into $K_{0}^{p} \oplus E$. Choose any Hilbert space $K \supset K_{0}$ and unitary $U: K^{p} \oplus E \rightarrow K^{q} \oplus E$. such that $U^{*}$ extends $V$. Then set $U=\left[\begin{array}{ll}u_{11} & u_{12} \\ u_{21} & u_{22}\end{array}\right]$ with $u_{11}: K^{p} \rightarrow K^{q}, u_{12}: E \rightarrow K^{q}, u_{21}: K^{p} \rightarrow E$., $u_{22}: E \rightarrow E$. and write (2).

## 3. Obtaining concrete solutions

In what follows we show by an elementary example how Theorems 2.1, 2.6 and the last Remark from above could be applied to Carathéodory-Féjér interpolation problems.

Example Let $D=\left\{z \in \mathbb{C}^{2}:\left\|\left[\begin{array}{cc}z_{1} & z_{2} \\ 0 & z_{1}^{2}\end{array}\right]\right\|<1\right\}$ and $a, b, c \in \mathbb{C}$ be given with $|a|<1$. We show that the necessary and sufficient condition for the existence of a function $f$ analytic on $D$ with Schur norm $\|f\|_{\mathcal{S}} \leq 1\left(\Rightarrow\|f\|_{\infty} \leq 1\right)$ such that $f(0)=a,\left(\partial_{1} f\right)(0)=b$ and $\left(\partial_{2} f\right)(0)=c$ is that $|a|^{2}+\sqrt{|b|^{2}+|c|^{2}} \leq$ 1. Also, we find below a particular solution $f$. Define $l_{1}, \ldots, l_{6}$ as follows: if $|a|^{2}+|b|<1$, set $l_{1}=\sqrt{1-|a|^{2}}, l_{2}=\frac{-\bar{a} b}{\sqrt{1-|a|^{2}}}, l_{3}=\frac{\sqrt{\left(1-|a|^{2}\right)^{2}-|b|^{2}}}{\sqrt{1-|a|^{2}}}, l_{4}=\frac{-\bar{a} c}{\sqrt{1-|a|^{2}}}$, $l_{5}=\frac{-\bar{b} c}{\sqrt{1-|a|^{2}} \sqrt{\left(1-|a|^{2}\right)^{2}-|b|^{2}}}$ and $l_{6}=\frac{\sqrt{1-|a|^{2}} \sqrt{\left(1-|a|^{2}\right)^{2}-|b|^{2}-|c|^{2}}}{\sqrt{\left(1-|a|^{2}\right)^{2}-|b|^{2}}}$. If $|a|^{2}+|b|=1$
$(\Rightarrow c=0)$, take $l_{1}, l_{2}$ as above and let $l_{3}, l_{4}, l_{5}=0$ and $l_{6}:=l_{1}$. Define also $\lambda_{1}, \ldots, \lambda_{4}$ as follows: if $|a|^{2}+\sqrt{|b|^{2}+|c|^{2}}<1$, set $\lambda_{1}=\frac{\bar{a} \sqrt{\left(1-|a|^{2}\right)^{2}-|b|^{2}}}{\left(1-|a|^{2}\right) \sqrt{1+|c|^{2}}}, \lambda_{2}=$ $\frac{\bar{b}}{\left(1-|a|^{2}\right) \sqrt{1+|c|^{2}}}, \quad \lambda_{3}=\frac{\bar{c}}{\sqrt{\left(1-|a|^{2}\right)^{2}-|b|^{2}-|c|^{2}} \sqrt{1+|c|^{2}}}$ and $\lambda_{4}=-\frac{\sqrt{\left(1-|a|^{2}\right)^{2}-|b|^{2}}}{\sqrt{1+|c|^{2}}}$. If $|a|^{2}+\sqrt{|b|^{2}+|c|^{2}}=1$, let $\lambda_{1}, \lambda_{2}, \lambda_{4}=0, \lambda_{3}=1$ for $c \neq 0$, and $\lambda_{1}, \lambda_{3}, \lambda_{4}=0$, $\lambda_{2}=1$ for $c=0$. Then for every $a, b, c$ with $|a|^{2}+\sqrt{|b|^{2}+|c|^{2}} \leq 1$, set

$$
\begin{aligned}
\rho(z)= & 1-\left(\lambda_{2}+\frac{l_{2}}{l_{1}}\right) z_{1}-\frac{l_{6}}{l_{1}} z_{1}^{6}+\left(\frac{l_{6}}{l_{1}} \lambda_{2}-\frac{l_{5}}{l_{1}} \lambda_{3}+\frac{l_{2} l_{6}}{l_{1}^{2}}\right) z_{1}^{7}+\left(\frac{l_{2}}{l_{1}^{2}} \lambda_{2}-\frac{l_{3}}{l_{1}} \lambda_{1}\right) z_{1}^{2} \\
& +\left(\frac{l_{3} l_{6}}{l_{1}^{2}} \lambda_{1}-\frac{l_{2} l_{6}}{l_{1}^{2}} \lambda_{2}+\frac{l_{2} l_{5}-l_{3} l_{4}}{l_{1}^{2}} \lambda_{3}\right) z_{1}^{8}-\frac{l_{4}}{l_{1}} z_{2}
\end{aligned}
$$

and define $f$ on $D$ by the equality

$$
\begin{align*}
f(z)=a & +\frac{1}{\rho(z)}\left(b z_{1}+c z_{2}+\left(\lambda_{4} l_{3}-b \lambda_{2}\right) z_{1}^{2}+\left(\lambda_{4} l_{5}-c \lambda_{2}\right) z_{1} z_{2}\right. \\
& \left.-b \frac{l_{6}}{l_{1}} z_{1}^{7}+c \lambda_{3} \frac{l_{5}}{l_{1}} z_{1}^{7} z_{2}+\left(c \lambda_{3} \frac{l_{3}}{l_{1}}+b \lambda_{2} \frac{l_{6}}{l_{1}}-b \lambda_{3} \frac{l_{5}}{l_{1}}-\lambda_{4} \frac{l_{3} l_{6}}{l_{1}}\right) z_{1}^{8}\right) . \tag{12}
\end{align*}
$$

The solution $f$ from above can be represented also as a fractional transform
(13) $f(z)=a+\left[\begin{array}{ll}v & 0\end{array}\right]\left(1_{K^{2}}-\left[\begin{array}{cc}z_{1} & z_{2} \\ 0 & z_{1}^{2}\end{array}\right] \cdot\left[\begin{array}{cc}r & s \\ t & u\end{array}\right]\right)^{-1}\left[\begin{array}{cc}z_{1} & z_{2} \\ 0 & z_{1}^{2}\end{array}\right] \cdot\left[\begin{array}{l}x \\ y\end{array}\right]$
associated with the unitary $U$ from below

$$
\left.\left.U=\left[\begin{array}{ccc}
{\left[\begin{array}{ll}
r & s \\
t & u
\end{array}\right]} & {\left[\begin{array}{l}
x \\
y
\end{array}\right]} \\
{\left[\begin{array}{ll}
v & 0
\end{array}\right]} & a
\end{array}\right]: \begin{array}{ccc}
r & \\
K^{2} & & K^{2}
\end{array}\right]: \begin{array}{ll}
t & u
\end{array}\right]: K^{2} \rightarrow K^{2}
$$

where $K=\mathbb{C}^{6}$ and the mappings $r, s, t, u: K \rightarrow K, x, y: \mathbb{C} \rightarrow K$ and $v: K \rightarrow \mathbb{C}$ are given by

$$
\begin{aligned}
& r=\left[\begin{array}{cccccc}
l_{2} / l_{1} & l_{3} / l_{1} & 0 & 0 & 0 & 0 \\
\lambda_{1} & \lambda_{2} & \lambda_{3} & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] \quad s=\left[\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0
\end{array}\right] x=\left[\begin{array}{c}
b / l_{1} \\
\lambda_{4} \\
0 \\
0 \\
0 \\
0
\end{array}\right] \\
& t=\left[\begin{array}{cccccc}
l_{4} / l_{1} & l_{5} / l_{1} & l_{6} / l_{1} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] \quad u=\left[\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] y=\left[\begin{array}{c}
c / l_{1} \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right] \\
& v=\left[\begin{array}{llllll}
l_{1} & 0 & 0 & 0 & 0 & 0
\end{array}\right] .
\end{aligned}
$$

Let us see how the function $f$ from above has been obtained. By the equality $\left[\begin{array}{cc}z_{1} & z_{2} \\ 0 & z_{1}^{2}\end{array}\right]=\left[\begin{array}{cc}1 & 0 \\ 0 & \mathrm{e}^{i \cdot \arg \left(z_{1}^{2}\right)}\end{array}\right]\left[\begin{array}{cc}z_{1} & z_{2} \\ 0 & \left|z_{1}^{2}\right|\end{array}\right]$ we see that $z \in D$ if and only if $\left\|\left[\begin{array}{cc}z_{1} & z_{2} \\ 0 & \left|z_{1}\right|^{2}\end{array}\right]\right\|<1$, which easily shows that $D$ is convex. The conditions of Definition 1.2 are then fulfilled.

Existence of the solutions We use Theorem 2.6. Let $S=\{0\}$ and $A_{0}=$ $\{(0,0),(1,0),(0,1)\}$. Set $E, E .=\mathbb{C}$ and $c_{(0,(0,0))}=a, c_{(0,(1,0))}=b, c_{(0,(0,1))}=c$. Order $\Lambda \equiv\{1,2\} \times A_{0}$ as follows: $\{(1,(0,0)),(1,(1,0)),(1,(0,1)),(2,(0,0))$, $(2,(1,0)),(2,(0,1))\} \stackrel{\text { not }}{=}\{1,2,3,4,5,6\}$. Then $G=\left[G_{\rho \sigma}\right]_{\rho, \sigma \in \Lambda}=\left[G_{\mathrm{ij}}\right]_{\mathrm{i}, \mathrm{j}=1}^{6}$ is a $6 \times 6$ matrix of numbers. Write the equations $(5)=(5)_{\alpha \beta s t}$ for $\alpha, \beta \in A_{0}$ and $s, t=0$. To this aim, note that $d_{21}(z) \equiv 0$ and $\left(\partial^{\gamma} d_{22}\right)(0)=\left(\partial^{\gamma}\left(z_{1}^{2}\right)\right)(0)=0$ for all $\gamma \in A_{0}$. Hence if the indices $i, j \in\{1,2\}$ and $(i, j) \neq(1,1)$, then: either $i=2$ whence $\left(\partial^{\gamma} d_{i 1}\right)(0)=\left(\partial^{\gamma} d_{21}\right)(0)=0$ and $\left(\partial^{\gamma} d_{i 2}\right)(0)=\left(\partial^{\gamma} d_{22}\right)(0)=0$ for $\gamma \in A_{0}$, namely $\left(\partial^{\gamma} d_{i k}\right)(0)=0$; or $j=2$ whence $\left(\partial^{\gamma} d_{j 1}\right)(0)=\left(\partial^{\gamma} d_{21}\right)(0)=0$ and $\left(\partial^{\gamma} d_{j 2}\right)(0)=\left(\partial^{\gamma} d_{22}\right)(0)=0$, namely $\left(\partial^{\gamma} d_{j k}\right)(0)=0$. Hence the 2 nd term, say
$\sigma_{\alpha \beta}$, in the right hand side of (5) is

$$
\begin{gathered}
\sigma_{\alpha \beta}=\sum_{\substack{\delta \leq \alpha \\
\lambda \leq \beta}} \sum_{k=1}^{2} \frac{\left(\partial^{\alpha-\delta} d_{1 k}\right)(0)}{(\alpha-\delta)!} \frac{\overline{\left(\partial^{\beta-\lambda} d_{1 k}\right)(0)}}{(\beta-\lambda)!} G_{(1, \delta)(1, \lambda)}= \\
\sum_{\substack{\delta \leq \alpha \\
\lambda \leq \beta}}\left(\partial^{\alpha-\delta} d_{11}\right)(0) \overline{\left(\partial^{\beta-\lambda} d_{11}\right)(0)} G_{(1, \delta)(1, \lambda)+}+\sum_{\substack{\delta \leq \alpha \\
\lambda \leq \beta}}\left(\partial^{\alpha-\delta} d_{12}\right)(0) \overline{\left(\partial^{\beta-\lambda} d_{12}\right)(0)} G_{(1, \delta)(1, \lambda) .}
\end{gathered}
$$

Now $\left(\partial^{\gamma} d_{11}\right)(0)=\left(\partial^{\gamma} z_{1}\right)(0)=1$ if $\gamma=(1,0)$, and it is 0 otherwise, while $\left(\partial^{\gamma} d_{12}\right)(0)=\left(\partial^{\gamma} z_{2}\right)(0)=1$ if $\gamma=(0,1)$, and it is 0 otherwise. Hence $\sigma_{\alpha \beta}=$ $G_{(1,(0,0))(1,(0,0))}$ if either $\alpha=\beta=(1,0)$ or $\alpha=\beta=(0,1)$, and it is null otherwise. Since the matrix $\left[G_{\rho \delta}\right]_{\rho, \delta}$ is selfadjoint, equality $(5)_{\alpha \beta s t}$ is identical to $(5)_{\beta \alpha t s}$. We write (5) $)_{\alpha \beta 00}$ as follows:
$\alpha \quad \beta$

| $(0,0)(0,0)$ |
| :--- |
| $\left(0,\|a\|^{2}=\sum_{j=1}^{2} G_{(j,(0,0))(j,(0,0))}=G_{11}+G_{44}\right.$ |
| $(0,0)(1,0)$ |
| $(0,0)(0,1)$ |$\quad-a \bar{b}=\sum_{j=1}^{2} G_{(j,(0,0))(j,(1,0))}=G_{12}+G_{45}=\sum_{j=1}^{2} G_{(j,(0,0))(j,(0,1))}=G_{13}+G_{46}$.

Note $G=\left[\begin{array}{cc}g & * \\ * & g^{\prime}\end{array}\right]$ where $g=\left[G_{\mathrm{i}}\right]_{\mathrm{i}, \mathrm{j}=1}^{3}$ and $g^{\prime}=\left[G_{3+\mathrm{i}} 3+\mathrm{j}\right]_{\mathrm{i}, \mathrm{j}=1}^{3}$ while the symbol $*$ stands for compressions of $G$ the entries $G_{\mathrm{ij}}$ of which are not involved in the equations (5). We can assume that $G=\left[\begin{array}{cc}g & 0 \\ 0 & g^{\prime}\end{array}\right]$. Define the map $\pi$ on $M_{3}(\mathbb{C})$ by $\pi\left[c_{i j}\right]_{i, j=1}^{3}=\left[\begin{array}{ccc}0 & 0 & 0 \\ 0 & c_{11} & 0 \\ 0 & 0 & c_{11}\end{array}\right]$. Therefore (5) means the existence of two nonnegative $3 \times 3$ matrices $g, g^{\prime}$ such that $\mu_{a b c}:=\left[\begin{array}{ccc}1-|a|^{2} & -a \bar{b} & -a \bar{c} \\ -\bar{a} b & -|b|^{2} & -b \bar{c} \\ -\bar{a} c & -\bar{b} c & -|c|^{2}\end{array}\right]=$ $g-\pi g+g^{\prime}$. One checks, using $\pi^{2}=0$, that this is equivalent to saying that $\mu_{a b c}+\pi \mu_{a b c}(=g)$ is nonnegative, which leads to condition $|a|^{2}+\sqrt{|b|^{2}+|c|^{2}} \leq 1$. For general problems of this type, whenever numerical values of data like $a, b, c$ are given we are lead to the question of finding a matrix $G \geq 0$ satisfying a set of linear restrictions.

The functional Hilbert space Let $\mathcal{H}$ be the $d$-space with reproducing kernel

$$
\begin{gathered}
C(z, \bar{w})=\operatorname{det}\left(1_{2}-d(z) d(w)^{*}\right)^{-2}=\operatorname{det}\left(1_{2}-\left[\begin{array}{cc}
z_{1} & z_{2} \\
0 & z_{1}^{2}
\end{array}\right]\left[\begin{array}{cc}
\bar{w}_{1} & 0 \\
\bar{w}_{2} & \bar{w}_{1}^{2}
\end{array}\right]\right)^{-2}= \\
\left|\begin{array}{cc}
1-z_{1} \bar{w}_{1}-z_{2} \bar{w}_{2} & -z_{2} \bar{w}_{1}^{2} \\
-z_{1}^{2} \bar{w}_{2} & 1-z_{1}^{2} \bar{w}_{1}^{2}
\end{array}\right|^{-2}=\left(1-z_{1} \bar{w}_{1}-z_{2} \bar{w}_{2}-z_{1}^{2} \bar{w}_{1}^{2}+z_{1}^{3} \bar{w}_{1}^{3}\right)^{-2}
\end{gathered}
$$

see Theorem 2.3. For each $\alpha \in \mathbb{Z}_{+}^{2}$, let $C_{0}^{\alpha} \in \mathcal{H}$ be the unique function such that

$$
\begin{equation*}
\left(\partial^{\alpha} h\right)(0) / \alpha!=\left\langle h, C_{0}^{\alpha}\right\rangle \quad(h \in \mathcal{H}), \tag{14}
\end{equation*}
$$

namely $C_{0}^{\alpha}(z)=\overline{\left(\partial^{\alpha} C_{z}\right)(0)} / \alpha!(z \in D)$, see (6). Letting $h:=C_{0}^{\nu}$ with $\nu \in \mathbb{Z}_{+}^{2}$ in (14) and using the formula of $C_{0}^{\alpha}$ and the equality $\left.C(x, \bar{z})=\overline{C(z, \bar{x}}\right)$ provides us with

$$
\begin{equation*}
\left\langle C_{0}^{\nu}, C_{0}^{\alpha}\right\rangle=\frac{\left(\partial_{1}^{\alpha} \partial_{2}^{\nu} C\right)(0,0)}{\alpha!\nu!} \quad\left(\nu, \alpha \in \mathbb{Z}_{+}^{2}\right) \tag{15}
\end{equation*}
$$

The factorization We find an operator $L$ such that $\Gamma=L L^{*}$ where $\Gamma$ is the operator in Theorem 2.1, (ii). To this aim, we factorize the matrix $g=\mu_{a b c}+\pi \mu_{a b c}$ as $g=l l^{*}$ with $l \in M_{3}(\mathbb{C})$. For instance, we can search for a triangular matrix $l=\left[\begin{array}{ccc}l_{1} & 0 & 0 \\ l_{2} & l_{3} & 0 \\ l_{4} & l_{5} & l_{6}\end{array}\right]$, the entries $l_{1}, \ldots, l_{6}$ of which we can successively found by solving the equation $l l^{*}=\mu_{a b c}+\pi \mu_{a b c}$ (this is the case in our example). Then we follow the proof of Theorem 2.6. Let $M=M$. $=\operatorname{sp}\left\{C_{0}^{(0,0)}, C_{0}^{(1,0)}, C_{0}^{(0,1)}\right\} \subset \mathcal{H}$. Let $\Gamma=\left[\Gamma_{i j}\right]_{i, j=1}^{2} \in B\left(M^{2}\right)$, with $\Gamma_{i j}: M \rightarrow M$ for $i, j=1,2$, be the nonnegative operator from Theorem 2.1. Remind that $\Gamma$ provides the nonnegative matrix $G$ in Theorem 2.6 via the equalities

$$
\begin{equation*}
\left\langle\Gamma_{i j} C_{0}^{\beta}, C_{0}^{\alpha}\right\rangle=G_{(i, \alpha)(j, \beta)} \quad\left(\alpha, \beta \in A_{0}\right) \tag{16}
\end{equation*}
$$

(see (9)). Using (15), we orthonormalize Gram-Schmidt the vectors $C_{0}^{(0,0)}, C_{0}^{(1,0)}$ and $C_{0}^{(0,1)}$. That is, we compute $\partial_{2}^{(1,0)} C$ and then $\left\langle C_{0}^{(1,0)}, C_{0}^{(0,1)}\right\rangle=\frac{\left(\partial_{1}^{(0,1)} \partial_{2}^{(1,0)} C\right)(0,0)}{(0,1)!(1,0)!}$ etc. It follows that the vectors $e_{(0,0)}:=C_{0}, e_{(1,0)}:=C_{0}^{(1,0)} / \sqrt{2}$ and $e_{(0,1)}:=$ $C_{0}^{(0,1)} / \sqrt{2}$ define an orthonormal basis of $M$. We identify $M \equiv \mathbb{C}^{3}$ so that $e_{(0,0)} \equiv(1,0,0), e_{(1,0)} \equiv(0,1,0)$ and $e_{(0,1)} \equiv(0,0,1)$. Hence the vectors $e_{(0,0)} \oplus 0$, $e_{(1,0)} \oplus 0, e_{(0,1)} \oplus 0$ and $0 \oplus e_{(0,0)}, 0 \oplus e_{(1,0)}, 0 \oplus e_{(0,1)}$ define an orthonormal basis of $M \oplus M \equiv \mathbb{C}^{6}$. Let $G^{\prime}=\left[G_{(i, \alpha)(j, \beta)}^{\prime}\right]_{(i, \alpha),(j, \beta) \in \Lambda}$ be the matrix of the operator
$\Gamma=\left[\begin{array}{ll}\Gamma_{11} & \Gamma_{12} \\ \Gamma_{21} & \Gamma_{22}\end{array}\right] \in B(M \oplus M) \equiv M_{6}(\mathbb{C})$ with respect to this basis. Then we easily check that $\left\langle\Gamma_{i j} e_{\beta}, e_{\alpha}\right\rangle=G_{(i, \alpha)(j, \beta)}^{\prime}$ for $(i, \alpha),(j, \beta) \in\{1,2\} \times A_{0}$. Now, if a given basis $\left(C_{0}^{\gamma}\right)_{\gamma}$ of $M$ provides an orthonormal basis $\left(e_{\alpha}\right)_{\alpha}$ as above and we know the coefficients $b_{\alpha \gamma}$ such that $e_{\alpha}=\sum_{\gamma} b_{\alpha \gamma} C_{0}^{\gamma}$, then plugging the $e_{\alpha}$ 's in the previous equality and comparing with (16) gives $G_{(i, \alpha)(j, \beta)}^{\prime}=\sum_{\lambda, \gamma} b_{\beta \lambda} \bar{b}_{\alpha \gamma} G_{(i, \gamma)(j, \lambda)}$. Using this equation we easily see that any factorization $G=\mathcal{L} \mathcal{L}^{*}$ of the matrix $G=\left[G_{\rho \delta}\right]_{\rho, \delta \in \Lambda}$ provides a factorization $G^{\prime}=L L^{*}$ of the matrix $G^{\prime}$ of $\Gamma$, that is, a factorization $\Gamma=L L^{*}$ of the operator $\Gamma \equiv G^{\prime}$ by means of the formulas $L_{(i, \alpha)(k, \nu)}=\sum_{\gamma} \bar{b}_{\alpha \gamma} \mathcal{L}_{(i, \gamma)(k, \nu)}$. In our present case, for $\mathcal{L}=\left[\begin{array}{ll}l & 0 \\ 0 & 0\end{array}\right]$ the operator $\Gamma\left(\equiv G^{\prime}\right)$ has the form $\left[\begin{array}{cc}\Gamma_{11} & 0 \\ 0 & 0\end{array}\right]$. Then $L=\left[\begin{array}{cc}L_{11} & 0 \\ 0 & 0\end{array}\right]$, and we obtain $L_{11}=\left[\begin{array}{lll}l_{1} & 0 & 0 \\ l_{2} / \sqrt{2} & l_{3} / \sqrt{2} & 0 \\ l_{4} / \sqrt{2} & l_{5} / \sqrt{2} & l_{6} / \sqrt{2}\end{array}\right]$. Hence

$$
L_{11}^{*} e_{(0,0)}=\bar{l}_{1} e_{(0,0)}
$$

$$
\begin{gather*}
L_{11}^{*} e_{(1,0)}=\frac{\bar{l}_{2}}{\sqrt{2}} e_{(0,0)}+\frac{\bar{l}_{3}}{\sqrt{2}} e_{(1,0)}  \tag{17}\\
L_{11}^{*} e_{(0,1)}=\frac{\bar{l}_{4}}{\sqrt{2}} e_{(0,0)}+\frac{\bar{l}_{5}}{\sqrt{2}} e_{(1,0)}+\frac{\bar{l}_{6}}{\sqrt{2}} e_{(0,1)}
\end{gather*}
$$

The induced isometry The operator $L$ obtained in the previous subsection will provide now the isometry $V$, as described by the Remark at the end of Section 2. We compute the values, that we denote by $v_{1}, v_{2}$ resp. $v_{3}$, of the vector in left hand side of (11) for $h=e_{(0,0)}, e_{(1,0)}$ resp. $e_{(0,1)}$. Let $K_{0}=K=M \oplus M$. Write $L=\left[\begin{array}{cc}L_{11} & 0 \\ 0 & 0\end{array}\right]=\left[\begin{array}{l}L_{1} \\ L_{2}\end{array}\right]$ where $L_{1}=\left[\begin{array}{ll}L_{11} & 0\end{array}\right]: K \rightarrow M$ and $L_{2}=\left[\begin{array}{ll}0 & 0\end{array}\right]:$ $K \rightarrow M$. For any $h \in M$ we have $L_{1}^{*} h=\left(L_{11}^{*} h\right) \oplus 0$ and $L_{2}^{*} h=0$. Hence

$$
\begin{gathered}
\left(\sum_{j=1}^{2} L_{j}^{*} d_{j k}(T)^{*} h\right)_{k=1}^{2}=\left(L_{1}^{*} d_{1 k}(T)^{*} h\right)_{k=1}^{2}=\left(\left(L_{11}^{*} d_{1 k}(T)^{*} h\right) \oplus 0\right)_{k=1}^{2}= \\
\left(\left(L_{11}^{*} d_{11}(T)^{*} h\right) \oplus(0,0,0),\left(L_{11}^{*} d_{12}(T)^{*} h\right) \oplus(0,0,0)\right)
\end{gathered}
$$

We have $d_{1 k}(T)^{*}=\left.d_{1 k}(Z)^{*}\right|_{M}=T_{d_{1 k}}^{*}$ for $k=1,2$. Then using (7) for the Toeplitz operator of symbol $\varphi(z):=d_{11}(z)=z_{1}$ we obtain $d_{11}(T)^{*} e_{(0,0)}=0$, $d_{11}(T)^{*} e_{(1,0)}=\frac{1}{\sqrt{2}} e_{(0,0)}$ and $d_{11}(T)^{*} e_{(0,1)}=0$. Using now (7) for $\varphi(z):=$ $d_{12}(z)=z_{2}$ we obtain $d_{12}(T)^{*} e_{(0,0)}=0, d_{12}(T)^{*} e_{(1,0)}=0$ and $d_{12}(T)^{*} e_{(0,1)}=$
$\frac{1}{\sqrt{2}} e_{(0,0)}$. Also, we have $P_{\mathbb{C}} e_{(0,0)}=1, P_{\mathbb{C}} e_{(1,0)}=0$ and $P_{\mathbb{C}} e_{(0,1)}=0$. Using (17) and the computations of $d_{1 k}(T)^{*} e_{\alpha}$ and $P_{\mathbb{C}} e_{\alpha}$ we get
$v_{1}:=\left(\sum_{j=1}^{2} L_{j}^{*} d_{j k}(T)^{*} e_{(0,0)}\right)_{k=1}^{2} \oplus P_{\mathbb{C}} e_{(0,0)}=((0,0,0) \oplus(0,0,0), \quad(0,0,0) \oplus(0,0,0)) \oplus 1$,
as well as $v_{2}=\left(\left(\frac{\bar{l}_{1}}{\sqrt{2}}, 0,0\right) \oplus 0_{3}, 0_{3} \oplus 0_{3}\right) \oplus 0$ and $v_{3}=\left(0_{3} \oplus 0_{3},\left(\frac{\bar{l}_{1}}{\sqrt{2}}, 0,0\right) \oplus\right.$ $\left.0_{3}\right) \oplus 0$. We compute now the values $w_{1}, w_{2}$ and $w_{3}$ of the right hand side of (11) for $h=e_{(0,0)}, e_{(1,0)}$ and $e_{(0,1)}$ respectively. Using (8), we obtain $X^{*} e_{(0,0)}=$ $\bar{a} e_{(0,0)}, X^{*} e_{(1,0)}=\frac{1}{\sqrt{2}} \bar{b} e_{(0,0)}+\bar{a} e_{(1,0)}$ and $X^{*} e_{(0,1)}=\frac{1}{\sqrt{2}} \bar{c} e_{(0,0)}+\bar{a} e_{(0,1)}$. Hence $P_{\mathbb{C}} X^{*} e_{(0,0)}=\bar{a}, P_{\mathbb{C}} X^{*} e_{(1,0)}=\frac{1}{\sqrt{2}} \bar{b}$ and $P_{\mathbb{C}} X^{*} e_{(0,1)}=\frac{1}{\sqrt{2}} \bar{c}$. Also, for any $h \in M$ we have $\left(L_{j}^{*} h\right)_{j=1}^{2}=\left(L_{1}^{*} h, L_{2}^{*} h\right)=\left(\left(L_{11}^{*} h\right) \oplus 0_{3}, 0_{3} \oplus 0_{3}\right)$. Then using again (17) we get

$$
w_{1}:=\left(L_{j}^{*} e_{(0,0)}\right)_{j=1}^{2} \oplus P_{\mathbb{C}} X^{*} e_{(0,0)}=\left(\left(\bar{l}_{1}, 0,0\right) \oplus(0,0,0),(0,0,0) \oplus(0,0,0)\right) \oplus \bar{a}
$$

and similarly $w_{2}=\left(\left(\frac{\bar{l}_{2}}{\sqrt{2}}, \frac{\bar{l}_{3}}{\sqrt{2}}, 0\right) \oplus 0_{3}, 0_{3} \oplus 0_{3}\right) \oplus \frac{\bar{b}}{\sqrt{2}}, w_{3}=\left(\left(\frac{\bar{l}_{4}}{\sqrt{2}}, \frac{\bar{l}_{5}}{\sqrt{2}}, \frac{\bar{l}_{6}}{\sqrt{2}}\right) \oplus 0_{3}, 0_{3} \oplus\right.$ $\left.0_{3}\right) \oplus \frac{\bar{c}}{\sqrt{2}}$. Therefore, the map (11) acts isometricaly between the linear subspaces $s p\left\{v_{1}, v_{2}, v_{3}\right\} \quad \subset K^{2} \oplus \mathbb{C}$ and $s p\left\{w_{1}, w_{2}, w_{3}\right\} \quad \subset K^{2} \oplus \mathbb{C}$ of the space $(K \times K) \oplus$ $\mathbb{C}=((M \oplus M) \times(M \oplus M)) \oplus \mathbb{C} \equiv\left(\mathbb{C}^{6} \times \mathbb{C}^{6}\right) \oplus \mathbb{C} \equiv \mathbb{C}^{13}$ by $v_{j} \quad \mapsto \quad w_{j} \quad(j=1,2,3)$.

The solution as fractional transform We extend now the mapping $V$ obtained above to a unitary matrix, that we shall write as $U^{*}$, on the whole space $(K \times K) \oplus \mathbb{C}$. To this aim, we use the canonical basis of $\mathbb{C}^{13}$ that we denote by $\left(f_{j}\right)_{j=1}^{13}$. Obviously we have $v_{1}=f_{13}, v_{2}=\frac{\bar{l}_{1}}{\sqrt{2}} f_{1}$ and $v_{3}=\frac{\bar{l}_{1}}{\sqrt{2}} f_{7}$, as well as $w_{1}=\bar{l}_{1} f_{1}+\bar{a} f_{13}, w_{2}=\frac{\bar{l}_{2}}{\sqrt{2}} f_{1}+\frac{\bar{l}_{3}}{\sqrt{2}} f_{2}+\frac{\bar{b}}{\sqrt{2}} f_{13}$ and $w_{3}=\frac{\bar{l}_{4}}{\sqrt{2}} f_{1}+\frac{\bar{l}_{5}}{\sqrt{2}} f_{2}+\frac{\bar{l}_{6}}{\sqrt{2}} f_{3}+\frac{\bar{c}}{\sqrt{2}} f_{13}$. Since $U^{*} v_{j}=w_{j}$ for $j=1,2,3$, the vectors $U^{*} f_{j}$ for $j=1,7,13$ are known, that is, we set $U^{*} f_{1}=\frac{\sqrt{2}}{\bar{l}_{1}} w_{2}, U^{*} f_{7}=\frac{\sqrt{2}}{\bar{l}_{1}} w_{3}$ and $U^{*} f_{13}=w_{1}$. Note that $\operatorname{sp}\left\{v_{1}, v_{2}, v_{3}\right\}=$ $s p\left\{f_{1}, f_{7}, f_{13}\right\}$ is 3-dimensional and hence $s p\left\{w_{1}, w_{2}, w_{3}\right\} \subset s p\left\{f_{1}, f_{2}, f_{3}, f_{13}\right\}$ also is 3 -dimensional. We shall find a unit vector $\omega \in \operatorname{sp}\left\{f_{1}, f_{2}, f_{3}, f_{13}\right\}$, say $\omega=\bar{\lambda}_{1} f_{1}+\bar{\lambda}_{2} f_{2}+\bar{\lambda}_{3} f_{3}+\bar{\lambda}_{4} f_{13}$ with $\lambda_{j} \in \mathbb{C}$, such that $\omega \perp$ sp $\left\{w_{1}, w_{2}, w_{3}\right\}$. Then set $U^{*} f_{2}=\omega$ and $U^{*} f_{j}=f_{j+1}(j=3, \ldots, 6), U^{*} f_{j}=f_{j}(j=8, \ldots, 12)$. The numbers $\lambda_{1}, \ldots, \lambda_{4}$ are obtained from $\left\langle\omega, f_{j}\right\rangle=0$ for $j=1,2,3,13$ and $\|\omega\|=1$. We can write now the matrix of $U^{*}$ (and hence, of $U$ ) with respect to the basis $\left(f_{j}\right)_{j=1}^{13}$ of $K^{2} \oplus \mathbb{C}$ where $K=\mathbb{C}^{6}$. Then by (2) we obtain the solution $f=f_{U}$ given by (13). Obtaining the representation (12) of $f$ is straightforward.

Remark. Doing the similar computation for the domain $\mathbb{D}^{2}(\supset D)$ instead of $D$ shows that a solution $f$ exists iff $\mu_{a b c}$ can be represented as $g-p g+g^{\prime}-p^{\prime} g^{\prime}$ for $g, g^{\prime} \geq 0$ where $p, p^{\prime}$ are defined by $p\left[c_{i j}\right]_{i, j=1}^{3}=\left[\begin{array}{ccc}0 & 0 & 0 \\ 0 & c_{11} & 0 \\ 0 & 0 & 0\end{array}\right]$ and $p^{\prime}\left[c_{i j}\right]_{i, j=1}^{3}=$ $\left[\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & c_{11}\end{array}\right]$ respectively. This condition is stronger than the one in section 3: $\mu_{a b c}=g-\pi g+g^{\prime}$. For example, the triple $(a, b, c)=(0,1 / \sqrt{2}, 1 / \sqrt{2})$ satisfies $|a|^{2}+\sqrt{|b|^{2}+|c|^{2}} \leq 1$ but there are no matrices $g, g^{\prime} \geq 0$ such that $\mu_{a b c}=$ $g-p g+g^{\prime}-p^{\prime} g^{\prime}$, for in this case summing the equations $g_{11}+g_{11}^{\prime}=1-|a|^{2}=1$, $g_{22}+g_{22}^{\prime}-g_{11}=-|b|^{2}=-1 / 2$ and $g_{33}+g_{33}^{\prime}-g_{11}^{\prime}=-|c|^{2}=1-1 / 2$ gives $g_{22}+g_{33}+g_{22}^{\prime}+g_{33}^{\prime}=0$, and so $g_{22}, g_{33}, g_{22}^{\prime}, g_{33}^{\prime}$ are null, whence $g_{23}, g_{23}^{\prime}=0$ too, and hence the equation $g_{23}+g_{23}^{\prime}=-b \bar{c}$ gives $0=-1 / 2$. Thus for these $a, b, c$ there are no solutions $f$ with $\|f\|_{\mathcal{S}} \leq 1$ over the bidisc $\mathbb{D}^{2}$. However, there exist solutions over $D$, for instance $f(z)=\left(z_{1} / \sqrt{2}+z_{2} / \sqrt{2}-z_{1}^{7} z_{2} / 2+z_{1}^{8}\right)\left(1+z_{1}^{7} / \sqrt{2}\right)^{-1}$ obtained by replacing $a=0$ and $b, c=1 / \sqrt{2}$ in (12).

## References

[1] J. Agler, The Arveson extension theorem and coanalytic models, Integral Equations Operator Theory 5 (1982), 608-631.
[2] J. Agler, On the representation of certain holomorphic functions defined on the polydisc, in: Topics in Operator Theory: Ernst D. Hellinger Memorial Volume, Operator Theory: Advances and Applications, 48, Birkhäuser, Basel, 1990, 47-66.
[3] J. Agler and J.E. McCarthy, Nevanlinna-Pick interpolation on the bidisc, J. reine angew. Math. 506 (1999), 191-204.
[4] C.-G. Ambrozie, J. Eschmeier, A commutant lifting result on analytic polyhedra, Banach Center Publications 67 (2005), 83-108.
[5] C.-G. Ambrozie, M. Engliš and V. Müller, Analytic models over general domains in $\mathbb{C}^{n}$, J. Operator Theory 47 (2002), 287-302.
[6] C.-G. Ambrozie and D. Timotin, On an intertwining lifting for certain reproducing kernel Hilbert spaces, Integral Equations Operator Theory 42:4 (2002), 373-384.
[7] C.-G. Ambrozie and D. Timotin, A von Neumann type inequality for certain domains in $\mathbb{C}^{n}$, Proc. Amer. Math. Soc. 131:3 (2003), 859-869.
[8] T. Andô, On a pair of commuting contractions, Acta Sci. Math. (Szeged) 24 (1963), 88-90.
[9] A. Arias and G. Popescu, Noncommutative interpolation and Poisson transforms, Israel J. Math. 115 (2000), 205-234.
[10] W.Arveson, The curvature invariant of a Hilbert module over $\mathbb{C}\left[z_{1}, \ldots, z_{n}\right]$, J. reine angew. Math. 522 (2000), 173-236.
[11] C. Badea and G. Cassier, Constrained von Neumann inequalities, Adv. Math. 166 (2002), 260-297.
[12] B. Bagchi and G. Misra, Homogeneous tuples of multiplication operators on twisted Bergman spaces, J. Functional Analysis 136:1 (1996), 171-213.
[13] J.A. Ball and V. Bolotnikov, Realization and interpolation for Schur-Agler-class functions on domains with matrix polynomial defining function in $\mathbb{C}^{n}$, J. Functional Analysis 213:1 (2004), 45-87.
[14] J.A. Ball, W.S. Li, D. Timotin and T.T. Trent, A commutant lifting theorem on the polydisc, Indiana Univ. Math. J. 48 (1999), 653-675.
[15] J.A. Ball, T.T. Trent and V. Vinnikov, Interpolation and commutant lifting for multipliers on reproducing kernel Hilbert spaces, in: Operator Theory and Analysis, OT 122, Birkhäuser, Basel, 2001, 89-138.
[16] C. Barbian, Positivitätsbedingungen funktionaler Hilberträume und Anwendungen in der mehrdimensionalen Operatorentheorie. Diplomarbeit, Universität des Saarlandes, 2001.
[17] F. Beatrous and J. Burbea, Reproducing kernels and interpolation for holomorphic functions, in: Complex analysis, functional analysis and app. theory (Campinas, 1984), NorthHolland Math. Studies 125 (1986), 25-46.
[18] K.R. Davidson and D.R. Pitts, Nevanlinna-Pick interpolation for non-commutative analytic Toeplitz algebras, Integral Equations Operator Theory 31 (1998), 321-337.
[19] J. Eschmeier, Tensor products and elementary operators, J. reine angew. Math. 390 (1988), 47-66.
[20] J. Eschmeier and M. Putinar, Spectral decompositions and analytic sheaves, London Math. Soc. Monographs, 10, Clarendon Press, Oxford, 1996.
[21] J. Eschmeier and M. Putinar, Spherical contractions and interpolation problems on the unit ball, J. reine angew. Math. 542 (2002), 219-236.
[22] J. Eschmeier, L. Patton and M. Putinar, Carathéodory-Féjer interpolation on polydisks, Math. Res. Lett. 7 (2000), 25-34.
[23] C. Foiaş and A.E. Frazho, The commutant lifting approach to interpolation problems, Operator Theory: Advances and Appl., 44, Birkhäuser, Basel, 1990.
[24] G.M. Henkin; J. Leiterer, Theory of functions on complex manifolds, Akademie-Verlad Berlin, 1984.
[25] L. Hörmander, An introduction to complex analysis in several variables, North-Holland Math. Library, 7. Amsterdam, 1990.
[26] L.K. Hua, Harmonic analysis of functions of several complex variables in the classical domains, Amer. Math. Soc., Providence, Rhode Island, 1963.
[27] A. Korányi and L. Pukanszky, Holomorphic functions with positive real part on polycylinders, Trans.Amer.Math.Soc. 108 (1963), 449-456.
[28] G. Popescu, Isometric dilations for infinite sequences of noncommuting operators, Trans. Amer. Math. Soc. 316 (1989), 523-536.
[29] G. Popescu, On intertwining dilations for sequences of noncommuting operators, J. Math. Anal. Appl. 167 (1992), 382-402.
[30] G. Popescu, Interpolation problems in several variables, J.Math. Anal.App. 227 (1998), 227-250.
[31] G. Popescu, Commutant lifting, tensor algebras, and functional calculus, Proc. Edinb. Math. Soc. 44 (2001), 389-406.
[32] D. Sarason, Generalized interpolation in $H^{\infty}$, Trans. Amer. Math. Soc. 127 (1967), 179203.
[33] M. Słodkowski and W. Želazko, On joint spectra of commuting families of operators, Studia Math. 50 (1974), 127-148.
[34] B.Sz.-Nagy and C. Foiaş, Harmonic Analysis of Operators on Hilbert space, NorthHolland, Amsterdam, 1970.
[35] H. Upmeier: Toeplitz Operators and Index Theory in Several Complex Variables, Operator Theory: Advances and Applications 81, Birkhäuser, 1996.
[36] F.-H. Vasilescu, Analytic Functional Calculus and Spectral Decompositions, Editura Academiei, Bucureşti, and D. Reidel Publishing Company, Dordrecht, 1982.

Institute of Mathematics and Institute of Mathematics

Czech Academy
Zitna 25
11567 Prague 1
Czech Republic

Romanian Academy
PO Box 1-764
RO 014700 Bucharest
Romania
ambrozie@math.cas.cz


[^0]:    2000 Mathematics Subject Classification. 47A20; 47A13, 47A57, 41A05.
    Key words and phrases. Intertwining lifting, interpolation, analytic functions.
    Research supported by Grant No. 201/06/0128 of GA CR and Grant CNCSIS No. GR202/19.09.2006.

