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(Communicated by Nigel J. Kalton)

Abstract. Let V,W be linear spaces over an algebraically closed field, and
let S be an n–dimensional subspace of linear operators that maps V into W.
We give a sharp upper bound for the dimension of the intersection of all images
of nonzero operators from S, namely dim (

⋂
A∈S\{0} ImA ) ≤ dimV − n+ 1.

As an application, we also give a sharp upper bound for the dimension of the
reflexivity closure Ref S of S, namely dim (Ref S ) ≤ n(n+ 1)/2.

1. Introduction and statements of the main results

Let F be a commutative field. If F is algebraically closed, the spectrum of any
n–by–n matrix A ∈ Mn(F) is nonempty. That is, at least one of the matrices
A+λ Id is singular, as λ runs over all the scalars. As one can check by some simple
matrix manipulations, there is an equivalent way of formulating this fact in terms
of images of any given n–by–n matrices A and B:

dim
⋂

(λ0,λ)∈F2\{0}
Im(λ0A+ λB) ≤ n− 1.

Our main result from below is the generalization of the above estimate to the case
of several rectangular (not necessarily square) matrices.

Theorem 1.1. Let F be an algebraically closed field, let n,m ≥ 1, and suppose
A1, . . . , Ak ∈ Mm×n(C) are m–by–n matrices, with 1 ≤ k ≤ n+ 1. Then,

(1.1) dim
⋂

(ξ1,...,ξk) �=0

Im(ξ1A1 + · · ·+ ξkAk) ≤ n− k + 1.

Remark 1.2. Although for m–by–n matrices dim(ImX) ≤ min{m,n}, we cannot
replace, in general, in (1.1) the right side with min{m,n} − k + 1. We refer to the
last section for more details.
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Note that if A1, . . . , Ak are linearly dependent, the formula (1.1) is automatically
true, because the image of some linear combination of them is zero. Otherwise,
A1, . . . , Ak span a k-dimensional subspace of m–by–n matrices. So there is a more
compact, but equivalent, version of Theorem 1.1:

Theorem 1.3. Let F = F, let m,n ≥ 1 and let 0 ≤ k ≤ n. If S ⊆ Mm×n(F) is a
subspace of dimension at least (k + 1), then

dim
( ⋂
A∈S\{0}

ImA
)
≤ n− k.

To prove Theorem 1.3, we will require a deep result from determinantal varieties.
We state it in a form which resembles [4, Lemma 2.5]:

Lemma 1.4. Let F be an algebraically closed field, let r, s be integers with 1 ≤ r ≤
s, and let T ⊆ Mr×s(F) be a linear subspace. If all matrices from T have maximal
rank = r, then dimT ≤ s− r + 1.

Proof. The statement follows by combining Proposition 11.4 and Proposition 12.2 of
[8]. For alternate proofs we refer either to [13, Corollary I] or to [10, Theorem 13.10],
which estimates the codimension of the algebraic variety Rt of all r–by–s matrices
of rank < t. Our hypothesis means T ∩Rr = {0}, and we can use the estimate for
t = r, namely codimRr ≤ s− r + 1. �

The requirement that F be algebraically closed is necessary for the estimate in
Lemma 1.4. For an arbitrary field, things can be more complicated; see for instance
[9] for certain results in the real case.

Proof of Theorem 1.3. By replacing S by a (k + 1)–dimensional subspace, we can
assume that dim S = k + 1. We thus have to show that if U, V are linear spaces
over an algebraically closed field and S ⊂ Hom(U, V ) is a linear subspace of the
space Hom(U, V ) of all linear maps from U to V , with

dim S ≤ dimU + 1,

then
dim

⋂
0�=S∈S

Im(S) ≤ dimU − dim S+ 1.

Let
V0 =

⋂
0�=S∈S

Im(S).

The statement is clear if V0 = {0}. Assume then that V0 �= {0} and let V1 be a
direct complement of V0 in V . Let T ⊂ Hom(U, V/V1) be the image of S under
the map Hom(U, V ) → Hom(U, V/V1) obtained by composition with the canonical
factorization V → V/V1. Note that dim S = dimT. Set r := dimV/V1 (= dimV0)
and s := dimU . One easily checks that there exist 0 �= T ∈ T, and moreover
all such T �= 0 from T are surjective. Hence s = dimU ≥ dimV/V1 = r and
T ∩ Rr = 0, where Rr is the algebraic variety of all operators in Hom(U, V/V1) of
rank < dimV/V1 (= r). By Lemma 1.4, we obtain that

dimT ≤ s− r + 1.

Therefore
dim S = dimT ≤ s− r + 1 = dimU − dimV0 + 1,

and Theorem 1.3 is proved. �
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We conclude this section with a dual version of Theorem 1.3. As usual, given a
set of subspaces Xλ ⊆ W , we let

∨
Xλ stand for the linear span of

⋃
Xλ.

Corollary 1.5. Under all the assumptions of Theorem 1.3, except for 0 ≤ k ≤ n
replaced by 0 ≤ k ≤ m, we have

dim
∨

A∈S\{0}
KerA ≥ n−m+ k.

Proof. Regard m–by–n matrices as linear operators from V := F
n into W := F

m.
Given A ∈ S, its adjoint, A∗, maps the dual space W∗ of W into the dual space
V∗. Now, the space of adjoint operators S∗ := {A∗; A ∈ S} ⊆ Hom(W∗,V∗) is of
the same dimension as S and can be identified with transposed matrices from S. In
particular, S∗ ⊆ Mn×m(F). Also, KerA = (ImA∗)⊥, where X⊥ := {x ∈ V ; f(x) =
0 ∀f ∈ X} is the pre-annihilator of a subspace X ⊆ V∗. Consequently, since spaces
are finite-dimensional,

dim
( ∨
A∈S\{0}

KerA
)
= dim

∨
A∈S\{0}

(ImA∗)⊥ = dim
( ⋂
A∗∈S∗\{0}

ImA∗)
⊥

= n− dim
( ⋂
A∗∈S∗\{0}

ImA∗).
The right-hand side is the intersection of images of n–by–m matrices, so by Theo-
rem 1.3 the right-hand side is greater than or equal to n− (m− k). �

2. Application

Let V ,W be vector spaces over a field F and let S ⊆ Hom(V ,W) be a subspace
of F-linear operators from V into W . The reflexivity closure Ref S is the set of
all linear operators T ∈ Hom(V ,W) such that for every x ∈ V there exists some
S = Sx ∈ S with Tx = Sx. Equivalently, Tx ∈ Sx := {Sx; S ∈ S} for each
x. It is immediate that Ref S is also a subspace and that it contains S. When
dim S < ∞ we introduce the quantity rd S := dim(Ref S)−dim S = dim((Ref S)/S),
which measures how much larger Ref S is compared to S. Following Delai [6], we
call this integer the reflexivity defect of S.

On the one extreme, it may happen that Ref S = S. Such spaces are called
reflexive and have been extensively studied [3, 7, 11, 12].

Example 2.1. If S = Lin{T} is a one-dimensional subspace, then the elementary
exercise validates Ref S = S, so rd S = 0. More generally, rdS = 0 whenever
Ref S = S, that is, whenever S is reflexive.

But on the other extreme, it may happen that the space is far from being reflex-
ive.

Example 2.2. The ideal F ⊆ B(X) of finite-rank operators on some Banach space
X is transitive; that is, Fx = X for every nonzero vector x ∈ X. It follows that
Ref F = B(X). Inversely, if Ref S = B(X) for some subspace of operators, then S

must be transitive. Therefore, transitive spaces are as far from being reflexive as
one can hope for.

However, there are also subspaces which are neither reflexive nor transitive.
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Example 2.3. Let e1, . . . , en be a standard basis of column vectors in V := Fn.
With respect to this basis, Hom(Fn,Fn) can be identified with Mn(F), the algebra
of n–by–n matrices. Let N ∈ Mn(F) be an elementary upper-triangular Jordan
nilpotent, and let S := Lin{Id, N, . . . , Nn−1} ⊆ Mn(F). Then it follows from [5,
Theorem 4.3], with q(z) := z and (n1, n2) = (n, 0), that Ref S consists of all upper-
triangular matrices. Thus, rd S = n(n+ 1)/2− n.

It is our aim to show that, for algebraically closed fields, the reflexivity defect is
always bounded above by n(n+1)/2−n, where n := dim S; see Theorem 2.7 below.
Example 2.3 shows that this estimate is sharp. Before giving a proof, however, we
introduce the following notation. Given any subspace U ⊆ V and S ⊆ Hom(V ,W),
we let S|U := {T |U ; T ∈ S} be the set of all restrictions of operators from S. Recall
that T |U : U → W .

We start with a trivial observation.

Lemma 2.4. If S ⊆ Hom(V ,W) and U ⊆ V is a subspace, then (Ref S)|U ⊆
Ref(S|U ).

Proof. Immediate. �

Lemma 2.5. Suppose O ⊆ Hom(V ,W) is a finite-dimensional subspace of linear
operators from V into W. If U ⊆ V is a subspace, then

dimO = dim(O|U ) + dim{T ∈ O; T |U = 0}.

In addition, if U = Û + Lin{x} with O|Û = 0, then

dimO = dim(Ox) + dim{T ∈ O; T |U = 0}.

Proof. Let φ : Hom(V ,W) → Hom(U ,W) denote the restriction map. Then

dimO = dim Im(φ|O) + dimker(φ|O),

which is precisely the first conclusion of the lemma. The second equality follows
similarly. We omit the details. �

We will also require the following general lemma:

Lemma 2.6. Let r ∈ N, let X ,Y be vector spaces over a field F with |F| ≥ r+3, and
let O ⊆ Hom(X ,Y) be a finite-dimensional subspace. Suppose the vectors x,x′ ∈ X
satisfy r := dimOx ≥ dimO(x+λx′) for λ ∈ F. If y ∈ O(x+λx′) for each nonzero
λ ∈ F, then also y ∈ Ox.

Proof. There is nothing to prove when r = 0.
Assume r ≥ 1. Let S1, . . . , Sn be a basis for O. If necessary we re-index this

basis such that the first r vectors S1x, . . . , Srx are linearly independent, while
Sr+1x, . . . , Snx are their linear combinations.

Clearly, the vectors S1x, . . . , Snx, S1x
′, . . . , Snx

′ span the finite-dimensional
subspace Ox + Ox′ ⊆ Y , and O(x + λx′) ⊆ Ox + Ox′ for every λ. Choose and
fix an arbitrary basis of Ox + Ox′. With respect to this basis, we may iden-
tify Ox + Ox′ with Fd, for some d ≥ r. By doing so, we may assume that
y, S1x, . . . , Snx, S1x

′, . . . , Snx
′ are already column vectors from Fd.

Construct a d× (n+ 1) matrix

Ξ(λ) :=
[
y
∣∣ S1(x+ λx′)

∣∣ · · · ∣∣ Sn(x+ λx′)
]
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by concatenating the column vectors one after another. Now, by assumptions,
y ∈ O(x + λx′), so y is a linear combination of S1(x + λx′), . . . , Sn(x + λx′), for
every λ �= 0. Moreover, due to r = dimOx ≥ dimO(x + λx′), there are at most r
linearly independent vectors among S1(x+ λx′), . . . , Sn(x+ λx′).

Equivalently stated, rkΞ(λ) ≤ r for every λ �= 0. So, every (r+1)×(r+1) minor
of Ξ(λ) is identically zero, for λ �= 0. But note that Si(x + λx′) = Six + λSix

′

implies that these minors are polynomials in variable λ of degree at most r + 1.
Since they vanish for λ �= 0 and the field F has at least r + 2 nonzero elements,
every (r + 1) × (r + 1) minor is a zero polynomial. Therefore, they also vanish at
λ = 0, which gives rkΞ(λ)|λ=0 ≤ r.

By assumptions, S1x, . . . , Srx are linearly independent, which means that the
second, third, . . . , (r + 1)-th columns of Ξ(0) are also linearly independent. But
then, rkΞ(0) ≤ r implies that the first column of Ξ(0), that is, the vector y,
must be a linear combination of the vectors S1x, . . . , Srx. Equivalently, y ∈
Lin{S1x, . . . , Srx} = Ox. �

We can now prove our main result of this section.

Theorem 2.7. Suppose that V ,W are vector spaces over an algebraically closed
field, and let S ⊆ Hom(V ,W) be a finite-dimensional subspace of operators from V
to W. Then,

dim(Ref S) ≤ (dim S)(1 + dim S)

2
.

Proof. To shorten the arguments we write n := dim S. We first verify the claim for
the restriction of S to finite-dimensional vector subspaces of V .

So suppose Vk ⊆ V is a subspace of dimension k, and consider B0 := Ref(S|Vk
).

Fix a vector x1 ∈ Vk such that dimB0x1 = maxx∈Vk
dimB0x is maximal. By the

definition of reflexive closure, B0x ⊆ Sx for every x ∈ Vk, giving dimB0x ≤ n.
Now, let B1 := {A ∈ B0; Ax1 = 0}. We next construct inductively vec-
tors x2,x3, . . . ,xk ∈ Vk and subspaces B2, . . . ,Bk ⊆ B0 such that dimBi−1xi =
maxx∈Vk

dimBi−1x and Bi := {A ∈ B0; Ax1 = · · · = Axi = 0}. Clearly we may
assume that the vectors x1, . . . ,xk are linearly independent, so they form a basis
of Vk. Then we have B0 ⊇ B1 ⊇ · · · ⊇ Bk = {0}. Moreover, the operators from B0

are determined by prescribing their values on basis elements of Vk, so that

dimBi ≤ dimB0 ≤ dimVk · max
x∈Vk

dim Sx ≤ kn < ∞.

We proceed by showing that Bi−1xi ⊆ Bi−2xi−1, (i ≥ 2). Let i ≥ 2 and let
A ∈ Bi−1 be arbitrary. For each λ ∈ F \ {0} we have

Axi = A(λ−1xi−1 + xi) ∈ Bi−1(λ
−1xi−1 + xi) = Bi−1(xi−1 + λxi)

⊆ Bi−2(xi−1 + λxi) (λ �= 0).

Since dimBi−2xi−1 = maxx∈Vk
dimBi−2x, and as algebraically closed fields have

infinite cardinality, Lemma 2.6 for O := Bi−2 and y := Axi indeed gives Axi ∈
Bi−2xi−1, as anticipated.

We now claim that

(2.1) Bs−1xs ⊆
⋂

(ξ1,...,ξs)∈Fs\{0}
S
( s∑
i=1

ξixi

)
; (s ≥ 1).
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When s = 1 this follows from the definition of reflexivity closure. So assume s ≥ 2,
and let A ∈ Bs−1. Choose any s-tuple (ξ1, . . . , ξs) ∈ Fs \ {0}, and let j be the last
index with ξj �= 0; so ξj+1 = 0 = · · · = ξs. Now,

Axs ∈ Bs−1xs ⊆ Bs−2xs−1 ⊆ · · · ⊆ Bj−1xj = Bj−1

(
xj +

j−1∑
i=1

ξ−1
j ξixi

)
.

Since Bj−1 ⊆ Ref(S|Vk
), we further have, by the definition of the reflexivity closure,

Bj−1

(
xj +

j−1∑
i=1

ξ−1
j ξixi

)
⊆ S

(
xj +

j−1∑
i=1

ξ−1
j ξixi

)
= S

( j∑
i=1

ξixi

)
;

and since A ∈ Bs−1 was arbitrary, we deduce (2.1).

Fix a basis S1, . . . , Sn of S. Then, Ŵ := SVk = Lin{Sixj ; 1 ≤ i ≤ n, 1 ≤ j ≤
k} is a finite-dimensional subspace of W . Actually, its dimension, m := dim Ŵ ,

satisfies m ≤ kn. So we may identify Ŵ with F
m and associate to each vector xj

the m–by–n matrix, given by the columns

(2.2) Sj :=
[
S1xj |S2xj | · · · |Snxj

]
.

Given a vector x = ξ1x1+· · ·+ξjxj , it is immediate that Sx = Im(ξ1S1+· · ·+ξjSj).
Consequently, we can restate (2.1) as

dimBs−1xs ≤ dim
⋂

(ξ1,...,ξs)∈Fs\{0}
S
( s∑
i=1

ξixi

)
= dim

⋂
(ξ1,...,ξs)∈Fs\{0}

Im(ξ1S1 + · · ·+ ξsSs).

By Theorem 1.1,

(2.3) dimBs−1xs ≤ dim
⋂

(ξ1,...,ξs)∈Fs\{0}
Im(ξ1S1 + · · ·+ ξsSs) ≤ n− s+ 1,

wherefrom, with a repeated use of Lemma 2.5 on a nest of subspaces Uj :=
Lin{x1, . . . ,xj} ⊆ Vk:

dimRef(S|Vk
) = dimB0 ≤ dim(B0|Lin{x1}) + dimB1

≤ dim(B0|Lin{x1}) + dim(B1|Lin{x1,x2}) + dimB2

≤ · · ·
≤dim(B0|Lin{x1})+dim(B1|Lin{x1,x2})+· · ·+dim(Bk−1|{x1,...,xk})+dimBk

≤ dimB0x1 + dimB1x2 + · · ·+ dimBk−1xk + dimBk

≤
{
n+ (n− 1) + · · ·+ (n− k + 1) + 0; k ≤ n

n+ (n− 1) + · · ·+ 1 + 0; k ≥ n
≤ n(n+ 1)

2
.(2.4)

By Lemma 2.4, and in view of (2.4), dim
(
(Ref S)|Vk

)
≤ dimRef(S|Vk

) ≤ n(n +
1)/2 holds for every finite-dimensional subspace Vk ⊆ V . Therefore, dim(Ref S) ≤
n(n+ 1)/2. �



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

THE DIMENSION OF THE REFLEXIVITY CLOSURE 1727

3. Non-algebraically closed fields

The estimate in Theorem 2.7 is not true for non-algebraically closed fields.

Example 3.1. Consider the two-dimensional subspace S of M2(R) generated by
the matrices

A1 =

(
1 0
0 −1

)
, A2 =

(
0 1
1 0

)
.

It is easy to check that for each nonzero vector x the vectors A1x and A2x are lin-
early independent and therefore span all R2. Hence Ref S = M2(R) and dimRef S =
4 (in the complex case dim S = 2 implies dimRef S ≤ 3, by Theorem 2.7).

We show that for any infinite field we have dimRef S ≤ (dim S)2. First we need
the following reduction:

Lemma 3.2. Let n ∈ N, and let F be a field satisfying |F| ≥ n + 3. Let V ,W be
vector spaces over F, and let S be an n-dimensional subspace of Hom(V ,W). Then
there exist vector spaces W ′ ⊆ W and S′ ⊆ Hom(V ,W ′) such that dimW ′ ≤ n,
dim S′ ≤ n and dimRef S′ ≥ dimRef S.

Proof. Fix a vector x ∈ V such that the dimension dim Sx is maximal. SetW ′ = Sx.
Clearly dimW ′ ≤ n.

Fix a projection P : W → W with Im P = W ′. Let S′ = PS = {PA; A ∈ S}.
Then S′ ⊆ Hom(V ,W ′) and dim S′ ≤ dim S = n.

Let A ∈ Ref S and Ax = 0. We show that Im A ⊆ W ′. Indeed, let x′ ∈ V be
arbitrary. For each nonzero λ ∈ F we have

Ax′ = A(x′ + λ−1x) ∈ S(x′ + λ−1x) = S(x+ λx′).

By Lemma 2.6, we have Ax′ ∈ Sx = W ′.
We have just proved that A ∈ Ref S and Ax = 0 imply A = PA ∈ S′. Conse-

quently,

dimRef S = dim Sx+ dim{A ∈ Ref S; Ax = 0}
≤ dim S′x+ dim{B ∈ Ref S′; Bx = 0} = dimRef S′. �

Theorem 3.3. Let n ∈ N, and let F be a field satisfying |F| ≥ n+ 3. Let V ,W be
vector spaces over F, and let S be an n-dimensional subspace of Hom(V ,W ). Then
dimRef S ≤ n2.

Proof. Suppose on the contrary that dimRef S > n2. By Lemma 3.2, we may as-
sume that dimW ≤ n. Consider the space S∗ = {A∗; A ∈ S} ⊆ Hom(W∗,V∗).
Then dim S∗ = dim S = n and dimRef S∗ = dim(Ref S)∗ > n2 (see [5, Propo-
sition 2.1]). Also by the previous lemma, there exist subspaces V ′ ⊆ V∗ and
S′ ⊆ Hom(W∗,V ′) such that dim S ≤ n and dimRef S′ > n2. This is a contra-
diction, since dimHom(W∗,V ′) = dimW∗ dimV ′ ≤ n2. �

It is perhaps worth noting that the only place in the proof of Theorem 2.7
where we needed that the field is algebraically closed was in the estimates (2.3) and
(2.4). In all other places the arguments demand only |F| ≥ 3+ dimBi−2xi−1 when
invoking Lemma 2.6 to show that Bi−1xi ⊆ Bi−2xi−1. However, dimBi−2xi−1 =
maxx∈Vk

dimBi−2x ≤ maxx∈Vk
dimB0x = dim Sx1 ≤ n, and hence we only need
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|F| ≥ n + 3. To appreciate the extra information, we use the notation from the
above proof, denote by �x := (x1, . . . ,xk) a basis for Vk, and introduce subspaces

�x

Ms−1 :=
⋂

(α1,...,αs)∈Fs\{0}
Im(α1S1 + · · ·+ αsSs), (s = 1, . . . , k).

Recall that the m–by–n matrices Sj were introduced in (2.2). We can now record
the following corollary.

Corollary 3.4. Let n ∈ N and let V ,W be finite-dimensional vector spaces over
a field with |F| ≥ n + 3. Suppose S ⊆ Hom(V ,W) is an n-dimensional subspace.
Then, there exists a basis �x := (x1, . . . ,xk) of V such that

dimRef S ≤ dim
�x

M0 + dim
�x

M1 + · · ·+ dim
�x

Mk ≤ dim S+ dim
�x

M1 + · · ·+ dim
�x

Mk.

Corollary 3.5. Under the notations from the previous corollary, suppose dim
�x

M1 =
0 for any basis vectors �x of V. Then, the space S is reflexive.

Proof. This is evident from the previous corollary plus the fact that 0 =
�x

M1 ⊇
�x

M2 ⊇ · · · ⊇
�x

Mk. �

Remark 3.6. Let V ,W be real vector spaces and let S ⊆ Hom(V ,W) be a finite-
dimensional subspace, dim S = n. By Theorem 3.3, dimRef S ≤ n2. For n = 2
the estimate is the best possible, see Example 3.1. The same is true for n = 4 and
n = 8 (the main reason is that in these cases there are n square matrices of order n
such that each nontrivial linear combination of them is invertible, see [1] and [2]).
However, n = 2, 4, 8 are the only cases when the estimate dimRef S ≤ n2 is the
optimal, since for other values of n such a system of n matrices does not exist. For
example, for n = 3 each 3× 3 matrix has an eigenvalue, and it is easy to show that
dimRef S ≤ 7.

Problem: What is the optimal estimate for dimRef S in the real case?

4. Examples

Here we provide several examples to illuminate our results. First, it would be
tempting to conjecture the more ‘natural’ formula dim

⋂
(ξ1,...,ξk) �=0 Im(ξ1A1+ · · ·+

ξkAk) ≤ min{m,n} − k + 1 in place of (1.1). But this is wrong, in general.

Example 4.1. Consider the 2–by–4 matrices

A0 :=

(
1 0 0 0
0 1 0 0

)
, A1 :=

(
0 0 1 0
0 0 0 1

)
.

It is easy to see that Im(ξ0A0 + ξ1A1) = Lin{(1, 0)t, (0, 1)t} for every nonzero
linear combination. Hence, the intersection of images has dimension 2. However,
min{m,n} − k + 1 = 2− 2 + 1 = 1.

The next example shows that if S ⊆ Mm×n(C) and dim S = k, but m �= n−k+1,
then in general there exists no nonzero matrix A ∈ S with rank ≤ n − k + 1 (cf.
Lemma 1.4).
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Example 4.2. Let

A =

{⎛⎝a b c
0 a b
b 0 a

⎞⎠ ; a, b, c ∈ C

}
.

Then every nonzero matrix in A has rank ≥ 2.

The estimates, provided in Theorem 1.1, respectively, in Theorem 1.3, are sharp.
We show this in our next example.

Example 4.3. Let N be an n–by–n upper-triangular elementary Jordan nilpotent.
Consider a subspace S := Lin{Id, N,N2, . . . , Nk−1}. It is easy to see that⋂
A∈S\{0}

ImA =
⋂

(ξ0,...,ξk−1) �=0

Im
(
ξ0N

0+ · · ·+ ξn−1N
k−1

)
= ImNk−1 = F

n−k+1⊕ 0,

so for this subspace, the upper bound in Theorem 1.1 is achieved.

It would be tempting to conjecture that the inverse of the above statement is
also true, up to multiplication by a fixed invertible matrix (that is, up to choosing
basis vectors). In other words, if the upper bound in (1.1) is achieved, is it always
S = P Lin{Id, N,N2, . . . , Nk−1}Q for some invertible matrices P,Q? The answer
is negative:

Example 4.4. Consider a subspace S ⊆ M3(C) spanned by the identity matrix
A1 and the nilpotents

A2 :=

⎛⎝0 1 0
0 0 1
0 0 0

⎞⎠ , A3 :=

⎛⎝ 0 0 0
−1 0 0
0 1 0

⎞⎠ .

Thus, n = 3 = k. One easily sees that ξ2A2 + ξ3A3 is singular for every nonzero
linear combination. So, Im(ξ1A1 + ξ2A2 + ξ3A3) = C3 unless ξ1 = 0, in which case
the image always contains the vector (0, 1, 0)t. Hence,

dim
⋂
ξ1 �=0

Im(ξ1A1) = 3, dim
⋂

(ξ1,ξ2) �=0

Im(ξ1A1 + ξ2A2) = 2,

dim
⋂

(ξ1,ξ2,ξ3) �=0

Im(ξ1A1 + ξ2A2 + ξ3A3) = 1,

and the upper bound in (1.1) is always achieved.
On the other hand, no invertible matrices P,Q would force PSQ to be upper–

triangular. Otherwise, PA1Q and PA2Q would be singular; hence they would
have to be strictly upper-triangular. But the two-dimensional linear subspace
Lin{PA1Q,PA2Q} of 3–by–3 strictly upper-triangular matrices necessarily con-
tains a matrix of rank-one, a contradiction, because every nonzero linear combina-
tion of A1, A2 is of rank-two. In particular, this shows that PSQ cannot be spanned
by powers of a fixed nilpotent.
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The converse of Corollary 3.5 is not true, in general. It may happen that S is

reflexive yet dim
�x

M1 �= 0.

Example 4.5. Consider a subspace S := Lin{A1, A2} of 3–by–4 matrices spanned
by

A1 :=

⎛⎝1 0 0 0
0 0 1 0
0 0 0 1

⎞⎠ and A2 :=

⎛⎝0 1 0 1
1 0 0 0
0 0 1 0

⎞⎠ .

Let �x := (e1, . . . , e4) be the standard basis in F4. It follows from the definition (2.2)

that S1 =
[
A1e1

∣∣ A2e1
]
=

(
1 0
0 1
0 0

)
and S2 =

[
A1e2

∣∣ A2e2
]
=

(
0 1
0 0
0 0

)
, and so

dim
⋂

(α1,α2) �=0 Im(α1S1 + α2S2) = 1. Despite this, S is reflexive. This can be

computed directly, or else one uses the fact that every nonzero member from two-
dimensional space S has rank 3 and then applies [12, Theorem 1.1].

This example also shows that the inequality (Ref S)|U ⊆ Ref(S|U ) in Lemma 2.4
can be strict: use U := Lin{e1, e2} ⊆ F4.
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