Finding positive matrices subject to linear restrictions
C.-G. Ambrozie!

Abstract

We characterize the existence of a positive definite [ x [ matrix X
the entries of which satisfy n nonhomogeneous linear conditions by
the existence of a minimum for an associated function V, smooth
and strictly convex on R™. If there exist solutions X > 0, then
lim| |~ V(z) = +00 and the critical point 20 of V can be approxi-
mated by the conjugate gradients method. Knowing 2" provides, by
a simple analytic formula, the unique solution X maximizing the en-
tropy —tr (XInX) = — zzzl Ajln X (where Aq,..., \; are the eigen-
values of X) subject to the given restrictions. Related results are
obtained in the semipositive definite case, too.
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Introduction

We consider the question of finding positive definite [ x [ matrices X =

(X jk]g,kzl of numbers Xj;, satisfying a given set of n nonhomogeneous linear

!
conditions: > a;xX;x = §; for i = 1,...,n. That is, we seek for X > 0
k=1

!
in the operator sense: (Xc,c¢) = > Xjpepc; > 0 for any tuple ¢ # 0 of

k=1
numbers ¢y, . .., ¢, satisfying the equations
tr(AX)=08 (i=1n) (1)
l
where A; := [o;]’ ,—, and tr denotes the trace, tr A = - a;; for any matrix

j=1
A= [ajk];k:l. We can always suppose that A; are selfadjoint and (; real,

since (in the complex case, for instance) conditions (1) are equivalent to
tr((A; + AHX) = B+ 5, and tr (i(Af — A;)X) = i(6; — 5;), using that

tr (AX) = tr (AX)* = tr (A*X). We shall simultaneously consider the real
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and complex cases. One can assume that Ay, ..., A, are linearly independent
over R. Our main results are propositions 1 — 3, see also remarks 11 (i)-(iii).

The problem from above is an extensively studied one, its classical solu-
tions and comprehensive references can be found in [3, 12, 16], see also [4, 7,
8]. Usually one considers also a dual problem, namely determining whether

for given [ x [ matrices Agy, Aq,..., A,, there exists a matrix Y > 0 of the
form .
i=1

The latter problem is solved by maximizing the minimum eigenvalue of Y
of the form (2) in the variables z1, ..., z,, and for this a standard algorithm
can be applied. When problem (2) admits solutions, and no positive definite
matrix of the form ) z;A; exists, then there is also a distinguished solution
i=1
of (1), which is the matrix maximizing IndetY over the set of all Y > 0
of the form (2). Actually, both problems (1) and (2) can be respectively
associated with certain semidefinite programs, concerned with minimizing
a linear functional subject to the constraint that an affine combination of

symmetric matrices is positive semidefinite. Namely, set ' -z = Y Bz, let

=1
n

A(x) = Ag+ > x;A; and define

i=1
p* =inf{ " -z : A(z) > 0}

and
¢ = sup{—tr (4,X) : X >0, tr (AX) = Gi}.

The key property of the dual program is that it yields bounds on the optimal
value of the primal one and viceversa. That is, suppose that either (1) has
solutions X > 0, or (2) has solutions z with A(x) > 0. Then p* = ¢*, see for
instance [12, 16]. If both conditions hold, the optimal sets of the programs
for p* and ¢* are nonempty. One defines in this case

o(x) = Indet A(z)™" if A(x) >0,

and ¢(x) = +oo otherwise. Then ¢ is a barrier function [12] for the set
{z : A(z) > 0}, namely its values increase to infinity as x approaches to the
boundary. Set p = sup{fs" -z : A(z) > 0}. It can be shown [16] that for
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every v € (p*,p) there exist vectors x satisfying A(x) > 0, 3'-x = ~, and the
set of all such solutions z is bounded. Moreover, the analytic center of this
linear matrix inequality, that is, the unique point z* with 8¢ 2* = 0 such
that

min ) = o(z"),
i o) = ol)

satisfies the equations

tr (A; A(z*)™Y) = \G; (i=1,n)

for a Lagrange multiplier A, that proves to be positive (see for instance [16]).
One obtains in this way a positive matrix X := A(z*)™'/\ satisfying (1)
and —tr (AgX) = v — I/A. Thus briefly speaking, a necessary and sufficient
condition for the existence of a solution X > 0 of (1) is that 5" 2 > 0 for all ©

with >~ x;A; > 0, in which case one can search for an analytic center z* etc
=1
provitjiing a solution X. The study of the optimality conditions and various
properties for such semidefinte programs started in the sixties, and later on
the related problem of minimizing the maximum eigenvalue for hermitian
matrices was considered, too. Then the interior point method, introduced
in [10] as an important tool for the linear programming, was generalized to
a larger class of optimization problems by using barrier functions [12]. This
method applies in particular to semidefinite programs as mentioned above.
The existence of a positive completion for a given partial matrix (which is
a particular case of problem (1)) has been firstly characterized under certain
hypotheses in [5, 6, 8]. The more general case of the linearly constrained
completions has been considered subsequently in [11]. Namely, suppose that
we seek for a matrix X = [z;]};_; > 0 the entries z; of which are given for
(7,7) in a prescribed subset S C {1,...,1} x {1,...,l}. Moreover, assume
that all the diagonal entries z; (i = 1,1) are specified. Since in particular
X must be selfadjoint, the pattern S may be symmetric, with the condition
zj; = Z;; necessarily fulfilled. We call X a completion of the partial matriz
[2i]G,j)es- Let S" be the set complementary to S, set p = cardS" and let
2 = (2i5)(pes denote a vector in CP, consisting of the unspecified entries
of X. Let X(z) denote our partial Hermitian matrix and H(z) = X (2)!
be the formal inverse of X (z). Define also the vector h(z) := (H;;(2)) @ jyes -
Let ¢ be a fixed vector and B a fixed matrix. It has been shown [11] that if
the problem

max {det X(z) : X(2) >0, Bz = ¢} (3)
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is feasible, then it has a unique optimal solution, which moreover is the
unique feasible point z for which h(z) is in the range of B*. This provides
in particular (for B = 0) a previously known result, that the det-maximizing
completion of such a partial matrix is characterized as the unique completion
having a zero in the inverse on every position in which X has an unspecified
entry [5-8].

For certain positive matrix completion problems, one knows conditions
that are sufficient for the existence of a solution. For example, suppose that
all diagonal entries are given, and that [z;;](; jjes is a positive definite partial
matriz, that is, all diagonal minors that can be made of the given entries are
positive. Then a positive completion exists whenever the undirected graph
associated to S, the edges of which are {i,j} for (i,7) € S with i # j, is
chordal — that is, all its minimal cycles have length < 3. For this topic we
refer for instance to [1], where a problem similar to (1) also was studied,
involving linear restrictions on both X, X! and solved by a fixed point
procedure. Note that by our approach it is also allowed that the diagonal
entries of the partial matrix be unspecified.

However, the question of recognizing whether a concrete given problem
of the forms (1) — (3) admits solutions is generally open. Also, if the problem
has solutions there is generally no closed formula solving it. Checking the fea-
sibility and finding solutions requires then various algorithms of approxima-
tion. Our approach shows, in particular, that the barrier function — In det X
usually involved in such algorithms can be substituted by —tr (X In X).

Main results
Let e* = > L A" denote the exponential of a matrix A. Set b; = 3;e.
k>0
1 Proposition The function V =V (x) defined for v = (z;)j_, € R" by

i T;A; n
V(z) =tr(e= ) =3 b,
j=1

. . i T;A;
is strictly conver, [%(m)]?,j:l >0 and gTV;_(x) = tr(Aje=r ) — by

2 Theorem The system of equations (1) admits solutions X > 0 if and only
if lim V(x) = +oo, that is, if and only if V has a critical point. In this

llz[|—o0



case, (1) has also the particular solution

n
> x?Aj—Il
X(] = ei=1
O)n

where 2° = (23)7_, is the unique (minimum) critical point of V.. Also, Xq is

I

the unique matriz mazimizing —tr (X In X) = — > A\;In\; (where Ay, ..., N\
j=1

are the eigenvalues of X ) amongst all solutions X > 0 of (1).

3 Theorem If the linear span of the A;’s contains positive matrices, then:
(a) The system of equations (1) admits solutions X > 0 but all of them

have det X = 0, if and only if V' is bounded from below and there exist vectors

x # 0 such that tginoo V(tx) is finite. The set C' of all such vectors is then a

n

convex cone, V' has no critical points, and tli+m V(tr) = dimker ) z;A4; =

constant for all x € C. Moreover, C' consists of those © # 0 such that
Z Zlﬁ'jAj <0 and Z ﬁjxj =0.
j=1 j=1

In this case, for any integer k > 1 there exists an Xy > 0 with tr(A; Xy) =
B; + %tr(Aj) for j = 1,n, any such sequence (X}, is bounded, and all its
accumulation points X are solutions of (1);

(b) The system (1) has no solutions X > 0 at all, if and only if inf V =
—o00. In this case, there exist vectors x # 0, the set of which is a convex cone

C, such that tli+m V(tx) = —o0, and V' has no critical points. Moreover, C

consists of those x # 0 with Y x;A; <0 and
=1

n
6jxj > 0.
J =1

J

We state below some preliminaries, necessary later on in the proofs.

Let then Ay, ..., A, be linearly independent selfadjoint [ x [ matrices and
bi,...,b, be real numbers. Let M; denote the space of all [ x [ matrices,
acting as usual on the [-dimensional Euclidian space and endowed with the
operator norm ||Al| = sup ||Ah|| for A € M;. Let M;" denote the cone of

1

lAll<
all nonnegative matrices X € M, that is, (Xh,h) > 0 for every vector h
where (-, -) denotes the inner product. Since the function h(t) = —tInt

(with 0In0 = 0) is continuous on [0, 00), it induces by continuous functional
calculus a mapping X — h(X) from M;" into M;. For every X > 0, set
H(X) = trh(X). Using that h(U*XU) = U*h(X)U for every X > 0 and
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unitary U € M;, we obtain H(X) = — Z AjIn\; where the \;’s are the

elgenvalues of X counted according to the multiplicity so that 0 < A\; <

- < \;. By analogy with the corresponding Boltzman-Shannon’s notion for
probability densities, we call H(X) the entropy of X. This differs from other
notions used under the same name in [1, 2, 3, 8] as barrier functions (of the
form H(X) = Indet X+ linear terms).

4 Lemma The function H is continuous on M;" and IIJgIm H(X) = —occ.

Also, H is of class C* on the interior of M;" and the differential H' of H in
a point X >0 is given by H'(X)Y = —tr (I + n X)Y') for all Y € M;.

Proof Since the function h is concave, we have

!
1 h(A1) + + h(\) A+ N
— <
T 2:: [ < hi l )

I !
A A
__]; ]lnjzzjl ]__tl"X ntI‘X
B l I [
The uniform norm || - || and the trace norm || - ||; are equivalent on M.

Thus || X || — oo implies that tr X (= || X||; for X > 0) — oo, too. Hence the
right hand side of the previous estimate tends to —oo. Then H(X) — —oo
as || X|| — oo with X > 0. The continuity of H holds using either the upper
semicontinuity of the spectrum mapping X — (Aq, ..., ), or the fact that all
X > 0 are selfadjoint. For X > 0, H(X) = —tr (X In X') where the logarithm
is defined on C \ (—o0,0] by In(re!?) = Inr +i6 for r > 0 and —7 < 6 < 7.
Hence H is real analytic, in particular smooth, on the interior of M;" (that
consists of all X > 0). To check this, we use, for every Xy > 0, a power series

Ins = 3" cr(s—7r/2)F of the logarithm on a fixed interval (0,7) with r > || X|
k>0
and the semicontinuity property of the spectrum, to show that there is an

e = ey, > 0 such that H(X) = —tr (X >_ (X —r/2)¥), where the series is
k>0
convergent for all X with || X — Xy|| < e. To find now the Fréchét differential

H'(X) we use the formula H'(X)Y = lir%t_l(H(X +tY) — H(X)), which
requires the computation of 1i1% t7r (X (In(X +tY) — In X)). To this aim:
fix an r > ||X ||, apply the functional calculus of X + tY (for small ) to the
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analytic function Inz = Y ¢p(2—r/2)* for |z—r/2| < r/2, substract In X and
k>0
multiply to the left by X. Neglect then the terms of order > 2 in ¢ and use

for the others, that are linear in Y, the equalities tr (X?Y X9) = tr (X?19Y)
(p, ¢ > 0 integers) to get the coefficient of t.

5 Lemma [f the system (1) has any solutions X > 0, then it has in particular
a solution X, > 0 such that H(X,) = max{H (X) : X > 0 satisfying (1)}.

Proof The set S ={X € M;" : tr (A,;X) = ,;Vj} is nonempty and closed.
By Lemma 4, sup H < sup H < oo and there exists a ball B = {X € M, :
S

| X|| <} of radius r sufficiently large such that sup H = sup H, and so H|g
S SNB

reaches its supremum (on the compact set SN B).

6 Proposition If the system (1) has at least one positive solution X, then
any mazximum entropy solution X, > 0 must be positive.

Proof We fix a matrix X > 0 satisfying (1). Let X, > 0 be any solution
of (1) of maximum entropy (such solutions exist by Lemma 5). Let X; =
tX + (1 —1t)X, for 0 < t < 1. In order to prove that X, > 0, we can
suppose X, # X. Fix positive constants ¢ and C' such that X > ¢ and
|1 X + | X«]] + max H < C, see Lemma 4. We have (X;h,h) > 0 for any
vector h # 0, that is, X; > 0. Hence o(X;) C (0, C]. Suppose that 0 € o(X,).
Now X; — X, ast — 0. Then by using the upper semicontinuity property of
the spectrum and ker X, # {0}, we easily derive that for each ¢ € (0,1) there
exists a partition o; N o, of o(X;) with o, # 0 such that 15% (max\A) =0

AEot
while all points of o, stay away from 0, that is, there are positive constants

b < 1and B < C such that o; C [B,C] for all t € (0,b). We can also
assume, for b sufficiently small, that all A € o, are < 1. Let eq,...,¢e; be the
canonical basis of R!. For every t € (0,b) we choose an arbitrary unitary U, €

!
M; such that U XU, = > A\i( -, ei)e;, where (Mg, ..., ) is a list of (not
i=1

necessarily distinct) eigenvalues of X, counted according to the multiplicity.
By a permutation, we can suppose that Ay, ..., Ay € oy and Apya4, ..., A €
o) where p = p(t) > 1 is the dimension of the spectral space ¥; C R! of
o;. Let Ay = diag (A, ..., A\i) be the matrix of U XU, with respect to the
basis ey, ...,e. Let (ey,...,ey) be the orthonormal basis of R! consisting
of the eigenvectors e;; = Ue; of X;. The subspace ¥, is spanned by the



eigenvectors ey, ..., ey, of X; corresponding to the eigenvalues Ay, ..., Ay,
p
respectively. Let P, = > (- ey)eir (# 0) be the spectral projection on ;.
i=1
We have || Xils,| = I/{lax)\ — 0 ast — 0. Hence | X;P] — 0ast — 0.
€ot

Then by decreasing b if necessary, we can suppose that P, X;P, < ¢/4 for all
t € (0,b). Let Q; = U} P,U, be the orthogonal projection onto the linear span
of er,...,epwy. Then U,Q.U; XU, QU < ¢/4, whence Q.U X, U,Q; < c/4.
Also, if b is sufficienty small we have ||Q.U; (X, — X;)U;Q¢|| < c¢/4 for all
t € (0,b). Hence QU X.U;Q; < ¢/2. Since X > ¢, U XU, > ¢ and so
QU XU Q) > cQy. Hence

c
QtUt*(X - X*)UtQt = QtUt*XUtQt - QtUt*X*UtQt > §Qt
Hence all the diagonal elements

[QtUt*(X - X*>UtQt]ii = <QtUt*(X - X*)UtQt€i7€i> > %’ (4)

with ¢ = 1, p. For any A € M; we have

P

tr (QAQr) = ) (Aeyer),

i=1

l

tr (1= QA — Q1) = > (Ae;e;)

i=p+1

and
tr A = tr (Q:AQy) + tr (I — Q) A(I — Qy)).
Let A=U;(X — X,)U; (InA;). Then for every t € (0,b)
—tr (X — X,)InX;) = tr (U (X — X, )U U (In X)) Uy)) =
—tr (Ut*(X — X*)Ut In At) = Tl(t) + Tg(t)

where
Tl(t) = —tr (QtUt*(X — X*)Ut Qt (hl At)@t)

and
72(t) = —tr (I = QU (X = X )Us (I — Qp) (InAy)(L — Q1)),
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using also that (InA,)Q; = Q;(In A;)Q; since the range of @y is invariant
under A;. By (4), we have

Ti(t) = Z[QtUt*(X — X )Ui@Q¢ Jii (—1n Ay)
i=1
1 c 1
>

max Ay  2max A\
1<i<p AEot

— 400 ast— 0.

C
225 (—In i) >p2ln

!
Using [tr (AB)| < [[A[[|B]lx and [[(I — Q)AL — Q)| = D2 [Xit|, we
i=p+1
obtain

()] < (I = QU (X = X)U (I - Q) Z|Azt|<

i=p+1
(IX| + [ X.]]) - I max |InA;| < Cl max{|InB|, |InC|}.
p+1<i<l
Therefore, using Lemma 4,

d
dt
—tr (X — X,) —tr (X — X,)(In X,)) = —tr (X — X,) + 11(t) + m(t) — +00

as t — 0. Hence (H(X;) — H(X,))/t > 0if ¢t > 0 is sufficiently small. Then
we have matrices X; # X, with H(X;) > H(X.), which is impossible. It
follows that X, must be positive.

7 Lemma Let A, B € M, be selfadjoint with A # 0 and set f(x) = tre*A+8
for x real. Then f'(x) = tr(Ae***8) and f"(z) > 0 for all x.

—(H(Xy) = H(X)(X = X,) = —tr (X = X)(I +In Xy)) =

Proof Fix x, set M = xA + B and let t be a real variable. Then

fr (M4 _ MY — %tr((MHA)k-Mk):

k>0

— €

1 B B _ _
tZHtr(Mk YA+ MF2AM + -+ -+ MAM* 2 4 AM*™1) + O(¢?)

k>1



1
=ty ok (AM*1) + O(#?) = ttr (AeM) + O(#?).
k>1
Hence f'(x) = lim t=lr (eMHA — M) = tr (Ae*+B). We arbitrarily fix z
and show that f”(x) > 0 for all z in a small neighbourhood of zy. Set again
M = xA + B. Fix a constant ¢ = ¢, 45 > 0 sufficiently large so that
10A + B +c > 0. Writing f(2) = e~¢tr e"4*(B+9) and replacing B by B + ¢

shows that we can assume, for © ~ =z, that M > 0. Then we compute
f(x) = lir% t~tr (A(eMHA — M) as follows. We have

A(eMHHA — My AZ (M +tA)F — M*) =

k>0

1
tAY H(M"f—lA + MF2AM 4+ 4+ AM* Y + O(1%) =

k>1
tA( A+1(MA+AM) ;l(M2A+MAM+AM2)+~-~)+O(t2).

Apply the trace to the previous equalities. The coefficient of ¢ has the form
> cpgtr (AMPAMY) with all ¢,; > 0. Since M > 0 and A = A*, then

p,q>0

M? >0 and AMPA > 0 for all p,q. Hence tr (AMPA - M?) > 0 using that
tr (CD) = tr (DY2CDY?) > 0 for any C, D € M;". Then f"(z) > 0. If
f"(z) = 0 for some z, then all terms cy,tr (AMPAMY?) = 0, in particular
tr (A?) = 0 whence A = 0 that is false.

Proof of Proposition 1 Let x, y € R" be arbitrary with x # y. For any
real t, set g(t) = V(ty+(1—t)x). Then g has the form g(t) = tr e!4*8 +ta+b,

where A = ) (y; —z;)A; and B = ) z;A;. Note that A # 0 since the A,’s
j=1

Jj=1

are linearly independent. By Lemma 7, ¢”(t) > 0 for all t. Then g is strictly
convex and so V(i (z + y)) = (%) < 9(0);‘7(1) = V(x);v(y). Thus V is
strictly convex, too. Moreover, for every x € ]R" and ¢ = (¢1,...,¢,) # 0,

letting y = = + ¢ in condition ¢”(0) > 0 gives Z (0;0;V)(x)cjc; > 0. The
i,j=1

partial derivatives of V' are computed also by Lemma 7.

8 Theorem Suppose that (1) has positive solutions. Then there ezists a

i x(J)-Aj—I
unique vector x° = (I?);—L:l in R™ such that the matriz Xy = e/=*
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satisfies (1). Moreover, V'(xg) = 0 and there exists a unique mazximum
entropy solution X, of (1), namely X, = Xj.

Proof We shall maximize the entropy functional H over the set of all nonneg-
ative solutions of (1), by using Lagrange’s method of the multipliers. Firstly,
let X, > 0 be a matrix provided by Lemma 5. By Proposition 6, we neces-
sarily have X, > 0. Let f be defined on the set D := {X € M, : X > 0}
by f(X) = H(X). The function f is of class C' by Lemma 4. Define f; on
Thus X, € S and mgxf = f(X,). Since D is open, we can apply the

method of the multipliers. Thus there exist some real numbers z9,. .., 2°

rn

such that X, is a critical point of the function f + > 2¥f;. By Lemma 4,
i=1

—tr (I +InX,)Y) + > 2%r (AY) =0 for all Y € M;. Hence I +InX, =

7
i=1

n S alAi-T . .

S" 2%A;. Then X, = e=1 = X,. Writing that X fulfills the equations
i=1

(1) shows that 20 is a critical point of V, see Proposition 1. Since the func-
tion V is strictly convex, its critical point is unique. The vector z° is then

uniquely determined.

9 Lemma (i) If a strictly convez function f of class C* on R™ has a critical
point, then | lim f(x)= +oo.

(ii) If a convex function f on R* = C has finite radial limits I(s) :=

tginoof(te“) for =5 < s < %, then I(-) is continuous on (-5, 7%).

Proof (i) By a translation, we can assume f’(0) = 0. The restriction v =
v(t) == f(tz) (t € R) of f to any line Rz (x # 0) is strictly convex with
v'(0) = 0. For any points P = (o, v(«)) and @ = (5,v(5)) with a < § the
graph of v = v(t) is below the line PQ for o < ¢t < (§ and above the line PQ
for t & [a, (], in particular it is above any tangent. Hence there exist a, b > 0
such that v(t) > v(0) — b + a|t| for all ¢, for example a := min{v(1),v(—1)}
and b := max{v(1),v(—1)}. Then tlir?o f(tx) = +o0 for all x with ||z|| = 1.
The function ¢(t) = f'(tx)x satisfies g(0) = 0 and ¢'(¢t) = f"(tz)(z,x) > 0
for all ¢ > 0. Then g(t) > 0 for all t > 0, and so

—
ot
SN~—

f(taz) — f(tr2) = / (e dt = / Cg(ydt >0

t1 t1
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for any positive 1, to with t5 > t;. Since all radial limits tlim f(tz) are

+o00 and the map ¢ — f(tx) is monotonically increasing, it follows using the
compactness of the unit sphere that " lim f(z) = +oo.

|—>oo

. ./
el 4els

ot s’
7;-5‘;-5 =
2

(ii) Let s, s" € (=5, 5). Then

Since f is convex, it follows that f (cte

E )<Mf0reveryt>0

Letting ¢ — oo gives l(%sl) < M Hence [ is convex, and so continuous.

Proof of Theorem 2 If the system (1) has positive solutions, then by
5o 20,1

Theorem 8 it has also a particular solution of the form X, = e/=!

Moreover 2% = (29)7_, is a critical point of V. Then lim V(z) = +oo0, see

llz[|—o00

Lemma 9, (i). The converse implication is obvious, if lim V(x) = 400 then

[[#]|—o0
the smooth function V' reaches a minimum in a point z° and so V'(z°) = 0,
which provides the solution X using again Proposition 1.

10 Lemma For every x # 0 in R", set A, = > x;A;. Then A, # 0 and:
j=1

(i) If the spectrum of A, has both positive and negative eigenvalues, then

lim V(tx) = +o0.

t—=o0

(i) If Az > 0 and Z bjz; > 0, then lim V(tz) = +o0.

(ii) If A, > 0 and Zb z; = 0, then we have LlfrnooV(tx) = +oo and
lim V(tz) = dlmkerA

t——o0

(iv) If A, > 0 and ijzcj < 0, then we have tlim V(tr) = —oc0 and
=1 ——00
tlim V(tx) = +oo.

Proof Since the A;’s are linearly independent, A, # 0. Let o4 < --- < oy
be the eigenvalues of A, counted according to their multiplicities. Then A,

is unitarily equivalent to a diagonal matrix diag(oy,...,0;) with diagonal
l
elements o4, ...,0; . Hence tretds = 3 !9 for any real t.
i=1

(i) In this case, o0y < 0 and o; > 0. Then obviously tlirin V(te) =
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!
tEinOOi:Zl "7 = +o0.

(ii) Since all o; > 0 and V (tx) = i el —t i bjz;, then V(tzr) — +oo
as t — —oo due to the linear term. /Gslo, V(tx)]:l +00 as t — +oo due to
the exponential term, that is not constant since A, # 0 and so o; # 0.

(iii) We have tEI—noo V(tx) = tEr_noojé e'?i = the number of null eigenvalues
(= dimker A,). Also, tEeroov(m) = 400 since o; > 0

t——o00 t——o00

(iv) In this case lim V(tz) = lim (—t ) x;b;) = —oco and, obviously,
j=1

lim V(tx) = +oo.

t—+o00

Proof of Theorem 3 Let us note firstly that there is a constant C' > 0
such that whenever the problem (1) has nonnegative solutions X, all these
solutions satisfy || X| < C. Indeed, the linear span of the A;’s contains
positive matrices, and so there exists a linear combination of the equations
(1) leading to an equality of the form tr (PX) = b with P a positive matrix.
Also, we have b > 0 since there exists at least one solution X > 0. We fix
a constant ¢ > 0 such that P > ¢. Then for every solution X > 0 of (1) we
have ¢ X < X'2PX'2 whence ctr X < tr (XV2PX'?) =tr (PX) = b, and
so || X|| < ¢ to.

(a) Suppose that problem (1) admits solutions X > 0 but none of them
is positive. Firstly we show that V' is bounded from below. Fix an [ x [
matrix M > 0 satisfying (1). For any vector z in R", let o¢(x),...,0/(x)
be the eigenvalues of the matrix A, := ) z;A; counted according to the

j=1
multiplicity. Then there exists a unitary U, in M; such that U;A,U, =
diag (o1(x),...o1(x)). Hence > bjx; = > wjtr (A;M) = tr (A, M) and so
=1 j=1

J
l

V(z) = trets —tr (A, M) = > (7@ — gy(x)pi () where pi(z), ..., ()
are the diagonal entries of theZ niatrix U:MU,. Note that for every vector x
in R" and index i = 1,1 we have 0 < p;(z) < |U;MU,|| = [[M||. Now for
any nonnegative u with p < ||[M]| and real o we have the estimate e’ —opu >
pw—plnp > —||M|| In||M|| (minimize to this aim the function o +— e¢” — op
on the real line). This leads to the estimate V(z) > —[||M]|| In||M]| for all

13



2. Thus V' is bounded from below.

We prove now the existence of a finite radial limit of V. For an arbitrary
vector & # 0, there are several possibilities as described by Lemma 10 (using
also that A_, = —A,). Case (iv) is excluded since inf V' > —oo. Then
we easily see that at least one vector x should be in case (iii). Indeed,
if only the cases (i), (ii) occur then all radial limits of V' are +oo. This
implies, as in the proof of Lemma 9, (i) (see (5)), that | lﬁm V(z) = +oo.

Then Theorem 2 provides positive solutions of (1), which is excluded by
hypotheses. Let then C' denote the set of those vectors = # 0 such that

A, < 0and ) bjz; = 0. Obviously, C' (# 0) is a positive convex cone.
j=1

For every = € C, Lemma 10, (iii) gives tligl V(tx) = dimker A,. Also, all

other radial limits of V' are +oo. Using Lemma 9, (ii), one easily proves

that all radial limits of V' along half-lines from C are equal. Namely, for

any points x, y with x # y in C, the restriction of the map z — tliin V(tz)

to the segment [x,y] := {tx + (1 —¢)y : 0 < ¢t < 1} is continuous, and
hence locally constant (since it’s integer-valued), and so it is constant. Then
dimker A, = tliin V(tz) = constant for all z € C.

Conversely, suppose that inf V' > —oo and V' has at least one finite radial
limit. Then by Lemma 9, (i) the function V' does not have critical points.
Hence by Theorem 2 there are no positive solutions of (1). Let us show that
problem (1) admits however nonnegative solutions. By Lemma 10, for every
vector & # 0 either  or —z must be in one of the cases (i)-(iii). In each

of the these cases we have the implication A, > 0 = > bjz; > 0. For
j=1
every integer k > 1, set By; = 5, + %tr A; and by; = Byje. Then for every

k we have the implication A, > 0 = > x;by; > 0 (x # 0). Indeed, if
j=1

A, > 0 then tr A, > 0. Also, tr A, # 0 since A, # 0. Then Z:)sjbkj =

Jj=
n

zi(b; + ftrA;) = Z ;b + £tr A; > 0 since be] > 0 and tr A, > 0.

1 =1 7j=1

Using Lemma 10 (i), (ii) for the function V(x) = trefs — Z bijx;, it follows
j=1

that the radial limits of Vj, are +00. Using again (5) as in the proof of Lemma

9, now for the function f := Vi (whence vg(t) = Vi(tz) and g(t) = V[ (tx)z),

M=

<.
Il

14



we obtain lim Vi(z) = +oo. Then by Theorem 2, each problem (1):

el —o0
tr (A, X) = B; (j = 1,n) has a positive solution X;. Now by the remark at
the beginning of the proof, the sequence (Xj)y is bounded. Then it has some
accumulation points X > 0, and all these X’s are solutions of (1).

(b) It follows from (a) and Theorem 2 that problem (1) admits nonneg-
ative solutions if and only if inf V' > —oo. If infV = —o0o, then at least
one radial limit should be —oo, for otherwise only cases (i)-(iii) could appear
in Lemma 10. This would lead again to the existence of some nonnegative
solutions X of (1), either by Theorem 2 if only cases (i), (ii) occur, or by
considering the problems (1) if the case (iii) also appears.

11 Remarks (i) If problem (1) admits solutions X > 0, then Proposition 1
and Theorem 2 show that V fulfills the conditions for applying the conjugate
gradients minimization method [9, 14]. This yields, in principle, a sequence
of vectors o, 22, ... in R™ such that V(z*) \, min V and 2% — 2% as k — oo,
where 20 is the critical point of V. Thus we can approximate our particular
204,

solution Xy = ejgl o I. Calculating the gradients of V' in the points x = z

2 wjA;

(k > 1) requires to compute at each step k a matrix exponential e7="
n

This can be performed for instance either by diagonalizing A, = > z;A; by
j=1

Jacobi’s method (see for example [7, section 8.4] and [13]), or by tridiago-

nalizing A, by means of Householder reflections and using then an iterative
eigenvalue algorithm (which in the gross requires O(I%) flops/step).

(i) Let (2*); be a minimizing sequence as above, and H be the linear

manifold of all hermitian solutions of (1). Let Py(X) denote the projection

of a hermitian X € M; onto H with respect to the inner product (X,Y) =

tr (XY*). Then Py(X) = X + > ¢;A; with ¢; given by the system of
=1

k

equations Y tr (A;4;)c; = B; — tr (A, X) (i = 1I,n). For large k so that

j=1

e : : ,

XF = ei=t is sufficiently close to Xy, the matrix Py (X*) (= Xj) is also
positive, and hence, an exact positive solution of (1).

(iii) In the case (a), resp. (b) of Theorem 3, for any minimizing se-

quence (%), of V we have ||z¥|| — oo, with klim V(z*) € {0,1,...,1}, resp.

15



klim V(2F) = —o0.

12 Example (i) Consider the positive matrix completion problem for 4 x 4

matrices X = [Xjk]§7k21 > (0 the given entries of which are X1 = 3, X5 =

1.45, Xo3 = 1.25, X34 = 2.35 and X4 = 2.75. Thus [ = 4, n = 5 and we take
Ay =[]} =y with af; =1 and a; = 0 for (i,7) # (1,1),

ijlij=
Ay = [a3)]},—y with ai,, a3, =1 and a}; = 0 for (i, 5) # (1,2), (2,1)
etc, as well as 01 = 3, B = 2-1.45 = 2.9 etc so that the requirements
X11 = 3, Xj2 = 1.45 etc be written in the form (1).
We minimize V' by the conjugate gradients method [9, 13-15] that we
briefly remind below. Start with an initial point 2! (:= (0.01,...,0.01) € R®
in our case). For every k > 1, let g, be the gradient of V in z*, and ¢, be

the conjugate gradient in z*. Namely, ¢; = —¢; and ¢ = —gi, + Qp—1 - Gr_1
for k > 2, where «a;, = % is Polak-Ribiere’s coefficient. Once we
have an z¥, we take %! := ¥ + t¢;, for that value t = t; minimizing V

on the half-line 2% + te, (t > 0) etc. We stop when we get a point z*
with || gk |lmaz less than a prescribed tolerance (:= 0.001 in our case), where

[(y5)7=1lloo = ax |y;| for y € R™. For the line minimization, a value t = #;
<j<n

is accepted instead of #;, if [(V'(z* + tci), ci)| < 6||gkllmae Where § < 1is a
fixed constat (:= 0.5 in our case). After 10 iterations providing the vectors

2%, ..., 2!t € R® we have obtained, for z := z!! with

o™ = (0.8571823445,0.8822629161, 1.022695324, 1.904910646, 1.688386182),

i xjA;—1
the positive matrix Xy = e/=! , namely

2.999990931 1.449938928 1.925776815 2.749864277
1.449938928 1.117124222 1.250052935 1.414252494
1.925776815 1.250052935 2.090027040 2.349861843
2.749864277 1.414252494 2.349861843 3.037633457

X(]:

satisfying the equations (1) with error < 0.001. Then Py (X)) is simply X,
corrected at the prescribed entries X;; = 3 etc.

Finding a solution X of (1) by using the barrier function Indet X, see
[12], requires to consider a dual problem (2). We have - x = 31 + 2.9z, +
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5
2.5x3 +4.7x4 + 5.525. Note firstly that condition > x;A; > 0 (which means
j=1

1 > 0, 29345 = 0) implies that 5" -z > 0. This guarantees that (1) has
nonnegative solutions. Now we can take a positive Ay := I for example, so
that {x : A(x) > 0} # (. Hence

1"—5(71 ) 0 Ty

. i) 1 T3 0
A(SL’) - 0 T3 1 T4
T5 0 Ty 1

and p* < 0 < p. Thus we may let v = 0. Then we have to numerically solve
the optimization problem

sup{Indet A(z) : z € R®, A(z) >0, ' -2 =0} = Indet A(x").

Once the analytic center z* is known, a solution X, > 0 of (1) will be
provided, of the form X, = A(z*)~!/\ for a Lagrange multiplier A > 0.

We can derive this as usual, by means of the formula %[det(xA + B)] =

det(zA+B) tr ((rA+B)~'A) where A, B are selfadjoint matrices with A+ B
invertible, which gives A = det A(z™").

To represent the problem in the form (3), too (see [5, 6, 8, 11]), we
introduce the variable z = (213, 292, 224, 233, 244) consisting of the unspecified

entries of

1.45 299 1.25 294
213 1.25 233 2.35
2.75 224 2.35 zZ44

X =X(2)=

with 299, 233, 244 Teal. Then set H(z) = X (2)7! = [H,-j(z)]?jzl. The associ-
ated graph has vertices 1, 2, 3, 4 and edges {1,2}, {2, 3}, ’{3,4}, {1,4}, in
particular has a cycle of length 4 and so is not chordal; also, the diagonal
entries zo0, 233, 244 are unspecified. The det-maximizing solution X« from
above may also be described as the unique positive completion such that
h(Z) = (0, )\, 0, )\, )\), where h(Z) = (ng(Z), HQQ(Z), H24(Z), Hgg(Z), H44(Z))
with
1 1.45 299 224

Hya(2) = —— det 125 2.35 | =
13(2) det X (2) ° ;1735 o
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1
M (1.8125244 — 3.4075294 — 209213244 + 6.462520 + 213 204|* — 3.4375%54)

ete.
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