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Abstract

We characterize the existence of a positive definite l × l matrix X

the entries of which satisfy n nonhomogeneous linear conditions by
the existence of a minimum for an associated function V , smooth
and strictly convex on R

n. If there exist solutions X > 0, then
lim‖x‖→∞ V (x) = +∞ and the critical point x0 of V can be approxi-
mated by the conjugate gradients method. Knowing x0 provides, by
a simple analytic formula, the unique solution X maximizing the en-
tropy −tr (X ln X) = −

∑l
j=1 λj ln λj (where λ1, . . . , λl are the eigen-

values of X) subject to the given restrictions. Related results are
obtained in the semipositive definite case, too.
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Introduction

We consider the question of finding positive definite l × l matrices X =
[Xjk]

l
j,k=1 of numbers Xjk satisfying a given set of n nonhomogeneous linear

conditions:
l

∑

j,k=1

αijkXjk = βi for i = 1, . . . , n. That is, we seek for X > 0

in the operator sense: 〈Xc, c〉 =
l

∑

j,k=1

Xjkckcj > 0 for any tuple c 6= 0 of

numbers c1, . . . , cl, satisfying the equations

tr (AiX) = βi (i = 1, n) (1)

where Ai := [αikj ]
l
j,k=1 and tr denotes the trace, trA =

l
∑

j=1

ajj for any matrix

A = [ajk]
l
j,k=1. We can always suppose that Ai are selfadjoint and βi real,

since (in the complex case, for instance) conditions (1) are equivalent to
tr ((Ai + A∗

i )X) = βi + βi and tr (i(A∗
i − Ai)X) = i(βi − βi), using that

tr (AX) = tr (AX)∗ = tr (A∗X). We shall simultaneously consider the real

1The research was supported by the grant no. 201/06/0128 of GA CR and by the grant
no. 2-CEx06-11-34 – RO
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and complex cases. One can assume that A1, . . . , An are linearly independent
over R. Our main results are propositions 1 – 3, see also remarks 11 (i)-(iii).

The problem from above is an extensively studied one, its classical solu-
tions and comprehensive references can be found in [3, 12, 16], see also [4, 7,
8]. Usually one considers also a dual problem, namely determining whether
for given l × l matrices A0, A1, . . . , An, there exists a matrix Y > 0 of the
form

Y = A0 +

n
∑

i=1

xiAi. (2)

The latter problem is solved by maximizing the minimum eigenvalue of Y
of the form (2) in the variables x1, . . . , xn, and for this a standard algorithm
can be applied. When problem (2) admits solutions, and no positive definite

matrix of the form
n
∑

i=1

xiAi exists, then there is also a distinguished solution

of (1), which is the matrix maximizing ln det Y over the set of all Y > 0
of the form (2). Actually, both problems (1) and (2) can be respectively
associated with certain semidefinite programs, concerned with minimizing
a linear functional subject to the constraint that an affine combination of

symmetric matrices is positive semidefinite. Namely, set βt · x =
n
∑

i=1

βixi, let

A(x) = A0 +
n
∑

i=1

xiAi and define

p∗ = inf{ βt · x : A(x) ≥ 0}

and
q∗ = sup{−tr (A0X) : X ≥ 0, tr (AiX) = βi}.

The key property of the dual program is that it yields bounds on the optimal
value of the primal one and viceversa. That is, suppose that either (1) has
solutions X > 0, or (2) has solutions x with A(x) > 0. Then p∗ = q∗, see for
instance [12, 16]. If both conditions hold, the optimal sets of the programs
for p∗ and q∗ are nonempty. One defines in this case

φ(x) = ln det A(x)−1 if A(x) > 0,

and φ(x) = +∞ otherwise. Then φ is a barrier function [12] for the set
{x : A(x) > 0}, namely its values increase to infinity as x approaches to the
boundary. Set p = sup{βt · x : A(x) > 0}. It can be shown [16] that for
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every γ ∈ (p∗, p) there exist vectors x satisfying A(x) ≥ 0, βt ·x = γ, and the
set of all such solutions x is bounded. Moreover, the analytic center of this
linear matrix inequality, that is, the unique point x∗ with βt · x∗ = 0 such
that

min
A(x)>0,βt·x=γ

φ(x) = φ(x∗),

satisfies the equations

tr (Ai A(x∗)−1) = λβi (i = 1, n)

for a Lagrange multiplier λ, that proves to be positive (see for instance [16]).
One obtains in this way a positive matrix X := A(x∗)−1/λ satisfying (1)
and −tr (A0X) = γ − l/λ. Thus briefly speaking, a necessary and sufficient
condition for the existence of a solution X ≥ 0 of (1) is that βt ·x ≥ 0 for all x

with
n
∑

j=1

xjAj ≥ 0, in which case one can search for an analytic center x∗ etc

providing a solution X. The study of the optimality conditions and various
properties for such semidefinte programs started in the sixties, and later on
the related problem of minimizing the maximum eigenvalue for hermitian
matrices was considered, too. Then the interior point method, introduced
in [10] as an important tool for the linear programming, was generalized to
a larger class of optimization problems by using barrier functions [12]. This
method applies in particular to semidefinite programs as mentioned above.

The existence of a positive completion for a given partial matrix (which is
a particular case of problem (1)) has been firstly characterized under certain
hypotheses in [5, 6, 8]. The more general case of the linearly constrained
completions has been considered subsequently in [11]. Namely, suppose that
we seek for a matrix X = [zij ]

l
i,j=1 > 0 the entries zij of which are given for

(i, j) in a prescribed subset S ⊂ {1, . . . , l} × {1, . . . , l}. Moreover, assume
that all the diagonal entries zii (i = 1, l) are specified. Since in particular
X must be selfadjoint, the pattern S may be symmetric, with the condition
zji = zij necessarily fulfilled. We call X a completion of the partial matrix
[zij ](i,j)∈S. Let S ′ be the set complementary to S, set p = card S ′ and let
z = (zij)(j,k)∈S′ denote a vector in Cp, consisting of the unspecified entries
of X. Let X(z) denote our partial Hermitian matrix and H(z) = X(z)−1

be the formal inverse of X(z). Define also the vector h(z) := (Hij(z))(i,j)∈S′ .
Let c be a fixed vector and B a fixed matrix. It has been shown [11] that if
the problem

max {det X(z) : X(z) > 0, Bz = c} (3)
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is feasible, then it has a unique optimal solution, which moreover is the
unique feasible point z for which h(z) is in the range of B∗. This provides
in particular (for B = 0) a previously known result, that the det-maximizing
completion of such a partial matrix is characterized as the unique completion
having a zero in the inverse on every position in which X has an unspecified
entry [5–8].

For certain positive matrix completion problems, one knows conditions
that are sufficient for the existence of a solution. For example, suppose that
all diagonal entries are given, and that [zij ](i,j)∈S is a positive definite partial
matrix, that is, all diagonal minors that can be made of the given entries are
positive. Then a positive completion exists whenever the undirected graph
associated to S, the edges of which are {i, j} for (i, j) ∈ S with i 6= j, is
chordal – that is, all its minimal cycles have length ≤ 3. For this topic we
refer for instance to [1], where a problem similar to (1) also was studied,
involving linear restrictions on both X, X−1 and solved by a fixed point
procedure. Note that by our approach it is also allowed that the diagonal
entries of the partial matrix be unspecified.

However, the question of recognizing whether a concrete given problem
of the forms (1) – (3) admits solutions is generally open. Also, if the problem
has solutions there is generally no closed formula solving it. Checking the fea-
sibility and finding solutions requires then various algorithms of approxima-
tion. Our approach shows, in particular, that the barrier function − ln det X
usually involved in such algorithms can be substituted by −tr (X ln X).

Main results

Let eA =
∑

k≥0

1
k!

Ak denote the exponential of a matrix A. Set bj = βje.

1 Proposition The function V = V (x) defined for x = (xj)
n
j=1 ∈ Rn by

V (x) = tr (e

nP
j=1

xjAj

) −
n

∑

j=1

xjbj

is strictly convex, [ ∂2V
∂xi∂xj

(x)]ni,j=1 > 0 and ∂V
∂xj

(x) = tr (Aje

nP
i=1

xjAj

) − bj.

2 Theorem The system of equations (1) admits solutions X > 0 if and only
if lim

‖x‖→∞
V (x) = +∞, that is, if and only if V has a critical point. In this
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case, (1) has also the particular solution

X0 = e

nP
j=1

x0
jAj−Il

where x0 = (x0
j )

n
j=1 is the unique (minimum) critical point of V . Also, X0 is

the unique matrix maximizing −tr (X ln X) = −
l

∑

j=1

λj ln λj (where λ1, . . . , λl

are the eigenvalues of X) amongst all solutions X ≥ 0 of (1).

3 Theorem If the linear span of the Aj’s contains positive matrices, then:
(a) The system of equations (1) admits solutions X ≥ 0 but all of them

have det X = 0, if and only if V is bounded from below and there exist vectors
x 6= 0 such that lim

t→+∞
V (tx) is finite. The set C of all such vectors is then a

convex cone, V has no critical points, and lim
t→+∞

V (tx) = dim ker
n
∑

j=1

xjAj =

constant for all x ∈ C. Moreover, C consists of those x 6= 0 such that
n
∑

j=1

xjAj ≤ 0 and
n
∑

j=1

βjxj = 0.

In this case, for any integer k ≥ 1 there exists an Xk > 0 with tr (AjXk) =
βj + 1

k
tr (Aj) for j = 1, n, any such sequence (Xk)k is bounded, and all its

accumulation points X are solutions of (1);
(b)The system (1) has no solutions X ≥ 0 at all, if and only if inf V =

−∞. In this case, there exist vectors x 6= 0, the set of which is a convex cone
C, such that lim

t→+∞
V (tx) = −∞, and V has no critical points. Moreover, C

consists of those x 6= 0 with
n
∑

j=1

xjAj ≤ 0 and
n
∑

j=1

βjxj > 0.

We state below some preliminaries, necessary later on in the proofs.
Let then A1, . . . , An be linearly independent selfadjoint l× l matrices and

b1, . . . , bn be real numbers. Let Ml denote the space of all l × l matrices,
acting as usual on the l-dimensional Euclidian space and endowed with the
operator norm ‖A‖ = sup

‖h‖≤1

‖Ah‖ for A ∈ Ml. Let M+
l denote the cone of

all nonnegative matrices X ∈ Ml, that is, 〈Xh, h〉 ≥ 0 for every vector h
where 〈 · , · 〉 denotes the inner product. Since the function h(t) = −t ln t
(with 0 ln 0 = 0) is continuous on [0,∞), it induces by continuous functional
calculus a mapping X 7→ h(X) from M+

l into Ml. For every X ≥ 0, set
H(X) = tr h(X). Using that h(U∗XU) = U∗h(X)U for every X ≥ 0 and
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unitary U ∈ Ml, we obtain H(X) = −
l

∑

j=1

λj ln λj where the λj’s are the

eigenvalues of X counted according to the multiplicity so that 0 ≤ λ1 ≤
· · · ≤ λl. By analogy with the corresponding Boltzman-Shannon’s notion for
probability densities, we call H(X) the entropy of X. This differs from other
notions used under the same name in [1, 2, 3, 8] as barrier functions (of the
form H(X) = ln det X+ linear terms).

4 Lemma The function H is continuous on M+
l and lim

‖X‖→∞
H(X) = −∞.

Also, H is of class C1 on the interior of M+
l and the differential H ′ of H in

a point X > 0 is given by H ′(X)Y = −tr ((I + ln X)Y ) for all Y ∈ Ml.

Proof Since the function h is concave, we have

1

l
H(X) = −

1

l

l
∑

j=1

λj lnλj =
h(λ1) + · · ·+ h(λl)

l
≤ h(

λ1 + · · · + λl

l
)

= −

l
∑

j=1

λj

l
ln

l
∑

j=1

λj

l
= −

tr X

l
ln

trX

l
.

The uniform norm ‖ · ‖ and the trace norm ‖ · ‖1 are equivalent on Ml.
Thus ‖X‖ → ∞ implies that trX (= ‖X‖1 for X ≥ 0) → ∞, too. Hence the
right hand side of the previous estimate tends to −∞. Then H(X) → −∞
as ‖X‖ → ∞ with X ≥ 0. The continuity of H holds using either the upper
semicontinuity of the spectrum mapping X 7→ (λ1, . . . , λl), or the fact that all
X ≥ 0 are selfadjoint. For X > 0, H(X) = −tr (X ln X) where the logarithm

is defined on C \ (−∞, 0] by ln(reiθ) = ln r + iθ for r > 0 and −π < θ < π.
Hence H is real analytic, in particular smooth, on the interior of M+

l (that
consists of all X > 0). To check this, we use, for every X0 > 0, a power series
ln s =

∑

k≥0

ck(s−r/2)k of the logarithm on a fixed interval (0, r) with r > ‖X0‖

and the semicontinuity property of the spectrum, to show that there is an
ε = εX0

> 0 such that H(X) = −tr (X
∑

k≥0

ck(X − r/2)k), where the series is

convergent for all X with ‖X−X0‖ < ε. To find now the Fréchét differential
H ′(X) we use the formula H ′(X)Y = lim

t→0
t−1(H(X + tY ) − H(X)), which

requires the computation of lim
t→0

t−1tr (X(ln(X + tY ) − ln X)). To this aim:

fix an r > ‖X‖, apply the functional calculus of X + tY (for small t) to the
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analytic function ln z =
∑

k≥0

ck(z−r/2)k for |z−r/2| < r/2, substract ln X and

multiply to the left by X. Neglect then the terms of order ≥ 2 in t and use
for the others, that are linear in Y , the equalities tr (XpY Xq) = tr (Xp+qY )
(p, q ≥ 0 integers) to get the coefficient of t.

5 Lemma If the system (1) has any solutions X ≥ 0, then it has in particular
a solution X∗ ≥ 0 such that H(X∗) = max{H(X) : X ≥ 0 satisfying (1)}.

Proof The set S = {X ∈ M+
l : tr (AjX) = βj ∀j} is nonempty and closed.

By Lemma 4, sup
S

H ≤ sup H < ∞ and there exists a ball B = {X ∈ Ml :

‖X‖ ≤ r} of radius r sufficiently large such that sup
S

H = sup
S∩B

H , and so H|S

reaches its supremum (on the compact set S ∩ B).

6 Proposition If the system (1) has at least one positive solution X, then
any maximum entropy solution X∗ ≥ 0 must be positive.

Proof We fix a matrix X > 0 satisfying (1). Let X∗ ≥ 0 be any solution
of (1) of maximum entropy (such solutions exist by Lemma 5). Let Xt =
tX + (1 − t)X∗ for 0 < t < 1. In order to prove that X∗ > 0, we can
suppose X∗ 6= X. Fix positive constants c and C such that X ≥ c and
‖X‖ + ‖X∗‖ + maxH ≤ C, see Lemma 4. We have 〈Xth, h〉 > 0 for any
vector h 6= 0, that is, Xt > 0. Hence σ(Xt) ⊂ (0, C]. Suppose that 0 ∈ σ(X∗).
Now Xt → X∗ as t → 0. Then by using the upper semicontinuity property of
the spectrum and ker X∗ 6= {0}, we easily derive that for each t ∈ (0, 1) there
exists a partition σt ∩ σ′

t of σ(Xt) with σt 6= ∅ such that lim
t→0

(max
λ∈σt

λ) = 0

while all points of σ′
t stay away from 0, that is, there are positive constants

b < 1 and B < C such that σ′
t ⊂ [B, C] for all t ∈ (0, b). We can also

assume, for b sufficiently small, that all λ ∈ σt are < 1. Let e1, . . . , el be the
canonical basis of Rl. For every t ∈ (0, b) we choose an arbitrary unitary Ut ∈

Ml such that U∗
t XtUt =

l
∑

i=1

λit〈 · , ei〉ei, where (λ1t, . . . , λlt) is a list of (not

necessarily distinct) eigenvalues of Xt counted according to the multiplicity.
By a permutation, we can suppose that λ1t, . . . , λpt ∈ σt and λp+1t, . . . , λlt ∈
σ′

t where p = p(t) ≥ 1 is the dimension of the spectral space Σt ⊂ Rl of
σt. Let ∆t = diag (λ1t, . . . , λlt) be the matrix of U∗

t XtUt with respect to the
basis e1, . . . , el. Let (e1t, . . . , elt) be the orthonormal basis of Rl consisting
of the eigenvectors eit = Utei of Xt. The subspace Σt is spanned by the
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eigenvectors e1t, . . . , ept of Xt corresponding to the eigenvalues λ1t, . . . , λpt,

respectively. Let Pt =
p

∑

i=1

〈 · , eit〉eit ( 6= 0) be the spectral projection on Σt.

We have ‖Xt|Σt
‖ = max

λ∈σt

λ → 0 as t → 0. Hence ‖XtPt‖ → 0 as t → 0.

Then by decreasing b if necessary, we can suppose that PtXtPt < c/4 for all
t ∈ (0, b). Let Qt = U∗

t PtUt be the orthogonal projection onto the linear span
of e1, . . . , ep(t). Then UtQtU

∗
t XtUtQtU

∗
t < c/4, whence QtU

∗
t XtUtQt < c/4.

Also, if b is sufficienty small we have ‖QtU
∗
t (X∗ − Xt)UtQt‖ < c/4 for all

t ∈ (0, b). Hence QtU
∗
t X∗UtQt < c/2. Since X ≥ c, U∗

t XUt ≥ c and so
QtU

∗
t XUtQt ≥ cQt. Hence

QtU
∗
t (X − X∗)UtQt = QtU

∗
t XUtQt − QtU

∗
t X∗UtQt ≥

c

2
Qt.

Hence all the diagonal elements

[ QtU
∗
t (X − X∗)UtQt ]ii := 〈QtU

∗
t (X − X∗)UtQtei, ei〉 ≥

c

2
, (4)

with i = 1, p. For any A ∈ Ml we have

tr (QtAQt) =

p
∑

i=1

〈Aei, ei〉,

tr ((I − Qt)A(I − Qt)) =
l

∑

i=p+1

〈Aei, ei〉

and
trA = tr (QtAQt) + tr ((I − Qt)A(I − Qt)).

Let A = U∗
t (X − X∗)Ut (ln ∆t). Then for every t ∈ (0, b)

−tr ((X − X∗) ln Xt) = tr (U∗
t (X − X∗)Ut U

∗
t (ln Xt)Ut)) =

−tr (U∗
t (X − X∗)Ut ln ∆t) = τ1(t) + τ2(t)

where
τ1(t) = −tr (QtU

∗
t (X − X∗)Ut Qt (ln ∆t)Qt)

and

τ2(t) = −tr ((I − Qt)U
∗
t (X − X∗)Ut (I − Qt) (ln∆t)(I − Qt)),
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using also that (ln ∆t)Qt = Qt(ln ∆t)Qt since the range of Qt is invariant
under ∆t. By (4), we have

τ1(t) =

p
∑

i=1

[ QtU
∗
t (X − X∗)UtQt ]ii (− ln λit)

≥

p
∑

i=1

c

2
(− ln λit) ≥ p

c

2
ln

1

max
1≤i≤p

λit
≥

c

2

1

max
λ∈σt

λ
→ +∞ as t → 0.

Using |tr (AB)| ≤ ‖A‖ ‖B‖1 and ‖(I − Qt)∆t(I − Qt)‖1 =
l

∑

i=p+1

|λit|, we

obtain

|τ2(t)| ≤ ‖(I − Qt)U
∗
t (X − X∗)Ut (I − Qt)‖ ·

l
∑

i=p+1

|λit| ≤

(‖X‖ + ‖X∗‖) · l max
p+1≤i≤l

| lnλit| ≤ Cl max{| lnB|, | lnC|}.

Therefore, using Lemma 4,

d

dt
(H(Xt)) = H ′(Xt)(X − X∗) = −tr ((X − X∗)(I + ln Xt)) =

−tr (X − X∗) − tr ((X − X∗)(ln Xt)) = −tr (X − X∗) + τ1(t) + τ2(t) → +∞

as t → 0. Hence (H(Xt) − H(X∗))/t > 0 if t > 0 is sufficiently small. Then
we have matrices Xt 6= X∗ with H(Xt) > H(X∗), which is impossible. It
follows that X∗ must be positive.

7 Lemma Let A, B ∈ Ml be selfadjoint with A 6= 0 and set f(x) = tr exA+B

for x real. Then f ′(x) = tr (AexA+B) and f ′′(x) > 0 for all x.

Proof Fix x, set M = xA + B and let t be a real variable. Then

tr (eM+tA − eM) =
∑

k≥0

1

k!
tr ((M + tA)k − Mk) =

t
∑

k≥1

1

k!
tr (Mk−1A + Mk−2AM + · · ·+ MAMk−2 + AMk−1) + O(t2)
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= t
∑

k≥1

1

k!
· k tr (AMk−1) + O(t2) = t tr (AeM) + O(t2).

Hence f ′(x) = lim
t→0

t−1tr (eM+tA − eM ) = tr (AexA+B). We arbitrarily fix x0

and show that f ′′(x) > 0 for all x in a small neighbourhood of x0. Set again
M = xA + B. Fix a constant c = cx0,A,B > 0 sufficiently large so that
x0A + B + c > 0. Writing f(x) = e−c tr exA+(B+c) and replacing B by B + c
shows that we can assume, for x ≈ x0, that M > 0. Then we compute
f ′′(x) = lim

t→0
t−1tr (A(eM+tA − eM)) as follows. We have

A(eM+tA − eM) = A
∑

k≥0

1

k!
((M + tA)k − Mk) =

tA
∑

k≥1

1

k!
(Mk−1A + Mk−2AM + · · ·+ AMk−1) + O(t2) =

tA(
1

1!
A +

1

2!
(MA + AM) +

1

3!
(M2A + MAM + AM2) + · · · ) + O(t2).

Apply the trace to the previous equalities. The coefficient of t has the form
∑

p,q≥0

cpqtr (AMpAM q) with all cpq ≥ 0. Since M > 0 and A = A∗, then

M q > 0 and AMpA ≥ 0 for all p, q. Hence tr (AMpA · M q) ≥ 0 using that
tr (CD) = tr (D1/2CD1/2) ≥ 0 for any C, D ∈ M+

l . Then f ′′(x) ≥ 0. If
f ′′(x) = 0 for some x, then all terms cpqtr (AMpAM q) = 0, in particular
tr (A2) = 0 whence A = 0 that is false.

Proof of Proposition 1 Let x, y ∈ Rn be arbitrary with x 6= y. For any
real t, set g(t) = V (ty+(1−t)x). Then g has the form g(t) = tr etA+B +ta+b,

where A =
n
∑

j=1

(yj − xj)Aj and B =
n
∑

j=1

xjAj . Note that A 6= 0 since the Aj ’s

are linearly independent. By Lemma 7, g′′(t) > 0 for all t. Then g is strictly

convex and so V (1
2
(x + y)) = g(0+1

2
) < g(0)+g(1)

2
= V (x)+V (y)

2
. Thus V is

strictly convex, too. Moreover, for every x ∈ Rn and c = (c1, . . . , cn) 6= 0,

letting y = x + c in condition g′′(0) > 0 gives
n
∑

i,j=1

(∂i∂jV )(x)cjci > 0. The

partial derivatives of V are computed also by Lemma 7.

8 Theorem Suppose that (1) has positive solutions. Then there exists a

unique vector x0 = (x0
j)

n
j=1 in Rn such that the matrix X0 := e

nP
j=1

x0
jAj−I
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satisfies (1). Moreover, V ′(x0) = 0 and there exists a unique maximum
entropy solution X∗ of (1), namely X∗ = X0.

Proof We shall maximize the entropy functional H over the set of all nonneg-
ative solutions of (1), by using Lagrange’s method of the multipliers. Firstly,
let X∗ ≥ 0 be a matrix provided by Lemma 5. By Proposition 6, we neces-
sarily have X∗ > 0. Let f be defined on the set D := {X ∈ Ml : X > 0}
by f(X) = H(X). The function f is of class C1 by Lemma 4. Define fi on
D by fi(X) = tr (AiX) − bi for i = 1, n. Set S = {X ∈ D : fi(X) = 0 ∀ i}.
Thus X∗ ∈ S and max

S
f = f(X∗). Since D is open, we can apply the

method of the multipliers. Thus there exist some real numbers x0
1, . . . , x

0
n

such that X∗ is a critical point of the function f +
n
∑

i=1

x0
i fi. By Lemma 4,

−tr ((I + ln X∗)Y ) +
n
∑

i=1

x0
i tr (AiY ) = 0 for all Y ∈ Ml. Hence I + ln X∗ =

n
∑

i=1

x0
i Ai. Then X∗ = e

nP
i=1

x0
i Ai−I

= X0. Writing that X0 fulfills the equations

(1) shows that x0 is a critical point of V , see Proposition 1. Since the func-
tion V is strictly convex, its critical point is unique. The vector x0 is then
uniquely determined.

9 Lemma (i) If a strictly convex function f of class C2 on Rn has a critical
point, then lim

‖x‖→∞
f(x) = +∞.

(ii) If a convex function f on R
2 ≡ C has finite radial limits l(s) :=

lim
t→+∞

f(teis) for −π
2

< s < π
2
, then l( · ) is continuous on (−π

2
, π

2
).

Proof (i) By a translation, we can assume f ′(0) = 0. The restriction v =
v(t) := f(tx) (t ∈ R) of f to any line Rx (x 6= 0) is strictly convex with
v′(0) = 0. For any points P = (α, v(α)) and Q = (β, v(β)) with α < β the
graph of v = v(t) is below the line PQ for α < t < β and above the line PQ
for t 6∈ [α, β], in particular it is above any tangent. Hence there exist a, b > 0
such that v(t) ≥ v(0) − b + a|t| for all t, for example a := min{v(1), v(−1)}
and b := max{v(1), v(−1)}. Then lim

t→∞
f(tx) = +∞ for all x with ‖x‖ = 1.

The function g(t) = f ′(tx)x satisfies g(0) = 0 and g′(t) = f ′′(tx)(x, x) ≥ 0
for all t ≥ 0. Then g(t) ≥ 0 for all t ≥ 0, and so

f(t2x) − f(t1x) =

∫ t2

t1

d

dt
(f(tx))) dt =

∫ t2

t1

g(t)dt ≥ 0 (5)

11



for any positive t1, t2 with t2 > t1. Since all radial limits lim
t→∞

f(tx) are

+∞ and the map t 7→ f(tx) is monotonically increasing, it follows using the
compactness of the unit sphere that lim

‖x‖→∞
f(x) = +∞.

(ii) Let s, s′ ∈ (−π
2
, π

2
). Then c := cos s−s′

2
> 0. We have cei s+s′

2 = eis+eis′

2
.

Since f is convex, it follows that f(ctei s+s′

2 ) ≤ f(teis)+f(teis′ )
2

for every t > 0.

Letting t → ∞ gives l( s+s′

2
) ≤ l(s)+l(s′)

2
. Hence l is convex, and so continuous.

Proof of Theorem 2 If the system (1) has positive solutions, then by

Theorem 8 it has also a particular solution of the form X0 = e

nP
j=1

x0
jAj−I

.
Moreover x0 = (x0

j )
n
j=1 is a critical point of V . Then lim

‖x‖→∞
V (x) = +∞, see

Lemma 9, (i). The converse implication is obvious, if lim
‖x‖→∞

V (x) = +∞ then

the smooth function V reaches a minimum in a point x0 and so V ′(x0) = 0,
which provides the solution X0 using again Proposition 1.

10 Lemma For every x 6= 0 in Rn, set Ax =
n
∑

j=1

xjAj. Then Ax 6= 0 and:

(i) If the spectrum of Ax has both positive and negative eigenvalues, then
lim

t→±∞
V (tx) = +∞.

(ii) If Ax ≥ 0 and
n
∑

j=1

bjxj > 0, then lim
t→±∞

V (tx) = +∞.

(iii) If Ax ≥ 0 and
n
∑

j=1

bjxj = 0, then we have lim
t→+∞

V (tx) = +∞ and

lim
t→−∞

V (tx) = dim ker Ax.

(iv) If Ax ≥ 0 and
n
∑

j=1

bjxj < 0, then we have lim
t→−∞

V (tx) = −∞ and

lim
t→∞

V (tx) = +∞.

Proof Since the Aj’s are linearly independent, Ax 6= 0. Let σ1 ≤ · · · ≤ σl

be the eigenvalues of Ax counted according to their multiplicities. Then Ax

is unitarily equivalent to a diagonal matrix diag (σ1, . . . , σl) with diagonal

elements σ1, . . . , σl . Hence tr etAx =
l

∑

i=1

etσi for any real t.

(i) In this case, σ1 < 0 and σl > 0. Then obviously lim
t→±∞

V (tx) =

12



lim
t→±∞

l
∑

i=1

etσi = +∞.

(ii) Since all σi ≥ 0 and V (tx) =
l

∑

i=1

etσi − t
n
∑

j=1

bjxj, then V (tx) → +∞

as t → −∞ due to the linear term. Also, V (tx) → +∞ as t → +∞ due to
the exponential term, that is not constant since Ax 6= 0 and so σl 6= 0.

(iii) We have lim
t→−∞

V (tx) = lim
t→−∞

n
∑

j=1

etσj = the number of null eigenvalues

(= dim ker Ax). Also, lim
t→+∞

V (tx) = +∞ since σl > 0

(iv) In this case lim
t→−∞

V (tx) = lim
t→−∞

(−t
n
∑

j=1

xjbj) = −∞ and, obviously,

lim
t→+∞

V (tx) = +∞.

Proof of Theorem 3 Let us note firstly that there is a constant C > 0
such that whenever the problem (1) has nonnegative solutions X, all these
solutions satisfy ‖X‖ ≤ C. Indeed, the linear span of the Aj ’s contains
positive matrices, and so there exists a linear combination of the equations
(1) leading to an equality of the form tr (PX) = b with P a positive matrix.
Also, we have b ≥ 0 since there exists at least one solution X ≥ 0. We fix
a constant c > 0 such that P ≥ c. Then for every solution X ≥ 0 of (1) we
have c X ≤ X1/2PX1/2, whence c trX ≤ tr (X1/2PX1/2) = tr (PX) = b, and
so ‖X‖ ≤ c−1b.

(a) Suppose that problem (1) admits solutions X ≥ 0 but none of them
is positive. Firstly we show that V is bounded from below. Fix an l × l
matrix M ≥ 0 satisfying (1). For any vector x in Rn, let σ1(x), . . . , σl(x)

be the eigenvalues of the matrix Ax :=
n
∑

j=1

xjAj counted according to the

multiplicity. Then there exists a unitary Ux in Ml such that U∗
xAxUx =

diag (σ1(x), . . . σl(x)). Hence
n
∑

j=1

bjxj =
n
∑

j=1

xjtr (AjM) = tr (AxM) and so

V (x) = tr eAx − tr (AxM) =
l

∑

i=1

(eσi(x) − σi(x)µi(x)) where µ1(x), . . . , µl(x)

are the diagonal entries of the matrix U∗
xMUx. Note that for every vector x

in Rn and index i = 1, l we have 0 ≤ µi(x) ≤ ‖U∗
xMUx‖ = ‖M‖. Now for

any nonnegative µ with µ ≤ ‖M‖ and real σ we have the estimate eσ −σµ ≥
µ − µ lnµ ≥ −‖M‖ ln ‖M‖ (minimize to this aim the function σ 7→ eσ − σµ
on the real line). This leads to the estimate V (x) ≥ −l ‖M‖ ln ‖M‖ for all
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x. Thus V is bounded from below.
We prove now the existence of a finite radial limit of V . For an arbitrary

vector x 6= 0, there are several possibilities as described by Lemma 10 (using
also that A−x = −Ax). Case (iv) is excluded since inf V > −∞. Then
we easily see that at least one vector x should be in case (iii). Indeed,
if only the cases (i), (ii) occur then all radial limits of V are +∞. This
implies, as in the proof of Lemma 9, (i) (see (5)), that lim

‖x‖→∞
V (x) = +∞.

Then Theorem 2 provides positive solutions of (1), which is excluded by
hypotheses. Let then C denote the set of those vectors x 6= 0 such that

Ax ≤ 0 and
n
∑

j=1

bjxj = 0. Obviously, C ( 6= ∅) is a positive convex cone.

For every x ∈ C, Lemma 10, (iii) gives lim
t→+∞

V (tx) = dim ker Ax. Also, all

other radial limits of V are +∞. Using Lemma 9, (ii), one easily proves
that all radial limits of V along half-lines from C are equal. Namely, for
any points x, y with x 6= y in C, the restriction of the map z 7→ lim

t→+∞
V (tz)

to the segment [x, y] := {tx + (1 − t)y : 0 ≤ t ≤ 1} is continuous, and
hence locally constant (since it’s integer-valued), and so it is constant. Then
dim ker Ax = lim

t→+∞
V (tx) = constant for all x ∈ C.

Conversely, suppose that inf V > −∞ and V has at least one finite radial
limit. Then by Lemma 9, (i) the function V does not have critical points.
Hence by Theorem 2 there are no positive solutions of (1). Let us show that
problem (1) admits however nonnegative solutions. By Lemma 10, for every
vector x 6= 0 either x or −x must be in one of the cases (i)-(iii). In each

of the these cases we have the implication Ax ≥ 0 ⇒
n
∑

j=1

bjxj ≥ 0. For

every integer k ≥ 1, set βkj = βj + 1
k
trAj and bkj = βkje. Then for every

k we have the implication Ax ≥ 0 ⇒
n
∑

j=1

xjbkj > 0 (x 6= 0). Indeed, if

Ax ≥ 0 then tr Ax ≥ 0. Also, tr Ax 6= 0 since Ax 6= 0. Then
n
∑

j=1

xjbkj =

n
∑

j=1

xj(bj + e
k
trAi) =

n
∑

j=1

xjbj + e
k
trAj > 0 since

n
∑

j=1

bjxj ≥ 0 and trAx > 0.

Using Lemma 10 (i), (ii) for the function Vk(x) = tr eAx −
n
∑

j=1

bkjxj , it follows

that the radial limits of Vk are +∞. Using again (5) as in the proof of Lemma
9, now for the function f := Vk (whence vk(t) = Vk(tx) and g(t) = V ′

k(tx)x),
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we obtain lim
‖x‖→∞

Vk(x) = +∞. Then by Theorem 2, each problem (1)k:

tr (AjX) = βkj (j = 1, n) has a positive solution Xk. Now by the remark at
the beginning of the proof, the sequence (Xk)k is bounded. Then it has some
accumulation points X ≥ 0, and all these X’s are solutions of (1).

(b) It follows from (a) and Theorem 2 that problem (1) admits nonneg-
ative solutions if and only if inf V > −∞. If inf V = −∞, then at least
one radial limit should be −∞, for otherwise only cases (i)-(iii) could appear
in Lemma 10. This would lead again to the existence of some nonnegative
solutions X of (1), either by Theorem 2 if only cases (i), (ii) occur, or by
considering the problems (1)k if the case (iii) also appears.

11 Remarks (i) If problem (1) admits solutions X > 0, then Proposition 1
and Theorem 2 show that V fulfills the conditions for applying the conjugate
gradients minimization method [9, 14]. This yields, in principle, a sequence
of vectors x1, x2, . . . in Rn such that V (xk) ց min V and xk → x0 as k → ∞,
where x0 is the critical point of V . Thus we can approximate our particular

solution X0 = e

nP
j=1

x0
jAj−I

. Calculating the gradients of V in the points x = xk

(k ≥ 1) requires to compute at each step k a matrix exponential e

nP
j=1

xjAj

.

This can be performed for instance either by diagonalizing Ax =
n
∑

j=1

xjAj by

Jacobi’s method (see for example [7, section 8.4] and [13]), or by tridiago-
nalizing Ax by means of Householder reflections and using then an iterative
eigenvalue algorithm (which in the gross requires O(l3) flops/step).

(ii) Let (xk)k be a minimizing sequence as above, and H be the linear
manifold of all hermitian solutions of (1). Let PH(X) denote the projection
of a hermitian X ∈ Ml onto H with respect to the inner product 〈X, Y 〉 =

tr (XY ∗). Then PH(X) = X +
n
∑

j=1

cjAj with cj given by the system of

equations
n
∑

j=1

tr (AiAj)cj = βi − tr (AiX) (i = 1, n). For large k so that

Xk := e

nP
j=1

xk
j Aj

is sufficiently close to X0, the matrix PH(Xk) (≈ X0) is also
positive, and hence, an exact positive solution of (1).

(iii) In the case (a), resp. (b) of Theorem 3, for any minimizing se-
quence (xk)k of V we have ‖xk‖ → ∞, with lim

k→∞
V (xk) ∈ {0, 1, . . . , l}, resp.
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lim
k→∞

V (xk) = −∞.

12 Example (i) Consider the positive matrix completion problem for 4 × 4
matrices X = [Xjk]

4
j,k=1 > 0 the given entries of which are X11 = 3, X12 =

1.45, X23 = 1.25, X34 = 2.35 and X41 = 2.75. Thus l = 4, n = 5 and we take

A1 = [a1
ij ]

4
i,j=1 with a1

11 = 1 and a1
ij = 0 for (i, j) 6= (1, 1),

A2 = [a2
ij ]

4
i,j=1 with a2

12, a2
21 = 1 and a2

ij = 0 for (i, j) 6= (1, 2), (2, 1)

etc, as well as β1 = 3, β2 = 2 · 1.45 = 2.9 etc so that the requirements
X11 = 3, X12 = 1.45 etc be written in the form (1).

We minimize V by the conjugate gradients method [9, 13–15] that we
briefly remind below. Start with an initial point x1 (:= (0.01, . . . , 0.01) ∈ R5

in our case). For every k ≥ 1, let gk be the gradient of V in xk, and ck be
the conjugate gradient in xk. Namely, c1 = −g1 and ck = −gk + αk−1 · gk−1

for k ≥ 2, where αk = 〈gk+1−gk,gk+1〉

〈gk+1−gk,ck〉
is Polak-Ribière’s coefficient. Once we

have an xk, we take xk+1 := xk + tck for that value t = tk minimizing V
on the half-line xk + tck (t ≥ 0) etc. We stop when we get a point xk

with ‖gk‖max less than a prescribed tolerance (:= 0.001 in our case), where
‖(yj)

n
j=1‖∞ := max

1≤j≤n
|yj| for y ∈ Rn. For the line minimization, a value t = t̃k

is accepted instead of tk if |〈V ′(xk + tck), ck〉| ≤ δ‖gk‖max where δ < 1 is a
fixed constat (:= 0.5 in our case). After 10 iterations providing the vectors
x2, . . . , x11 ∈ R5 we have obtained, for x := x11 with

x11 = (0.8571823445, 0.8822629161, 1.022695324, 1.904910646, 1.688386182),

the positive matrix X0 = e

5P
j=1

xjAj−I

, namely

X0 =









2.999990931 1.449938928 1.925776815 2.749864277
1.449938928 1.117124222 1.250052935 1.414252494
1.925776815 1.250052935 2.090027040 2.349861843
2.749864277 1.414252494 2.349861843 3.037633457









satisfying the equations (1) with error < 0.001. Then PH(X0) is simply X0

corrected at the prescribed entries X11 = 3 etc.
Finding a solution X of (1) by using the barrier function ln det X, see

[12], requires to consider a dual problem (2). We have βt · x = 3x1 + 2.9x2 +
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2.5x3 + 4.7x4 + 5.5x5. Note firstly that condition
5

∑

j=1

xjAj ≥ 0 (which means

x1 ≥ 0, x2,3,4,5 = 0) implies that βt · x ≥ 0. This guarantees that (1) has
nonnegative solutions. Now we can take a positive A0 := I4 for example, so
that {x : A(x) > 0} 6= ∅. Hence

A(x) =









1 + x1 x2 0 x5

x2 1 x3 0
0 x3 1 x4

x5 0 x4 1









and p∗ < 0 < p. Thus we may let γ = 0. Then we have to numerically solve
the optimization problem

sup{ln det A(x) : x ∈ R
5, A(x) > 0, βt · x = 0} = ln det A(x∗).

Once the analytic center x∗ is known, a solution Xx∗ > 0 of (1) will be
provided, of the form Xx∗ = A(x∗)−1/λ for a Lagrange multiplier λ > 0.

We can derive this as usual, by means of the formula d
dx

[det(xA + B)] =

det(xA+B) tr ((xA+B)−1A) where A, B are selfadjoint matrices with xA+B
invertible, which gives λ = det A(x∗).

To represent the problem in the form (3), too (see [5, 6, 8, 11]), we
introduce the variable z ≡ (z13, z22, z24, z33, z44) consisting of the unspecified
entries of

X = X(z) =









3 1.45 z13 2.75
1.45 z22 1.25 z24

z13 1.25 z33 2.35
2.75 z24 2.35 z44









with z22, z33, z44 real. Then set H(z) = X(z)−1 = [Hij(z)]4i,j=1. The associ-
ated graph has vertices 1, 2, 3, 4 and edges {1, 2}, {2, 3}, {3, 4}, {1, 4}, in
particular has a cycle of length 4 and so is not chordal; also, the diagonal
entries z22, z33, z44 are unspecified. The det-maximizing solution Xx∗ from
above may also be described as the unique positive completion such that
h(z) = (0, λ, 0, λ, λ), where h(z) ≡ (H13(z), H22(z), H24(z), H33(z), H44(z))
with

H13(z) =
1

det X(z)
det





1.45 z22 z24

z13 1.25 2.35
2.75 z24 z44



 =
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1

det X(z)
(1.8125z44−3.4075z24−z22z13z44 +6.4625z22 +z13|z24|

2−3.4375z24)

etc.

References

[1] M. Bakonyi; H.J. Woerdeman, Maximum entropy elements in the in-
tersection of an affine space and the cone of positive definite matrices, SIAM
J. Matrix Anal. Appl,. vol. 16 no. 2(1995), 369-376.

[2] M. Bakonyi; K.M. Stovall, Semidefinite programming and stability of
dynamical systems, preprint.

[3] S. Boyd; L. El Ghaoui, Method of centers for minimizing generalized
eigenvalues, Linear Algebra Appl., 188/9 (1993), 63-111.

[4] S. Boyd; L. El Ghaoui; E. Feron; V. Balakrishnan, Linear matrix
inequalities in system and control theory, SIAM, Philadelphia, 1994.

[5] H. Dym; I. Gohberg, Extensions of band matrices with band inverses,
Linear Algebra Appl. 36 (1981), 1-24.

[6] M. Fiedler, Matrix inequalities, Numerische Math. 9 (1966), 109-119.
[7] G. Golub; C.V. Loan, Matrix computations. The John Hopkins Univ.

Press, Baltimore and London, 1989.
[8] R. Grone; C.R. Johnson; E.M. de Sá, H. Wolkowicz, Positive definite
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