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Abstract. For a class of Hilbert spaces H of functions analytic on a domain
D ⊂ Cn, we characterize the n-tuples T of commuting Hilbert space opera-
tors which can be represented by means of multiplications by the coordinate
functions on H. In case H is a subspace of some L2-space we thus obtain
for such T a normal dilation constructed in terms of the reproducing kernel
of H. This generalizes known results of this type and provides new models
in a large class of functional Hilbert spaces, including the standard weighted
Bergman spaces of analytic functions on bounded symmetric domains.
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One of the most important results of the Sz.–Nagy and Foiaş dilation theory is
the existence of a model for contractions. In particular, the following results can
be proved:

Theorem 0. (a) Let T be a Hilbert space contraction with spectrum con-
tained in the open unit disc. Then T is unitarily equivalent to a restriction of the
backward shift of infinite multiplicity to an invariant subspace.

(b) More generally, a Hilbert space contraction T is unitarily equivalent to a
restriction of the backward shift of infinite multiplicity to an invariant subspace if
and only if Tn → 0 in the strong operator topology.

There are many generalizations of these results both for single contractions
and for n-tuples of commuting operators. In general there are two approaches to
such results. The first of them is the geometric approach (see [6], [10], [11] and
[13]) which makes it possible to give an explicit form of the model, even without
the assumption on the spectrum, but only in some special situations like for single
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contractions, spherical contractions or n-tuples of contractions having the regular
dilation.

The second approach is due to Agler ([1]), see also [3], who proved the ex-
istence of the model using the representation theory and C∗-algebras methods.
This approach can be applied in many situations, but — except of the polydisc
and the ball case — the model is in general rather inexplicit, expressed by means
of a representation.

The aim of this paper is to combine the advantages of these two approaches.
We give an explicit form of the model for a wide class of domains. Moreover, the
construction is relatively simple.

Let D be a nonempty open domain in Cn. Write D̃ := {z : z ∈ D}. For
f : D → C, set f̃(w) := f(w), w ∈ D̃.

Denote by B(X) the set of all bounded linear operators on a Banach spaceX.

Definition 1. Let D be an open domain in Cn. A Hilbert space H of
functions analytic on D is called a D-space if conditions (a)–(c) below are satisfied:

(a) H is invariant under the operators Zj , j = 1, . . . , n of multiplication by
the coordinate functions,

(Zjf)(z) := zjf(z), f ∈ H, z = (z1, . . . , zn) ∈ D.

It follows from the next assumption and the closed graph theorem that the
operators Zj are, in fact, bounded.

(b) For each z ∈ D, the evaluation functional f 7→ f(z) is continuous on H.
By the Riesz representation theorem there is Cz ∈ H such that f(z) = 〈f, Cz〉

for all f ∈ H. Define the function C(z, w) := Cw(z), z ∈ D,w ∈ D̃. (The function
C(z, w) is known as the reproducing kernel of H.)

(c) C(z, w) 6= 0 for all z ∈ D, w ∈ D̃.
It is easy to see that C is analytic on D × D̃ and

C(z, w) = 〈Cw, Cz〉 = 〈Cz, Cw〉 = C(w, z), z ∈ D, w ∈ D̃.

The functions Cz, z ∈ D are dense in H. Indeed, if f ∈ H and f ⊥ Cz for all
z ∈ D then f(z) = 〈f, Cz〉 = 0. Further

Z∗jCu = ujCu, u = (u1, . . . , un) ∈ D, j = 1, . . . , n.

By computing ‖Cz −Cu‖2H in terms of the inner product we obtain the continuity
of the map

D 3 z 7→ Cz ∈ H.

In particular, H is separable.

The next statement is well-known, cf. for example the corresponding result
in [4].
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Lemma 2. Let H be a D-space and {ψk} an orthonormal basis in H. Then

C(z, w) =
∞∑

l=1

ψk(z)ψ̃k(w)

where the series converges uniformly and absolutely on each compact subset of
D × D̃.

Proof. Let L ⊂ D be a compact set and dL the (finite) supremum of the
continuous function ‖Cz‖2 = C(z, z) on L. Then for each z ∈ L,∑

k

|ψk(z)|2 =
∥∥∥∑

k

ψk(z)·ψk

∥∥∥2

> d−1
L ·

∣∣∣(∑
k

ψk(z)ψk

)
(z)

∣∣∣2 = d−1
L ·

(∑
k

|ψk(z)|2
)2

.

Thus
∑
|ψk(z)|2 6 d−1

L . Hence the sum hz =
∑
k

ψk(z)ψk is convergent for each

z ∈ D. For h ∈ H we have

〈h, hz〉 =
〈
h,

∑
k

ψk(z)ψk

〉
=

∑
k

ψk(z)〈h, ψk〉

=
(∑

k

〈h, ψk〉ψk

)
(z) = h(z) = 〈h,Cz〉

so hz = Cz. In particular, for w ∈ D̃ we have

C(z, w) = Cz(w) = hz(w) =
∑

k

ψk(z)ψk(w) =
∑

k

ψk(z)ψ̃k(w).

It is easy to see that the convergence is uniform and absolute on each compact
subset of D × D̃.

LetH be a D-space and H a Hilbert space. Denote byH⊗H the (completed)
Hilbertian tensor product. Elements of H ⊗H can be viewed upon as H-valued
functions analytic on D.

Consider the multiplication operators Mzj
on H⊗H defined by

Mzj
:= Zj ⊗ IH , j = 1, . . . , n

and write
Mz := (Mz1 , . . . ,Mzn

).

The basic prototype of a D-space H is the Hardy space H2 on the unit disc,
see Example 1 at the end of this paper. In this case C(z, w) = (1 − zw)−1 and
M∗

z is a backward shift of infinite multiplicity. Theorem 0 can thus be restated
as saying that if an operator T on H satisfies 1

C (T, T ∗) = I − TT ∗ > 0 and (a)
σ(T ) ⊂ D or (b) T ∗n → 0, then T ∗ is unitarily equivalent to the restriction of M∗

z
to an invariant subspace.

We are going to study commuting n-tuples T = (T1, . . . , Tn) of operators
acting on H for which Mz, for a general D-space H, serves as a model in the
manner just described. We start with n-tuples having the spectrum contained in
D (part I). In this case h(T ) is defined for any h ∈ H. Then we deal, under slightly
stronger assumptions on H, with n-tuples whose spectrum need not lie in D.
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I. Let H be a Hilbert space. For A ∈ B(H), denote by LA and RA the left
(right) multiplication operators by A on B(H), i.e., LAX := AX and RAX := XA,
X ∈ B(H).

Let S = (S1, . . . , Sn) be a commutative n-tuple of operators on a Banach
space X. Denote by σ(S) the Taylor spectrum and by σs(S) the split-spectrum of
S (see [7] and [5]). These two spectra coincide for Hilbert space operators.

Let T = (T1, . . . , Tn) be a commuting tuple of operators on H. Set T ∗ :=
(T ∗1 , . . . , T

∗
n). Write LT = (LT1 , . . . , LTn), RT∗ = (RT∗

1
, . . . , RT∗

n
) and MT =

(LT , RT∗). ClearlyMT is a commuting 2n–tuple of operators acting on the Banach
space B(H).

Further

σs(LT ) = σ(LT ) = σ(T ), σs(RT∗) = σ(RT∗) = σ(T ∗)

and
σs(MT ) ⊂ σs(LT )× σs(RT∗) = σ(T )× σ(T ∗).

Let f, g be analytic in a neighbourhood of σ(T ) and h be analytic in a
neighbourhood of σ(T ∗) = σ̃(T ). Then we have the equalities

(1) Lf(T ) = f(LT ), Rh(T∗) = h(RT∗)

and

(2) g(T )∗ = g̃(T ∗),

as a consequence of the uniqueness of the functional calculus ([14]).
Let f be a function analytic on a neighbourhood of σ(MT ). Define f(T, T ∗) ∈

B(H) by

(3) f(T, T ∗) := f(MT ) (I).

If f(z, w) := zαwβ for some multiindices α, β ∈ Zn
+, then f(T, T ∗) = TαT ∗β .

This differs slightly from the hereditary calculus of [1] (giving in this case rather
f(T, T ∗) := T ∗βTα). Clearly the mapping f 7→ f(T, T ∗) is linear. The multiplica-
tivity is replaced by the property stated in Lemma 3 below, cf. [1], see also [3].

Lemma 3. Let T be a tuple on a Hilbert space. Let f = f(z), g = g(z, w) and
h = h(w) be analytic in neighbourhoods of σ(T ), σ(MT ) and σ(T ∗), respectively.
Set F (z, w) := f(z)g(z, w)h(w). Then

F (T, T ∗) = f(T ) g(T, T ∗)h(T ∗).

Proof. We use the equalities (2), as well as the multiplicativity of the func-
tional calculus for MT . We have

f(T )g(T, T ∗)h(T ∗) = f(T )
(
g(MT )(I)

)
h(T ∗)

= Rh(T∗)Lf(T )

(
g(LT , RT∗)(I)

)
=

(
Rh(T∗)Lf(T )g(LT , RT∗)

)
(I)

=
(
h(RT∗)f(LT )g(LT , RT∗)

)
(I) =

(
(hfg)(LT , RT∗)

)
(I)

= (fgh)(T, T ∗) = F (T, T ∗).
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For a function f analytic on a neighbourhood U of σs(MT ) we can express
f(T, T ∗) by means of the Martinelli kernel:

f(T, T ∗) =
∫

∂G

f(u, v)kMT
(u, v)(I).

Here G is an open domain with smooth boundary such that σs(MT ) ⊂ G and
G ⊂ U . The exact form of the Martinelli kernel kMT

can be found in [9], for
Hilbert space operators see [17], [18]. For our purpose it is sufficient to know that
it is a differential form of degree 2n − 1 in dū1, . . . ,dūn,dv̄1, . . . ,dv̄n and of the
maximal degree 2n in du1, . . . ,dun,dv1, . . . ,dvn, whose coefficients are smooth
B(B(H))-valued functions defined on the complement of the split-spectrum.

Thus the coefficients of the form kMT
(u, v)(I) are smooth B(H)-valued func-

tions. Similarly, for h, g ∈ H we can consider 〈kMT
(u, v))(I)h, g〉 to be a differential

form of total degree 4n− 1 whose coefficients are C∞- scalar valued functions.

It is easy to see that the functional calculus defined by (3) is continuous in the
following sense: if W is an open neighbourhood of σ(MT ) and f, fl (l = 1, 2, . . .)
functions analytic on W such that fl → f uniformly on compact subsets of W ,
then fl(T, T ∗) → f(T, T ∗).

Let now D ⊂ Cn be a domain and H a D-space. Let T be an n-tuple of
operators on a Hilbert space H such that σ(T ) ⊂ D.

Define the linear map CT : H → H⊗H by

(4) CTh :=
∫

∂∆

Cw ⊗ kT∗(w)h, h ∈ H,

where ∆ is a bounded open domain with smooth boundary such that σ(T ∗) ⊂ ∆
and ∆ ⊂ D̃. This definition is motivated by the formal identities

CT (z) = C(z, T ∗) =
∫

∂∆

C(z, w)kT∗(w) =
∫

∂∆

Cw(z)kT∗(w).

Lemma 4. We have

〈CTh, f ⊗ h′〉 = 〈h, f(T )h′〉

for all h, h′ ∈ H and f ∈ H. In particular, CT does not depend on the choice of
∆. Moreover, CT : H → H⊗H is a bounded operator.

Proof. The integral makes sense, because ∂∆ is compact, the map z 7→ Cz

is continuous on D and kT∗ is smooth on ∂∆. Since the integral commutes with
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bounded linear maps, we obtain the following equalities:

〈CTh, f ⊗ h′〉 =
〈∫
∂∆

Cw ⊗ (kT∗(w)h), f ⊗ h′
〉

=
∫

∂∆

〈
Cw ⊗ (kT∗(w)h), f ⊗ h′

〉
=

∫
∂∆

〈Cw, f〉
〈
kT∗(w)h, h′

〉
=

∫
∂∆

f(w)〈kT∗(w)h, h′〉 =
∫

∂∆

〈
f̃(w)kT∗(w)h, h′

〉
=

〈∫
∂∆

f̃(w)kT∗(w)h, h′
〉

= 〈f̃(T ∗)h, h′〉 = 〈h, f(T )h′〉.

For the last equality, see (2).
Since finite linear combinations of elementary tensor products f ⊗ h′ are

dense in H⊗H, the definition of CT does not depend on the choice of ∆.
It follows easily from (4) that CT is a bounded operator.

Let H be a D-space. Let T be an n-tuple of operators on H such that
σ(T ) ⊂ D and 1

C (T, T ∗) > 0. Set DT = 1
C (T, T ∗)1/2 and define the mapping

V : H → H⊗H by the equality

(5) V :=
(
IH ⊗DT

)
CT .

Note that DT plays the rôle of the defect operator of the Sz.-Nagy–Foiaş theory.
By Lemma 4, it is easy to see that V ∗ : H⊗H → H is defined by the formula

V ∗(f ⊗ h) = f(T )DTh, f ∈ H, h ∈ H. This formula can be used equivalently to
define V .

Theorem 5. Let H be a D-space. Let T be an n-tuple of operators on H
such that σ(T ) ⊂ D and 1

C (T, T ∗) > 0. Then the mapping V : H → H⊗H defined
by (5) satisfies the equalities

V T ∗j = M∗
zj
V, j = 1, . . . , n.

Proof. It suffices to verify the equalities on elementary tensor products. Let
h, h′ ∈ H and f ∈ H be arbitrary. By Lemma 4, we have〈

V T ∗j h, f ⊗ h′
〉

=
〈
h, TjV

∗(f ⊗ h′)
〉

=
〈
h, Tjf(T )DTh

′〉.
On the other hand, by Lemma 4 again,〈
M∗

zj
V h, f ⊗ h′

〉
=

〈
h, V ∗(Zjf ⊗ h′)

〉
=

〈
h, (zjf)(T )DTh

′〉 =
〈
h, Tjf(T )DTh

′〉.
Thus V T ∗j = M∗

zj
V .

Theorem 6. Let H be a D-space. Let T be an n-tuple of commuting
operators on a Hilbert space H such that σ(T ) ⊂ D and 1

C (T, T ∗) > 0. Then the
mapping V : H → H⊗H defined by (5) is an isometry.
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Proof. Let {ψk} be an orthonormal basis in H and {hj} an orthonormal
basis in H. Then {ψk ⊗ hj}k,j is an orthonormal basis in H⊗H. Let h ∈ H. We
have

‖V h‖2 =
∑
k,j

|〈V h, ψk ⊗ hj〉|2 =
∑
k,j

|〈h, V ∗(ψk ⊗ hj)〉|2 =
∑
k,j

|〈h, ψk(T )DThj〉|2

=
∑
k,j

|〈DTψk(T )∗h, hj〉|2 =
∑

k

‖DTψk(T )∗h‖2

=
∑

k

〈ψk(T )D2
Tψk(T )∗h, h〉 =

∑
k

〈Fk(T, T ∗)h, h〉

where Fk(z, w) =
ψk(z)ψ̃k(w)
C(z, w)

. By Lemma 2,
∑
k

Fk = 1 uniformly on a neigh-

bourhood of σ(T ) × σ(T ∗) so that
∑
k

Fk(T, T ∗) = I. Thus ‖V h‖2 = ‖h‖2 and V

is an isometry.

Corollary 7. Let H be a D-space. Let T be an n-tuple of operators on
a Hilbert space H satisfying σ(T ) ⊂ D and 1

C (T, T ∗) > 0. Then T ∗ is unitarily
equivalent to a restriction of M∗

z to an invariant subspace.

In many interesting cases D is bounded and H is isometrically embedded
into a space L2(ϕ), where ϕ is a finite nonnegative Borel measure on D, see the
examples below. Then Z = (Zj)j is a subnormal n-tuple. Namely it extends to the
(bounded and normal) n-tuple M of multiplications by the coordinate functions
on L2(ϕ). Note that σ(M) = suppϕ ⊂ D.

Corollary 8. Let D ⊂ Cn be a bounded domain, let H be a D-space
and suppose that H is a subspace of L2(ϕ) where ϕ is a nonnegative finite Borel
measure with suppϕ ⊂ D. Let T be an n-tuple of operators such that σ(T ) ⊂ D
and 1

C (T, T ∗) > 0. Then T has a normal dilation with spectrum contained in
suppϕ. More precisely, there are a Hilbert space K ⊃ H and a commuting n-tuple
N of normal operators on K such that σ(N) ⊂ suppϕ and

p(T ) = PHp(N)|H

for all polynomials p in n variables.

Proof. Let M be the n-tuple of multiplications by the variables on L2(ϕ).
Set N := M ⊗ IH componentwise. Then N is a normal tuple on L2(ϕ)⊗H, and
σ(N) = σ(M) ⊂ suppϕ. Now H⊗H ⊂ L2(ϕ)⊗H and

Mz = Z ⊗ I = (M ⊗ I)|(H⊗H) = N |(H⊗H).

By Corollary 7, we can assume that H ⊂ H⊗H and T ∗ = M∗
z |H. Hence

Tα = PHM
α
z |H = PHN

α|H

for all α ∈ Zn
+.
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Corollary 9. (von Neumann inequality) Let H be a D-space satisfying the
conditions of the preceding corollary. Let T be a commuting n-tuple of operators
on a Hilbert space H such that σ(T ) ⊂ D and 1

C (T, T ∗) > 0. Then

‖p(T )‖ 6 sup
z∈D

|p(z)|

for all polynomials p. Moreover, if D is polynomially convex, then the above von
Neumann inequality is true for all functions analytic on D.

II. From now on we are going to study models for n-tuples of operators which
need not satisfy σ(T ) ⊂ D. We need stronger assumptions on H. Nevertheless,
the assumptions will be satisfied in most of the interesting cases.

Let H be a D-space such that:
– H contains the constant functions (hence, also all polynomials) and the

polynomials are dense in H,
– 1

C is a polynomial.

The monomials zα (α ∈ Zn
+) are then a (non-orthogonal) basis forH. Arrang-

ing them in some order, by the Gram-Schmidt orthogonalization we can find (and
fix from now on) an orthonormal basis {ψk} consisting of polynomials and such
that, conversely, any polynomial is a finite linear combination of ψk. (The latter
property will be needed in the proof of Lemma 11 below.)

For m > 0 set fm(z, w) =
∞∑

k=m

ψk(z) 1
C (z, w)ψ̃k(w). By Lemma 2, the series

converges and f0(z, w) = 1. Note that fm(z, w) = 1 −
m−1∑
k=1

ψk(z) 1
C (z, w)ψ̃k(w) is

a polynomial for each m. In particular, fm(T, T ∗) makes sense for any operator
tuple T .

Let T = (T1, . . . , Tn) be a commuting n-tuple of operators satisfying 1
C (T, T ∗)

> 0 and sup
m
‖fm(T, T ∗)‖ <∞. As above set DT = 1

C (T, T ∗)1/2. Define V : H →
H⊗H by

(6) V h =
∑

k

ψk ⊗DTψk(T )∗h.

We show first that this definition is correct (i.e. that the right-hand side converges).
Moreover, V is bounded and this definition of V coincides with the definition (5)
above.

Proposition 10. Let D,H, T be as above. Let h ∈ H. Then I =
f0(T, T ∗) > f1(T, T ∗) > f2(T, T ∗) > · · · and we have

‖V h‖2 = ‖h‖2 − lim
m
〈fm(T, T ∗)h, h〉.

Proof. For any k ∈ N and h ∈ H,〈
ψk(T )

1
C

(T, T ∗)ψ̃k(T ∗)h, h
〉

=
〈 1
C

(T, T ∗)ψk(T )∗h, ψk(T )∗h
〉

> 0.
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Thus fm(T, T ∗) > fm+1(T, T ∗) for each m. Hence the limit lim
m→∞

〈fm(T, T ∗)h, h〉
exists for each h ∈ H. Further for any j,m with j < m∥∥∥m−1∑

k=j

ψk ⊗DTψk(T )∗h
∥∥∥2

=
m−1∑
k=j

‖DTψk(T )∗h‖2

=
m−1∑
k=j

〈
ψk(T )

1
C

(T, T ∗)ψk(T )∗h, h
〉

= 〈(fj − fm)(T, T ∗)h, h〉

and it follows that the partial sums of the right-hand side of (6) form a Cauchy
sequence. Thus V h is well-defined, and letting j = 0 and m → ∞ in the last
calculation we see that

‖V h‖2 = lim
m
〈(f0 − fm)(T, T ∗)h, h〉

= lim
m
〈(1− fm)(T, T ∗)h, h〉 = ‖h‖2 − lim

m
〈fm(T, T ∗)h, h〉.

The condition sup
m
‖fm(T, T ∗)‖ <∞ is really necessary. The simplest exam-

ple is when H is the Bergman space on the unit disc (see Example 2 in the end of
this paper) and T = 2I; then even 〈fm(T, T ∗)h, h〉 → −∞ for each h ∈ H so that
V is not defined.

Lemma 11. For all g ∈ H and any polynomial f ∈ H,

V ∗(f ⊗ g) = f(T )DT g.

Proof. In view of our choice of the basis (namely, the property that any
polynomial be a finite linear combination of the ψj) it suffices to verify this for
f = ψj . But for any h ∈ H,

〈h, V ∗(ψj ⊗ g)〉 = 〈V h, ψj ⊗ g〉 =
〈∑

k

ψk ⊗DTψk(T )∗h, ψj ⊗ g
〉

= 〈DTψj(T )∗h, g〉 = 〈h, ψj(T )DT g〉.

Thus the definition of V coincides with (5).

Proposition 12. Let H be a D-space. Suppose that 1
C is a polynomial and

the polynomials are (contained and) dense in H. Let T = (T1, . . . , Tn) be an n-
tuple of commuting operators satisfying 1

C (T, T ∗) > 0 and lim
m
〈fm(T, T ∗)h, h〉 = 0

for each h ∈ H. Then T ∗ is unitarily equivalent to the restriction of M∗
z to an

invariant subspace.

Proof. Let V be the operator defined by (6). By Proposition 10, V is an
isometry. As in the proof of Theorem 5 one can prove easily (using Lemma 11
instead of Lemma 4) that V T ∗j = M∗

zj
V , j = 1, . . . , n, so that T ∗ is unitarily

equivalent to a restriction of M∗
z to an invariant subspace.
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The above conditions on T are also necessary.

Proposition 13. Assume that C−1 is a polynomial and H contains the
constant functions. Then

1
C

(Z,Z∗) = ‖1‖2HP,

where P is the orthogonal projection onto the constant functions in H.

Proof. Using the equalities Z∗jCz = zjCz it is easy to prove that

(7)
〈
p(Z,Z∗)Cλ, Cµ

〉
= p(µ, λ)C(µ, λ)

for each polynomial p. Thus we have〈 1
C

(Z,Z∗)Cλ, Cµ

〉
= 1.

Let x :=
m∑

r=1
αrCλr

and y :=
k∑

s=1
βsCλs be finite linear combinations of the func-

tions Cλr . Then 〈 1
C

(Z,Z∗)x, y
〉

=
∑
r,s

αrβs.

On the other hand,

〈‖1‖2HPx, y〉 = 〈x, 1〉〈1, y〉 =
∑
r,s

αrβs1(λr)1(λs) =
∑
r,s

αrβs,

and the result follows.

Lemma 14. Let H be a D-space such that 1
C is a polynomial and the

polynomials are dense in H. Let fm be defined as above. Then fm(Z,Z∗) is
the orthogonal projection onto

∨
{ψk, k > m}. In particular, fm(Z,Z∗) > 0 and

lim
m→∞

fm(Z,Z∗)h = 0 for each h ∈ H.

Proof. In view of the last proposition,

(f0 − fm)(Z,Z∗)h =
m−1∑
k=0

ψk(Z)
1
C

(Z,Z∗)ψ̃k(Z∗)h =
m−1∑
k=0

ψk(Z)
(
〈ψ̃k(Z∗)h, 1〉 · 1

)
=

m−1∑
k=0

〈h, ψk(Z)1〉ψk(Z)1 =
m−1∑
k=0

〈h, ψk〉ψk.

As f0 = 1, we thus get

fm(Z,Z∗)h =
∑
k>m

〈h, ψk〉ψk,

as claimed.
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Corollary 15. Let H be a D-space such that the polynomials are dense in
H and 1

C is a polynomial. Let T be a commuting n-tuple of operators on a Hilbert
space H. The following statements are equivalent:

(i) T ∗ is unitarily equivalent to the restriction of M∗
z to an invariant sub-

space;
(ii) 1

C (T, T ∗) > 0 and lim
m
fm(T, T ∗)h = 0, with h ∈ H.

Proof. If 1
C (T, T ∗) > 0 and fm(T, T ∗) → 0 in the strong operator topology,

then (i) holds by Proposition 12.
To prove the implication (i)⇒ (ii), take h ∈ H and let p =

∑
α,β∈Zn

+

dα,βu
αvβ

be a polynomial in u, v. Then

〈p(T, T ∗)h, h〉 =
∑
α,β

dα,β〈TαT ∗βh, h〉 =
∑
α,β

dα,β〈T ∗βh, T ∗αh〉

=
∑
α,β

dα,β〈V T ∗βh, V T ∗αh〉 =
∑
α,β

dα,β〈M∗β
z V h,M∗α

z V h〉

= 〈p(Mz,M
∗
z )V h, V h〉.

Thus p(T, T ∗) = V ∗p(Mz,M
∗
z )V . In particular,〈 1

C
(T, T ∗)h, h

〉
=

〈 1
C

(Mz,M
∗
z )V h, V h

〉
.

Now the right hand side is nonnegative by Proposition 13.
Since fm are also polynomials,

fm(T, T ∗) = V ∗fm(Mz,M
∗
z )V → 0

in the strong operator topology, by Lemma 14.

We also get an analogue of Corollaries 8 and 9.

Corollary 16. (dilation and a von Neumann inequality) Let H be a D-
space on a bounded domain D ⊂ Cn. Suppose that H is the closure of the poly-
nomials in L2(ϕ) where ϕ is a finite nonnegative Borel measure with suppϕ ⊂ D,
and that 1

C (z, w) is a polynomial. Let T be an n-tuple of operators on a Hilbert
space H such that 1

C (T, T ∗) > 0 and fm(T, T ∗) → 0 in the strong operator topol-
ogy. Then the multiplications N = (N1, . . . , Nn) by the coordinate functions on
L2(ϕ)⊗H are a normal dilation for T , and for any polynomial p

‖p(T )‖ 6 sup
z∈D

|p(z)|.

Moreover, if D is polynomially convex, then σ(T ) ⊂ D. To see this, denote
by σπ the approximate point spectrum. Clearly σπ(Mz) ⊂ σπ(N) = σ(N) ⊂ D,

so that, by [15], σ(Mz) ⊂ D. Further σπ(T ∗) ⊂ σπ(M∗
z ) ⊂ D̃ so that σ(T ∗) ⊂ D̃

and σ(T ) ⊂ D.
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Remarks. (i) Let Hi be Di-spaces with reproducing kernels Ci, where Di ⊂

Cni (i = 1, . . . , l). Set D =
l∏

i=1

Di and let H =
l⊗

i=1

Hi be the completed Hilbertian

tensor product. Then H is a D-space with reproducing kernel C =
l⊗

i=1

Ci.

(ii) Let H be a D-space with the reproducing kernel C, D ⊂ Cn, let D′ ⊂ Cn′

be a domain and f : D′ → D an analytic embedding. Set H′ = {h ◦ f : h ∈ H}.
Let H0 = {h ∈ H : h ◦ f ≡ 0}. Clearly H0 is a closed subspace of H. Define a
linear mapping Φ : H/H0 → H′ by Φ(h +H0) = h ◦ f . Define on H′ a norm by
‖h ◦ f‖H′ = ‖h+H0‖H/H0 so that Φ becomes a unitary operator.

It is easy to verify that H′ is a D′-space with the reproducing kernel C ′ =
C ◦ (f, f̃).

In particular, if f is a biholomorphism, then H0 = {0} and H′ is unitarily
equivalent to H.

Further, let L be a linear subspace of Cn and set D′ = C ∩ L. Consider
the inclusion f : D′ → D. Then H′ defined as above consists of all restrictions
{h|D′ : h ∈ H} and its reproducing kernel is C ′ = C|(D′ × D̃′).

(iii) Let Di ⊂ Cn, i = 1, . . . , l, be domains, let Hi be Di-spaces with re-

producing kernels Ci. For D =
l⋂

i=1

Di we can define a D-space as follows: Set

D′ =
∏
Di and let H′ =

⊗
Hi be the D′-space defined in (i). Then D can be

identified (by means of a biholomorphism) with the “diagonal” {(z1, . . . , zl) ∈ D′ :
z1 = z2 = · · · = zl}. Thus we can define a D-space as in (ii) and its reproducing

kernel is C =
l∏

i=1

Ci.

Examples. (1) As has already been pointed out, the basic example is the
Hardy space H2 over the unit disc D ⊂ C. In this case C(z, w) = (1 − zw)−1 =
∞∑

j=0

zjwj , H⊗H is the set of all analytic H-valued functions on D satisfying

‖f‖2 := sup
r61

1
2π

∫
‖f(r(eit)‖2 dt <∞,

CTh =
∑
j

zjT ∗jh and V h =
∑
j

zj(I − TT ∗)1/2T ∗jh. The monomials ψk(z) = zk

are an orthonormal basis for H2, and with this choice fm(T, T ∗) = TmT ∗m. Thus
we recover the well-known fact that V : H → H⊗H is defined for any contraction
T and is an isometry if and only if T ∗nh→ 0 for all h ∈ H.

(2) Let D ⊂ C be the unit disc and let H be the generalized Bergman space
of all analytic functions on D satisfying

‖f‖2 :=
k − 1
π

∫
D

(1− r2)k−2|f(reit)|2 dm <∞
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where m is the area Lebesgue measure and k is an integer > 2. In this case

C(z, w) = (1 − zw)−k, so 1
C (T, T ∗) =

k∑
j=0

(−1)j
(
k
j

)
T jT ∗j . The contractions satis-

fying 1
C (T, T ∗) > 0 are called k-hypercontractions in [2].
For k = 2 we get the classical Bergman space. Choosing the standard or-

thonormal basis ψj(z) =
√
j + 1 zj , we have

fm(T, T ∗) = (m+ 1)TmT ∗m −mTm+1T ∗m+1.

Thus the adjoint of any operator T satisfying 1−2TT ∗+T 2T ∗2 > 0 and fm(T, T ∗)
→ 0 in the strong operator topology is unitarily equivalent to the restriction of M∗

z

to an invariant subspace; in particular, such a T must already be a contraction
satisfying T ∗m → 0 strongly, and, conversely, if ‖T‖ 6 1 and T ∗m → 0 then
fm(T, T ∗) → 0. It would be amusing to have a direct proof of this result.

(3) Let D ⊂ Cn be the unit ball and H = H2(D) the Hardy space on D.
Then H ⊂ L2(ϕ) where ϕ is the unique rotation invariant Borel measure on ∂D
normalized by ϕ(∂D) = 1. In this case C(z, w) = (1− z1w1 − · · · − znwn)−n.

More generally, for any k > n, the k-Bergman space consists of functions
analytic on D that belong to L2((1 − |z|2)k−n−1m) where m is the Lebesgue
measure on D. The reproducing kernel is, up to a constant factor, C(z, w) =
(1− z1w1 − · · · − znwn)−k; for k = n+ 1 we get the classical Bergman space.

The models in these cases (under the assumption that I−T ∗1 T1−· · ·−T ∗nTn >
0) were expressed in [11] in terms of weighted shifts.

(4) Let D ⊂ Cn be the unit polydisc. Let H be the Hardy space over
D (= the completion of the space of all polynomials in L2(ϕ) where ϕ is the
normalized Lebesgue measure on the Shilov boundary ∂0D = {z = (z1, . . . , zn) :

|z1| = · · · = |zn| = 1}). Now C(z, w) =
n∏

i=1

(1 − ziwi)−1; see Remark (i). Under

the assumption ‖Ti‖ 6 1, i = 1, . . . , n, the existence of the regular dilation of the
n-tuple T = (T1, . . . , Tn) is equivalent to Brehmer’s condition∑

06α6β

(−1)|α|T ∗αTα > 0

for all β 6 e = (1, . . . , 1).
Our inequality 1

C (T, T ∗) > 0 is the condition of the maximal degree for T ∗.
Choosing the standard orthonormal basis of monomials, the condition fm(T, T ∗)
→ 0 is readily seen to be equivalent to∑

j

Tm
j T ∗mj −

∑
j<k

Tm
j Tm

k T ∗mj T ∗mk +
∑

j<k<l

Tm
j Tm

k Tm
l T ∗mj T ∗mk T ∗ml − · · · → 0

(or, phrased another way, (1 − 1
C )(Tm, T ∗m) → 0). Models for operators corre-

sponding to the Bergman spaces over the polydisc were studied in [6].

(5) For domains D =
{
z ∈ Cn :

∑
j

cij |zj |2 < 1, i = 1, . . . , l
}

where cij > 0,

the corresponding Bergman spaces and models for operators were studied in [19].
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Note that D =
⋂
i

Di where Di =
{
z ∈ Cn :

∑
j

cij |zj |2 < 1
}

and each Di is biholo-

morphic to the unit ball. Thus our theory can be applied to the corresponding
D-spaces, at least for tuples T with σ(T ) ⊂ D, see Remark (iii).

(6) Domains {z ∈ Cn : P (|z1|2, . . . , |zn|2) < 1} where P is a polynomial with
nonnegative coefficients were studied in [13].

(7) The unit disc in C and the unit ball in Cn are special cases of Cartan
domains; for complete description and basic properties of the Cartan domains
see [8] and [16]. An example of a Cartan domain is

D =
{

(z1, . . . , z4) ∈ C4 :
∥∥∥∥(

z1 z2
z3 z4

) ∥∥∥∥ < 1
}

where ‖ · ‖ is the operator norm on the 2-dimensional Hilbert space C2.
Let D ⊂ Cn be a Cartan domain. Let ϕ denote the unique probability

measure on the Shilov boundary ∂0D ofD that is invariant under the group GL(D)
of linear automorphisms of D. The Hardy space H2(∂0D) consisting of all analytic
functions f : D → C such that sup

r→1

{ ∫
∂0D

|f(rw)|2 dϕ(w) < ∞
}

is isometrically

embedded into the space L2(∂0D,ϕ). In this case C(z, w) = ∆(z, w)−n/r, z, w ∈
D, where r is the rank and ∆ is the Jordan triple determinant of D. Then
H := H2(∂0D) is a D-space, and our theory applies. Moreover, the polynomials
are always dense in H and C−1 is a polynomial if n/r is an integer.

(8) More generally, for any λ in the Wallach set W = W (D) of a Cartan
domain D the function C(z, u) = ∆(z, u)−λ is positive definite on D ×D. Thus
C is the reproducing kernel of a Hilbert space H2

λ(D) of analytic functions on D.
Moreover, if λ is in the continuous part Wc of the Wallach set, the space

H := H2
λ(D) is a D-space and our theory applies as well. In this case also the

polynomials are dense in H, and 1
C is a polynomial if and only if λ is an integer.

In particular, if λ > g − 1, where g ∈ Z+ denotes the genus of D, then
H2

λ(D) consists of all analytic functions in L2(D,ϕλ). Here the measure ϕλ is ab-
solutely continuous with respect to the Lebesgue measure dz on D. More precisely,
dϕλ(z) = c(λ)∆(z, z)λ−g dz where c(λ) > 0 is the constant making ϕλ(D) = 1.
Then H := H2

λ(D) is a D-space, called the λ-Bergman space. For λ := g one
obtains the Bergman space of D.

Note also that in general the continuous part of the Wallach set is strictly
larger than (g − 1,+∞). For instance if λ := n/r, (6 g − 1), then we obtain
a D-space H2

n/r(D) that coincides isometrically with the Hardy space H2(∂0D)
discussed above.

(9) LetD be a bounded symmetric domain. Then there exist Cartan domains
Di and a biholomorphic map f : D →

∏
i

Di (the Harish-Chandra realization).

For any λi ∈ Wc(Di) we consider the Di-space Hi := H2
λi

(Di). Let Ci(z, w) =
∆i(z, w)−λi denote the corresponding reproducing kernel.
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Let λ := (λi)i be an arbitrary collection of values λi as above. The con-
structions of Remarks (i) and (ii) give a D-space H with reproducing kernel
C =

( ∏
Ci

)
◦ (f, f̃).

(10) Let H be a regular model atom of Agler ([1]). Then clearly H satisfies
conditions (a)–(c) of Definition 1 so that H is a D-space (where D is the unit disc
in C). Thus the model described in this paper generalizes the results of Agler.
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