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1. INTRODUCTION

The Scott-Brown technique has been a successful method of constructing
invariant subspaces of Hilbert space contractions and, more generally, of poly-
nomially bounded operators on Banach spaces. On the other hand, the situation
for n-tuples of commuting operators is much more complicated. Even the first
question — whether each von Neumann n-tuple of commuting Hilbert space op-
erators with dominant Taylor spectrum has a nontrivial joint invariant subspace
— has not been solved yet. Note that for n = 1 this was an early result [4] that
started a long development of the technique.

The first results concerning joint invariant subspaces of commuting n-tuples
of operators were obtained by Apostol [2], who studied the left Harte spectrum.
The invariant subspaces for n-tuples possessing a dilation with dominant Harte
spectrum were obtained by Eschmeier [7], [9] and Kosiek-Octavio [12].

Invariant subspaces for von Neumann n-tuples of Hilbert spaces operators
of class C00 with dominant essential Taylor spectrum were constructed by Al-
brecht and Chevreau [1]. Didas [6], following ideas of Eschmeier was able to use
some points of the Taylor spectrum which are not in the essential Taylor spec-
trum, in particular all inner points of the Taylor spectrum.
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The aim of this paper is to improve the results of Didas, Eschmeier and
Albrecht-Chevreau and to show that all points of the Taylor spectrum can be used
for the Scott-Brown technique. In particular we show that every von Neumann
n-tuple of Hilbert space operators with dominant Taylor spectrum satisfying con-
dition C00 has a nontrivial joint invariant subspace. Stronger results are true if T
is assumed to have a dilation.

2. TAYLOR SPECTRUM AND SCOTT-BROWN TECHNIQUE

Let T = (T1, . . . , Tn) be a commuting n-tuple of operators on a Hilbert space
H. Let

0 → Λ0(H)
δ0

T−→ Λ1(H)
δ1

T−→ · · · δn−1
T−→ Λn(H) → 0

be the (cochain) Koszul complex of T. For p = 0, 1, . . . , n we define the cohomol-
ogy space Hp(T) = ker δ

p
T/Im δ

p−1
T .

In order to simplify the notations we consider the Koszul complex of T

"globally". Let Λ(H) =
n⊕

p=0
Λp(H). We can identify Λ(H) with HN where N = 2n.

The operators δ
p
T define naturally the operator δT : Λ(H) → Λ(H) by δT(x0 ⊕

· · · ⊕ xn) =
n−1
∑

p=0
δ

p
Txp. The Taylor spectrum σ(T) is defined by

σ(T) = {λ ∈ Cn : ker δT−λ 6= Im δT−λ}
and the essential Taylor spectrum σe(T) by

σe(T) = {λ ∈ Cn : dim ker δT−λ/Im δT−λ = ∞}.

We start with the following simple lemma:

LEMMA 2.1. Let 0 < r < 1, k ∈ N, let X be a Banach space and let v0, . . . , vk−1 ∈
X. Then there exists a polynomial function p : C→ X of degree 6 k− 1 satisfying

p(re2πim/k) = vm

for all m = 0, . . . , k− 1 and

max
|µ|61

‖p(µ)‖ 6
(1 + r

r

)k−1
·max{‖vm‖ : 0 6 m 6 k− 1}.

Proof. For m = 0, 1, . . . , k− 1 set λm = re2πim/k . Let

p(µ) =
k−1

∑
m=0

(
∏
j 6=m

µ− λj

λm − λj

)
vm.

Obviously p(λm) = vm for each m = 0, . . . , k− 1.
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For µ ∈ C and m ∈ {0, 1, . . . , k− 1} we have

∏
j 6=m

(µ− λj) =
(µ− λ0) · · · (µ− λk−1)

µ− λm
=

µk − rk

µ− λm
=

µk − λk
m

µ− λm

= µk−1 + λmµk−2 + · · ·+ λk−1
m .

Thus
∣∣∣ ∏

j 6=m
(λm − λj)

∣∣∣ = |kλk−1
m | = krk−1.

It follows that for any µ ∈ Cwith |µ| 6 1 we have the estimate
∣∣∣ ∏

j 6=m

µ− λj

λm − λj

∣∣∣ 6 (1 + r)k−1

krk−1

and

‖p(µ)‖ 6
(1 + r

r

)k−1
max{‖vm‖ : 0 6 m 6 k− 1}.

LEMMA 2.2. Let T = (T1, . . . , Tn) be an n-tuple of commuting operators on a
Hilbert space H. Let ε > 0 and g : Dε → Cn−1 be an analytic function on Dε := {λ ∈
C : |λ| < ε}. Let k > 1 and suppose that

{(λkg(λ), λ) : |λ| < ε} ⊂ σ(T) \ σe(T).

Then the n-tuple S := (T1, . . . , Tn−1, Tk
n) satisfies

dim Ker δS / Im δS > k.

Proof. Set φ(λ) := λkg(λ) and c := max
|λ|6ε/2

‖g(λ)‖1, where ‖ · ‖1 denotes the

`1-norm in Cn−1. Then
‖φ(λ)‖1 6 c |λ|k

for all λ with |λ| < ε/2. Let 0 < r < min{1, ε/2}. By Lemma 2.1, there exists a
polynomial function pr : C→ Cn−1 of degree 6 k− 1 such that

pr(re2πim/k) = φ(rk)− φ(re2πim/k)

for all m = 0, 1, . . . , k− 1 and

max
|µ|61

‖pr(µ)‖1 6
(1 + r

r

)k−1
· 2crk 6 2kcr.

For z = (z1, . . . , zn) ∈ Cn write z′ = (z1, . . . , zn−1) ∈ Cn−1.
Let the function fr : Cn → Cn be defined by

fr(z) = (z′ + pr(zn), zk
n).

Set w(r) := fr(φ(r), r). Then

w(r) = (φ(r) + pr(r), rk) = (φ(rk), rk).

Hence w(r) ∈ σ(T) \ σe(T) and w(r) → 0 as r → 0.
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For every w ∈ Cn with wn 6= 0, the equation

fr(z) = w

has exactly k solutions z = (z′, zn). Indeed, if

z′ + pr(zn) = w′ and zk
n = wn,

then zn can be any of the k roots of order k of wn and z′ = w′ − pr(zn). In partic-
ular, for w(r) (= (φ(rk), rk)), there exist k vectors z(0), . . . , z(k−1) ∈ Cn satisfying
fr(z(m)) = w(r) (m = 0, . . . , k− 1), namely (z(m))n = re2πim/k and

(z(m))′ = w(r) ′ − pr((z(m))n) = φ(rk)− pr(re2πim/k) = φ(re2πim/k).

Hence z(m) ∈ σ(T) \ σe(T) for all m. Thus
n
∑

p=0
dim Hp(T − z(m)) > 1. Further-

more, for every p = 0, . . . , n we have an isomorphism

Hp( fr(T)− w(r)) ≡
k−1⊕

m=0
Hp(T − z(m)

r ),

see the proof of Theorem 10.3.13 in [10].
Therefore

n

∑
p=0

dim Hp( fr(T)− w(r)) =
n

∑
p=0

k−1

∑
m=0

dim Hp(T − z(m)
r ) > k.

For each polynomial mapping q : C → Cn−1 of degree 6 k − 1, q(µ) =
k−1
∑

j=0
αjµ

j with coefficients α0, . . . , αk−1 ∈ Cn−1 we have by the Cauchy formulas

that ‖αj‖1 6 max{‖q(µ)‖1 : |µ| 6 1}. Thus

‖pr(Tn)‖1 6 max{‖pr(µ)‖1 : |µ| 6 1} ·
k−1

∑
j=0

‖T j
n‖ 6 2kcr

k−1

∑
j=0

‖T j
n‖.

Hence ‖pr(Tn)‖1 → 0 and fr(T) → S as r → 0.
Then, using the upper semicontinuity of the dimensions of the cohomology

space Hp( · ), we derive that

dim ker δS/Im δS =
n

∑
p=0

dim Hp(S) > lim sup
r→0

n

∑
p=0

dim Hp( fr(T)− w(r)) > k.

LEMMA 2.3. Let T = (T1, . . . , Tn) ∈ B(H)n be a commuting n-tuple of opera-
tors. Let r > 0 and f : {µ ∈ C : |µ| < r} → Cn−1 be analytic such that f (0) = 0.
Suppose that ( f (µ), µ) ∈ σ(T) \ σe(T) for all |µ| < r. Let k ∈ N. Then there are
orthonormal vectors x1, . . . , xk ∈ HN such that 〈p(T)xj, xj〉 = p(0) for all j = 1, . . . , k
and all polynomials p in n variables.
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Proof. Write f (µ) = p(µ) + µkg(µ), where p = (p1, . . . , pn−1) is an (n− 1)-
tuple of polynomials (of degree 6 k− 1) and g = (g1, . . . , gn−1) is an (n− 1)-tuple
of functions analytic in {µ : |µ| < r}. Clearly p(0) = 0.

Set S = (T′ − p(Tn), Tn) where T′ = (T1, . . . , Tn−1). Thus S = h(T) for h
defined by h(w′, wn) = (w′ − p(wn), wn). Hence h( f (µ), µ) = ( f (µ) − p(µ), µ)
for |µ| < r. It follows, by the spectral mapping theorem, that {(µkg(µ), µ) : µ ∈
C, |µ| < r} ⊂ σ(S).

Suppose on the contrary that there is a µ, |µ| < r and (µkg(µ), µ) ∈ σe(S).
By the spectral mapping property for the essential Taylor spectrum, there is a
z ∈ σe(T) such that (µkg(µ), µ) = h(z) = (z′ − p(zn), zn). Thus zn = µ and
z′ = µkg(µ) + p(µ) = f (µ), a contradiction with the assumption that ( f (µ), µ) /∈
σe(T). Hence

{(µkg(µ), µ) : µ ∈ C, |µ| < r} ⊂ σ(S) \ σe(S).

By Lemma 2.2, dim ker δ(S′ ,Sk
n)/Im δ(S′,Sk

n) > k. It is well known that S acts
in the quotient space ker δ(S′ ,Sk

n)/Im δ(S′ ,Sk
n) as the n-tuple (0, . . . , 0, N) where N is

a nilpotent operator. By Lemma 3.2 in [6], there exist some orthonormal vectors
x1, . . . , xk ∈ HN such that 〈p(S)xj, xj〉 = p(0) for j = 1, . . . , k and all polynomials
p. This means that ‖xj‖ = 1 and 〈Sαxj, xj〉 = 0 for all α ∈ Zn

+ with |α| > 1.
We prove that 〈Tαxj, xj〉 = 0 for α ∈ Zn

+, α 6= 0.
Write α = (α′, αn) where α′ ∈ Zn−1

+ and αn ∈ Z+. We show by induction on
|α′| that 〈T′α′Tαn

n xj, xj〉 = 0.
If α′ = 0 and αn 6= 0 then 〈Tαn

n xj, xj〉 = 〈Sαn
n xj, xj〉 = 0.

Let α′ ∈ Zn−1
+ , α′ 6= 0, αn ∈ Z+ and suppose that 〈T′β′Tβn

n xj, xj〉 = 0 for all
β′ ∈ Zn

+, βn ∈ Z+ with |β′| < |α′|, |β′|+ βn 6= 0. We have

0 = 〈Sαxj, xj〉 = 〈(T1 − p1(Tn))α1 · · · (Tn−1 − pn−1(Tn))αn−1 Tαn
n xj, xj〉

= 〈Tα1
1 Tα2

2 · · · Tαn−1
n−1 Tαn

n xj, xj〉+
〈

∑
β

cβT′β
′
Tβn

n xj, xj

〉
,

where all terms in the last sum satisfy |β′| < |α′|. Since p(0) = 0, by the induction
assumption we have 〈Tα1

1 Tα2
2 · · · Tαn−1

n−1 Tαn
n xj, xj〉 = 0.

Hence 〈p(T)xj, xj〉 = p(0) for all j = 1, . . . , k and all polynomials p.

LEMMA 2.4 ([6], Lemma 3.3). Let H be a separable Hilbert space and let A ⊂ H
be a subset which, for each natural number k > 1, contains an orthonormal system of
length k. Then A contains a weak zero sequence of unit vectors.

NOTATION 2.5. Let σr(T) be the set of those points z ∈ σ(T) \ σe(T) for
which there exists a one-dimensional complex-analytic submanifold M of Cn

with z ∈ M such that M ⊂ σ(T).

COROLLARY 2.6. Let T ∈ B(H)n be a commuting n-tuple of operators on a com-
plex Hilbert space H. Then for every λ ∈ σr(T) there exists a sequence (xk)k>1 of unit
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vectors xk ∈ HN such that xk → 0 weakly as k → ∞ and 〈p(T)xk, xk〉 = p(λ) for all k
and all polynomials p.

Proof. Without loss of generality we may assume that λ = 0. By a permuta-
tion of variables we can use Lemma 2.3 and 2.4.

LEMMA 2.7. Let T be a commuting n-tuple of operators and let λ be an accumu-
lation point of σ(T) \ σe(T). Then λ ∈ σr(T).

Proof. As it is known, the set σ(T) \ σe(T) is analytic [13], [14], see also [15].
Then, locally around λ ∈ σ(T) \ σe(T), say on a small open ball B centered at λ,
the set σ(T) \ σe(T) is a finite union of irreducible varieties Vj for j = 1, k with the
property Vi 6⊂

⋃
j 6=i

Vj, see Theorem II.E.15 in [11].

We can suppose, for B sufficiently small, that σe(T)∩ B = ∅ and that λ ∈ Vj
for all j. Therefore we have the equality

σ(T) ∩ B =
k⋃

j=1

Vj.

There is at least one j0 such that the variey Vj0 has dimension > 1, for oth-
erwise σ(T) ∩ B would be a discrete set and λ an isolated point of σ(T), see
Lemma III.C.12 in [11].

Moreover, Vj0 has a dense subset M ⊂ Vj0 consisting of regular points, see
III.A.10 and III.C.3 in [11]. By definition, M ⊂ σr(T). Thus λ ∈ σr(T).

3. INVARIANT SUBSPACES

In the following we assume that G is either the unit polydisc

Dn = {(z1, . . . , zn) ∈ Cn : |zi| < 1 (i = 1, . . . , n)}
or the unit ball

Bn = {(z1, . . . , zn) ∈ Cn : |z1|2 + · · ·+ |zn|2 < 1}.

However, most of the results remain true for more general domains in Cn.
Let P(G) be the normed space of all complex polynomials in n variables

with the norm ‖p‖G = sup{|p(z)| : z ∈ G}.
Let H∞(G) be the space of all bounded analytic functions f = f (z) on G,

endowed with the sup norm ‖ f ‖G := sup
z∈G

| f (z)|. As it is known, H∞(G) is a dual

space. Clearly P(G) is a subspace of H∞(G). Thus P(G) inherits the w*-topology
from H∞(G).

For any λ ∈ G, let Eλ ∈ P(G)∗ denote the functional of evaluation at the
point λ, namely

Eλ(p) := p(λ)
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for all p ∈ P(G). It is well known that Eλ is w*-continuous.
Let T = (T1, . . . , Tn) be an n-tuple of mutually commuting bounded linear

operators on a complex Hilbert space H. One calls T von Neumann (over G) if

‖p(T)‖ 6 ‖p‖G

for all p ∈ P(G).
Let T be a von Neumann n-tuple of operators on a Hilbert space. For any

x, y ∈ H, let x⊗ y ∈ P(G)∗ denote the functional defined by

(x⊗ y) (p) := 〈p(T)x, y〉
for all p ∈ P(G). Clearly x⊗ y is continuous and ‖x⊗ y‖ 6 ‖x‖ · ‖y‖.

Set N = 2n and let HN be the direct sum of N copies of H, endowed with
the norm

‖x‖ :=
( N

∑
j=1
‖xj‖2

)1/2

for x = (xj)N
j=1 ∈ HN .

For any x = (xj)N
j=1 and y = (yj)N

j=1 in HN , let x¤y ∈ P(G)∗ denote the
functional defined by

x¤y :=
N

∑
j=1

xj ⊗ yj,

that is,

(x¤y) (p) :=
N

∑
j=1
〈p(T)xj, yj〉

for all p ∈ P(G).

LEMMA 3.1. Let T = (T1, . . . , Tn) be a von Neumann n-tuple of operators on a
Hilbert space H. Let λ be a non-isolated point in σ(T) ∩ G. Then there exists a sequence
(xk) of unit vectors in HN such that xk → 0 weakly and ‖xk¤xk − Eλ‖ → 0.

Proof. The statement was proved in Lemma 1.4 in [1] for points of σe(T)
(note that the proof works as well for the norm closure P(G), which also has
Gleason’s property).

For points λ ∈ σr(T) the statement was proved in Corollary 2.6.
Let λ ∈ (σ(T) \ σe(T)) ∩ G. By Lemma 2.7, there exists a sequence λk of

points of σr(T) such that λk → λ. Note that ‖Eλk − Eλ‖ → 0. Indeed, let r =
dist {λ, ∂G} and |λk − λ| < r/2. Let p ∈ P(G), ‖p‖G = 1. By the Cauchy
formula we have

|p(λ)− p(λk)| 6 |λ− λk| ·max
{
|p′(µ)| : |µ− λ| < r

2

}
6 |λ− λk| ·

2
r

.

Thus

‖Eλk − Eλ‖ = sup{|p(λk)− p(λ)| : p ∈ P(G), ‖p‖G = 1} 6 |λk − λ| · 2
r
→ 0
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as λk → λ.
Note also that for any double sequence (x(k)

j ) of unit vectors in HN such

that (x(k)
j ) → 0 weakly as j → ∞ and x(k)

j ¤x(k)
j → Eλk for each k there exist

j1 < j2 < · · · such that x(k)
jk
→ 0 weakly as k → ∞ and x(k)

jk
¤x(k)

jk
→ Eλ.

LEMMA 3.2 (see [1]). Let T = (T1, . . . , Tn) be a von Neumann n-tuple of opera-
tors on a Hilbert space H. Let ε > 0. Let λ ∈ G and x = (xj)N

j=1 ∈ HN with ‖x‖ = 1
and λ ∈ G such that ‖x¤x − Eλ‖ < ε. Then there exists j ∈ {1, . . . , N} such that
‖xj ⊗ xj − Eλ‖ < 1− 2−n + ε.

Proof. We have
N
∑

i=1
‖xi‖2 = ‖x‖2 = 1. Fix an index i such that

‖xi‖2 > 1
N

.

Then for every p ∈ P(G) with ‖p‖ 6 1, we have the estimates:

|〈p(T)xi, xi〉 − p(λ)| 6
∣∣∣〈p(T)xi, xi〉 −

N

∑
j=1
〈p(T)xj, xj〉

∣∣∣ +
∣∣∣

N

∑
j=1
〈p(T)xj, xj〉 − p(λ)

∣∣∣

6 ∑
j: j 6=i

|〈p(T)xj, xj〉|+ ε 6 ∑
j: j 6=i

‖p(T)‖ · ‖xj‖2 + ε

6
N

∑
j=1
‖xj‖2 − ‖xi‖2 + ε 6 ‖x‖2 − ‖xi‖2 + ε 6 1− 1

N
+ ε.

Let T = (T1, . . . , Tn) be a von Neumann n-tuple of operators on a Hilbert
space H. We say that the n-tuple T is of class C0· if the polynomial functional cal-
culus p 7→ p(T) from P(G) to L(H) is sequentially w*-SOT continuous. Equiva-
lently, pk(T) → 0 in the strong operator topology for each Montel sequence (pk)
of polynomials (i.e., sup ‖pk‖ < ∞ and pk(z) → 0 for all z ∈ G).

We say that T is of class C·0 if T∗ = (T∗1 , . . . , T∗n ) is of class C0·. We say that
T is of class C00 if it is both of class C0· and C·0.

Note that in the case of the unit polydisc, the C0· property reduces to the
well known condition Tk

j → 0 in the strong operator topology for all j = 1, . . . , n,
see Proposition 1.8 in [2].

It is well known that if T is either of class C0· or C·0 then the functionals
x⊗ y are w*-continuous for all vectors x, y ∈ H.

Let (xk) be a sequence of vectors in H weakly converging to zero. It is well
known that if T is of class C0· then a⊗ xk → 0 for all a ∈ H. If T is of class C·0
then xk ⊗ b → 0 for all b ∈ H.

We say that a set A ⊂ G is dominating in G if ‖ f ‖G = sup{| f (z)| : z ∈ A∩G}
for all f ∈ H∞(G).
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THEOREM 3.3. Let G denote either the unit ball or the unit polydisc. Let also
T = (T1, . . . , Tn) be a von Neumann n-tuple (over G) of operators on a Hilbert space
H. Suppose that T is of class C00 and that the Taylor spectrum σ(T) is dominating in G.
Then T has a nontrivial common invariant subspace.

Moreover, if the accumulation points in σ(T) are dominating in G, then T is re-
flexive.

Proof. If there is an isolated point in σ(T) then the Taylor functional calculus
gives the existence of a common invariant subspace.

Thus we may suppose that the accumulation points in σ(T) are dominating
in G. Let θ = 1− 2−n. Denote by L(θ) the set of all w*-continuous functionals
ϕ on P(G) with the property that for each ε > 0 and finite families of vectors
a1, . . . , as and b1, . . . , bs ∈ H there are x, y ∈ H such that:

(1) ‖x‖ 6 1, ‖y‖ 6 1;
(2) ‖ϕ− x⊗ y‖ < θ + ε;
(3) ‖ai ⊗ y‖ < ε and ‖x⊗ bi‖ < ε for all i = 1, . . . , s.

It is well known that the set L(θ) is closed and absolutely convex, see [8] or
[1]. By Lemmas 3.1 and 3.2, L(θ) contains the closed absolutely convex hull of
the set {Eλ : λ accumulation point of σ(T) ∩ G}. It is well known that this set is
equal to {ϕ ∈ P(G) : ‖ϕ‖ = 1, ϕ is w*-continuous}. By Proposition 0.1 in [1], see
also [3], T has property Aℵ0 , and hence it is reflexive.

REMARK 3.4. Theorem 3.3 remains true for all domains G ⊂ Cn satisfying

the Gleason property for the algebra P(G)
w∗

, i.e., for each λ ∈ G there is a con-

stant cλ > 0 such that every function f ∈ P(G)
w∗

with f (λ) = 0 can be written

as f =
n
∑

j=1
(zj − λj) f j for some f j ∈ P(G)

w∗
with ‖ f j‖G 6 cλ (j = 1, . . . , n). For

details see [1].

It is well known that the condition C00 can be sometimes omitted if we as-
sume that the n-tuple T has a dilation.

We consider the ball case.
We say that an n-tuple T = (T1, . . . , Tn) has a spherical dilation if there are

a larger Hilbert space K ⊃ H and an n-tuple N = (N1, . . . , Nn) of commuting
normal operators on K such that σ(N) ⊂ ∂G and Tα = PH Nα|H for all α ∈ Zn

+,
where PH denotes the orthogonal projection onto H.

Note that an n-tuple possessing a spherical dilation is automatically von
Neumann over Bn.

THEOREM 3.5. Let T = (T1, . . . , Tn) be an n-tuple of commuting operators on
a Hilbert space H. Suppose that T possesses a spherical dilation and that the Taylor
spectrum σ(T) is dominating in Bn. Then T has a joint invariant subspace.

Moreover, if T is of class C·0 over Bn, and the set of all accumulation points of σ(T)
is dominating in Bn, then T is reflexive.
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Proof. Suppose first that T is of class C·0 and the set of all accumulation
points of σ(T) is dominating in Bn.

Let θ = 1− 2−n. Denote by E r
θ (T) the set of all w*-continuous functionals

ϕ ∈ P(G)∗ for which there are sequences (xk), (yk) ⊂ H such that:

(1) ‖xk‖, ‖yk‖ 6 1 for all k;
(2) lim sup

k→∞
‖ϕ− xk ⊗ yk‖ 6 θ;

(3) xk ⊗ z → 0 for all z ∈ H.
Since the set of non-isolated points of σ(T) is dominating in Bn, by Lem-

mas 3.1 and 3.2 we have

ΓE r
θ (T) ⊃ Γ({Eλ : λ accumulation point of σ(T) ∩ G})

= {ϕ ∈ P(G)∗ : ‖ϕ‖ 6 1 and ϕ is w*-continuous},

where Γ denotes the closed absolutely convex hull.
By Corollary 4.4.3 in [5], this implies property A1,ℵ0 . So T is reflexive.
Let T be a general n-tuple with dominant Taylor spectrum and possessing a

spherical dilation. If there is an isolated point in σ(T) then the Taylor functional
calculus provides a nontrivial joint invariant subspace. Thus we may assume that
there are no isolated points in σ(T).

If T is neither of class C0· nor C·0 then T has a joint invariant subspace by
Theorem 2.3 in [7].

If T is of class C·0 then the statement was proved above. If T is of class C0·
then we can use the same result for the n-tuple T∗ = (T∗1 , . . . , T∗n ).

REMARK 3.6. Theorem 3.5 remains true for all strictly pseudoconvex do-
mains, see Corollary 4.4.3 and Theorem 3.1.1 in [5].

Acknowledgements. The research was supported by the grant No. 201/06/0128 of
GA CR, by the Institutional Research Plan AV 0Z 10190503 and by the grant of Romanian
government 2-CEx06-11-34.

REFERENCES

[1] E. ALBRECHT, B. CHEVREAU, Invariant subspaces for certain representations of
H∞(G), in Functional Analysis, Marcel Dekker, New York 1994, pp. 293–305.

[2] C. APOSTOL, Functional calculus and invariant subspaces, J. Operator Theory 4(1980),
159–190.
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CZECH REPUBLIC

E-mail address: muller@math.cas.cz

Received February 16, 2006.


