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A Riesz-Haviland type result for truncated
moment problems with solutions in L'
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Abstract

We give a version of the Riesz-Haviland theorem for truncated mo-
ments problems, characterizing the existence of the representing measures
that are absolutely continuous with respect to the Lebesgue measure. The
existence of such representing densities describes the dense interior of the
convex cone of all data having nonnegative Borel representing measures.
A natural regularity assumption on the support is required.
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1 Introduction

In this paper we consider problems of moments in n real variables t = (¢1,...t,),
with respect to a finite number of monomial functions #* = t%' ---tin where
i = (i1,...,0n) € (Z4)™, for Lebesgue integrable densities f = f(¢) > 0 a.e.
(almost everywhere) on closed subsets T' C R™. Given a set of numbers g; with
|i| = i1+ +in < 2k where k € N is fixed, the truncated problem of moments,
called also T-problem of moments [6] when T is prescribed, is concerned with
the existence of the Borel measures v > 0 on R™ supported on T such that
Jptidv(t) = g; for all i [I], [I8]. One calls v a representing measure for g, and
g; the moments of v. We are interested in those representing measures v = f dt,
called representing densities of g, that are absolutely continuous with respect to
the Lebesgue measure dt = dt; - - - dt,,. For any subset I C Z'}, let Pr denote the
linear span of the monomials X (i € I) in R[X7,...,X,]. Given g = (g;)ie1,
the linear Riesz functional ¢4 : Pr — R associated to g is defined as it is known
[7] by p, Xt = g; for i € I. We say that ¢, is T-positive [13] if ¢,p > 0 for
all polynomials p such that p(¢) > 0 for all ¢ € T. This condition is necessary
for g to have representing measures v on T, since in this case pgzp = fT pdv for
all polynomials p. We remind below the Riesz-Haviland theorem [13], a basic
result concerned with the full problem of moments when I = Z7} .

Theorem 1 [13] Let T C R" be closed, and g = (gi)iczy be a set of reals. Then
g has representing measures on T if and only if ¢4 is T-positive.

An analogue of the Riesz-Haviland theorem for the truncated case was es-
tablished by R.E. Curto and L.A. Fialkow [6]. For I = Iy, = {i : |i| < 2k},
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when P; is the space of all polynomials of degree < 2k, they proved that a set
g = (9i)|i|<2x has representing measures on T if and only if the Riesz functional
©g ¢ Pr,,, — R admits T-positive extensions ¢, : Pr,,,, — R to the space Pp,, .,
of all polynomials of degree < 2k + 2.

By Theorem [7] we characterize the existence of the representing densities of
g on regular supports T by the condition: ¢gzp > 0 for all p € P; \ {0} such
that p(¢t) > 0 for all ¢ € T. A similar characterization [14] holds under more
specific hypotheses, in particular if a distinguished moment 7;, (= % or linear

combination of the ¢¥’s) exists such that Lm0 #;'(t) =0 for i # ig. We
mention also the existence of similar results [I1] for quadratic (k = 1) and some
quartic (k = 2, n = 2) T-problems of moments.

By Theorem[d] the set of all g having representing densities is the dense inte-
rior of the set of all g having representing measures. Our proofs are independent
of the results from [6], [I4] and rely mainly on Theorem [ [13].

Started by works of Stieltjes, Hausdorff, Hamburger and Riesz, the area
of the truncated problems of moments saw interesting development in various
other directions, that we do not attempt to cover. A few recent works [5] - [9]
should be mentioned in this sense, see also [3], [12], [15], [16].

I express thanks to professor Raul Curto and professor Lawrence Fialkow
for drawing the analogue of the Riesz-Haviland theorem in the truncated case
[6] to my attention.

2 Main results

Definitions Let T () be a closed subset of R™, such that for any ¢ € T and
e > 0 the Lebesgue measure of the set {x € T : |jz — t|| < €} is > 0. This
always holds a.e. (in the density points of T [7.6, [I7]]), but we require it in
every point t. We call such a T regular. Here ||| is the usual Euclidian norm.
For any multiindex i € ZT}, set 0; = {j €Z : ji, =eitherOoriz, 1 < k < n}. Let
I C 7% be finite, I5#0 such that o; C I for all i € I. We call such an I regular,
too. Let g = (gi)ier be a set of real numbers with go = 1. We call a convex
cone C in a real linear space F' acute if C N (—C) = {0}. Given also a linear
functional f : F — R, we write f > 0if fc >0 for all c € C'\ {0}.

Lemma [ and its Corollary Bl follow from various well known arguments
(Hahn-Banach, Krein, Mazur, Choquet [4], [I0], [I7]) on the extension of posi-
tive functionals. We found it easier to gather them in a short proof.

Lemma 2 Let C' C F be an acute closed convexr cone in a finite dimensional
linear space F'. Let L C F be a linear subspace of codimension 1, and ¢ a linear
functional on L such that ¢1 > 0 for alll € LN C with Il # 0. Then there is an
extension ® of ¢ to F such that ®x > 0 for all x € C, x # 0.

Proof. The sum Y + Ruv of a closed convex cone Y C F' and a 1-dimensional
subspace Rv is closed. Indeed, if both +v € Y, Rv C Y and so Y + Rv =
Y; if not, we may suppose v ¢ Y by replacing v by —v if necessary. Let



x = limg—oo (Y + Av) where y, € Y. If (A\g)g is bounded, by compactness
we obtain a number A and vector y € Y such that x = y + Av. If it is not,
we can assume either limy A\, = oo, or limy A\, = —oo. From yx + A\yv — =z
we derive %yk + v — 0. The case A\ — —oo is impossible since it leads to
v = limy })\kyk e Y. If Ay —» oo, we obtain —v = limy %yk €Y, and so
the distance d(z,Y") from = to Y satisfies d(z,Y) = limy d(yx — Ap(—v),Y) =
limg d(yx,Y) = 0 whence z € Y. In particular we get (inductively) that the
convex cone K := C + ker ¢ is closed.

To find ®, we may suppose C # {0}. If =0, LNC = {0}. Let then f be a
linear functional on F' with ker f = L. Since C is acute, C'\ {0} is segmentwise
connected. Hence the set I := f(C'\ {0}) is connected, and so, an interval, that
cannot contain 0 for: fe =0,c € C = ¢ € LNC = {0}. Then either I C (0, 00),
in which case we let ® = f, or I C (—00,0) in which case ® := —f. Then
®c > 0 for all ¢ € C, with strict inequality if ¢ # 0.

If =40, let F'=F/ker¢ and A : F — F’ be the factorization map. Then
C’:= X\(C), L' :== \(L) and the map ¢ induced by ¢ on L’ satisfy the hypotheses
as well. Indeed, K =C+ker A is closed, A open and A(F'\ K)=F’"\ C" whence C’
is closed. Also ¢ >0, Cacute #{0} = ¢’ >0,C" acute #{0}. Since dim F’ =2,
we easily get the existence of an extension ® >0 of ¢’ to F’, that will provide
®:=9' o \: note that dim L’ = 1 and ¢’|1+ is injective, and so increasing along
a direction of L’ given by a vector € € R? (a drawing would help). Then L' =
{re}rer and ¢'e > ¢/0 = 0. The (closed) convex cone C := co(C’,€) generated
by C’ and € is acute, for otherwise ¢’|, would decrease and be < 0 along the
half-line {re}, <o opposite to € and contained into C’, which is impossible since
¢’ > 0on L'NC"\{0}. Since C is acute, there is an extension ®' >0 of ¢, whose
kernel is a supporting line for C in 0 only: fix f € R? such that (Rf)NC = {0},
then for any v = 7€ + sf with 7, s real, set ®'v = r¢'e. If v € C"\ {0}, 7 >0
and so ®'v = r¢'e > 0. O

Corollary 3 Let F be a finite dimensional linear space and K C F an acute
closed convex cone. Let fy: L — R be a linear functional on a linear subspace
L of F such that fox > 0 for every x € LNK with x # 0. Then there is a linear
extension f of fo to F' such that fx > 0 for every x € K, x # 0.

For any o-finite measure g > 0 on T and 1 < p < oo the symbols LP(T, p),
LE (T, ) have the usual meaning. Lemma M is an extension of [Theorem 2.9,
[2]]. We give its original proof adapted to our slightly different context.

Lemma 4 (see [2]) Let T C R™ be closed with positive Lebesgue measure, finite
or not. Let p: T — (0,00) be locally integrable, and p = pdt be the measure on
T with density p. Let I C Z7 be finite. Let f > 0 a.e. on T be measurable,
[ #0 a.e., such that [ |t'|f(t)du(t) < oo (i € I). There is anr > 0 such that
for any B = (Bi)ier with ||B|| < r, there exists a g = gg € L>=(T, ), g > 0 a.e.
with the properties [ |t'|g(t)du(t) < oo,

/ Fg(t)du(t) = / £ F(0)du(t) + B (i € ).
T T



Proof. Set Ty ={t € T: f(t)>1/1, ||t| < 1}. Using {t € T: f(t) >0} =
UienT; we find § > 0 and T, C T bounded with 0 < p(7T%) < oo such that
f(t) > § ae. on T.. The map A : L>®(T.) — RY (N = cardI) given by
Au = ([ u(t)t'du(t))ier is surjective, for if there is a vector A = (\;); # 0
orthogonal to its range, Y .\ fT* ut'dy = 0 Vi, u whence Y ; \;it' = 0 a.e.
on T, that is impossible because the set of zeroes of a polynomial = 0 has
measure zero. Then A is open. Hence 0 is in the interior int C' of the set
C={Au:ue L>®(T,,dt),||ul]]| <d/4}. Fix r > 0 such that the ball of center
0 and radius r is contained in C. Define f; on T by fi(t) = min (f(¢),k)+
ze 1/p(t). Then 0 < [t*[fi < [¢]f + [t/|e” " /p(t) € L'(T,p) and fr — f
a.e. as k — oo. The vector ([(fe — f)t'du)icr — 0 in RN as k — oo, by
Lebesgue’s theorem of dominated convergence. Since 0 € int C, for large k
we have ([ .(fx — f)t'du); € C. Then [.(fx — f)t'dp = [, ut'dy for some
u € L™(T) with ||ul| < §/4 and v = 0 outside T.. Also, if ||B]| <7, 8 € C
and so there is a v € L*®(T), v = 0 outside T, with ||v|| < 6/4 such that
Jr vtidp = B;. Set g = fr —u + v for a sufficiently large fixed k (> §). Hence
Jrot'dp = [ (fx —u+o)t'dp = [L(fx —uw)t'dp + [pot'dp = [ ft'du + Bi.
Since p is locally integrable and T, contained in a ball, on which u, v and all ¢*
are bounded, the functions t'u, t'v € L*(T,n). Hence |t'|g = [t!|(fx — u +v) is
in LY(T, u). Moreover fi,u,v (and hence, g) are in L°(T). On T, f > § and
|u|, [v] <8/2, whence g = fp —u+v >min(f, k) —u+v>0—u+v>4§/2.
Outside Ty, g = fr > %e’”t”/p(t) > 0. Then g > 0 a.e. O

Notation Given any closed subset T C R™ and finite subset I C Z7}, set

Prr={y=(7i)icr : 3 Borel measures v > OonT with [, t'dv(t)="y;, i € I}
and

Grr={9=(9i)ier#0: 3 f € LY(T,dt) such that [.t'f(t)dt=g;, i € I},
where [t| are implicitely supposed to be integrable.

Lemma 5 Let T'CR"™ be a closed regular set and I CZ} a finite regular set.
Then Gry is dense in I'ry.

Proof. Let v € I'ry. There is a measure v >0 on T such that
[ v = e, &)
T

in particular v(T') < oo since 0 € I. For any ¢ € (0, 1) let h. be the characteristic
function of the ball b, of center 0 and radius ¢ in R™, h. =1 on b, and h, =0
outside b.. For any y € T, let v-(y) be the n-dimensional volume of the set
{z €T : |z —y| <e}. Then v = (he * hy)|r is the convolution of h. with the
characteristic function hp of T'. Hence the map y — v.(y) is measurable. All
ve(y) > 0 since T is regular. For t € T, set v.(t) = [, %;(y)ha(t —y)dv(y). By
the Tonelli and Fubini theorems, v. € L1 (T, dt) has finite moments of orders
1 € I on T, that we compute by

i = ! i — v(y) = ; v
i~ [ — [ on-paat) = [ vatwat) @




where ¥¢;(y) = viy) fT tihe(t — y)dt. By the change of variables t — y = w,

1 | 1
¢Aw=———/ @+wﬂm=y“——/ dw + E;(e,y)
) V() Jjwl<ewer—y Ve(Y) Syl <cwer—y

where E;(e,y) is a linear combination with binomial coefficients ¢;;,

1 o
Blew) = 3 e [ Wi duw 3)
|lw||<e,weT—y

0<j<i,ji ve(y)

and the order on Z'} is given as usual by j <i & ji < i for 1 <k <n. The
set {||w|| < e,w € T — y} is taken by the translation w — w + y into the set
{z € T: |z —y| < e} the Lebesgue measure of which is v.(y). Hence

1
—_ dw=1. 4
vs(y) ~/|w|<€,w6T—y v ( )
Then _
Vei(y) = y' + Ei(e,y). (5)

Since |w| <& < 1 and |i —j| > 1 for all j in @), [w7| < [|Jw|" ! < ||Jw|| < e.
Hence by ([2)) and (), we obtain the estimate

|Bie,y)l <e Y eyly’l. (6)

0<j<i

Since I is regular, j < i = |yi’“| <yl +1 = ] < TTie, (vl + 1) =
Yo, 191 < D er ly*| and so we can integrate in (B)), (@) with respect to v
on T. By @) and (), this gives lim._,o fT t'v.(t)dt = ~; for all i € I. Set
Ve = (Jp t'(ve(t) + ee~Ith)dt);e;. Then 7. € Grr and lime0 9. = 7. O

Theorem 6 Let T'CR™ be a closed regular set, and I CZ"} a finite regular set.
Then Gy is the dense interior of I'pr.

Proof. By Lemma [ for p = 1, Gy is open, and so contained in the interior
of T'rr (the regularity of T, I is not required here). Let v be in the interior of
I'rr. There is an 7 > 0 such that the ball B of center v and radius r is contained
in T'r; (a drawing will be helpful). By Lemma[f] there is a ¥ € Gpy N B. By
Lemma Ml applied to a representing density f of 4, there is an r{, > 0 such that
all balls B(¥, 1) of center 4 and radii v’ € (0, r{] satisfy B(¥,7’") C Gpr. We can
fix an ' sufficiently small so that B(,r’) C B. Let 4’ be the unique point such
that v = (¥ 4+ 7). Since B(3,7’) C B, then B(y/,r’) C B; a quick argument
to this aim is that B is symmetric with respect to its center v and B(v/,r’),
B(#,r") are symmetric to each other over 4. In particular v € B C T'yr;. By
Lemma[f] there is a 4’ € Gy N B(v',7’). Since 4’ € B(+',r’), the point v such
that v = 1(5' + v) must be in B(%,r") (C Gr;). Hence v € Gr;. Since Gy is
convex, v = 3(7 + v) and both 5/, v € Gry, then v € Gry. O



By the previous results, the following completion (Theorem []) can be made
to the Riesz-Haviland theorem [I3] and its truncated version [6].

Condition (b) from below is equivalent to the existence of a constant ¢ > 0
such that @gp > c||p|| for every p € Pr with p(t) > 0 for all t € T, where || || is
any norm on Pr: use the compactness of {p € Pr:p >, 0,|pl| = 1} and write

©qg(p/|Ipll) > 0 for such p € Pr\ {0}.

Theorem 7 Let T'C R" be a closed regular set. Let I C Z% be a finite reqular
set. Let g = (gi)ier be a set of numbers with go = 1. The following statements

are equivalent:
(a) There exist functions f € LY (T,dt) such that [ |t'|f(t)dt < co and

/tif(t)dt:gi for all i € I
T

(b) The Riesz functional ¢4 defined on the linear span Pr C R[Xq,...,X,]
of the monomials X%, i € I by

©g Z X' = Zgici

iel i€l
satisfies pgp > 0 for every p € Pr\ {0} such that p(t) >0 for allt € T.

Proof. (a) = (b) From @gp = [, pfdt we obtain as usual that @,p > 0
for every polynomial p such that p(t) > 0 for all ¢ € T. If moreover p # 0 in
R[X1,..., Xy, the set Z = {t € R™ : p(t) = 0} of the zeroes of p is an algebraic
variety, (empty or) of dimension < n — 1, and so has null Lebesgue measure.
Then @yp > 0, for the equality [ pfdt = fT\Z pfdi =0withp>0on T\ Z
would compel f = 0p1(7 4 that is impossible since fT fdt=go=1.

(b) = (a) Endow P; with a norm and its dual P} with the dual norm. Let
C' denote the convex cone of all p € R[Xq,...,X,] such that p(t) > 0 for all
t € T. Since the Lebesgue measure of T" is > 0, C' is acute. There is a constant
¢ =cgy >0 such that pgp > c||p|| for every p € Pr N C, see the comment just
before the Theorem. Since the map v — ¢, € P; is linear, there is a constant
¢ >0 such that ||¢,|| <||v|| for all . Then for every g in the ball B of center
g and radius r = ¢/ 2¢/, we have pzp > (¢/2)||p|| for all p € PrNC. Indeed,
250 = Pop+05-90 = clIpll — lp5-gpl = clipll - €13 — gll Ipll > (¢/2)lp]l. Hence
condition (b), briefly ¢z > 0, holds as well for all § in the neighborhood B of g.
Write Z} = Ujen/; as an increasing union of finite subsets I; such that I; = I.
Let P, be the linear span of the monomials X* with ¢ € I;. Thus P, = P;.
Let g=(§:)ics be an arbitrary point in B, that for the moment we fix. Since
g > 0, by applying successively Corollary B for F'= P41, K =C N P11 and
L = P, with [ > 1 we obtain, starting from 5 := ¢z : P =+ R, a sequence of
linear functionals ;5 : P, — R such that ¢;415|p, =15 for all [ >1 and ¢;5p>0
for all p € PLNC\{0}. Then we have a linear functional v5 : R[X1,...,X,] >R,
extending ¢z, determined by 5| p, =15 for all | > 1. For any polynomial p € C,
pF0 there is an [ > 1 such that p € P, and so ¥gp =150 > 0. Hence ¢5p > 0



for every polynomial p such that p(t) > 0 for all t € T'. By the Riesz-Haviland’s
Theorem [I] there is a measure vz > 0 on T', with finite moments of any order,
such that ¢zp= [, pdvg for every polynomial p. In particular for p:= X" with
i € I, we obtain g; = g X' = 3 X" = [ t'dvg(t). Thus g; (i € I) are the
moments of a measure vz on 7', that is, § € I'r;. Since § was arbitrary in a
neighborhood of g, it follows that ¢ is in the interior of I'y;. Then by Theorem
Bl g € Grr. O
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