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Abstract

Let T be a polynomially bounded operator on a Banach space X whose spectrum contains

the unit circle. Then T� has a nontrivial invariant subspace. In particular, if X is reflexive, then

T itself has a nontrivial invariant subspace. This generalizes the well-known result of Brown,

Chevreau, and Pearcy for Hilbert space contractions.

r 2003 Elsevier Inc. All rights reserved.

MSC: primary 47A15; secondary 47A60

Keywords: Polynomially bounded operators; Invariant subspaces

1. Introduction

An operator T acting on a complex Banach space X is called polynomially
bounded if there is a constant k such that jjpðTÞjjpk � jjpjj for all polynomials p;
where jjpjj ¼ supfjpðzÞj : jzjp1g: The smallest constant k with this property is called
the polynomial bound of T : By the von Neumann inequality, every Hilbert space
contraction is polynomially bounded with constant k ¼ 1:
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An early application of the Scott Brown technique gave the existence of
invariant subspaces for Hilbert space contractions with dominant spectrum
[BCP1]. Further results for Hilbert and Banach space operators were given in
[AC,Pr,S]. All these results assumed that there are many points of the spectrum in
the open unit disc.
Further development culminated by the well-known ‘‘second generation’’ result of

Brown et al. [BCP2] that each Hilbert space contraction with spectrum containing
the unit circle has a nontrivial invariant subspace. This result is much stronger than
the corresponding one for operators with dominant spectrum and the proof is much
more complicated since it is not possible to use directly the information provided by
the points of the spectrum in the unit circle. The proof used essentially the properties
of the Sz.-Nagy Foia-s functional model for Hilbert space contractions, and so there
is no direct way of generalizing it.
The aim of this paper is to give a new approach and to generalize the Brown,

Chevreau, Pearcy result for Banach space operators.
The main result can be formulated as follows:

Theorem A. Let T be a polynomially bounded operator acting on a Banach space X

whose spectrum contains the unit circle. Then T� has a nontrivial invariant subspace.
In particular, if X is reflexive then T has also a nontrivial invariant subspace.

The result is new even for Hilbert space operators. Note that there are
polynomially bounded operators on a Hilbert space that are not similar to a
contraction by Pisier [P].
Note also that the situation is not symmetrical for nonreflexive Banach spaces. If

MCX is a nontrivial subspace invariant with respect to an operator TABðXÞ then
M> is a nontrivial invariant subspace of T�ABðX �Þ:
Conversely, if M 0CX � is a nontrivial subspace invariant with respect to T� then

>M 0 is an invariant subspace of T but it can be trivial (if M 0 is w�-dense).
Since the proof of the main theorem A is rather technical we indicate briefly the

plan of the proof in this section.
Without loss of generality, it is possible to assume in Theorem A that T is of class

C0:; i.e., jjTnxjj-0 for all xAX : It is sufficient to show the following Theorem B.

Theorem B. Let T be a polynomially bounded operator whose spectrum contains the

unit circle. Suppose that jjTnxjj-0 for all xAX : Then T has a nontrivial invariant

subspace.

The reduction of Theorem A to B is rather standard (at least for Hilbert space
operators). It will be shown in the last section. The greatest part of the paper will be
devoted to the proof of Theorem B.
Note that in B the invariant subspace is constructed for the operator T (not for T�

like in Theorem A). Thus Theorem B is not a consequence of Theorem A, and so it is
rather the second main result of the paper.
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The basic idea of the Scott Brown technique is to find vectors xAX and x�AX �

such that

/Tnx; x�S ¼
0 ðnX1Þ;
1 ðn ¼ 0Þ:

�
ð1Þ

If x and x� satisfy (1) then
W
fTnx : nX1g is a closed subspace invariant with respect

to T which is different from X :
Let P denote the normed space of all complex polynomials with the supremum

norm on the unit disc. Consider the dual spaceP� with the usual dual norm. It is well
known that (1) can be reformulated equivalently by

x#x� ¼ E0; ð2Þ

where x#x� is the functional on P defined by p//pðTÞx; x�S and E0 is the
evaluation functional p/pð0Þ at the origin.
Since Tnx-0 for all x; all the functionals of the form x#x� (and in fact all

functional that will be of our interest) are w�-continuous, i.e., they are of the form

Mf : p/
R 2p
0 f ðeitÞpðeitÞ dt for some function fAL1 on the unit circle. Similarly, all

the evaluation functionals El : p/pðlÞ for jljo1 are of this form since El ¼ MPl

where Pl is the Poisson kernel at l: In particular, E0 ¼ M1 where 1 is the constant
function on the unit circle.
The standard way of solving (2) is to find first an approximate solution and then a

sequence of better and better solutions; the exact solution of (2) will be obtained as a
limit of these approximate solutions.
The starting point of the proof is the result of Apostol that each polynomially

bounded operator whose spectrum contains the unit circle has either a nontrivial
invariant subspace or there is a large set L in the open unit disc consisting of ‘‘almost
eigenvalues’’. Usually, this is formulated that the set L is dominant, i.e., supfj f ðzÞj :
zALg ¼ jj f jj for all fAHN:We use the full strength of the Apostol theorem that in
fact almost all points of the unit circle are radial limits of points of L: Sets with this
property will be called Apostol sets. Clearly, each Apostol set is dominant but we do
not use this property; in fact, we avoid the use of HN functions almost completely
and speak only about polynomials.
It is easy to check that if lAL; x is a corresponding ‘‘almost eigenvector’’ and

x�AX � is arbitrary, then

x#x�E/x; x�S � El

and so x#x� is approximately equal (in the sense of the norm in P�) to a scalar
multiple of the evaluation functional El:
It is a technical fact that the constant function 1 can be approximated by a finite

linear combination with positive coefficients of Poisson kernels Pl with the numbers
l in a given Apostol set L: More precisely, there are elements liAL and positive
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numbers ai such that

1

X

i

aiPli

�����
�����

�����
�����
1

oc; ð3Þ

where co1 is a universal constant; here jj � jj1 denotes the usual normalized L1 norm

on the unit circle.
Let xi be the corresponding almost eigenvectors, i.e., jjxijj ¼ 1 and TxiElixi for

all i: An approximate solution of (2) will be found by the Zenger theorem, see
Theorem 3.1. Applying this to the vectors xi and numbers ai we can find a functional
x�AX � and a linear combination x ¼

P
imixi such that jjx�jjp1; jjxjjp1 and

/mixi; x�S ¼ ai for all i: Thus

jjx#x� 
 E0jj ¼ sup
jjpjj¼1

j/pðTÞx; x�S
 pð0Þj

¼ sup
jjpjj¼1

X
i

mipðTÞxi; x�

* +

 pð0Þ

�����
�����

E sup
jjpjj¼1

X
i

mipðliÞxi; x�

* +

 pð0Þ

�����
�����

¼ sup
jjpjj¼1

X
i

aipðliÞ 
 pð0Þ
�����

����� ¼ X
i

aiEli

 E0

�����
�����

�����
�����

p
X

i

aiPli

 1

�����
�����

�����
�����
1

oc:

A technical problem here is that the Zenger theorem gives no estimate on the
coefficients mi: Such an estimate, which is essential in the above calculations, will be
obtained by an application of the classical Carleson interpolation theorem [C].
Having an approximate solution of (2), it is now necessary to improve it by finding

perturbations y and y� of x and x�; respectively, such that y#y� approximates E0
better than x#x�; moreover, jjy 
 xjj and jjy� 
 x�jj should be small.
This step is much easier if T is of class C00; i.e., if T satisfies both Tnx-0 and

T�nx�-0 for all xAX and x�AX �: In this case it is sufficient to use the classical form
of the Zenger Theorem 3.1 (and even the Carleson theorem can be avoided). Since in
general we can assume only one of these conditions, the technical difficulties are
solved by an improved form of the Zenger theorem, see Proposition 3.5, which is of
independent interest.
The paper is organized as follows. The following three sections discuss the

theorems of Apostol, Zenger and Carleson, respectively. These sections are
independent of each other.
Section 5 contains the proof of (3). An interested reader can start reading the

paper at this section and return to the previous Sections 2–4 only for the necessary
auxiliary statements.
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Section 6 contains the estimate on the coefficients mentioned above. Main
Theorems A and B are proved in the last section.

2. Apostol’s theorem

Denote by D ¼ fzAC : jzjo1g the open unit disc in the complex plane and by
T ¼ fzAC : jzj ¼ 1g the unit circle.

Definition. A subset LCD is called an Apostol set if

supfrA½0; 1Þ : reiyALg ¼ 1

for all but countably many numbers yAð
p; p�:

Theorem 2.1 (Apostol [A1]). Let T be a polynomially bounded operator on a Banach

space such that sðTÞ*T and T has no nontrivial invariant subspace. Let e40 and let

nX1 be an integer. Then the set

L :¼ flAD : there exists uAX with jjujj ¼ 1 and jjTu 
 lujjoeð1
 jljÞng

is an Apostol set.

This theorem was proved in [A1] for n ¼ 1 and T contractive on a Hilbert space.
As it was observed in [B], the same proof also works for general exponent n: For our
purpose it is sufficient to use the Apostol theorem with n ¼ 2: In fact this exponent
was used already in [B].
The idea of the proof is to show that if there exists an uncountable set SCT of

points that are not radial limits of sequences from L; then the kernel of the operator

1

2pi

Z
g
ðT 
 lÞ
1ðl
 l1Þnðl
 l2Þn

dl

is a nontrivial invariant subspace, where g is a well-chosen simple rectifiable closed
path crossing T at l1 and l2:
The existing proofs of Theorem 1 [A1,B,Be] were formulated for Hilbert space

contractions but the proof remains unchanged also for Banach space operators.
Therefore we omit it.

3. Zenger’s theorem

The Zenger theorem proved to be a useful tool in constructions of invariant
subspaces for operators on Banach spaces. The idea of using the Zenger theorem in
the Scott Brown technique comes from Eschmeier [E]; some similar ideas were
implicitly present already in the pioneering work of Apostol [A2].
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The classical version of the Zenger theorem can be found in [BD, pp. 18–20].

Theorem 3.1 (Zenger). Let X be a complex Banach space, let u1;y; unAX be linearly

independent. Let aj ð j ¼ 1;y; nÞ be positive numbers with
Pn

j¼1aj ¼ 1: Then there

exist complex numbers w1;y;wn and jAX � such that jj
Pn

j¼1wjujjjp1; jjjjjp1 and

jðwjujÞ ¼ aj for all j ¼ 1;y; n:

As it was mentioned in the Introduction, Theorem 3.1 can be used to show the
existence of nontrivial invariant subspaces for polynomially bounded Banach space
operators of class C00 whose spectrum contains the unit circle. To get rid of the C00

condition, we need a stronger version of the Zenger theorem. Roughly speaking, we
need to find the functional j in a ball centered at some given point, not necessarily at
the origin.
The next result is the real version of the required generalization (formulated

dually).

Proposition 3.2. Let jj � jj be a (real) norm on Rn; let a1;y; an be positive numbers such

that
Pn

j¼1aj ¼ 1; let s ¼ ðs1;y; snÞARn: Then there exist w ¼ ðw1;y;wnÞARn and

cAðRn; jj � jjÞ� such that jjcjjp1; jjw 
 sjjp1 and cðwjejÞ ¼ aj ð j ¼ 1;y; nÞ; where

ðejÞn
j¼1 is the standard basis in Rn; ej ¼ ð0;y; 0|fflfflffl{zfflfflffl}

j
1

; 1; 0;y; 0Þ:

Proof. Let B ¼ fxARn : jjx 
 sjjp1g and

Bþ ¼ fðx1;y; xnÞAB : xjsjX0 ð j ¼ 1;y; nÞg:

Clearly, Bþ is a compact subset of R
n: Let F : Rn-/0;NÞ be the function defined

by Fðx1;y; xnÞ ¼
Qn

j¼1 jxjjaj : Let w ¼ ðw1;y;wnÞABþ satisfy FðwÞ ¼ maxfFðzÞ :
zABþg :¼ m: Clearly wja0 for all j:

Let c : Rn-R be the functional defined by

cðx1;y; xnÞ ¼
Xn

j¼1
ajxjw


1
j :

Then cðwÞ ¼ 1: In a neighborhood of w we have

@F

@xj

ðxÞ ¼ ajjxjjaj
1 sign xj �
Y
kaj

jxkjak ¼ ajFðxÞ
xj

:

In particular,

@F

@xj

ðwÞ ¼ ajFðwÞ
wj

¼ maj

wj

:
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Thus F 0ðwÞ ¼ mc ¼ FðwÞc: For x-w we have

FðxÞ 
 FðwÞ ¼ F 0ðwÞðx 
 wÞ þ oðjjx 
 wjjÞ ¼ mcðx 
 wÞ þ oðjjx 
 wjjÞ;

and so

FðxÞ ¼ mcðxÞ þ oðjjx 
 wjjÞ:

We prove that cðxÞp1 for all xAB: Suppose on the contrary that there is an xAB

with cðxÞ41: For tAð0; 1Þ let yt ¼ ð1
 tÞw þ tx ¼ w þ tðx 
 wÞ: Since B is convex,
we have ytAB for all t: Furthermore, ytABþ for all t small enough. For t-0 we have

FðytÞ ¼mcðytÞ þ oðtjjx 
 wjjÞ ¼ mðcðwÞ þ tcðx 
 wÞÞ þ oðtÞ

¼m þ mtcðx 
 wÞ þ oðtÞ:

Since cðx 
 wÞ40; we have FðytÞ4m for all t40 small enough, which is a
contradiction.

Thus cðxÞp1 for all xAB: Note that cðsÞ ¼
Pn

j¼1ajsjw

1
j X0:

Hence jjcjj ¼ maxfcðxÞ 
 cðsÞ : xABgp1:
It is easy to see that cðwjejÞ ¼ aj for all j: &

The complex version of Proposition 3.2 is an interesting open problem. We prove
it under an additional assumption that the norm is rather regular. This weaker
version will be sufficient for our main purpose—the construction of invariant
subspaces.

Definition. Let X be a complex Banach space, let u1;y; unAX be nonzero vectors,
let L40: We say that the vectors u1;y; un are L-circled if

Xn

j¼1
bjuj

�����
�����

�����
�����pL �

Xn

j¼1
gjuj

�����
�����

�����
�����

whenever bj; gjAC; jbjjpjgjj ð j ¼ 1;y; nÞ:

It is easy to see that L-circled vectors are linearly independent.

Lemma 3.3. Let L40; let jj � jj be a (complex) norm on Cn such that the standard basis

vectors e1;y; en are L-circled. Let a1;y; an be positive numbers such that
Pn

j¼1 aj ¼
1; let s ¼ ðs1;y; snÞACn: Then there exist w ¼ ðw1;y;wnÞACn and a complex-linear

functional cAðCn; jj � jjÞ� such that jjcjjpL
ffiffiffi
2

p
; jjw 
 sjjp1 and cðwjejÞ ¼ aj ð j ¼

1;y; nÞ:
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Proof. For j ¼ 1;y; n write sj ¼ jsj j � nj where njAC; jnjj ¼ 1 (if sj ¼ 0 then choose

any njAT). Consider the real-linear subspace X of Cn generated by the vectors

njej ð j ¼ 1;y; nÞ: Clearly sAX and Cn ¼ X þ iX :

By Proposition 3.2, there exist real numbers tj ð j ¼ 1;y; nÞ and a real-linear
functional c0 : X-R such that c0ðtjnjejÞ ¼ aj ð j ¼ 1;y; nÞ; jj

Pn
j¼1tjnjej 
 sjjp1

and jjc0jjp1:
Set wj ¼ tjnj: Extend c0 to Cn by cðx þ iyÞ ¼ c0ðxÞ þ ic0ðyÞ for all x; yAX : It is

easy to verify that c is a complex-linear functional and cðwjejÞ ¼ aj ð j ¼ 1;y; nÞ:
Let bj; cjAR: If jj

Pn
j¼1ðbj þ icjÞnjejjjp1; then jj

Pn
j¼1bjnjejjjpL and

jj
Pn

j¼1cjnjej jjpL: So

c
Xn

j¼1
ðbj þ icjÞnjej

 !�����
�����
2

¼ c0
Xn

j¼1
bjnjej

 !�����
�����
2

þ c0
Xn

j¼1
cjnjej

 !�����
�����
2

p2L2;

and so jjcjjpL
ffiffiffi
2

p
: &

The next result is a dual version of Lemma 3.3.

Lemma 3.4. Let jj � jj be a norm on Cn such that the standard basis vectors e1;y; en are

L-circled. Let a1;y; an be positive numbers such that
Pn

j¼1aj ¼ 1; let jAðCn; jj � jjÞ�:
Then there exist w ¼ ðwj;y;wnÞACn and a complex-linear functional cAðCn; jj � jjÞ�

such that jjc
 jjjp1; jjwjjpL
ffiffiffi
2

p
and cðwjejÞ ¼ aj ð j ¼ 1;y; nÞ:

Proof. Let f1;y; fnAðCn; jj � jjÞ� be defined by /ej; fkS ¼ dj;k (the Kronecker

symbol). We prove first that f1;y; fn are L-circled in ðCn; jj � jjÞ�:
Let bj; gjAC; jbj jpjgj j ð j ¼ 1;y; nÞ: Let F ¼ fjAf1;y; ng : bja0g: Then

Xn

j¼1
bj fj

�����
�����

�����
����� ¼ sup X

jAF

bj fj;
Xn

j¼1
ojej

* +�����
����� : Xn

j¼1
ojej

�����
�����

�����
�����p1

( )

¼ sup
X
jAF

bjoj

�����
����� : Xn

j¼1
ojej

�����
�����

�����
�����p1

( )

¼ sup
Xn

j¼1
gj fj;

X
jAF

ojbjg

1
j ej

* +�����
����� : Xn

j¼1
ojej

�����
�����

�����
�����p1

( )

p sup
Xn

j¼1
gj fj;

Xn

j¼1
mjej

* +�����
����� : Xn

j¼1
mjej

�����
�����

�����
�����pL

( )
¼ L �

Xn

j¼1
gj fj

�����
�����

�����
�����:

By Lemma 3.3, there is a cAðCn; jj � jjÞ�; c ¼
Pn

j¼1cj fj such that jjc
 jjjp1 and
w ¼ ðw1;y;wnÞACn such that jjwjjpL

ffiffiffi
2

p
and al ¼ /

Pn
j¼1wjej ;cl flS ¼ wlcl ¼

/wlel ;cS for all l ¼ 1;y; n: &
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Proposition 3.5. Let u1;y; un be L-circled vectors in a complex Banach space X : Let

a1;y; an be positive numbers such that
Pn

j¼1aj ¼ 1; let jAX �: Then there exist

complex numbers wjAC ð j ¼ 1;y; nÞ and a complex-linear functional cAX � such

that jjc
 jjjp1; jj
Pn

j¼1wjujjjpL
ffiffiffi
2

p
and cðwjujÞ ¼ aj ð j ¼ 1;y; nÞ:

Proof. Let X0 be the subspace of X generated by the vectors u1;y; un: We can

identify X0 with Cn with the norm jjðw1;y;wnÞjj ¼ jj
Pn

j¼1wjuj jjX : By Lemma 3.4,
there are wjAC and cAX �

0 such that jj
Pn

j¼1wjuj jjpL
ffiffiffi
2

p
; /wjuj;cS ¼ aj and jjc


jjX0jjX �
0
p1: By the Hahn–Banach theorem, we can extend c to X such that

jjc
 jjjX �p1: &

4. Carleson’s interpolation theorem

For l ¼ reiyAD; set Il ¼ feit : jt 
 yjo2ð1
 rÞg: These sets will play an important
role in the proof.

Lemma 4.1. There is a constant a40 with the following property: if z; lAD satisfy

Iz-Il ¼ | and jlj; jzjX3=4; then j z
l
1
%lz

jXa:

Proof. We can assume that l ¼ r40: Write z ¼ seiy with sX3=4 and 
poypp:
Since s; rX3=4 and jsin y

2
jXjyj

2
� 2p; we have

jr 
 seiyj2 ¼ðr 
 s cos yÞ2 þ s2 sin2 y ¼ ðr 
 sÞ2 þ 2rsð1
 cos yÞ

X 4rs sin2
y
2
X
9

4

jyj
p

� �2
¼ 3jyj

2p

� �2
:

Since eiyeIr; we have jyjX2ð1
 rÞ: Thus jz 
 rjX3jyj
2pX

3ð1
rÞ
p :

Furthermore,

j1
 rzjpð1
 r2Þ þ jr2 
 rzjp2ð1
 rÞ þ rjr 
 zj:
Hence

jz 
 rj
j1
 rzjX

jz 
 rj
2ð1
 rÞ þ rjz 
 rj ¼

1
2ð1
rÞ
jr
zj þ r

X
1

2p
3
þ 1

X
3

2pþ 3:

The last constant is independent of the choice of l and z: &

We remind that a positive measure m on D is called Carleson if there is a constant
cm such that

mðSy;hÞpcmh
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for every sector Sy;h of the form

Sy;h ¼ freit : 1
 hpro1; jt 
 yjphg: ð4Þ

Lemma 4.2. Let FCD be a finite set such that the sets Il ðlAFÞ are pairwise disjoint.

Then the measure m ¼
P

lAF ð1
 jljÞdl is Carleson with the constant p1; where dl
denotes the Dirac measure at l:

Proof. Let Sy;h be a sector of the form (4). Let G ¼ feit : jt 
 yjphg: Let l ¼
reisAF-Sy;h: Then there are three possible cases: eiðsþ2ð1
rÞÞAG; eiðs
2ð1
rÞÞAG; or
IlCG: In all three cases we have

mðIl-GÞX2ð1
 jljÞ;

where m denotes the Lebesgue measure on T: Thus

mðSy;hÞ ¼
X

lASy;h-F

ð1
 jljÞp1
2

m G-
[

lAF-Sy;h

Il

0
@

1
Ap

1

2
mðGÞ ¼ h: &

As usually, denote by HN the algebra of all bounded analytic functions on D with
the norm jj f jj ¼ supfj f ðzÞj : zADg:
It follows from the Carleson interpolation theory, see [G, Section VII.1], that,

given a finite set FCD such that Il ðlAFÞ are pairwise disjoint and jljX3=4 ðlAFÞ;
and numbers clAC; then there exists fAHN such that f ðlÞ ¼ cl ðlAFÞ and
jj f jjpb � suplAF jclj; where b is an absolute constant, independent of F and cl: Since
the results in [G] are formulated for the upper half-plane, we indicate briefly the
argument in the disc case, following the comments preceding Theorem VII.1.1.

Lemma 4.3. There is a constant d40 with the following property: if FCD is a finite

set such that the sets Il ðlAFÞ are pairwise disjoint and jljX3=4 ðlAFÞ; then

Y
lAF \fl0g

l0 
 l
1
 %ll0

����
����X d

for each l0AF :

Proof. Let m ¼
P

lAF ð1
 jljÞdl: Since m is a Carleson measure with the constant
p1; by Garnett [G, Lemma VI.3.3] we have

sup
wAD

Z
1
 jwj2

j1
 %wzj2
dmðzÞ ¼ sup

wAD

X
lAF

ð1
 jljÞð1
 jwj2Þ
j1
 %wlj2

psoN;
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where s is a universal constant independent of F : In particular,

X
lAF

ð1
 jljÞð1
 jl0j2Þ
j1
 %l0lj2

ps

for each l0AF :
Let a be the constant from Lemma 4.1. Note that ao1; and so ln ao0: Since ln t is

a concave function, for any tAða2; 1Þ we have

ln tX
2 ln a

1
 a2
ð1
 tÞ:

Let lAF \fl0g: Using the identity j1
 %ll0j2 
 jl0 
 lj2 ¼ ð1
 jlj2Þð1
 jl0j2Þ we
have

ln
l0 
 l
1
 %ll0

����
����2X 2 ln a

1
 a2
1
 l0 
 l

1
 %ll0

����
����2

 !
¼ 2 ln a

1
 a2
� ð1
 jlj2Þð1
 jl0j2Þ

j1
 %ll0j2

X
4 ln a

1
 a2
� ð1
 jljÞð1
 jl0j2Þ

j1
 %ll0j2
:

Set BðzÞ ¼
Q

lAF \fl0g
z
l
1
%lz

: Then

ln jBðl0Þj2X
4 ln a

1
 a2

X
lAF \fl0g

1
 jl0j2

j1
 l0lj2
ð1
 jljÞX 4 ln a

1
 a2
s:

Thus jBðl0ÞjXd for some constant d independent of F : &

Proposition 4.4. There is a constant b with the following property: if FCD is a finite

set such that the sets Il are pairwise disjoint and jljX3=4 ðlAFÞ; and clAC ðlAFÞ are

given, then there exists fAHN such that f ðlÞ ¼ cl ðlAFÞ and jj f jjpb � suplAF jclj:

Proof. The proof follows from [SS, Theorem 1]. More precisely, it is possible to take

b ¼ 2
d5
ð1
 2 ln dÞ; where d is the constant from Lemma 4.3. &

5. Preliminary steps

For every lAD; let PlðtÞ ¼ 1
jlj2

jl
eitj2 ðtARÞ denote the Poisson kernel. It is well

known that
R p

p Pl dt ¼ 2p and maxt PlðtÞ ¼ 1þjlj

1
jlj:

Recall that for l ¼ reiyAD we write Il ¼ feit : jt 
 yjo2ð1
 rÞg:
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Notation. For lAD define the 2p–periodic function Ql on R by QlðtÞ ¼ PlðtÞ if
eitAIl; and QlðtÞ ¼ 0 otherwise. Denote by m the Lebesgue measure both on the real
line R and on the unit circle T:

Lemma 5.1. For any lAD with jljX3=4 we have
R p

p QlðtÞ dtX7p

6
:

Proof. Without loss of generality, we can suppose that l ¼ rX3=4:We have sin2ð1

rÞpsinð1
 rÞp1
 r: If eitAIl then

cos tXcos 2ð1
 rÞ ¼ 1
 2 sin2ð1
 rÞX2r 
 1;

and so 1
 rXcos t 
 rXr 
 1: Thus

jr 
 eitj2 ¼ ðr 
 cos tÞ2 þ sin2 tpð1
 rÞ2 þ t2:

HenceZ p


p
QlðtÞ dt ¼

Z 2ð1
rÞ


2ð1
rÞ

1
 r2

jr 
 eitj2
dt ¼ 2ð1
 r2Þ

Z 2ð1
rÞ

0

dt

jr 
 eitj2

X 2ð1
 r2Þ
Z 2ð1
rÞ

0

dt

ð1
 rÞ2 þ t2
¼ 2ð1
 r2Þ 1

1
 r
tan
1

t

1
 r

� �2ð1
rÞ

0

¼ 2ð1þ rÞ tan
1 2X7
2
� tan
1

ffiffiffi
3

p
¼ 7p
6
: &

Corollary 5.2. For each lAD with jljX3=4 we haveZ p


p
ðPlðtÞ 
 QlðtÞÞ dtp

5

7

Z p


p
QlðtÞ dt:

Proof. By Lemma 5.1, we have the estimatesR p

pðPlðtÞ 
 QlðtÞÞ dtR p


p QlðtÞ dt
¼
R p

p PlðtÞ dtR p

p QlðtÞ dt


 1p2p � 7p
6

� �
1

1 ¼ 5

7
: &

Theorem 5.3. Let LCD be an Apostol set. Let t1; t2AR satisfy 
ppt1ot2pp: Let

f ðtÞ :¼ 1 if t1ptpt2; and f ðtÞ :¼ 0 otherwise. Then there is an n0X1 such that for

every nXn0 there exist a finite set FCL and positive real numbers al ðlAF ) with the

following properties:

(i) IlCfeit : t1otot2g for all lAF ;
(ii) the sets Il ðlAFÞ are pairwise disjoint;
(iii) mð

S
lAF IlÞX 1

40p ðt2 
 t1Þ;
(iv) jljX3=4 and jln 
 1jo1

9
for all lAF ;
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(v)
P

lAF alpt2
t1
7
;

(vi)
R p

p j
P

lAF all
nPlðtÞ 
 f ðtÞj dtpc1 ðt2 
 t1Þ; where c1 ¼ 1
 1

1920
:

Proof. For every nX1; set Mn ¼ ftAðt1; t2Þ : jei nt 
 1jp1=10g: Clearly for all n

sufficiently large we have

mðMnÞ4
t2 
 t1

10 � 2p: ð5Þ

Fix n satisfying (5). Let e40 satisfy mðMnÞ 
 e4ðt2 
 t1Þ=20p: Let SCðt1; t2Þ be the
exceptional set of the Apostol set L; i.e., supf0pro1 : reiyALg ¼ 1 for all
yAðt1; t2Þ\S: Since S is at most countable, it can be covered by a countable union
U of open intervals with mðUÞoe=2: Then the set M 0 defined by

M 0 ¼ ðMn-½t1 þ e=4; t2 
 e=4�Þ\U

is compact with mðM 0Þ4ðt2 
 t1Þ=20p: For each tAM 0 we can find rtX3=4 such that

lt :¼ rte
itAL; jln

t 
 1jo1=9 and Ilt
Cfeis : t1osot2g: Then feis : sAM 0gC

S
tAM 0 Ilt

:

Since feis : sAM 0g is a compact subset of the one-dimensional set T; there exists a
finite subcover of ðIlt

ÞtAM 0 such that any three of these subsets have empty

intersection. Considering a cover of the minimal cardinality with this property it is

easy to see that there are numbers l1;y; lkAL with lj ¼ jljjeisj such that

t1os1o?oskot2;
Sk

j¼1 Ilj
*feis : sAM 0g and Ilj

-Ilj0 ¼ | if j j0 
 jjX2: Let F1 ¼
fl1; l3;yg and F2 ¼ fl2; l4;yg: Let F be one of the sets F1; F2 such that

m
[
lAF

Il

 !
¼ max m

[
lAF1

Il

 !
;m

[
lAF2

Il

 !( )
:

Then Il-Il0 ¼ | for all distinct l; l0 in F ; and mð
S

lAF IlÞXmðM 0Þ=24ðt2 
 t1Þ=40p:
For any lAF ; set al ¼ ð1
 jljÞð1þ jljÞ
1: Then al40 andX

lAF

alp
4

7

X
lAF

ð1
 jljÞ ¼ 1

7

X
lAF

mðIlÞp
t2 
 t1

7
:

Finally,

Z p


p

X
lAF

all
nPlðtÞ 
 f ðtÞ

�����
����� dt

p
Z p


p

X
lAF

all
nðPlðtÞ 
 QlðtÞÞ

�����
����� dt þ

Z p


p

X
lAF

aljln 
 1jQlðtÞ dt

þ
Z t2

t1

1

X
lAF

alQlðtÞ
 !

dtp
X
lAF

al

Z p


p
ðPlðtÞ 
 QlðtÞÞ dt
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þ 1

9

Z t2

t1

X
lAF

alQlðtÞ dt þ ðt2 
 t1Þ 

Z t2

t1

X
lAF

alQlðtÞ dt

pt2 
 t1 þ
5

7
þ 1
9

 1

� �Z t2

t1

X
lAF

alQlðtÞ dt

pt2 
 t1 

1

7

Z t2

t1

X
lAF

alQlðtÞ dt

pt2 
 t1 

1

7

X
lAF

1
 jlj
1þ jlj �

7p
6
pt2 
 t1 


p
12

X
lAF

ð1
 jljÞ

¼ t2 
 t1 

p
48

� m
[
lAF

Il

 !
pc1ðt2 
 t1Þ;

where c1 ¼ 1
 1
1920

: &

Corollary 5.4. Let c1 be the constant from the previous lemma and let c2Aðc1; 1Þ: Let

f : ð
p; p�-½0;NÞ be an integrable function and let L be an Apostol set. Then for any

n sufficiently large there are a finite set FCL and positive numbers al ðlAFÞ such that:

(i) the sets ðIlÞlAF are pairwise disjoint;

(ii) jljX3=4 and jln 
 1jp1
9

for all lAF ;

(iii)
P

lAF alp 1
2p

R p

p f ðtÞ dt;

(iv)
R p

p j
P

lAF all
nPlðtÞ 
 f ðtÞj dtpc2

R p

p f ðtÞ dt:

Proof. Let e40 be sufficiently small ðeominfc2
c1
2

; 7
2p 
 1g). Let g be a step function

g : ð
p; p�-½0;NÞ such that
R p

p j f 
 gj dtpe

R p

p f ðtÞ dt: By Theorem 5.3 applied to

each interval where g is constant, we can find a finite set FCL and positive numbers
al ðlAFÞ satisfying (i), (ii) and

X
lAF

alp
1

7

Z p


p
gðtÞ dtp

1

7

Z p


p
f ðtÞ dt þ

Z p


p
j f 
 gj dt

� �

p
1

7
ð1þ eÞ

Z
f ðtÞ dtp

1

2p

Z p


p
f ðtÞ dt:

Further,

Z p


p

X
lAF

all
nPlðtÞ 
 gðtÞ

�����
����� dtpc1

Z p


p
gðtÞ dt:

ARTICLE IN PRESS
C. Ambrozie, V. M .uller / Journal of Functional Analysis 213 (2004) 321–345334



Then we haveZ p


p

X
lAF

all
nPlðtÞ 
 f ðtÞ

�����
����� dt

p
Z p


p

X
lAF

all
nPlðtÞ 
 gðtÞ

�����
�����dt þ

Z p


p
j f ðtÞ 
 gðtÞj dt

pc1

Z p


p
gðtÞ dt þ e

Z p


p
f ðtÞ dtpðc1 þ 2eÞ

Z p


p
f ðtÞ dtpc2

Z p


p
f ðtÞ dt: &

6. Polynomially bounded operators

Let TABðXÞ be a polynomially bounded operator with polynomial bound k:

Denote by AðDÞ the disc algebra consisting of all functions continuous on D and
analytic on D; with the norm jj f jj ¼ supfj f ðzÞj : zADg: It is well known that
functions from AðDÞ are uniform limits of polynomials. Therefore we can extend the
polynomial calculus for T to functions from AðDÞ with the same constant k; i.e.,

jj f ðTÞjjpk � jj f jj ð fAAðDÞÞ:

Lemma 6.1. Let TABðX Þ be a polynomially bounded operator with polynomial bound

k: Let b be the constant from Proposition 4.4. Let FCD be a finite set with ðIlÞlAF

pairwise disjoint and jljX3=4 ðlAFÞ: Suppose that there are vectors ulAX and

complex numbers ml ðlAFÞ such that jjuljj ¼ 1; jjðT 
 lÞuljjo 1
2kbpð1
 jljÞ2 and

jj
P

lAF mluljj ¼ 1: Then jmljp2kb for all lAF :

Proof. Let l0AF satisfy jml0 j ¼ maxlAF jmlj: By Proposition 4.4, there is a function
fAHN such that jj f jjpb; f ðl0Þ ¼ 1 and f ðlÞ ¼ 0 for lAF \fl0g:
For rAð0; 1Þ and zAD define frðzÞ ¼ f ðrzÞ: Clearly jj frjjpjj f jjpb and fr is a

function analytic on a neighbourhood of D; and so frAAðDÞ: Thus we can define
frðTÞ and jj frðTÞjjpkb for all r:
Let u ¼

P
lAF mlul: Then jj frðTÞujjpkbjjujj ¼ kb for all r:

For lAF define gr;lðzÞ ¼ frðzÞ
frðlÞ
z
l : Clearly gr;l is analytic on a neighbourhood of D

and jjgr;ljjp2jj frjjð1
 jljÞ
1p2bð1
 jljÞ
1: Hence

kbX lim sup
r-1


jj frðTÞujj

X lim sup
r-1


X
lAF

frðlÞmlul

�����
�����

�����
�����
 X

lAF

mlð frðlÞ 
 frðTÞÞul

�����
�����

�����
�����

 !

X jjml0ul0 jj 
 lim inf
r-1


X
lAF

jmlj � jjgr;lðTÞðT 
 lÞuljj
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X jml0 j 
 jml0 j
X
lAF

2kbð1
 jljÞ
1 1

2kbp
ð1
 jljÞ2

X jml0 j 1

X
lAF

p
1ð1
 jljÞ
 !

X
jml0 j
2

;

since
P

lAF ð1
 jljÞp1
4
mð
S

lAF IlÞpp
2
: Hence jmljpjml0 jp2kb for each lAF : &

Proposition 6.2. Let TABðXÞ be a polynomially bounded operator with polynomial

bound k: Suppose that sðTÞ*T and that T has no nontrivial invariant subspace. Let b

be the constant constructed in Proposition 4.4. Then there is a positive constant

c2; c2o1 with the following property: if f : ð
p; p�-½0;NÞ is an integrable function

and 0oeo 1
2kbp; then for any n sufficiently large there are a finite set FCD; vectors

ulAX and positive numbers al ðlAFÞ such that

(i) the sets ðIlÞlAF are pairwise disjoint;

(ii) jljX3=4 and jln 
 1jp1
9

for all lAF ;

(iii)
P

lAF alp 1
2p

R p

p f ðtÞ dt;

(iv)
R p

p j
P

lAF all
nPlðtÞ 
 f ðtÞj dtpc2

R p

p f ðtÞ dt;

(v) jjuljj ¼ 1 and jjðT 
 lÞuljjoeð1
 jljÞ2 for all lAF ;
(vi) the vectors ul ðlAFÞ are 2kb-circled.

Proof. Properties (i)–(iv) were proved in Corollary 5.4. Property (v) follows from the
Apostol theorem, see Theorem 2.1.
To show property (vi), let bl; glAC; jbljpjglj ðlAFÞ: Suppose that

jj
P

lAF gluljjp1: By Proposition 4.4, there is a function qAHN such that

jjqjjpb; qðlÞ ¼ blg

1
l for all lAF with gla0; and qðlÞ ¼ 0 if gl ¼ 0:

For rAð0; 1Þ and zAD define qr by qrðzÞ ¼ qðrzÞ: Then qrAAðDÞ; jjqrjjpjjqjjpb

for all r and limr-1
qrðlÞ ¼ qðlÞ ðlAFÞ: Write gr;lðzÞ ¼ qrðzÞ
qrðlÞ
z
l : Then

jjgr;ljjp2jjqrjjð1
 jljÞ
1p2bð1
 jljÞ
1:
Using Lemma 6.1, we have

X
lAF

blul

�����
�����

�����
����� ¼ X

lAF

qðlÞglul

�����
�����

�����
����� ¼ lim

r-1


X
lAF

qrðlÞglul

�����
�����

�����
�����

p lim sup
r-1


X
lAF

qrðTÞglul

�����
�����

�����
�����þ X

lAF

ðqrðTÞ 
 qrðlÞÞglul

�����
�����

�����
�����

 !

p kb
X
lAF

glul

�����
�����

�����
�����þ lim supr-1


X
lAF

jjgr;lðTÞjj � jjðT 
 lÞuljj � jglj
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p kb þ
X
lAF

2kbð1
 jljÞ
1eð1
 jljÞ2jglj

p kb þ ð2kbÞ2

2kbp

X
lAF

ð1
 jljÞpkb þ 2kb

p
� p
2
¼ 2kb:

Hence the vectors ul ðlAFÞ are 2kb-circled. &

7. Invariant subspaces

Denote by P the normed space of all polynomials with the norm jjpjj ¼
supfjpðzÞj : zADg: Let P� be its dual with the usual dual norm.
Let jAP�: By the Hahn–Banach theorem, j can be extended without changing

the norm to a functional on the space of all continuous function on T with the sup-
norm. By the Riesz theorem, there exists a Borel measure m on T such that jjmjj ¼
jjjjj and jðpÞ ¼

R
p dm for all polynomials p:

Let L1 be the Banach space of all complex integrable functions on T with the norm

jj f jj1 ¼ ð2pÞ
1
R p

p j f ðeitÞj dt:

Of particular interest are the following functionals on P:

(i) Let lAD: Denote by El the evaluation functional defined by ElðpÞ ¼
pðlÞ ðpAPÞ: Clearly jjEljj ¼ 1:

(ii) Let fAL1: Denote by Mf AP� the functional defined by

Mf ðpÞ ¼ ð2pÞ
1
Z p


p
pðeitÞf ðeitÞ dt ðpAPÞ:

Then jjMf jjpjj f jj1:
In particular, if g ¼ 1 then MgðpÞ ¼ pð0Þ for all p and Mg is the evaluation at

the origin. More generally, if lAD and gðeitÞ ¼ PlðtÞ then Mg is the evaluation

at the point l:
(iii) Let T : X-X be a polynomially bounded operator with polynomial bound k;

let xAX and x�AX �: Let x#x�AP� be the functional defined by

ðx#x�ÞðpÞ ¼ /pðTÞx; x�S ðpAPÞ:

Since T is polynomially bounded, x#x� is a bounded functional and we have
jjx#x�jjpkjjxjj � jjx�jj:

Of course, the definition of x#x� depends on the operator T but since we are
going to consider only one operator T ; this cannot lead to a confusion.
Suppose that T also satisfies the condition that jjTnujj-0 for all uAX : It is a

folklore result that then all the functionals x#x� where xAX and x�AX � can be
represented by absolutely continuous measures, and so these functionals are of the
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form (ii). Various versions of this result can be found in [A2,E,KO,Sz]. Usually, such
results are proved by defining the HN calculus for T (by means of radial limits) and
by showing that this functional calculus is ðw�;SOTÞ continuous. Since we have not
found the precise form of the necessary statement, we include the proof below; we
present a more direct argument using some classical results from measure theory.

Lemma 7.1. Let T be a polynomially bounded operator on a Banach space X : Suppose

that jjTnujj-0 for all uAX : Let xAX ; x�AX �: Then there exists fAL1 such that

/pðTÞx; x�S ¼
R p

p pðeitÞf ðeitÞ dt for all polynomials p:

Moreover, it is possible to choose fAL1 such that jj f jj1 ¼ jjx#x�jj:

Proof. Recall that a sequence ð fnÞnCAðDÞ is called Montel if supjj fnjjoN and

limn-N fnðzÞ ¼ 0 for all zAD:
We show that /fnðTÞx; x�S-0 for any Montel sequence ð fnÞ:
Without loss of generality, we can assume that supjj fnjjp1; jjxjjp1 and jjx�jjp1:

Let fnðzÞ ¼
P

N

j¼0cn;jz
j be the Taylor expansion of fn: By the Cauchy formula and the

Lebesgue domination theorem, we have limn-Ncn;j ¼ 0 for each jX0:

Let e be a positive number such that eo2k; where k is the polynomial bound of T :

Choose l such that jjTlxjjpe=4k: There exists n0 sufficiently large such that for every

nXn0 we have jcn;jjoe=2lk ð j ¼ 0;y; lÞ: Fix such an n and write gðzÞ ¼
Pl
1

j¼0cn;jz
j :

Then fnðzÞ ¼ gðzÞ þ zlhðzÞ for some function hAAðDÞ: Clearly

jjgjjp
Pl
1

j¼0jcn;jjpe=2k and jjhjj ¼ jj fn 
 gjj: Thus

j/fnðTÞx; x�Sjp jj fnðTÞxjjpjjgðTÞxjj þ jjð fn 
 gÞðTÞxjj

p kjjgjj þ jjhðTÞjj � jjTlxjjpe
2
þ kjj fn 
 gjj � e

4k

p
e
2
þ e
4
� ðjj fnjj þ jjgjjÞoe:

Thus /fnðTÞx; x�S-0:
Now let m be a measure representing the functional x#x� such that jjmjj ¼

jjx#x�jj: Since we have ðx#x�Þð fnÞ-0 for each Montel sequence ð fnÞ; m is a
Henkin measure. By the Val’skii theorem and the M. and F. Riesz theorem, m is
absolutely continuous with respect to the Lebesgue measure. For details we refer to
[R, Theorem 9.2.1 and Remark 9.2.2(c)].
The Radon–Nikodym theorem now implies the statement of the lemma. &

Let c3 be a constant satisfying c2oc3o1; where c2 is the constant from
Proposition 6.2. Let b be the universal constant form Proposition 4.4.

Theorem 7.2. Let T : X-X be a polynomially bounded operator with constant k; such

that sðTÞ*T and T has no nontrivial invariant subspace. Let fAL1 be nonnegative
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with jj f jj1 ¼ 1; and let y�AX � be arbitrary. Then for every positive integer n

sufficiently large there exist xAX and x�AX � such that jjxjjp2kb
ffiffiffi
2

p
; jjx�jjp1 and

jjx#ðT�nx� þ y�Þ 
 Mf jjoc3:

Proof. Let e be a positive number satisfying eo 1
2kbp; ejjy�jj2o1 and 12k3b2p

ffiffi
e

p

oc3 
 c2:
For any n sufficiently large there exist, by Proposition 6.2, a finite set FCD and

positive numbers al ðlAFÞ such that the intervals ðIlÞlAF are pairwise disjoint and

1

2p

Z p


p

X
lAF

all
nPlðtÞ 
 f ðtÞ

�����
����� dt pc2:

Also, there exist 2kb-circled vectors ulAX ðlAFÞ such that jjuljj ¼ 1 and jjðT 

lÞuljjoeð1
 jljÞ2 for all lAF :
We define, on the linear span of ðulÞl; the linear functional j by jðulÞ ¼

l
ny�ðulÞ ðlAFÞ: By the Hahn–Banach theorem, we can extend it to a bounded
functional on X denoted by the same symbol j: By Proposition 3.5, there exist
complex numbers ml and a functional cAX � such that jj

P
lAFmluljjp2kb

ffiffiffi
2

p
; jjc


jjjp1 and cðmlulÞ ¼ al for every lAF : Note that we have the estimates

jmljp4k2b2
ffiffiffi
2

p
o6k2b2 by Lemma 6.1. We take x ¼

P
lAFmlul and x� ¼ c
 j:

Let gAL1 be defined by gðeitÞ ¼
P

lAFall
nPlðtÞ: Thus

jjMg 
 Mf jjpjjg 
 f jj1pc2

and for any polynomial pAP we have

Mgp ¼ 1

2p

Z p


p
gðeitÞpðeitÞ dt ¼ 1

2p

X
lAF

all
n

Z p


p
PlðtÞpðeitÞ dt ¼

X
lAF

all
npðlÞ:

Therefore

jjx#ðT�nx� þ y�Þ 
 Mf jjp jjTnx #x� þ x#y� 
 Mgjj þ jjMg 
 Mf jj

p sup
jjpjjp1

j/pðTÞTnx; x�Sþ/pðTÞx; y�S
 Mgpj þ c2:

Now

/pðTÞTnx; x�S ¼
X
lAF

ml/TnpðTÞul; x�S

¼
X
lAF

ml/ðTnpðTÞ 
 lnpðlÞÞul; x�Sþ
X
lAF

ml/lnpðlÞul; x�S
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and

/pðTÞx; y�S ¼
X
lAF

ml/pðTÞul; y�S

¼
X
lAF

ml/ðpðTÞ 
 pðlÞÞul; y�Sþ
X
lAF

ml/pðlÞul; y�S:

Using the equalities /ul; y�S ¼ ln/ul;jS; x� þ j ¼ c and /mlul;cS ¼ al; we
obtain thatX

lAF

ml/lnpðlÞul; x�Sþ
X
lAF

ml/pðlÞul; y�S ¼
X
lAF

ml/lnpðlÞul; x� þ jS

¼
X
lAF

ml/lnpðlÞul;cS

¼
X
lAF

all
npðlÞ ¼ Mgp:

Therefore we have

j/pðTÞTnx; x�Sþ/pðTÞx; y�S
 Mgpj

¼
X
lAF

ml /ðTnpðTÞ 
 lnpðlÞÞul; x�Sþ
X
lAF

/ðpðTÞ 
 pðlÞÞul; y�S

 !�����
�����:

ð6Þ

We estimate the right-hand side of (6) in a standard way. Write qðzÞ ¼ znpðzÞ
lnpðlÞ
z
l :

Clearly jjqjjp2jjpjjð1
 jljÞ
1p2ð1
 jljÞ
1: Then jjqðTÞjjp2kð1
 jljÞ
1: Hence

jjðTnpðTÞ 
 lnpðlÞÞuljj ¼ jjqðTÞðT 
 lÞuljj

p 2kð1
 jljÞ
1eð1
 jljÞ2p2keð1
 jljÞ:

Similarly, one obtains the estimate jjðpðTÞ 
 pðlÞÞuljjp2keð1
 jljÞ: Since jjx�jjp1
and ejjy�jj2o1; from (6) we obtain

j/pðTÞTnx; x�Sþ/pðTÞx; y�S
 Mgpj

p
X
lAF

jmljð2keð1
 jljÞ þ 2k
ffiffi
e

p
ð1
 jljÞÞp6k2b2 � 4k

ffiffi
e

p
� p
2

because jmljp6k2b2 and

4
X
lAF

ð1
 jljÞ ¼ m
[
lAF

Il

 !
p2p:
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Thus

jjx#ðT�nx� þ y�Þ 
 Mf jjp12k3b2p
ffiffi
e

p
þ c2oc3:

This completes the proof. &

Theorem 7.3. Let T : X-X be a polynomially bounded operator with constant k:
Suppose that sðTÞ*T and that T has no nontrivial invariant subspace. Assume that

jjTnxjj-0 for all xAX : Let wAX ; z�AX �; d40 and fAL1 with fX0: Then there

exist uAX and u�AX � such that

(i) jju#ðu� þ z�Þ 
 Mf jjpc3 � jj f jj1;
(ii) jjw#u�jjod;
(iii) jjujjp2kb

ffiffiffi
2

p
jj f jj1=21 and jju�jjpkjj f jj1=21 :

Proof. The statement is trivial if jj f jj1 ¼ 0: Assume that jj f jj1a0: Choose n large

enough such that jjTnwjjodjj f jj
1=21 k
1 and such that, by Theorem 7.2 applied to

the function f � jj f jj
11 and the functional z�jj f jj
1=21 ; there exist vAX and v�AX �

with jjvjjp2kb
ffiffiffi
2

p
; jjv�jjp1 and

jjv#ðT�nv� þ z�jj f jj
1=21 Þ 
 Mf jj f jj
1 jjpc3:

Set u ¼ jj f jj1=21 v and u� ¼ jj f jj1=21 T�nv�: Then jjujjp2kb
ffiffiffi
2

p
jj f jj1=21 and jju�jjp

kjj f jj1=21 :

Furthermore,

jjw#u�jj ¼ jj f jj1=21 � jjw#T�nv�jj ¼ jj f jj1=21 � jjTnw#v�jjpjj f jj1=21 k � jjTnwjjod:

Finally,

jju#ðu� þ z�Þ 
 Mf jj ¼ jj f jj1 � jjv#ðT�nv� þ z�jj f jj
1=21 Þ 
 M
f jj f jj
11

jjpc3jj f jj1: &

We fix an integer N such that c3 þ pN
1o1 and a positive constant c such that

1
 N
1ð1
 c3 
 pN
1Þoco1:

Theorem 7.4. Let T : X-X be a polynomially bounded operator with constant k:
Assume jjTnujj-0 for all uAX : Suppose that sðTÞ*T and T has no nontrivial

invariant subspace. Let xAX ; x�AX � and hAL1: Then there exist yAX and y�AX �

such that

(i) jjy 
 xjjp2kb
ffiffiffi
2

p
jjhjj1=21 ;
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(ii) jjy� 
 x�jjpkjjhjj1=21 ;
(iii) jjy#y� 
 x#x� 
 Mhjjpcjjhjj1:

Proof. For j ¼ 0;y;N 
 1 let Bj be the set of all complex numbers that are of the

form reit with r40 and 
p
N
pt 
 2pj

N
op

N
: Fix a representative of h and define Aj ¼

h
1ðBjÞ ð j ¼ 0;y;N 
 1Þ: Then jjhjj1 ¼
PN
1

j¼0 jjhwjjj1 where wj is the characteristic

function of Aj ð j ¼ 0;y;N 
 1Þ:
Fix j0; 0pj0pN 
 1 such that jjhwj0

jj1XN
1jjhjj1:
Set n ¼ e2pj0i=N : For each zAAj0 we have

jjhðzÞjn
 hðzÞj ¼ jhðzÞj � n
 hðzÞ
jhðzÞj

����
����pjhðzÞjpN
1;

and so jjjhjnwj0

 hwj0

jj1ppN
1jjhwj0
jj1:

Without loss of generality, we can assume that jjhjj1a0: Let d be a positive
number such that djjhjj
11 þ 1
 N
1ð1
 c3 
 pN
1Þoc:
By Theorem 7.3, there are vectors uAX and u�AX � such that jjujjp

2kb
ffiffiffi
2

p
jjhwj0

jj1=21 ; jju�jjpkjjhwj0
jj1=21 ; jjx#u�jjod and

jju#ðu� þ x�Þ 
 Mjhjwj0
jjpc3jjhwj0

jj1:

Set y ¼ x þ nu and y� ¼ x� þ u�: Then jjy 
 xjj ¼ jjnujjp2kb
ffiffiffi
2

p
jjhwj0

jj1=21 p

2kb
ffiffiffi
2

p
jjhjj1=21 and jjy� 
 x�jj ¼ jju�jjpkjjhjj1=21 :

Furthermore,

jjy#y� 
 x#x� 
 Mhjjp jjx#y� 
 x#x�jj þ jjnu#y� 
 Mhjj

p jjx#u�jj þ jjnðu#ðx� þ u�Þ 
 Mjhjwj0
Þjj þ jjnMjhjwj0


 Mhjj

p dþ c3jjhwj0
jj1 þ jjnjhjwj0


 hwj0
jj1 þ

X
jaj0

jjhwjjj1

p dþ ðc3 þ pN
1Þjjhwj0
jj1 þ jjhjj1 
 jjhwj0

jj1

p jjhjj1 
 jjhwj0
jj1ð1
 c3 
 pN
1Þ þ d

p jjhjj1 � ð1
 N
1ð1
 c3 
 pN
1ÞÞ þ dpcjjhjj1: &

Now we are ready to prove the main theorem B.
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Theorem B. Let T be a polynomially bounded operator on a complex Banach space X :
Assume that jjTnxjj-0 for all xAX and that the spectrum of T contains the unit circle.

Then T has a nontrivial invariant subspace.

Proof. Suppose on the contrary that T has no nontrivial invariant subspace. We
construct inductively convergent sequences ðxjÞCX and ðx�

j ÞCX � such that

jjxj#x�
j 
 M1jj-0; where 1 denotes the constant function equal to 1 on T:

Set x0 ¼ 0 and x�
0 ¼ 0: Let j0 ¼ x0#x�

0 
 M1: Then jjj0jj ¼ 1:
Suppose that we have already constructed vectors xjAX and x�

j AX � such that

jjjjjjpcj where jj ¼ xj#x�
j 
 M1: Let hjAL1 be a function representing the

functional jj such that jjhjjj1 ¼ jjjj jjpc j : Let k be the polynomial bound of T : By

Theorem 7.4, there are xjþ1AX and x�
jþ1AX � such that

jjxjþ1 
 xjjjp2kb
ffiffiffi
2

p
jjhjjj1=21 p2

ffiffiffi
2

p
kbc j=2;

jjx�
jþ1 
 x�

j jjpkjjhjjj1=21 pkcj=2

and for jjþ1 :¼ xjþ1#x�
jþ1 
 M1 we have

jjjjþ1jj ¼ jjxjþ1#x�
jþ1 
 xj#x�

j þ jj jj

¼ jjxjþ1#x�
jþ1 
 xj#x�

j þ Mhj
jjpcjjhjjj1pc jþ1:

Clearly ðxjÞ and ðx�
j Þ are Cauchy sequences. Let x ¼ limj-Nxj and x� ¼

limj-Nx�
j : For each polynomial p with jjpjjp1 we have

j/pðTÞxj; x�
j S
/pðTÞx; x�Sj

pj/pðTÞxj ; x�
j S
/pðTÞxj; x�Sj þ j/pðTÞxj; x�S
/pðTÞx; x�Sj

pkjjxjjj � jjx� 
 x�
j jj þ kjjxj 
 xjj � jjx�jj-0

uniformly on the unit ball in P: Thus x#x� ¼ limj-Nxj#x�
j ¼ M1 and

/pðTÞx; x�S ¼ pð0Þ for each polynomial p: It is well known that this implies that
T has a nontrivial invariant subspace. Indeed, either Tx ¼ 0 (in this case x generates

a one-dimensional invariant subspace) or the vectors Tkx ðkX1Þ generate a
nontrivial closed invariant subspace. &

The condition Tnx-0 ðxAXÞ in the previous theorem can be omitted. However,
in this case we obtain an invariant subspace for T� instead of T :

Theorem A. Let T be a polynomially bounded operator on a Banach space X such that

sðTÞ*T: Then T� has a nontrivial closed invariant subspace.
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In particular, if X is reflexive, then T itself has a nontrivial closed invariant

subspace.

Proof. We reduce the problem in a standard way. Let X1 ¼ fxAX : jjTnxjj-0g and
Y1 ¼ fx�AX � : jjT�nx�jj-0g: Then X1 and Y1 are closed subspaces invariant with

respect to T and T�; respectively. So X>
1 is invariant with respect to T�: Thus it is

sufficient to consider only the cases that X1 and Y1 are trivial.
If X1 ¼ X then T has a nontrivial invariant subspace by Theorem B, and so has

T�: If Y1 ¼ X � then T� has a nontrivial invariant subspace by Theorem B.
The remaining case of X1 ¼ f0g and Y1 ¼ f0g (i.e., the class C11 in the

terminology of Sz. Nagy and Foia-s [NF]) was discussed in [CF], cf. p. 136. Since
in [CF] it was considered only the case of reflexive Banach spaces, we indicate briefly
the argument in the general situation as a separate theorem, which will finish the
proof of our main result.

Theorem 7.5. If T is a power bounded operator of class C11 on a complex Banach

space X ; then either T� has a nontrivial hyperinvariant subspace, or T is a scalar

multiple of the identity.

Proof. We follow closely the lines of the original proof, avoiding the reflexivity
assumption on X required in [CF]. For xAX define

jjxjj1 ¼ lim sup
n-N

jjTnxjj:

Note that jjxjj1pkjjxjj: Let X1 be the completion of X with respect to the norm

jj � jj1: Let A : X-X1 be the natural embedding of X into X1: Then A is a

quasiaffinity, i.e., it is a bounded injective linear operator with dense range.
Since jjTxjj1 ¼ jjxjj1 for all xAX ; the operator T extends continuously to an

isometry T1 on X1: We can assume that TX is dense in X ; since otherwise ker T� ¼
ðTX Þ> is a nontrivial subspace hyperinvariant with respect to T�: Hence T1X1 is
dense in X1: Therefore T1 is an invertible isometrical operator. By Colojoară and

Foia-s [CF, Proposition 5.1.4], T1 is C2ðTÞ-unitary, where C2ðTÞ denotes the algebra
of all complex functions of class C2 on T (we refer to Definitions 3.1.3, 3.1.18 and
5.1.1 of [CF]). Hence T1 is decomposable by Theorem 3.1.19.
It is easy to see that AT ¼ T1A: Hence T is a quasiaffine transformation of T1: In

the standard notation this is denoted by T!T1: Consequently, T�
1!T�:

Applying the same argument to T� instead of T ; we get a decomposable
operator T2 such that T�

!T2: Thus T�
1!T�

!T2 where both T�
1 and T2 are

decomposable, see [LN, Theorem 2.5.3]. Now [CF, Theorem 2.4.5] leads to the
desired conclusion, except for the case when the spectrum of T�

1 is a single point

flg: In this case the arguments in the proof of Theorem 5.1.9 and Lemma 4.3.5,
show that T ¼ lI : &
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[CF] I. Colojoară, C. Foia-s, Theory of Generalized Spectral Operators, Mathematics and its

Applications, in: A Series of Monographs and Texts, Vol. 9, Gordon and Breach, New York,

London, Paris, 1963.

[E] J. Eschmeier, Representations of HNðGÞ and invariant subspaces, Math. Ann. 298 (1) (1994)
167–186.

[G] J.B. Garnett, Bounded Analytic Functions, Academic Press, New York, 1981.

[KO] M. Kosiek, A. Octavio, Representations of HNðDNÞ and absolute continuity for N-tuples of

contractions, Houston J. Math. 23 (1997) 529–537.

[LN] K.B. Laursen, M.M. Neumann, An Introduction to Local Spectral Theory, in: London

Mathematical Society Monographs New Series, Vol. 20, Clarendon Press, Oxford, 2000.

[NF] B. Sz.-Nagy, C. Foia-s, Harmonic Analysis of Operators on Hilbert Space, North-Holland,

Amsterdam, 1970.

[P] G. Pisier, A polynomially bounded operator on Hilbert space which is not similar to a

contraction, J. Amer. Math. Soc. 10 (1997) 351–369.

[Pr] B. Prunaru, K-spectral sets and invariant subspaces, Integral Equations Operator Theory 26

(1996) 367–370.

[R] W. Rudin, Function Theory in the Unit Ball of Cn; Springer, Berlin, Heidelberg, New York,

1980.

[SS] H.S. Shapiro, A.L. Shields, Interpolation problems for analytic functions, Amer. J. Math. 83

(1961) 513–532.

[S] J. Stampfli, An extension of Scott Brown’s invariant subspace theorem: K-spectral sets,

J. Operator Theory 3 (1980) 3–21.

[Sz] F.H. Szafraniec, Some spectral properties of operator-valued representations of function

algebras, Ann. Polon. Mat. 25 (1971) 187–194.

ARTICLE IN PRESS
C. Ambrozie, V. M .uller / Journal of Functional Analysis 213 (2004) 321–345 345


	Invariant subspaces for polynomially bounded operators
	Introduction
	Apostol’s theorem
	Zenger’s theorem
	Carleson’s interpolation theorem
	Preliminary steps
	Polynomially bounded operators
	Invariant subspaces
	Acknowledgements
	References


