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Abstract

Let T be a polynomially bounded operator on a Banach space X whose spectrum contains
the unit circle. Then T has a nontrivial invariant subspace. In particular, if X is reflexive, then
T itself has a nontrivial invariant subspace. This generalizes the well-known result of Brown,
Chevreau, and Pearcy for Hilbert space contractions.
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1. Introduction

An operator T acting on a complex Banach space X is called polynomially
bounded if there is a constant k such that ||p(T)||<k - ||p|| for all polynomials p,
where ||p|| = sup{|p(z)| : |z|] < 1}. The smallest constant k with this property is called
the polynomial bound of 7. By the von Neumann inequality, every Hilbert space
contraction is polynomially bounded with constant k = 1.
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An early application of the Scott Brown technique gave the existence of
invariant subspaces for Hilbert space contractions with dominant spectrum
[BCP1]. Further results for Hilbert and Banach space operators were given in
[AC,Pr,S]. All these results assumed that there are many points of the spectrum in
the open unit disc.

Further development culminated by the well-known “‘second generation” result of
Brown et al. [BCP2] that each Hilbert space contraction with spectrum containing
the unit circle has a nontrivial invariant subspace. This result is much stronger than
the corresponding one for operators with dominant spectrum and the proof is much
more complicated since it is not possible to use directly the information provided by
the points of the spectrum in the unit circle. The proof used essentially the properties
of the Sz.-Nagy Foias functional model for Hilbert space contractions, and so there
is no direct way of generalizing it.

The aim of this paper is to give a new approach and to generalize the Brown,
Chevreau, Pearcy result for Banach space operators.

The main result can be formulated as follows:

Theorem A. Let T be a polynomially bounded operator acting on a Banach space X
whose spectrum contains the unit circle. Then T* has a nontrivial invariant subspace.
In particular, if X is reflexive then T has also a nontrivial invariant subspace.

The result is new even for Hilbert space operators. Note that there are
polynomially bounded operators on a Hilbert space that are not similar to a
contraction by Pisier [P].

Note also that the situation is not symmetrical for nonreflexive Banach spaces. If
M < X is a nontrivial subspace invariant with respect to an operator 7€ B(X) then
M* is a nontrivial invariant subspace of T* e B(X*).

Conversely, if M'<X* is a nontrivial subspace invariant with respect to T* then
LM’ is an invariant subspace of T but it can be trivial (if M’ is w*-dense).

Since the proof of the main theorem A is rather technical we indicate briefly the
plan of the proof in this section.

Without loss of generality, it is possible to assume in Theorem A that T is of class
Co., ie., ||T"x|| =0 for all xeX. It is sufficient to show the following Theorem B.

Theorem B. Let T be a polynomially bounded operator whose spectrum contains the
unit circle. Suppose that ||T"x||—0 for all xe X. Then T has a nontrivial invariant
subspace.

The reduction of Theorem A to B is rather standard (at least for Hilbert space
operators). It will be shown in the last section. The greatest part of the paper will be
devoted to the proof of Theorem B.

Note that in B the invariant subspace is constructed for the operator 7" (not for 7*
like in Theorem A). Thus Theorem B is not a consequence of Theorem A, and so it is
rather the second main result of the paper.
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The basic idea of the Scott Brown technique is to find vectors xe X and x*e X™*
such that

0 (n=1),

1 (n=0). (1)

{T"x, x*> :{

If x and x* satisfy (1) then \/{7T"x : n>1} is a closed subspace invariant with respect
to T which is different from X.

Let 2 denote the normed space of all complex polynomials with the supremum
norm on the unit disc. Consider the dual space 2* with the usual dual norm. It is well
known that (1) can be reformulated equivalently by

x®x* = &), (2)

where x®x* is the functional on £ defined by pr— {p(T)x,x*> and & is the
evaluation functional p— p(0) at the origin.

Since 7"x—0 for all x, all the functionals of the form x®x* (and in fact all
functional that will be of our interest) are w*-continuous, i.e., they are of the form

My :pr—s fgnf(e"’)p(e”) dt for some function /'€ L' on the unit circle. Similarly, all
the evaluation functionals & : p+>p(4) for |A|<1 are of this form since &, = Mp,
where P; is the Poisson kernel at A. In particular, &y = M; where 1 is the constant
function on the unit circle.

The standard way of solving (2) is to find first an approximate solution and then a
sequence of better and better solutions; the exact solution of (2) will be obtained as a
limit of these approximate solutions.

The starting point of the proof is the result of Apostol that each polynomially
bounded operator whose spectrum contains the unit circle has either a nontrivial
invariant subspace or there is a large set /A in the open unit disc consisting of “almost
eigenvalues”. Usually, this is formulated that the set A is dominant, i.e., sup{| f(z)| :
zeA} =||f]| for all f € H*. We use the full strength of the Apostol theorem that in
fact almost all points of the unit circle are radial limits of points of A. Sets with this
property will be called Apostol sets. Clearly, each Apostol set is dominant but we do
not use this property; in fact, we avoid the use of H* functions almost completely
and speak only about polynomials.

It is easy to check that if AeA, x is a corresponding ‘“‘almost eigenvector” and
x*e X* is arbitrary, then

x@x"'x{(x,x">- &

and so x®x* is approximately equal (in the sense of the norm in £*) to a scalar
multiple of the evaluation functional &;.

It is a technical fact that the constant function 1 can be approximated by a finite
linear combination with positive coefficients of Poisson kernels P; with the numbers
A in a given Apostol set 4. More precisely, there are elements A;€ 4 and positive
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numbers o; such that

1= wP,|| < (3)
i 1
where ¢ <1 is a universal constant; here || - ||, denotes the usual normalized L' norm
on the unit circle.
Let x; be the corresponding almost eigenvectors, i.e., ||x;|| = 1 and Tx;~ 4;x; for

all i. An approximate solution of (2) will be found by the Zenger theorem, see
Theorem 3.1. Applying this to the vectors x; and numbers o; we can find a functional
x*eX* and a linear combination x =) ,ux; such that ||x*||<1, [|x|[<] and
{ixi, x*y = o; for all i. Thus

| (T)x,x*> = p(0)|

llpl|=1

= sup <Z wip(T)xi, x > (0)

llpl|=1

x sup <Z uip (i) xi, X > p(0)
= sup > @ip(i) = p(0)

llpll=1
= ‘ > wids, — b
Z OC[P).I. -1
i

1
A technical problem here is that the Zenger theorem gives no estimate on the
coefficients y;. Such an estimate, which is essential in the above calculations, will be
obtained by an application of the classical Carleson interpolation theorem [C].

Having an approximate solution of (2), it is now necessary to improve it by finding
perturbations y and y* of x and x*, respectively, such that y® y* approximates &
better than x® x*; moreover, ||y — x|| and ||y* — x*|| should be small.

This step is much easier if T is of class Cy, i.e., if T satisfies both 7"x—0 and
T*"x*—0 for all xe X and x* € X*. In this case it is sufficient to use the classical form
of the Zenger Theorem 3.1 (and even the Carleson theorem can be avoided). Since in
general we can assume only one of these conditions, the technical difficulties are
solved by an improved form of the Zenger theorem, see Proposition 3.5, which is of
independent interest.

The paper is organized as follows. The following three sections discuss the
theorems of Apostol, Zenger and Carleson, respectively. These sections are
independent of each other.

Section 5 contains the proof of (3). An interested reader can start reading the
paper at this section and return to the previous Sections 2—4 only for the necessary
auxiliary statements.

<c.
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Section 6 contains the estimate on the coefficients mentioned above. Main
Theorems A and B are proved in the last section.

2. Apostol’s theorem

Denote by D = {zeC: |z|<1} the open unit disc in the complex plane and by
T ={zeC:|z|] = 1} the unit circle.

Definition. A subset A<D is called an Apostol set if
sup{ref0,1): re’eA} =1
for all but countably many numbers 0 (—m, 7).

Theorem 2.1 (Apostol [A1]). Let T be a polynomially bounded operator on a Banach
space such that ¢(T)>T and T has no nontrivial invariant subspace. Let ¢>0 and let
n>=1 be an integer. Then the set

A = {ieD: there exists ue X with ||u|| =1 and ||Tu — Ju||<e(1 —|A])"}
is an Apostol set.

This theorem was proved in [Al] for » =1 and T contractive on a Hilbert space.
As it was observed in [B], the same proof also works for general exponent n. For our
purpose it is sufficient to use the Apostol theorem with n = 2. In fact this exponent
was used already in [B].

The idea of the proof is to show that if there exists an uncountable set ScT of
points that are not radial limits of sequences from A, then the kernel of the operator

2%, : (T =) (A=) (4= A)"da
is a nontrivial invariant subspace, where y is a well-chosen simple rectifiable closed
path crossing T at A, and /.

The existing proofs of Theorem 1 [A1,B,Be] were formulated for Hilbert space
contractions but the proof remains unchanged also for Banach space operators.
Therefore we omit it.

3. Zenger’s theorem

The Zenger theorem proved to be a useful tool in constructions of invariant
subspaces for operators on Banach spaces. The idea of using the Zenger theorem in
the Scott Brown technique comes from Eschmeier [E]; some similar ideas were
implicitly present already in the pioneering work of Apostol [A2].
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The classical version of the Zenger theorem can be found in [BD, pp. 18-20].

Theorem 3.1 (Zenger). Let X be a complex Banach space, let uy, ...,u, € X be linearly
independent. Let o; (j =1, ...,n) be positive numbers with Z]'-':locj = 1. Then there
exist complex numbers wi, ..., w, and peX* such that |37 wiul| <1, [|o||<1 and
owu)) =o; forallj=1,...,n.

As it was mentioned in the Introduction, Theorem 3.1 can be used to show the
existence of nontrivial invariant subspaces for polynomially bounded Banach space
operators of class Cyy whose spectrum contains the unit circle. To get rid of the Cy
condition, we need a stronger version of the Zenger theorem. Roughly speaking, we
need to find the functional ¢ in a ball centered at some given point, not necessarily at
the origin.

The next result is the real version of the required generalization (formulated
dually).

Proposition 3.2. Let || - || be a (real) norm on R", let oy, ..., o, be positive numbers such
that Z}':lij =1, let s=(s1,...,5,)€R". Then there exist w= (wy,...,w,)eR" and
ye (R || -|)" such that ||y||<1, ||w—s||<1 and y(wje;) = o (j=1,...,n), where
(ej)j'-':l is the standard basis in R", e; = (0,...,0,1,0,...,0).

——

J=1
Proof. Let B={xeR": ||x —s||<1} and
B, ={(x1,....,x,)eB:x;5,>0 (j=1,...,n)}.
Clearly, B, is a compact subset of R". Let F : R"— <0, c0) be the function defined
by F(xi,...,x,) = [[Z; [x[". Let w= (wi,...,w,) € B; satisfy F(w) = max{F(z) :

ze B} =m. Clearly w; #0 for all j.
Let iy : R" > R be the functional defined by

n
(Xt . x,) = Z oxw;
J=1

Then (w) = 1. In a neighborhood of w we have

OF 1. o F(x)
— (x) = oy|x; [ signx; - || ||t = L
ox; 1% j /1;[, x;
In particular,
OF aiF(w) ma;
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Thus F'(w) = m = F(w)iy. For x—w we have
F(x) = F(w) = F'(w)(x —w) + o(]|x = w[]) = my (x — w) + o([|x — w]]),
and so
F(x) = my(x) + o(||x — wl]).

We prove that y(x)<1 for all xe B. Suppose on the contrary that there is an xe B
with y(x)>1. For 1€ (0,1) let y, = (1 — f)w + tx = w + t(x — w). Since B is convex,
we have y, e B for all . Furthermore, y, € B, for all ¢ small enough. For —0 we have

E(yo) =my(y:) + o(tllx = wl[) = m((w) + 1 (x = w)) + o(2)

=m+mty(x —w) + o(2).

Since Y(x —w)>0, we have F(y,)>m for all >0 small enough, which is a
contradiction.

Thus y(x) <1 for all xe B. Note that y/(s) = 377,
Hence ||{/|| = max{y/(x) — ¥(s) : xe B} < 1.
It is easy to see that y(wje;) = a; for allj. O

~1
%isiW; >0.

The complex version of Proposition 3.2 is an interesting open problem. We prove
it under an additional assumption that the norm is rather regular. This weaker
version will be sufficient for our main purpose—the construction of invariant
subspaces.

Definition. Let X be a complex Banach space, let uy, ..., u, € X be nonzero vectors,
let L>0. We say that the vectors uy, ...,u, are L-circled if

n

Z Vit

J=1

<L-

n
Z Bju;
j=1

whenever f3;,7,€C, |B;|<|y;| (j=1,...,n).

It is easy to see that L-circled vectors are linearly independent.

Lemma 3.3. Let L>0, let || - || be a (complex) norm on C" such that the standard basis
vectors ey, ..., e, are L-circled. Let oy, ...,a, be positive numbers such that Z]":l o =
1, let s = (s1,...,8,)€C". Then there exist w = (wy, ..., w,)€C" and a complex-linear

functional e (€] - |1)" such that |[W|<LV3, [lw—s|| <1 and wiwe;) = o (j =
l,...,n).
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Proof. For j =1, ...,n write s; = |s;| - v; where v;eC, |v;| =1 (if 5; = 0 then choose
any v;eT). Consider the real-linear subspace X of C" generated by the vectors
viej (j=1,...,n). Clearly se X and C" = X + iX.

By Proposition 3.2, there exist real numbers ¢ (j=1,...,n) and a real-linear
functional W, : X - R such that yo(tvie) =0y (j=1,....n), 327 ve; — 5| <1
and [yl | <1.

Set w; = t;v;. Extend y/, to C" by y(x + iy) = Yo(x) + iyy(p) for all x,yeX. It is
easy to verify that i is a complex-linear functional and y(wje;)) =o; (j =1, ...,n).

Let bj, Cj eR. If HZ;:] (b] —+ iCj)Vj@j” < 1, then ||Z;l:1ijj'€j|| SL and
12 = ¢vell < L. So

n 2 n 2 n 2
‘l// (Z (b + iCj)Vf%‘) = Vo (Z bj"j%‘) +|¥o (Z Cj"j?i) <2r?,
J=1 J=1 J=1
and so ||y||<Lv2. O
The next result is a dual version of Lemma 3.3.

Lemma 3.4. Let || - || be a norm on C" such that the standard basis vectors ey, ..., e, are
L-circled. Let oy, ..., %, be positive numbers such that 37 o =1, let pe(C", || -]])".
Then there exist w = (wj, ..., w,) €C" and a complex-linear functional ye(C",|| - ||)*

such that ||y — ol <1, Wl <LVZ and Y(we)) = o (j =1, ....n).

Proof. Let fi,....f,€(C", || ||)" be defined by <ej,fix> =0;x (the Kronecker
symbol). We prove first that fi, ..., f, are L-circled in (C", || - |])".
Let §;,7,€C, |B|I<|y;| (j=1,...,n). Let F = {je{l,...,n} : B;#0}. Then

> B ZSUP{ <Z ﬁj};7zwjej>‘ 1D o <1}
1 jer =T =1
n
=Sup{ DB |[D o <1}
jeF j=1
n n
:sup{ <Z y,ﬁ,z wjﬁjyjlej> : Z w;je; <1}
j=1 JjeF J=1
n n n n
< sup{ <Z Vjﬁ?Z .“_/ej>‘ : Z Hie;j <L} =L Z Vil |-
= A = =

By Lemma 3.3, there is a e (C", || - |[)", ¥ = Y7/ ¥, f; such that |y — ¢||<1 and
w=(wi,...,w,)€C" such that [|w]|<Lv2 and oy = (37 wiej, ¥, fi> = wipy =
wiep,y foralll=1,...,n. O
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Proposition 3.5. Let uy, ...,u, be L-circled vectors in a complex Banach space X . Let
oy, ...,0, be positive numbers such that Zj'-’:]ocj =1, let peX*. Then there exist
complex numbers w;eC (j=1,...,n) and a complex-linear functional y € X* such

that [y — ||<1, || wil| SLV2 and y(wiy) = o5 (j =1, ..., n).

Proof. Let X; be the subspace of X generated by the vectors uy, ...,u,. We can
identify Xo with C" with the norm [[(w1, ..., w,)[| = |32/, w;u;||y. By Lemma 3.4,

there are w;eC and y € X such that ||Y7 wu || <LV2, {wuy,py = oy and [ —
¢|Xo| x; 1. By the Hahn-Banach theorem, we can extend y to X such that
= glly.<1. O

4. Carleson’s interpolation theorem

For A =reeD, set I = {e" : |t — 0] <2(1 — r)}. These sets will play an important
role in the proof.

Lemma 4.1. There is a constant a>0 with the following property: if z, AeD satisfy

Ll =0and |l |z|=3/4, then |1’:f7|>a.

Proof. We can assume that 2 = r>0. Write z = se’ with s>3/4 and —n<0<n.
Since s,7>3/4 and [sin | > - 2, we have

Ir — s> = (r — scos 0)* + 5% sin® 0 = (r — 5)> + 2rs(1 — cos 0)

L0 _9/101\* [3]0]\*
> 222 () = ()
= 4rs sin 2/4(n> =

Since € ¢ I,, we have |0|>2(1 — r). Thus |z — | >34 >30=1),
2n n

Furthermore,
1 —rz|<(1 - rz) + |r2 —rz|<2(1=r) +rlr —z|.
Hence
|z —r] |z — 7| B 1 - 1 - 3
1 —rz|” 20 —=r)+ 7|z —71] 2(1*r)+r/%“+ 17 2n+3

=]

The last constant is independent of the choice of A and z. [

We remind that a positive measure p on D is called Carleson if there is a constant
¢y such that

1(Son) < cuh



330 C. Ambrozie, V. Miiller | Journal of Functional Analysis 213 (2004) 321-345
for every sector Sp,, of the form

Sop = {re" : 1 —h<r<l,|t — 0|<h}. (4)
Lemma 4.2. Let F <D be a finite set such that the sets I, (A€ F) are pairwise disjoint.
Then the measure u =7, p(1 —|A|)d; is Carleson with the constant <1, where J,

denotes the Dirac measure at A.

Proof. Let Sp;, be a sector of the form (4). Let I' = {e": |t —0|<h}. Let A=
re“e FnSp,. Then there are three possible cases: e/ er  (=20-Nel or
I,=T. In all three cases we have

m(l;nI)=2(1 —|4]),

where m denotes the Lebesgue measure on T. Thus

%m(F):h. O

N —

pSa) = > (-lh<gm{ra |J L)<

reSopnF AeF NSy,

As usually, denote by H® the algebra of all bounded analytic functions on D with
the norm || f|| = sup{| f(z)| : ze D}.

It follows from the Carleson interpolation theory, see [G, Section VII.1], that,
given a finite set F = D such that I, (1€ F) are pairwise disjoint and |1|>3/4 (e F),
and numbers c¢;eC, then there exists fe H® such that f(1) =c¢; (AeF) and
[|fII<b - sup,p|c;|, where b is an absolute constant, independent of F and ¢;. Since
the results in [G] are formulated for the upper half-plane, we indicate briefly the
argument in the disc case, following the comments preceding Theorem VII.1.1.

Lemma 4.3. There is a constant 6 >0 with the following property: if F <D is a finite
set such that the sets I (L€ F) are pairwise disjoint and |A|=3/4 (L€F), then

Jo— A
1 =24

=

AGF\\{/’L(]}
for each Ag€eF.

Proof. Let u=>", (1 —|2])0;. Since pu is a Carleson measure with the constant
<1, by Garnett [G, Lemma VI.3.3] we have

1= |wf’ (1= AD( = [w*)
su — " _du(z) = su E <0< o0,
weg) / 1— WZ|2 ”( ) weg el |l — WA 2
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where ¢ is a universal constant independent of F. In particular,

S~ U= Jaf)

—]
JeF |1 - )“O/L|

for each ApeF.
Let a be the constant from Lemma 4.1. Note that <1, and so In a<0. Since In ¢ is
a concave function, for any te(a?, 1) we have

2Ilna
lnt}m(l —1).

oy — A
1 - Z}\.O

Let ZeF\{4}. Using the identity |1 — Zio|* — |4 — A* = (1 — |AH)(1 = |40]?) we
o — A 2) ~2lna (1= AP - 2P

have
2 2lna
> - 2= ) = —
1 —a? 1— Ao 1—a? |1—l;u0|
dlna  (1— )1 =4l
= 2 T, 12 :
l—a |1—l/n0|

ln‘

Set B(z) = HieF\{/ﬁg} % Then

4Ina 3 1— |2 4Ina

In | B>+ (1= 1)z

=2
reF\{l} |1 - /“0)”‘
Thus |B(4g)|>=0 for some constant ¢ independent of F. [
Proposition 4.4. There is a constant b with the following property: if F <D is a finite
set such that the sets I, are pairwise disjoint and ||=3/4 (L€ F),and c;eC (AeF) are

given, then there exists f € H® such that f(1) = ¢, (L€ F) and || f||<b-sup,.p|c;l.

Proof. The proof follows from [SS, Theorem 1]. More precisely, it is possible to take
b= 5%(1 —21n ), where 9 is the constant from Lemma 4.3. O

5. Preliminary steps

For every AleD, let P,(t) = ‘;:I:IJF (teR) denote the Poisson kernel. It is well
known that [* P, dt = 2n and max, P;(1) = }fm

Recall that for 4 = re’ e D we write I; = {e" : |t — 0] <2(1 —r)}.
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Notation. For €D define the 2n—periodic function Q; on R by Q,(t) = P;(¢) if
e"el;, and Q,(¢) = 0 otherwise. Denote by m the Lebesgue measure both on the real
line R and on the unit circle T.

Lemma 5.1. For any /.e D with |A|>3/4 we have [*_0;(1) dt =2

Proof. Without loss of generality, we can suppose that A = r>3/4. We have sin2(1 —
r)<sin(l —r)<1—r. If "€, then

cost=cos2(1 —r) =1—2sin*(1 —r)=2r — 1,
and so 1 —r>cost—r=r— 1. Thus

Ir— e = (r —cos 1)* +sin® 1< (1 — r)* + 2.

- 2(1—r) 2 2(1-1)
o= [ a2 [ ld’
- 0 r—

- 21 |r—eit|?

2(1-r) d 1 2(1-r)
= 2(1 —rz)/ —2:2(1 —rz){ tan~! }
0 (1—r) 42 I—r

\@:%”. O

-

=2(1+r)tan”! 225 - tan”

Corollary 5.2. For each A€D with |A|=3/4 we have

/j(Pz(t) - 0i(1)) dtsg/z 0;(1) dt.

n

Proof. By Lemma 5.1, we have the estimates

I (P(e) — Qi) de ™ Pi(1)dt T\ ! 5
T 0:(0) di f“,rgmdzw”’( ) - -

Theorem 5.3. Let A<D be an Apostol set. Let t1, t,eR satisfy —n<t; <ty <m. Let
f(t) =1if i<t<ty, and f(t) =0 otherwise. Then there is an ny>=1 such that for
every n=ny there exist a finite set F = A and positive real numbers o, (1.€ F) with the
following properties:

() Lic{e":ty<t<ty} for all LeF;

(ii) the sets I; (A€ F) are pairwise disjoint;
(i) m(U, e p 1) =307 (12 — 11);
(iv) |A|=3/4 and |2" — 1|<1 for all 1€ F;
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(V) > cp o<
(Vi) [T e p A Pi(1) = ()] di<er (ta — 1), where ¢; = 1 — 355

Proof. For every n>1, set M, = {re(t;,1y) : |e" — 1|<1/10}. Clearly for all n
sufficiently large we have
hHh—1

. 5
10-2n )

m(M,)>

Fix n satisfying (5). Let ¢> 0 satisfy m(M,) — e> (12 — 1;)/20n. Let S< (¢, t2) be the
exceptional set of the Apostol set A, ie., sup{0<r<l1:reed} =1 for all
Oe(t1,)\S. Since S is at most countable, it can be covered by a countable union
U of open intervals with m(U) <eg/2. Then the set M’ defined by

M = Myt +e/4, 1o — e /AU

is compact with m(M') > (t, — t1)/20x%. For each t€ M’ we can find r, >3 /4 such that
e =re"ed, |A—1|<1/9and I}, c{e" : ty <s<t,}. Then {e* : se M'} =,y L,
Since {e® : se M'} is a compact subset of the one-dimensional set T, there exists a
finite subcover of (I,),., such that any three of these subsets have empty
intersection. Considering a cover of the minimal cardinality with this property it is
easy to see that there are numbers Ai,...,AkeA with A =|}|e™ such that

H<s| < <sp<ty, Ujlf'zllija{e"“‘ :se M’} and I;,jmli/_, =0 if|j —j|=2. Let F| =
{A1,43, ...} and F, = {42, A4, ... }. Let F be one of the sets Fy, F, such that

(Y ) =mado(y ) (Y 1)}

Then I, "1 = 0 for all distinct A, 2" in F, and m({J, . I,) =m(M") /2> (t — t1) /40m.
For any ZeF, set o; = (1 — |A|)(1 4 |4])"". Then a;>0 and

3 mgg S (-1 :% S mn) <2

AeF AeF AeF

Finally,

> A P(r) — f(1)| dt

S wd"(PA1) — (1)

T
< /
v

N /tz (1 -3 ouQ;v(z))dt< S /_H(Pg(t) — (1)) dt

dz+/n S a2 — 10:(r) di

T JeF

reF LeF
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+ é /tlt2 Y w0 di+ (- 1) - /fz > Q1) di

JeF I JeF
5 1 b
tz—t1+( +——1>/ Z(xiQ;,(z‘)dt
79 I )eF
1 [-
<h — 14 —7 / Z o; Q;(2) dt
141

reF

1—14 7n 7 .
4 < _r 1 —
Z T 6 ST (-1

Y
=t -1 5 m(U I,1><cl(tz—t1)7

LeF
— 1
where 1 = 1 — 1920 O

Corollary 5.4. Let ¢; be the constant from the previous lemma and let ¢; € (cy,1). Let
[ (—n,n] = [0, 00) be an integrable function and let A be an Apostol set. Then for any
n sufficiently large there are a finite set F < A and positive numbers o, (J.€ F) such that:

(1) the sets (I;),.p are pairwise disjoint;
(11) |A]=3/4 and |2" — 1\<éf0r all J.eF;
(i) 3o p o <3 J2, /(1)
(V) [2 130 p ol Pat ) fOldi<ey 7 f(r)dt

Proof. Let ¢>0 be sufficiently small (¢ <min %, + —1}). Let g be a step function
g: (—m,m]—[0, 00) such that [* |/ —g|di<e ["_f()dt. By Theorem 5.3 applied to
each interval where g is constant, we can find a finite set ' < A and positive numbers

o, (AeF) satisfying (i), (ii) and

Further,

D wd'Pi(1) — g(1)| di<c /_ ’ g(1) dt.

s
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Then we have
> w2 Pi(r) - f (1) d

T
/_“ieF
Vs
<[z
—T

LeF

< / o(0) dt+s/nf(t) dt<(c1 + 2) /nf(t)dt<cz/nf(t)dt. 0

23"Pi0) — g(0di+ [ 150 = g(o)] de

6. Polynomially bounded operators

Let Te B(X) be a polynomially bounded operator with polynomial bound k.

Denote by 4(D) the disc algebra consisting of all functions continuous on D and
analytic on D, with the norm ||f|| =sup{|f(z)|: zeD}. It is well known that
functions from A(D) are uniform limits of polynomials. Therefore we can extend the
polynomial calculus for T to functions from A4(D) with the same constant £, i.e.,

IS (DI<k-NIA1 (fed(D)).

Lemma 6.1. Let Te B(X) be a polynomially bounded operator with polynomial bound
k. Let b be the constant from Proposition 4.4. Let Fc D be a finite set with (I}),_p
pairwise disjoint and |1|=3/4 (AeF). Suppose that there are vectors u,eX and
complex numbers p; (L€F) such that ||u;|| =1, |[(T — Auy||<52-(1 - 1A and
1>, cr ota]|| = 1. Then |u;| <2kb for all 1€F.

Proof. Let AgeF satisfy |u; | = max;cr|p,;|. By Proposition 4.4, there is a function
feH®* such that || f||<b, f(4) =1and f(1) =0 for Ae F\{4o}.

For re(0,1) and zeD define f.(z) = f(rz). Clearly ||f;||<||f||<b and f, is a
function analytic on a neighbourhood of D, and so f,€ A(D). Thus we can define
f+(T) and || f.(T)||<kb for all r.

Let u=>, puu;. Then || f,(T)u|| <kb||u|| = kb for all r.

For A€ F define g, ;(z) = ’M Clearly g, is analytic on a neighbourhood of D

and ||g,|| <21 41(1 = |2]) "' <2b(1 — |4))"". Hence
kb= limsup || f,(T)ull
r—)l

ST rmwas|| = > w(£2) = H(T)u;

LeF LeF

> | = timind S | lgn s ()T = 2|
- JeF

r—1_

> lim sup <
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1
> s | = Lz 3 2Kb(1 = A)™ 5 (1= 12

LeF

|1,
(1= 3 w1
LEF

since Y, p(1 = |A) <gm(U,op 1) <3 Hence |u;|<|p;, | <2kb for each ieF. [

Proposition 6.2. Let TeB(X) be a polynomially bounded operator with polynomial
bound k. Suppose that ¢(T)> T and that T has no nontrivial invariant subspace. Let b
be the constant constructed in Proposition 4.4. Then there is a positive constant
¢, ¢ <1 with the following property: if f : (—n,n] >0, 00) is an integrable function
and 0<s<2k]—bn7 then for any n sufficiently large there are a finite set F <D, vectors
u, € X and positive numbers o, (L€ F) such that

(i) the sets (I;), . are pairwise disjoint;
(i) |A]=3/4 and |2" — 1\ éfor all AeF;
(i) 37, p o <3 J2, S (1)
(V) [7 1305 p oud" Pat ) Sldi<e; [ f(1)dt
V) [Juy)| = 1 and |[(T — Dwy|| <e(1 — |A))* for all \eF;
(vi) the vectors u; (A€F) are 2kb-circled.

Proof. Properties (i)—(iv) were proved in Corollary 5.4. Property (v) follows from the
Apostol theorem, see Theorem 2.1.

To show property (vi), let f,,7,€C, |f;|<|y;| (A€F). Suppose that
1> ,crviu]|<1. By Proposition 4.4, there is a function ge H® such that
llgl|<b, q(4) = B;y;" for all AeF with 7,50, and ¢(1) = 0 if y, = 0.

For re(0,1) and ze D define ¢, by ¢,(z) = ¢(rz). Then ¢q,€ A(D), ||¢,||<||q]|<b
for all r and lim,; ¢,(4) =¢q(1) (AeF). Write g,,(z) = %;”(’) Then

llgr.21<2llglI(1 = 27" <2b(1 = 2)~"
Using Lemma 6.1, we have

Z Bus Z qA)y,u;|| = hm Z qr(A)y,un
AEF AeF “|lAeF
< lim sup( > a( Ty + (|2 (@(T) = a:(2)ym )
r1- leF leF
b1> vt + lim sup D Mgra DI 1T = Ruzl - 1]
JLeF r= LeF
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<kb+> " 2kb(1— [2)"e(1 = |2) ]y,
AEF
2kb 2kb
(1= [A))<kb + == = 2kb.
S 2 (k2]

Hence the vectors u; (AeF) are 2kb-circled. [

7. Invariant subspaces

Denote by £ the normed space of all polynomials with the norm ||p|| =
sup{|p(z)| : ze D}. Let 2* be its dual with the usual dual norm.

Let ¢ €2*. By the Hahn—Banach theorem, ¢ can be extended without changing
the norm to a functional on the space of all continuous function on T with the sup-
norm. By the Riesz theorem, there exists a Borel measure p on T such that ||u|| =
llp|| and @(p) = [pdu for all polynomials p.

Let L! be the Banach space of all complex integrable functions on T with the norm
11l = @n) ™" 7, 1S (€M) dr.

Of particular interest are the following functionals on £:

(i) Let AeD. Denote by &, the evaluation functional defined by &,(p) =
p(A) (pe?). Clearly ||&,]| = 1.
(i) Let feL'. Denote by M;e2* the functional defined by

n

M) =00 [ pEsEra (pe),
Then |[;]| <[ /1]

In particular, if g = 1 then M,(p) = p(0) for all p and M, is the evaluation at
the origin. More generally, if Ae D and g(e”) = P;(¢) then M, is the evaluation
at the point /.

(iii) Let 7': X - X be a polynomially bounded operator with polynomial bound k,
let xe X and x*e X*. Let x® x* € " be the functional defined by

(x®x)(p) = p(T)x, x> (pe?).

Since T is polynomially bounded, x ® x* is a bounded functional and we have
e @[ <kllx]] - [Ix|l-

Of course, the definition of x® x* depends on the operator 7" but since we are
going to consider only one operator 7', this cannot lead to a confusion.

Suppose that T also satisfies the condition that ||7"u||—0 for all ueX. It is a
folklore result that then all the functionals x ® x* where xe X and x*e X™* can be
represented by absolutely continuous measures, and so these functionals are of the
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form (ii). Various versions of this result can be found in [A2,E,KO,Sz]. Usually, such
results are proved by defining the H* calculus for 7" (by means of radial limits) and
by showing that this functional calculus is (w*, SOT) continuous. Since we have not
found the precise form of the necessary statement, we include the proof below; we
present a more direct argument using some classical results from measure theory.

Lemma 7.1. Let T be a polynomially bounded operator on a Banach space X . Suppose
that ||T"u||—0 for all ue X. Let xe X, x*€X*. Then there exists fe L' such that

p(T)x,x*y = [T _p(e")f(e") dt for all polynomials p.
Moreover, it is possible to choose fe L' such that || f||; = ||x®x*]|.

Proof. Recall that a sequence (f,),=A(D) is called Montel if sup||f,||<oo and
lim,_, » fu(z) = 0 for all zeD.

We show that {f,(T)x,x* > —0 for any Montel sequence (f;).

Without loss of generality, we can assume that sup|| f,||<1, ||x||<1 and ||x*|| <.
Let f,(z) = 3_Zycn;7 be the Taylor expansion of f,. By the Cauchy formula and the
Lebesgue domination theorem, we have lim, _, . ¢,; = 0 for each j=0.

Let ¢ be a positive number such that ¢ <2k, where k is the polynomial bound of 7.
Choose / such that || Tx|| <&/4k. There exists ng sufficiently large such that for every
n=ny we have |c,;|<e/2lk (j =0, ...,1). Fix such an n and write g(z) = Zf;(l)anzf.
Then  fu(2) = g(z) + Z'h(z) for ~some  function heA(D).  Clearly
91| < Zj-olenj| <e/2k and [[2]] = || f, = g]|. Thus

|6 |< DI < g(T)x] + 110 = (D]
< Kllgll -+ 1D - 1751 <5 + k1o = oll - 5

& .
<+ E AU+ Nl <e.

&
4
Thus <{f,(T)x,x* > —0.

Now let ¢ be a measure representing the functional x®x* such that ||u|| =
[|[x®x*||. Since we have (x®x*)(f,)—>0 for each Montel sequence (f,), 1 is a
Henkin measure. By the Val’skii theorem and the M. and F. Riesz theorem, pu is
absolutely continuous with respect to the Lebesgue measure. For details we refer to
[R, Theorem 9.2.1 and Remark 9.2.2(c)].

The Radon—Nikodym theorem now implies the statement of the lemma. [

Let ¢3 be a constant satisfying c¢;<c3<1, where ¢, is the constant from
Proposition 6.2. Let b be the universal constant form Proposition 4.4.

Theorem 7.2. Let T : X —» X be a polynomially bounded operator with constant k, such
that 6(T)> T and T has no nontrivial invariant subspace. Let f € L' be nonnegative
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with ||f||, =1, and let y*€ X* be arbitrary. Then for every positive integer n

sufficiently large there exist xe X and x*e€ X* such that ||x||<2kbv/?2, ||x*||<1 and
IXx® (T™"'x" + ") — My|[<cs.

Proof. Let ¢ be a positive number satisfying e<5l—, ¢|[y*||*<1 and 12K°h*n /e
<cC3 — C).

For any n sufficiently large there exist, by Proposition 6.2, a finite set F <D and
positive numbers o; (A€ F) such that the intervals (1), are pairwise disjoint and

l s

— dt <o.
7 X (2

> @ 2'Pi(1) — £ (1)

LeF

—T

Also, there exist 2kb-circled vectors u;eX (A€F) such that ||u;|| =1 and ||(T —
Auy)|<e(l —|4])* for all LeF.

We define, on the linear span of (u,),, the linear functional ¢ by ¢(u)) =
27"y*(uy) (A€F). By the Hahn—Banach theorem, we can extend it to a bounded
functional on X denoted by the same symbol ¢. By Proposition 3.5, there exist

complex numbers y; and a functional y € X* such that ||, _puu:|| <2kbv?2, |y —
o||<1 and Y(wu;) =a, for every AeF. Note that we have the estimates

|| <4k*b*\/2 < 6k*h* by Lemma 6.1. We take x = >, _iu; and x* = — ¢.
Let ge L' be defined by g(e") =Y, z0,4"P; (). Thus

|My — My||<[lg — [l <2

and for any polynomial pe % we have

Myp = %/j g(eMp(e") dt = 2i Z oc;]f’/ﬁ P;(t)p(e") dt = Z o; A" p(A).

s us )
Therefore

IX@ (T™x" + ") = My[|[< ||T"x @x" + x®@y" — My|| + || M, — My]|

< Hshllo1 [<p(T)T"x,x" > + {p(T)x,y" > — Myp| + cs.
Pl<

Now

p(T)T"x, x> = > K Tp(T)us, x* )

AEF

=3 W (T"p(T) = Zp()uiyx™y + 3w (A p(Aus, X

reF LeF
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and

p(T)x, "> = wp(Thuz, y*>

LeF
= > (p(T) = p()uiy™> + > < p(Aui, 3.
LEF LEF

Using the equalities {u,,y*> = A"Cuy, @), x* +¢ =y and {pu;, > = oy, we
obtain that

Y w A pRu x>+ p(Ruy > =Y (A X+ 9

LeF LeF LeF
= w A p(Dup

LeF
= Z o, A"p(A) = Myp.

AEF

Therefore we have

[<p(T)T"x,x" > + {p(T)x,y" ) — Myp|

reF AEF

S <<<T"p<T> PO x > + 3 ((p(T) —pu>>uhy*>> ‘
(6)

We estimate the right-hand side of (6) in a standard way. Write ¢(z) = %ﬁpw

Clearly [|g]| <2[|p||(1 = [4]) "' <2(1 = |2))"". Then ||¢(T)||<2k(1 — |2)”". Hence
(T"p(T) = 2"p(W)us|| =lg(TNT — A)us|
< 2k(1 —[A))"e(1 — |A])? <2ke(1 — |A]).

Similarly, one obtains the estimate ||(p(T) — p(4))u,|| <2ke(1 — |4]). Since ||x*|| <1
and ¢||y*||* <1, from (6) we obtain

[<p(T)T"x,x* > + {p(T)x,y" > — Myp|

<3 Il (2ke(l — [2]) + 2kv/E(1 — [2])) <6K°B? -4k\f~g

LeF

because |u;| <6k*h* and

A

42(1—

LeF

) :m<U 1;,) <2m.

AeF
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Thus
IX® (T"x" +y*) = My|| S 1261 /e + 2 < 5.

This completes the proof. [

Theorem 7.3. Let T : X > X be a polynomially bounded operator with constant k.
Suppose that o(T)DT and that T has no nontrivial invariant subspace. Assume that
||T"x|| =0 for all xeX. Let we X, z*eX*, §>0 and feL" with f>0. Then there
exist ue X and u* € X* such that

@) [u®  +27) — My||<cs- [ f]];;
(i) ||[w®u*||<d;
() ||| <2kbV/2]| £}/ and ||u*]| <K]| f]]}/.

Proof. The statement is trivial if || f||; = 0. Assume that || f]|; #0. Choose n large
enough such that ||T"w\|<5\|f\|fl/2k’1 and such that, by Theorem 7.2 applied to
the function f - || f||;' and the functional z*Hle_]/z, there exist ve X and v* e X*
with ||v]| <2kbVv2, |[v*]|<1 and

kN * —1/2
[0® (T*"" + 2| FII;2) = My ol <es.

Set u=||f|/*v and w* = ||f|*T*"v". Then [[u]|<2kbV2||/][}* and |ju||<
kI

Furthermore,
* 1/2 BT/ 1/2 n * 1/2 n
w@w|| =1 we T = | A1V IT"wv*||<|f |}k - [| T"w]| <o.
Finally,

* * g KN K s £11—1/2 .
@ +2%) = Myl = /1L - 0@ (T + 2|1, ) = My <l O

We fix an integer N such that ¢3 + 7N~ <1 and a positive constant ¢ such that
1-N'1—-c;—naN<e<l.

Theorem 7.4. Let T : X - X be a polynomially bounded operator with constant k.
Assume ||T"ul| -0 for all ue X. Suppose that 6(T)>T and T has no nontrivial
invariant subspace. Let xe X, x*€ X* and he L'. Then there exist ye X and y*e X*
such that

@ |1y — x[|<2kbv2||A]],*;
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(i) [l — x| <llAll
(i) |ly®y" —x@x" — Myl[<c||A]],-

Proof. For j=0,...,N —1 let B; be the set of all complex numbers that are of the
form re' with r>0 and —£<t — %<% Fix a representative of 4 and define 4; =
h='(B;) (j=0,...,N —1). Then |||, = Zjli61||hxj||l where y; is the characteristic
function of 4; (j=0,...,N —1).

Fix jo, 0<jo<N — 1 such that ||y ||, =N""]|Al|,.

Set v = ?™i/N For each ze 4, we have

Gl — (=) = Ih(:) - ' - ZEM <Ih(z)|aN

and so |||h|VXj0 - h}{j0||1 <”N_thJ{joHl-
Without loss of generality, we can assume that ||A]|;#0. Let § be a positive

number such that d||A]|;' + 1 - N"1(1 —c; — 2N~ <e.
By Theorem 7.3, there are vectors ueX and w*eX* such that ||u||<

1/2 % 1/2 %
2kb/2| [y, |12, (|| <Klhy 1), llx®@u]] <6 and
lu® (u" + x7) = My, |[<csllhg,ll;-
1/2

Set y=x+vw and y*=x"+u*. Then ||y—x||:Hvu||<2kb\/§||h;(jo|\l <

1/2 " " « 1/2
2kby/2|[A]}* and [[y* — x*|| = [ju*|| <k[h||}*.
Furthermore,

@y —x®x" — Myl|< |[x®y" — x@x'|| + [u@y" — M|

S e@u|| + |lv(u@ (" +u”) = My )| + [[VMyy, = Mal]

< 6+C3||hxj0||1 + ||V|/’Z|Xj0 _honHl +Z |hXj |1
J#jo

<O+ (e3+ NIy, + [Ally = [l |l

<Al = Ml |1, (1= e3 = aN~") +6

<Al - (1= N1 ey —aN") +o<dlbll,. O

Now we are ready to prove the main theorem B.



C. Ambrozie, V. Miiller | Journal of Functional Analysis 213 (2004) 321-345 343

Theorem B. Let T be a polynomially bounded operator on a complex Banach space X .
Assume that || T"x|| -0 for all xe X and that the spectrum of T contains the unit circle.
Then T has a nontrivial invariant subspace.

Proof. Suppose on the contrary that 7' has no nontrivial invariant subspace. We
construct inductively convergent sequences (x;)=X and (xj)=X* such that
|lx; ® x; — Mi|| >0, where 1 denotes the constant function equal to 1 on T.

Set xp = 0 and x§ = 0. Let ¢y = xo®@x; — M,. Then [|¢y|| = 1.

Suppose that we have already constructed vectors x;€ X and x7eX™ such that
llp;[|[<c where ¢; = X;@x; — M. Let hie L' be a function representing the
functional ¢; such that [|/j]|; = ||¢;||<c/. Let k be the polynomial bound of 7. By
Theorem 7.4, there are x;;1€X and x_/ﬁrl e X* such that

i1 — 71| < 2kbV/2| |y} > <2 2kbe 2,
* % 1/2 .
17,0 — x; 1| <Kyl <kl
and for ;| = x;41 ® x| — M; we have

@il =[1X41 ® X7y — X ®X7 + )|
= X1 ® X7y, — X, ®@x] + My || <cl[hyl|; <M.

*

Clearly (x;) and (x7) are Cauchy sequences. Let x=lim;,x; and x* =

lim;_, o x;. For each polynomial p with ||p|[<1 we have

[<p(T)x;,x; > — {p(T)x,x" )|
<|Kp(T)x;,x7 > — p(T)x;, x5 |+ [{p(T)x,x* ) — {p(T)x,x" )|

Skl (1" = x5 1+ kllxg = x[[ - []x*]| =0

uniformly on the unit ball in 2. Thus x®x* = limjﬁooxj@xj = M; and
{p(T)x,x*> = p(0) for each polynomial p. It is well known that this implies that
T has a nontrivial invariant subspace. Indeed, either 7x = 0 (in this case x generates
a one-dimensional invariant subspace) or the vectors T*x (k>1) generate a
nontrivial closed invariant subspace. [

The condition 7"x—0 (x€X) in the previous theorem can be omitted. However,
in this case we obtain an invariant subspace for 7* instead of 7.

Theorem A. Let T be a polynomially bounded operator on a Banach space X such that
a(T)>T. Then T* has a nontrivial closed invariant subspace.
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In particular, if X is reflexive, then T itself has a nontrivial closed invariant
subspace.

Proof. We reduce the problem in a standard way. Let X; = {xe X : ||T"x||—0} and
Y, = {x*eX* :||T*"x*||>0}. Then X and Y; are closed subspaces invariant with
respect to T and T*, respectively. So X' is invariant with respect to 7*. Thus it is
sufficient to consider only the cases that X; and Y are trivial.

If X; = X then T has a nontrivial invariant subspace by Theorem B, and so has
T*. If Yy = X* then T* has a nontrivial invariant subspace by Theorem B.

The remaining case of X; = {0} and Y; = {0} (i.e., the class C;; in the
terminology of Sz. Nagy and Foias [NF]) was discussed in [CF], cf. p. 136. Since
in [CF] it was considered only the case of reflexive Banach spaces, we indicate briefly
the argument in the general situation as a separate theorem, which will finish the
proof of our main result.

Theorem 7.5. If T is a power bounded operator of class Cyy on a complex Banach
space X, then either T* has a nontrivial hyperinvariant subspace, or T is a scalar
multiple of the identity.

Proof. We follow closely the lines of the original proof, avoiding the reflexivity
assumption on X required in [CF]. For xe X define

||lx]; = lim sup [[7"x]|.
n— oo

Note that ||x||; <k||x||. Let X; be the completion of X with respect to the norm
[|-]];- Let 4: X—>X, be the natural embedding of X into X;. Then 4 is a
quasiaffinity, i.e., it is a bounded injective linear operator with dense range.

Since ||Tx||, = ||x||, for all xeX, the operator T extends continuously to an
isometry 77 on X;. We can assume that 7X is dense in X, since otherwise ker 7" =
(TX )L is a nontrivial subspace hyperinvariant with respect to 7%. Hence 71X, is
dense in X;. Therefore 7 is an invertible isometrical operator. By Colojoara and
Foiag [CF, Proposition 5.1.4], T is C*(T)-unitary, where C?(T) denotes the algebra
of all complex functions of class C> on T (we refer to Definitions 3.1.3, 3.1.18 and
5.1.1 of [CF]). Hence T is decomposable by Theorem 3.1.19.

It is easy to see that AT = T1A. Hence T is a quasiaffine transformation of 7j. In
the standard notation this is denoted by 7'< T;. Consequently, 77 <T*.

Applying the same argument to 7™ instead of 7, we get a decomposable
operator 7> such that 7*<T,. Thus T <T*<T, where both 7} and T, are
decomposable, see [LN, Theorem 2.5.3]. Now [CF, Theorem 2.4.5] leads to the
desired conclusion, except for the case when the spectrum of 77 is a single point
{2}. In this case the arguments in the proof of Theorem 5.1.9 and Lemma 4.3.5,
show that T =/1. O
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