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Abstract We characterize the existence of the Lebesgue integrable solutions of the
truncated problem of moments in several variables on unbounded supports by the
existence of some maximum entropy—type representing densities and discuss a few
topics on their approximation in a particular case, of two variables and 4th order
moments.
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1 Introduction

In this work we consider the problem of moments in the following context. Let T ⊂ R
n

be a closed subset, where n ∈ N is fixed. Let I ⊂ (Z+)n be finite such that 0 ∈ I , where
Z+ = N ∪ {0}. Fix a set g = (gi )i∈I of real numbers gi with g0 = 1. The problem
under consideration is to establish if there exist (classes of) Lebesgue measurable
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146 C.-G. Ambrozie

functions f ≥ 0 a.e. (almost everywhere) on T , such that
∫

T | t i | f (t) dt < ∞ and

∫

T

t i f (t) dt = gi (i ∈ I ) (1)

and find such solutions f . As usual dt = dt1 . . . dtn and t i = t i1
1 · · · t in

n for any
multiindex i = (i1, . . . , in) ∈ Z

n+ where t = (t1, . . . , tn). In this case we call f a
representing density for g, and gi the moments of f . In general T is unbounded and
usually I = {i : |i | ≤ 2k} for k ∈ N, where |i | = i1 + · · · + in .

Generally a problem of moments [5,37], called also T -problem of moments when
T is given (Curto and Fialkow [15]), is concerned with the existence of an arbitrary
Borel measure μ ≥ 0 supported on T such that

∫
T t i dμ(t) = gi for i ∈ I , in which

case one calls μ a representing measure of g. The feasibility of (1) characterizes the
dense interior of the convex cone of all data g having representing measures, provided
that all t ∈ T are density points and I is a union of intervals [0, i] := { j ∈ Z

n+ : 0 ≤
jk ≤ ik, 1≤k ≤n}, see (Theorems 5, 6, [3], and Junk, Theorem A.1, [23] in a slightly
different context). For our purpose here we only require that the Lebesgue measure of
T be �= 0.

Author’s main contributions are contained in the statements 4–9. In particular,
by Corollary 6 for example, for each fixed ε > 0 we characterize the feasibility of
(1) by the existence of a (unique) f∗ minimizing

∫
T f ln f dt + ε

∫
T ‖t‖2k+2 f (t) dt

amongst all solutions, which is equivalent to the existence of a (unique) vector λ∗ =
(λ∗

i )|i |≤2k maximizing the associated Lagrangian L(λ) = Lε(λ) = ∑
|i |≤2k giλi −

∫
T e

∑
|i |≤2k λi t i −ε‖t‖2k+2

dt, in which case f∗(t) = e
∑

|i |≤2k λ
∗
i t i −ε‖t‖2k+2

where ‖t‖ =
(
∑n

j=1 t2
j )

1/2. The more general formulation of the main result Theorem 4 aims to
cover also other cases like T =compact with ε = 0 [31].

Maximizing the Boltzmann–Shannon’s entropy H( f ) = − ∫
T f ln f dμ on a

probability space (T , μ) subject to various restrictions
∫
T ai f dμ= gi (i ∈ I ) is a

well-known principle in statistical mechanics and information theory [13,20,23,32].
The maximum of H is attained on the unbiased probability distribution f∗ on a partial
knowledge, of the prescribed average values gi of some random variables [9,13,20].
Typically f∗ is obtained by maximizing a function L (the Lagrangian) convex conju-
gate to −H [10,11,27,33,36], which leads to characterizations (sup/maxL <∞) of
the feasibility of the primal problem—in our case (1). One may consider more general
measures μ≥ 0 or functionals like H( f )=−tr( f ln f ), tr(ln f ) where f = positive
definite matrix for noncommutative moments (Theorems 2,3, [4]), [7].

While the case T =compact was known long before (Lewis [31]), the similar
problems with unbounded support T (or unbounded moments ai ) are usually difficult
and still studied, see Abramov [1], Borwein [9], Junk [23], Hauck et al. [27] and
others [18,22,24,30,39]. We mention that the feasibility of (1) has been characterized
in Blekherman, Lasserre [12], avoiding entropy maximization but also in Lagrangian
terms. If T is unbounded, Corollary 6 cannot be improved to ε=0: there are examples
of realizable, but degenerate data g such that the constrained H -maximization fails
for (T , μ)= (Rn, dt), see Junk and co-workers [22,27]. For H( f )=− ∫

T f ln f dt ,
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Multivariate truncated moments problems and maximum entropy 147

the maximization of L(λ) (= L0(λ) ∈ [−∞,∞)) always holds, at a unique point
λ∗—using for instance (Corollary 2.6, [10]), see also [23,27]. It follows, by means of

Fatou’s lemma, for I = {i : |i | ≤ 2k}, that |t i |e
∑

| j |≤2k λ
∗
j t j ∈ L1(T, dt) for all |i | ≤ 2k,

∫
T t i e

∑
| j |≤2k λ

∗
j t j

dt = gi (|i | < 2k) but the equality may fail for |i | = 2k. Namely
the dual attainment supL = maxL does hold, but primal attainment sup f ∈(1)H( f )=
max f ∈(1)H( f ) is also a difficult topic if ai (t) (for instance t i ) are not in the dual of
L1(T ). For these matters we refer the reader to [22,23,27,32] and for applications to
Boltzmann equations we mention also [6,14,18,24,39].

Originated in works by Stieltjes, Hausdorff, Hamburger and Riesz, the area of
moments problems saw extensive development in many directions, that we do not
attempt to cover. There exist also other approaches to the multivariate moments prob-
lems, by operator theoretic or convexity methods [16,17,19,35,38,40], in particular a
truncated version of Riesz–Haviland’s theorem [15], see also [25,34] for other results,
related to sums-of-squares representations of positive polynomials or polynomial opti-
mization theory. These interesting topics are beyond the goal of the present paper, that
is focused on the H/L -maximization.

2 Main results

Fix T, I and g as stated in the Introduction. For any measurable space T endowed
with a σ -finite measure μ ≥ 0 and 1 ≤ p ≤ ∞, the notations L p(T , μ), L p

+(T , μ)
(sometimes, L p(μ), L p

+(μ)) have the usual meaning. We repeat below an argument
from (Theorem 2.9, [10]), adapted to our case.

Lemma 1 (See [10]) Let μ ≥ 0 be a finite measure on T . Let x ∈ L1+(μ)\{0},
and ai ∈ L1(μ) (i ∈ I ) be a finite set of functions such that

∫
T |ai |xdμ < ∞

for all i and (ai )i are linearly independent on any subset of positive measure. Then
there is a sequence (yk)k≥k0 ⊂ L∞(μ) such that xk := min(x, k) + yk ≥ 0 a.e.,∫
T ai xkdμ = ∫

T ai x dμ for all i ∈ I, |yk | ≤ x and yk → 0 a.e.

Proof Set zk = min(x, k) for k ≥ 1. Using {x > 0} = ∪l≥1{x ≥ 1/ l}, we find a
δ ∈ (0, 1) and T∗ ⊂ T with μ(T∗) > 0 such that x(t) ≥ δ a.e. on T∗. The linear map
A : L∞(T∗) → R

N (N = card I ), Ay = (
∫
T∗ ai y dμ)i is surjective for otherwise

there is a (λi )i �= 0 orthogonal to its range, such that
∑

i λi
∫
T∗ ai y dμ = 0∀ y,

whence
∑

i λi ai = 0 a.e. on T∗ that is impossible. Since A has closed range, there is
a c such that infw∈ker A ‖y − w‖∞ ≤ c‖Ay‖∀y ∈ L∞(T∗). By Lebesgue’s theorem
of dominated convergence, limk

∫
T ai zkdμ = ∫

T ai x dμ for all i . There are yk ∈
L∞(T ) with supp yk ⊂ T∗ such that

∫
T ai ykdμ = ∫

T ai (x − zk) dμ and, since
Ayk → 0, we can choose them such that ‖yk‖∞ → 0. For large k, ‖yk‖∞ ≤ δ/2. On
T∗, x ≥ min(x, k) ≥ δ > δ/2 ≥ |yk |. Then xk ≥ 0 a.e. �

Fenchel duality deals with minimizing convex functions ϕ : X → (−∞,∞] over
convex subsets of locally convex spaces X , in connection with the dual problem of
maximizing −ϕ∗ where ϕ∗ is the convex conjugate of ϕ, called also its Legendre-
Fenchel transform [10,11,27,33,36]; ϕ must be proper (ϕ �≡ ∞). Letting the effective
domain of ϕ be dom ϕ = {x ∈ X : ϕ(x) <∞}, ϕ∗ is defined on the dual of X by
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148 C.-G. Ambrozie

ϕ∗(x∗) = sup{〈x, x∗〉−ϕ(x) : x ∈ dom ϕ}. Typically, inf ϕ = sup(−ϕ∗). Briefly
speaking, we set ϕ(x) = −H(x) if x ≥ 0 satisfies the equations of moments,
and ϕ(x) = +∞ outside the set of solutions. Then ϕ is convex conjugate to
ϕ∗(x∗) = ln

∫
T e

∑
i λi ai dμ − ∑

i giλi for x∗ = ∑
i λi ai , and ϕ∗(x∗) = +∞ oth-

erwise. Thus dom ϕ∗ is the linear span of the ai ’s and (if a0 ≡ 1) the Lagrangian
l := −ϕ∗|dom ϕ∗ is given by λ �→ − ln

∫
T e

∑
i∈I\{0} λi (ai −gi )dμ. Maximizing l or L

are equivalent problems. We rely on Borwein and Lewis’ results [10] concerned with
L , providing dual attainment in a point λ∗. The equality inf ϕ = sup(−ϕ∗) becomes
here P = D. Although under different hypotheses, L is analogous to the dual func-
tion ψ from Hauck, Levermore and Tits (Section 4.1, [27]), and would fit the case
when dom L ∩ ∂(dom L)=∅ in Junk [23] except we do not have here a distinguished
moment am such that lim‖t‖→∞ |ai (t)|

1+am (t)
= 0 (i �=m).

The following Borwein and Lewis’ result from [10] is the main Fenchel theoretic
tool to be used later on in the proof of our Theorem 4.

Theorem 2 (Corollary 2.6, [10]) Let T be a space with finite measure μ ≥ 0, 1 ≤
p ≤ ∞ and ai ∈ Lq(μ), gi ∈ R for i ∈ I (= finite) where 1

p + 1
q = 1. Let

φ : R → (−∞,∞] be proper, convex and lower semicontinuous, with (0,∞) ⊂
domφ. Suppose there exist x ∈ L p(μ) with x(t) > 0 a.e. such that φ ◦ x ∈ L1(μ)

and
∫
T ai (t) x(t) dμ(t) = gi for i ∈ I . Then the values P ∈ [−∞,∞) and D ∈

[−∞,∞] defined respectively by

P = inf

⎧
⎨

⎩

∫

T

φ(x(t)) dμ(t) : x ∈ L p(μ), x ≥ 0 a.e., φ◦x ∈ L1(μ),

∫

T

ai xdμ=gi ∀i

⎫
⎬

⎭

and

D =max

⎧
⎨

⎩

∑

i∈I

giλi −
∫

T

φ∗
(

∑

i∈I

λi ai (t)

)

dμ(t) : λi ∈ R, φ∗◦
∑

i∈I

λi ai ∈ L1(μ)

⎫
⎬

⎭

are equal, −∞ ≤ P = D < ∞ and the maximum D is attained.

Remark 3 (a) Letφ be defined byφ(x) = x ln x for x > 0,φ(0) = 0 andφ(x) = +∞
for x < 0. Then φ is proper, convex, lower semicontinuous, bounded from below,
with effective domain [0,∞) and its convex conjugate is φ∗(y) = ey−1 for all
y ∈ R; use to this aim that φ∗(y) = supx≥0(xy − x ln x).

(b) For the integrand φ defined at (a) and (λi )i∈I = 0, the constant function
(φ∗ ◦∑

i∈I λi ai )(t) ≡ φ∗(0) is in L1(μ). Thus for any data ai , gi verifying the
hypotheses of Theorem 2, we obtain that −∞ < P = D < ∞.

(c) Let x ∈ L1+(μ) with x ln x ∈ L1(μ) and yk ∈ L1(μ) (k ≥ 1) such that xk :=
min(x, k) + yk ≥ 0 a.e., |yk | ≤ x and yk → 0 a.e. as k → ∞. By Lebesgue’s
dominated convergence theorem, limk

∫
xk ln xkdμ = ∫

x ln x dμ, since on {t :
xk(t)≥1}, xk ≤2x ⇒ |xk ln xk |≤ |2x ln(2x)| while on {t : xk(t)<1}, |xk ln xk |≤
1/e; hence |xk ln xk |≤|2x ln x + (2 ln 2)x | + 1/e ∈ L1(μ).
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Multivariate truncated moments problems and maximum entropy 149

In Theorem 4 the choice of the norm on R
n is unimportant. We call a function a

on T independent of (t i )i∈I\{0} if there are no subsets Z ⊂T of positive measure and
constants (ci )i∈I\{0} such that a =∑

i∈I\{0} ci t i on Z .

Theorem 4 Let T ⊂R
n be closed, I ⊂Z

n+ finite, 0∈ I and g =(gi )i∈I a set of numbers
with g0 =1. Set m =maxi∈I |i |. Let a, ρ be measurable functions on T , 0<a, ρ <∞
a.e. such that

∫
T e

‖t‖m+1
α a(t) ρ(t) dt<∞ for all α>0, and a is independent of (t i )i∈I\{0}.

The statements (a), (b), (c) are equivalent:

(a) There exist functions f ∈ L1+(T, dt) such that
∫

T |t i | f (t)dt < ∞ and

∫

T

t i f (t) dt = gi (i ∈ I ); (2)

(b) There exists a particular solution f∗ ∈ L1+(T, dt) of problem 2, maximizing the
entropy functional H = Hρ,a : L1+(T, dt) → [−∞,∞) given by

H( f ) = −
∫

T

(
a f

ρ
ln

a f

ρ

)

ρ dt

amongst all solutions;
(c) The Lagrangian function L = Lρ,a,g : R

N → [−∞,∞) (N = card I ) associated
to the functional H and the Eq. 2, given by

L(λ) =
∑

i∈I

giλi −
∫

T

e
∑

i∈I λi t i /a(t)−1 ρ(t) dt (λ = (λi )i∈I ),

is bounded from above and attains its supremum in a point λ∗ = (λ∗
i )i∈I .

In this case f∗ and λ∗ are uniquely determined, −H( f∗) = L(λ∗) and

f∗(t) = a(t)−1ρ(t) e
∑

i∈I λ
∗
i t i /a(t)−1 (t ∈ T ),

in particular H �≡ −∞ on the set of all solutions of 2, and

∫

T

t i e
1

a(t)

∑
j∈I λ

∗
j t j −1a(t)−1ρ(t) dt = gi (i ∈ I ).

Proof Let ai (t) = t i/a(t) for i ∈ I and t ∈ T . The condition on ρ and a shows that
the measure μ := ρ dt on T is finite and, by means of the inequalities: |t j | ≤ ‖t‖
(:= (

∑n
j=1 t2

j )
1/2) for 1≤ j ≤n,

|t i | = |t i1
1 · · · t in

n | ≤ ‖t‖i1+···+in ≤ (‖t‖m + 1)|i |/m ≤ ‖t‖m + 1 (3)
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150 C.-G. Ambrozie

and
∑

i∈I λi ai (t) ≤ ∑
i∈I |λi | · ‖t‖m+1

a(t) , that for every λ = (λi )i∈I ∈ R
N

g(λ) :=
∫

T

e
∑

i∈I λi ai (t)−1dμ(t) < ∞. (4)

By writing ses/α ≤ eβs/α for large β (≥ α/e + 1) and s := (‖t‖m + 1)/a(t),

∫

T

‖t‖m + 1

a(t)
e

‖t‖m+1
αa(t) dμ(t) < ∞ (α > 0). (5)

Then for every λ = (λi )i∈I , by the inequalities (3) again,

∫

T

(‖t‖m + 1)a(t)−1e
∑

i∈I λi ai (t)−1dμ(t) < ∞. (6)

Hence
∫

T ai (t)e
∑

i∈I λi ai (t)−1dμ(t) < ∞, in particular ai ∈ L1(T, μ) for i ∈ I . Any
of the statements (a)–(c) implies that the Lebesgue measure of T is strictly positive
(finite or not), due to the condition g0 = 1. Then for every f ∈ L1+(T, dt), by Jensen’s
inequality for the function φ(x) := x ln x (x ≥ 0),

H( f ) = −μ(T )
∫

T

φ

(
a f

ρ

)
dμ

μ(T )
≤ −μ(T ) φ

⎛

⎝
∫

T

a f

ρ

dμ

μ(T )

⎞

⎠ ≤ μ(T )/e < ∞.

(a) ⇒ (c). Suppose that problem (2) has a solution f . The function x := a f/ρ then
satisfies

∫
T |ai |xdμ < ∞ and

∫
T ai xdμ = gi for i ∈ I . By the original version

(Theorem 2.9, [10]) of Lemma 1 (if xk = max(x, k)+ 1
k + yk), there are functions

x̃ ∈ L∞(T, μ), x̃ > 0 μ-a.e. on T , such that
∫

T ai (t)x̃(t)dμ = gi (i ∈ I ). Here
L∞(T, μ) = L∞(T, dt) since μ is equivalent to dt on T . For such x̃ , the function
φ◦ x̃ = x̃ ln x̃ belongs to L∞(T ), and hence, to L1(T, μ). Then we can use Theorem 2
for φ(x) = x ln x and p = ∞, see Remark 3, (a). Let P = inf x

∫
T x ln x dμ over the

set of all x ∈ L∞+ (T ) such that

∫

T

ai x dμ = gi , i ∈ I (7)

and D := supL . Then −∞ < P = D < ∞ with attainment in the dual prob-
lem, see Remark 3, (b). Therefore, L(λ) = ∑

i∈I giλi − ∫
T e

∑
i∈I λi ai (t)−1dμ(t) is

bounded from above on R
N and its supremum D is attained. (c) ⇒ (b). Assume

there is a λ∗ such that L(λ∗) = maxL . As expected, we will derivate under the
integral to show that x∗(t) := e

∑
i∈I λ

∗
i ai (t)−1 satisfies (7) and moreover maximizes

Hμ(x) := − ∫
T x ln x dμ amongst all solutions from L1+(T, μ). Firstly, by (4),
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Multivariate truncated moments problems and maximum entropy 151

∫
T x∗(t)dμ(t) = g(λ∗). By (3) and (6),

∫
T |ai |x∗dμ < ∞ (i ∈ I ). For any λ we

have L(λ) ≤ L(λ∗), that is, by (4),

g(λ∗) ≤ g(λ)+
∑

i∈I

gi (λ
∗
i − λi ). (8)

Fix j ∈ I , let ϕ(t) = ± a j (t) and set v = (vi )i∈I where vi = ±δi j = Kronecker’s
symbol (the signs agree). For any ε > 0, set λε = λ∗ + εv, namely λε = (λεi )i∈I

where λε j = λ∗
j ± ε and λεi = λ∗

i for i �= j . Let Fε(t) = 1
ε

x∗(t)(1 − eεϕ(t)). Note
that

lim
ε→0

Fε(t) = −ϕ(t)x∗(t) (9)

and x∗eεϕ = e
∑

i∈I λ
∗
i ai −1+ε(±a j ) = e

∑
i∈I λεi ai −1. Then by (4) and (8),

∫

T

Fε(t)dμ(t) = g(λ∗)− g(λε)

ε
≤ ∓g j . (10)

By the estimates (3), we may let y = ϕ(t) and z = (‖t‖m + 1)/a(t) in the inequality:
e−z 1−eεy

ε
≥ −|y| where z > 0, y is real, |y| ≤ z and ε < 1. Hence Fε(t) ≥

−x∗(t)|ϕ(t)| · e(‖t‖m+1)/a(t). The right hand side is in L1(T, μ) by the estimates:
|ϕ(t)| ≤ (‖t‖m + 1)/a(t), x∗(t) ≤ ec(‖t‖m+1)/a(t) for a constant c = c(λ∗), and (5).
Then we may apply Fatou’s lemma for a sequence ε = εk → 0 to obtain, by (9) and
(10), that

∓
∫

T
a j x∗dμ = −

∫

T

ϕx∗dμ =
∫

T

lim
ε→0

Fεdμ ≤ lim inf
ε→0

∫

T

Fεdμ ≤ ∓g j .

Hence
∫

T a j x∗dμ = g j . Since j was arbitrary in I , x∗ is a solution of (7). The
function f∗ := ρx∗/a is then a solution of (2). By (4) and (6), x∗ ln x∗ ∈ L1(T, μ),
i.e. (a f∗/ρ) ln(a f∗/ρ) ∈ L1(T, ρdt). Hence there are solutions f of (2) such that
H( f ) > −∞. By the correspondence f ↔ x = a f/ρ, the fact that f∗ maximizes the
functional H given at (b) is equivalent to saying that

∫
T x∗ ln x∗dμ ≤ ∫

T x ln x dμ for
all the solutions x ∈ L1+(T, μ) of the problem (7). By Lemma 1 and Remark 3, (c) it
suffices to show that

∫
T x∗ ln x∗dμ ≤ ∫

T x ln x dμ for any solution x ∈ L∞+ (T ) of (7).
This holds by

∫

T

x ln x dμ ≥ P = D =
∑

λ∗
i gi −

∫

T

e
∑

i λ
∗
i ai −1dμ =

∫

T

x∗ ln x∗dμ.

The conclusion P = D of Theorem 2 provides −H( f∗) = L(λ∗). The uniqueness of
λ∗ and f∗ (or, equivalently, x∗) follow from the strict convexity of −L , resp. −Hμ and
the fact that T is not negligible, whence p|T = 0 a.e. ⇒ p = 0 for any polynomial
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152 C.-G. Ambrozie

p = ∑
i∈I λi X i (the zeroes sets of nonconstant polynomials are algebraic varieties,

and so have null Lebesgue measure). �
Proposition 5 develops an idea from Mead and Papanicolaou [32], that we generalize

to our present context.

Proposition 5 Let T , I , g and ρ, a satisfy the hypotheses of Theorem 4. Suppose also
that a(t)=∑

i∈I ci t i and
∑

i∈I ci gi >0. If supLρ,a,g<∞, then there is a λ∗ on which
the supremum is attained, supLρ,a,g = Lρ,a,g(λ∗).

Proof Since a is independent of (t i )i∈I\{0}, c0 �= 0. Set ci0 = ci , ci j = δi j

(i ∈ I , j ∈ I\{0}). A change of variables λ �→ λ̃: λi = ∑
j∈I ci j λ̃ j gives L(λ) =

L̃(λ̃) := ∑
j∈I g̃ j λ̃ j − ∫

T e
∑

j∈I λ̃ j ã j −1
ρ dt where g̃ j = ∑

i∈I ci j gi and ã j = τ j/a

for τ j (t) = ∑
i∈I ci j t i . Then supL̃ = supL . We prove the attainment for L̃ . Denote λ̃,

ã j , g̃, L̃ by λ, a j , g, L , respectively. Now a0 ≡ 1, g0 > 0 and (τi )i∈I are linearly inde-
pendent on any subset of positive measure. Letμ = ρdt . Since supL < ∞,μ(T ) > 0.
Set λ = (λ0, λ

′) where λ′ = (λi )i∈I\{0}. Maximizing L with respect to λ0 gives

α(λ′) := − ln
∫

T e
∑

i∈I\{0} λi ai (t)−1dμ(t) such that maxλ0 L(λ0, λ
′) = L(α(λ′), λ′).

Consider the (convex) potential f (λ′) := ∫
T e

∑
i∈I\{0} λi (ai (t)−gi )dμ(t) so that supL <

∞ ⇔ inf f > 0. If inf f is attained at some λ′∗, supL will be attained at (α(λ′∗), λ′∗).
By (3),| ∑i∈I\{0} λi (ai (t)− gi )| ≤ ‖λ′‖(c ‖t‖m+1

a(t) + ‖g‖) where ‖λ′‖=∑
i∈I\{0} |λ′

i |,
‖g‖ = maxi∈I |gi | and c is a constant. Then for every sequence λ′

k =(λki )i∈I\{0} such

that limk λ
′
k = λ′ we have e

∑
i∈I\{0} λki (ai (t)−gi ) ≤ esupk‖λ′

k‖(c ‖t‖m+1
a(t) +‖g‖) ∈ L1(T, μ).

By Lebesgue’s dominated convergence theorem, limk f (λ′
k) = f (λ′). Thus f is

continuous.
There is no λ′ �= 0 such that pλ′(t) := ∑

i∈I\{0} λi (τi (t)/a(t) − gi ) ≤ 0 a.e. on
T , for otherwise on the subset Z : pλ′(t) = 0 of T we have a(t)

∑
i∈I\{0} λi gi =

∑
i∈I\{0} λiτi (t); if

∑
i∈I\{0} λi gi = 0, we get μ(Z) = 0 due to λ′ �= 0; if∑

i∈I\{0} λi gi �= 0, we get again μ(Z) = 0 since a is independent of (τi )i∈I\{0}
(= (t i )i∈I\{0}). Hence Z is negligible. Then on T \Z , pλ′(t) < 0, er pλ′ (t) ≤ 1 (r ≥ 0)
and by Lebesgue’s theorem f (rkλ

′) = ∫
T erk pλ′ (t)dμ(t) → 0 as rk → ∞, which is

impossible since inf f > 0. Then for any λ′ �= 0 there are a constant δ = δλ′ > 0
and measurable subset Tλ′ ⊂ T with μ(Tλ′) > 0 such that pλ′(t) ≥ δ for all
t ∈ Tλ′ . Hence f (rλ′) ≥ ∫

Tλ′
er pλ′ (t)dμ(t) ≥ erδμ(Tλ′). Then for every λ′ �= 0,

limr→∞ f (rλ′) = ∞.
There is a compact K ⊂ R

N−1 with inf f = inf K f , for otherwise we could find
a sequence of unit vectors λ′

k , and rk → ∞ such that limk→∞ f (rkλ
′
k) = inf f ;

we can also assume there is a unit vector λ′ such that λ′
k → λ′. Given r > 0,

rλ′
k = s′λ′

k + (1 − s′)rkλ
′
k for s′ = rk−r

rk−1 (→ 1 as k → ∞) whence f (rλ′
k) ≤

s′ f (λ′
k) + (1 − s′) f (rkλ

′
k). Since supk | f (rkλ

′
k)| < ∞ and f is continuous, letting

k → ∞ we get f (rλ′) ≤ f (λ′) which is impossible because limr→∞ f (rλ′) = ∞.
Since inf f is attained on K , supL will be attained. �

A more explicit outcome of Theorem 4 and Proposition 5 is the Corollary 6 from
below, that for small ε is an approximate entropy maximization result.

Author's personal copy



Multivariate truncated moments problems and maximum entropy 153

Corollary 6 Let T ⊂ R
n be a closed subset. Let I ⊂ Z

n+ be finite with 0 ∈ I . Fix
k ∈ Z+ such that maxi∈I |i | < 2k +2. Let (gi )i∈I be a set of numbers with g0 = 1. Fix
also an arbitrary constant ε > 0. The following statements (a), (b), (c) are equivalent:

(a) There exist functions f ∈ L1+(T, dt) such that
∫

T |t i | f (t)dt < ∞ and

∫

T

t i f (t) dt = gi , i ∈ I ; (11)

(b) There exists a particular solution f∗ of (11) maximizing the functional

H( f ) = Hε( f ) = −
∫

T

f ln f dt − ε

∫

T

‖t‖2k+2 f dt;

(c) The associated Lagrangian L = Lε from below satisfies supL < ∞

L(λ) =
∑

i∈I

giλi −
∫

T

e
∑

i∈I λi t i −ε‖t‖2k+2
dt + 1.

In this case: supL is attained in a point λ∗ = (λ∗
i )i∈I , both f∗ and λ∗ are uniquely

determined, −H( f∗) = L(λ∗) and

f∗(t) = e
∑

i∈I λ
∗
i t i −ε‖t‖2k+2

,

in particular

∫

T

t i e
∑

j∈I λ
∗
j t j

e−ε‖t‖2k+2
dt = gi (i ∈ I ).

Proof Use Theorem 4 for a(t) ≡ 1 and ρ(t) = e−ε‖t‖2k+2
(t ∈ T ), which provides a

Lagrangian Lρ,a,g and point λ∗
ρ,a,g related to the present ones L , λ∗ by Lρ,a,g(λ) =

L(λ−λ0) and λ∗ = λ∗
ρ,a,g −λ0 where λ0 = (λ0

i )i∈I with λ0
i = δi0. Then Proposition 5

applies, since
∑

i∈I ci gi = g0 > 0. �
Remarks Considering perturbations Hε of the entropy H0 as above might automat-
ically provide enough control in the tails of a maximizing sequence to guarantee
convergence by known arguments [33,36]. More specifically, a maximizing sequence
converges in weak L1, and if the dominant moments of order 2k + 2 were bounded,
one could show that moments of lower order ≤2k converge. For this argument the
author is indebted to the referee, who legitimately suggested that Corollary 6 and The-
orem 4 may have shorter proofs by this standard method, and moreover results like
Corollary 6 are rather known [18], see below. This seems to be true indeed, because
maximizing H0 − ε

∫
T ‖t‖2k+2 f (t)dt should provide a certain brake on the growth

of the moments of order 2k + 2. However, within the quite technical hypotheses
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of Theorem 4 we could not find an obvious argument to get apriori bounds on the
2k + 2 moments, and for the sake of completeness we kept our initial proofs. Theo-
rem 4 can at least unify and cover also other known cases, like T := compact, ε = 0
[31], see also [2] (setting a(t), ρ(t) ≡ 1 on T ) or, to some extent, (Theorem 8, [12])
setting a(t) = (‖t‖2 +1)k , ρ(t) = c‖t‖2−n(‖t‖2 +1)−3/2 (n ≥2); we omit the details.
Another application is for example Corollary 7 from below.

In principle, one could numerically maximize such Lagrangian functions L to obtain
a vector λ∗ and so a density f∗. Solving such dual problems (usually by Newton’s
method) turns to be the basic technique to this aim. The main effort is then to deal with
the computational cost of approximating multiple integrals (like

∫
T t j e

∑
i∈I λi t i

ρ(t)dt
if a ≡ 1, for instance) needed for the gradient of L [1,8,18,23,27–29].

Versions of Corollary 6 were indeed known, for instance in Groth and McDonald
[18] that used an ansatz like f∗(t) = e

∑
i∈I λi t i

ρ(t) to derive a moment closure in
the context of kinetic equations, when t ∈ R

3 stands for the gas velocity [14]. Their
density ρ(t) = eσ(t) with a certain negative σ(t) of order |σ(t)| ≥ ct. ‖t‖2k+2,
see (Eqs. (51), (52), [18]) can be viewed as a “window” function that attenuates the
distribution at high velocities. This type of modification to the maximum-entropy
moment distribution has been proposed by Au [6], and Junk [21] and prevents the
existence of very small packets of very fast particles that, as mentioned in [24], are
the basic reason for non-solvability of the maximum entropy problem associated with
Euler equations [14].

Our proposed technique has also similarities with the method used in Tagliani, [39]
that deals with the particular case of the Hamburger moments problem for T = R.

Corollary 7 Let T ⊂ R
n be closed, k ∈ Z+, I = {i ∈ Z

n+ : |i | ≤ 2k} and (gi )|i |≤2k

a set of reals with g0 = 1. The statements (a), (b) are equivalent:

(a) There exists an f ∈ L1+(T, dt) such that

∫

T

t i f (t) dt = gi (|i | ≤ 2k);

(b) L(λ) := ∑
|i |≤2k giλi − ∫

T e

∑
|i |≤2k λi ti

‖t‖2k+1 e−‖t‖2−1dt is bounded from above.

In this case, L attains its maximum in a point λ∗ = (λ∗
i )|i |≤2k and

f∗(t) := 1

‖t‖2k + 1
e
∑

|i |≤2k λ
∗
i

ti

‖t‖2k+1 e−‖t‖2−1

satisfies
∫

T t i f∗(t) dt = gi (|i | ≤ 2k).

Proof Use Theorem 4 and Proposition 5 for a = ‖t‖2k + 1, ρ = e−‖t‖2
. �

Notation For g = (gi )|i |≤2k having representing densities on R
n , let λ∗ = λ∗

g =
(λ∗

i )|i |≤2k denote the vector maximizing L0(λ)= ∑
|i |≤2k giλi −

∫
e
∑

|i |≤2k λi t i
dt . Set
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pg(t)=∑
|i |≤2k λ

∗
i t i . Then

∑
|i |=2k λ

∗
i t i ≤0 for all t ∈R

n (use
∫
Rn epg dt<∞ and polar

coordinates). Let G be the set of all such g, with the property
∑

|i |=2k λ
∗
i t i <0 for t �=0.

Then (see [27]) G is dense and open in the set of all g having representing densities,
consists of data g for which λ∗ does provide a representing density f∗ = epg of g
maximizing H( f )=− ∫

f ln f dt , and the map G � g �→ λ∗
g is C∞-diffeomorphic.

Let n, k = 2, whence card {i : |i | ≤ 2k} = 15. Let x = (xi )i∈Z
2+, |i |≤4 denote the

variable in R
15. Let G0 ={g ∈ G : det Aλ∗ �=0} where A = Ax is the matrix in (16).

Then G0 is dense and open in G. Given g ∈ G, we may set g j := ∫
t j epg(t)dt for

| j | ≥ 5.
Proposition 8 from below is reminiscent to Lasserre (Lemma 2, [28]), see also [29]

or (Lemma 2, [26]), where similar recurrences were obtained. The idea in the case
n = 1 is to compute integrals like

∫ d
dt (t f∗(t))dt via Leibniz-Newton’s formula. In

our case n = 2 the basic idea is the same, but a careful application of Stokes’ theorem
will be required in the proof. Although such calculation is not a practical method itself
for determining if a moment set comes from an underlying density, it could help to
the approximation of λ∗ when used along with suitable numerical techniques—see
for example the use of Newton’s method as in [28] together with the semidefinite
programming methods for gradient and Hessian computation from [8,29].

Proposition 8 Let n, k = 2 and g ∈ G0. The higher order moments (g j )| j |≥5 of the
maximum entropy density epg can be expressed by relations of the form

g j =
∑

|i |≤4

r ji (λ
∗) gi ( j ∈ Z

2+, | j | ≥ 5)

where r ji = r ji (x) are universal rational functions, see (16) –(19).

Proof It suffices to prove that for any j0 ∈ Z
2+ with | j0| ≥ 5 there are rational functions

c j0i = c j0i (λ
∗), for |i | < | j0|, such that g j0 = ∑

|i |<| j0| c j0i gi and then proceed induc-
tively. Set | j0| = l+1 for l ≥ 4 and denote λ∗ = (λ∗

i )|i |≤4 by x = (xi )|i |≤4. Set xκ = 0
if κ �≥ 0. Let p = pg , namely p(t) = ∑

|ι|≤4 xιt ι. We will find a polynomial π(t) =
∑

|i |≤l c j0i t i and a differential 1-form ω = ep(udt1 + vdt2) with u, v polynomials,

depending on j0, such that dω(t) = (t j0 −π(t))ep(t)dt1 ∧dt2. By Stokes’ theorem on
disks Dr of center 0 and radius r ,

∫
Dr

dω = ∫
∂Dr

ω → 0 as r → ∞ since uep, vep are

rapidly decreasing (g ∈ G). Hence
∫
R2(t j0 −π(t))ep(t)dt1dt2 = 0 which is the desired

conclusion. The condition on ωmeans that L = L(u, v) := v∂1 p −u∂2 p +∂1v−∂2u
where ∂m = ∂/∂tm (m = 1, 2) satisfies L = t j0 − π . We let u(t) = ∑

| j |=l−2 a j t j ,

v(t) = ∑
| j |=l−2 b j t j with a j = a j (x), b j = b j (x) rational functions to be deter-

mined. Set e1 = (1, 0), e2 = (0, 1). In degree l + 1, the equation L = t j0 − π gives∑
| j |=l−2, |ι|=4, ι1≥1 b j ι1xιt j+ι−e1 − ∑

| j |=l−2, |ι|=4, ι2≥1 a j ι2xιt j+ι−e2 = t j0 . Change

the summation indices by i = j + ι − e1,2 and identify the coefficients of t i with
i ≥ 0, |i | = l + 1. Then

∑

|ι|=4, (e1≤ι≤i+e1)

ι1xιbi+e1−ι −
∑

|ι|=4, (e2≤ι≤i+e2)

ι2xιai+e2−ι = δi j0 (|i | = l + 1) (12)
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where δi j0 is Kronecker’s symbol. The summation conditions in the brackets from
above may be omitted, since the terms outside the respective ranges vanish formally
due to either ι1,2 = 0, or a j , b j , xκ = 0 whenever j, κ �≥ 0. Once we have such u, v,
π is determined from L = t j0 − π by gathering all terms of degree ≤ l in −L . We
solve (12) in the Appendix, that provides also an algorithm for computing c j0i , r ji via
the formulas (16)–(19). �

Corollary 9 below is an attempt to solve a maximum entropy problem by means of
a system of ordinary differential equations (13) without computing multiple integrals.
However this is rather a theoretic result, since it requires an accurate solution of (13)
- that is, small increments �s and so, a large number 1/�s of iterations.

Corollary 9 Let n, k = 2 and g, g0 ∈ R
15 such that sg + (1− s)g0 ∈ G0 for all

s ∈[0, 1], where g0 has a known λ∗
g0

. Set �i (x, s) = sgi + (1 − s)(g0)i for |i | ≤ 4 and

� j (x, s) = ∑
|i |≤4 r ji (x) (sgi + (1 − s)(g0)i ) for | j | ≥ 5 where x = (xi )|i |≤4 ∈ R

15.
The system of ordinary differential equations

∑

| j |≤4

�i+ j (x(s), s)
dx j

ds
(s) = gi − (g0)i (|i | ≤ 4); x(0)=λ∗

g0
(13)

has a C∞ solution x = x(s), defined on a neighborhood of [0, 1], the matrix
[�i+ j (x(s), s)]|i |,| j |≤4 is defined and invertible for all s ∈ [0, 1], and we have
x(1) = λ∗

g.

Proof Since G0 is open, the point g(s) := sg + (1 − s)g0 is in G0 (in particular, has
representing densities) for every s in a neighborhood of [0, 1]. Set g(s) = (gi (s))|i |≤4.
Since g(s) ∈ G, it has a λ∗ = λ∗

g(s) maximizing L0, g(s). Let x(s) = λ∗
g(s). Write

x(s) = (xι(s))|ι|≤4. Then pg(s)(t) = ∑
|ι|≤4 xι(s)t ι. The H -maximization holds and

epg(s) is a representing density for g(s),

gi (s) =
∫

R2

t i e
∑

|ι|≤4 xι(s)t ιdt (|i | ≤ 4). (14)

Denote by g(s) j for | j | ≥ 5 the moments of higher order of epg(s) , namely g(s) j :=∫
t j epg(s)(t)dt (| j | ≥ 5). Since the map G � g̃ �→ λ∗

g̃ is diffeomorphic, x( · ) is smooth
and so we may apply d/ds to the equalities (14), whence

gi − (g0)i =
∑

| j |≤4

∫
t i+ j e

∑
|ι|≤4 xι(s)t ι dx j

ds
(s) =

∑

| j |≤4

g(s)i+ j
dx j

ds
(s);

of course g(s)i = gi (s) if |i | ≤ 4. Also Then we obtain the differential equations
(13) on a neighborhood of [0, 1]. The denominators of r ji (x) do not vanish on the
set {x(s) : 0 ≤ s ≤ 1} and so �i+ j (x(s), s) are defined for 0 ≤ s ≤ 1. Each matrix
[�i+ j (x(s), s)]|i |,| j |≤4 = [∫ t i+ j e pg(s)(t)dt]|i |,| j |≤4 is positive definite and so invert-

ible. By (14), gi = ∫
t i e

∑
|ι|≤4 xι(1)t ιdt (|i | ≤ 4). Due to the uniqueness of the critical

point of the Lagrangian L0,g we derive x(1) = λ∗
g . �
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Remark 10 Since � j (x(s), s) = g(s) j for | j | ≥ 5 where g(s) = sg + (1 − s)g0, all
the entries of the matrix � = [�i+ j (x(s), s)]|i |,| j |≤4 of the system (13): �(x(s), s) ·
dx
ds (s) = g − g0 are moments and can be computed inductively by linear recurrences
g(s) j0 = ∑

|i |≤l c j0i (x(s))g(s)i (| j0| = l + 1), see (18), using the concrete formulas
(16), (17) of c joi ; the explicit formulas of r ji from (19) are not needed to this aim.
Moreover, for each l the calculations of g j0 (| j0| = l + 1) are independent of each
other. We may consider any g0 ∈ G0, for instance the set of moments up to the 4th
order of e−t4

1 −t4
2 . Also fast inversion algorithms exist for such Hankel matrices �.

Then for problems of reasonable size one can use numerical methods for systems of
ordinary differential equations to obtain λ∗

g (= x(1)).

The author is indebted to one of the referees for Remark 11 from below.

Remark 11 Due to the accuracy needed for its solution the system (13) is not a very
practical way of computing λ∗, comparing to the more efficient Newton’s method or
its many variants [8,23,27–29] for the dual problem of maximizing L . Actually, one
could use (13), written in the form dx/ds = H(x(s))(g − g0), to iteratively find x(1)
as follows. Let the increment �s = 1. Then a forward Euler solve of the ODE gives
x1 = x(0)− H(x(0))(g − g0). The value x1 is an estimate of x(1), but not exactly, so
one can repeat the process with x1 as the new initial condition and a new moment g1
which is computed from x1. Doing this k times gives xk = xk−1 − H(xk)(g − gk). If
we identify H with the Hessian of the dual problem, then this is just Newton’s method.
When is well conditioned, a standard Newton method for the dual problem will take
only a handful of such iterations.
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Appendix: The functions r j i

We give an algorithm to recurrently compute r ji , c ji , in particular solve (12) to finish
the proof of Proposition 8. Set δk = δ(l+1−k,k) j0 for 0 ≤ k ≤ l+1. Letαk = a(l−2−k,k),
βk = b(l−2−k,k) for 0≤k ≤ l−2. Thus αk, βk = 0 for k < 0, k ≥ l − 1. Also xκ = 0 if
κ �≥ 0. Change the summation indices in (12) by j = i+e1,2−ι (≥0). Then (12) becomes∑

| j |=l−2,( j2≤i2)
(i1 − j1 + 1)xi− j+e1 b j − ∑

| j |=l−2,( j2≤i2)
(i2 − j2 + 1)xi− j+e2 a j =

δi j0 where the (redundant) condition j2 ≤ i2 follows from j ≤ i , that comes from
ι ≥ e1,2. For every i = (l + 1 − k, k) with 0 ≤ k ≤ l + 1, we have the equivalence
( j ≥ 0, | j | = l − 2, j2 ≤ i2) ⇔ j = (l − 2 − p, p) for 0 ≤ p ≤ k and hence the
l + 1 equations in (12) become now, respectively,

k∑

p=0

[(4+ p−k)x(4+p−k,k−p)βp−(k− p+1)x(3+p−k,k−p+1)αp]=δk, 0≤k ≤ l+1.

(15)
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If l ≥ 5, let α0, . . . , αl−5 = 0 and define β0, . . . , βl−5 inductively by4x40βk =
−∑k−1

p=0(4 + p − k)x(4+p−k, k−p)βp + δk (0 ≤ k ≤ l − 5) where
∑

∅ := 0. Note that
x40 < 0 since g ∈ G. This fulfills (15) for 0 ≤ k ≤ l − 5. Last six equations in (12)
[(l − 4 ≤ k ≤ l + 1 in (15)] will provide αk, βk (l − 4 ≤ k ≤ l − 2). If l = 4, skip
this step and go directly to the linear 6 × 6 system [(in this case (16) for y, z, w = 0].
In any case, we let now i = (l + 1 − k, k) for 0 ≤ k ≤ l + 1 in (12). We have
i + e1 − ι = (l +2− k − ι1, k − ι2) and i + e2 − ι = (l +1− k − ι1, k − ι2 +1). Last 6
equations in (12) become

∑
|ι|=4ι1xιβk−ι2−

∑
|ι|=4ι2xιαk−ι2+1 = δk (l−4 ≤ k ≤ l+1),

see below. The brackets ( ) border quantities already known in terms of β0, . . . , βl−5.
The markers � � border sums of terms that are null due to ι1,2 = 0, αk, βk = 0
(k ≥ l − 1) or αk = 0 (0 ≤ k ≤ l − 5):

4x40βl−4 + (3x31βl−5 + 2x22βl−6 + 1x13βl−7 + 0x04βl−8)

�−0x40αl−3� − 1x31αl−4 �−2x22αl−5 − 3x13αl−6 − 4x04αl−7 � = δl−4

4x40βl−3 + 3x31βl−4 + (2x22βl−5 + 1x13βl−6 + 0x04βl−7)

�−0x40αl−2� − 1x31αl−3 − 2x22αl−4 �−3x13αl−5 − 4x04αl−6 � = δl−3

4x40βl−2 + 3x31βl−3 + 2x22βl−4 + (1x13βl−5 + 0x04βl−6)

�−0x40αl−1 � − 1x31αl−2 − 2x22αl−3 − 3x13αl−4 �−4x04αl−5 � = δl−2

�4x40βl−1+� 3x31βl−2 + 2x22βl−3 + 1x13βl−4 + �0x04βl−5�
�−0x40αl − 1x31αl−1 � − 2x22αl−2 − 3x13αl−3 − 4x04αl−4 = δl−1

�4x40βl + 3x31βl−1+� 2x22βl−2 + 1x13βl−3 + �0x04βl−4�
�−0x40αl+1 − 1x31αl − 2x22αl−1 � − 3x13αl−2 − 4x04αl−3 = δl

�4x40βl+1 + 3x31βl + 2x22βl−1+� 1x13βl−2 + �0x04βl−3�
�−0x40αl+2 − 1x31αl+1 − 2x22αl − 3x13αl−1 � − 4x04αl−2 = δl+1.

Set y =−3x31βl−5−2x22βl−6−x13βl−7, z =−2x22βl−5−x13βl−6 andw=−x13βl−5.
We easily read from above that αk, βk for k = l − 4, l − 3, l − 2 are given by

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

4x40 0 0 x31 0 0

3x31 4x40 0 2x22 x31 0

2x22 3x31 4x40 3x13 2x22 x31

x13 2x22 3x31 4x04 3x13 2x22

0 x13 2x22 0 4x04 3x13

0 0 x13 0 0 4x04

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

βl−4

βl−3

βl−2

−αl−4

−αl−3

−αl−2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

y + δl−4

z + δl−3

w + δl−2

δl−1

δl

δl+1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(16)
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(note also that g ∈ G0). We have a j , b j , and so u, v such that deg (L(u, v)− t j0) ≤ l.
Now π = t j0 − L is determined by summing the terms of degree ≤ l in −L . For
m = 1, 2 set Km = {( j, ι) : | j | = l − 2, |ι| ≤ 3, ιm ≥ 1}. Then

π =
∑

( j, ι)∈K2

a j ι2xιt
j+ι−e2 −

∑

( j, ι)∈K1

b j ι1xιt
j+ι−e1 +

∑

| j |=l−2, j2≥1

j2a j t
j−e2

−
∑

| j |=l−2, j1≥1

j1b j t
j−e1 .

For any i ≥ 0 with |i | ≤ l, the coefficient of t i in the sum �K2 from above is∑
( j, ι)∈K2(i) a j ι2xι where K2(i) = {( j, ι) ∈ K2 : j + ι− e2 = i}. The map K2(i) �

( j, ι) �→ i − j is bijective onto Ii := {κ ≥ 0 : κ ≤ i, |κ| = |i | + 2 − l}. Then
we may use it to change the summation index by κ = i − j and get the coefficient
of t i in �K2 as

∑
κ∈Ii

(κ2 + 1)ai−κ xκ+e2 . Similarly, the coefficient of t i in �K1 is∑
κ∈Ii

(κ1 + 1)bi−κ xκ+e1 . The coefficient c j0i (= a rational function c l j0i (x) of x ,
actually) of t i in π(t) is then

c j0i =
∑

κ∈Ii

[(κ2 + 1)xκ+e2 ai−κ − (κ1 + 1)xκ+e1 bi−κ ] + d j0i (|i | ≤ l) (17)

where d j0i =(i2 + 1)ai+e2 −(i1 + 1)bi+e1 if |i |= l − 3, and 0 otherwise. We have

g j0 =
∑

|i |≤l

c j0i (x) gi (| j0| = l + 1, l ≥ 4). (18)

Successive compositions of the mapping (gi )|i |≤l �→ ((g j0)| j0|=l+1, (gi )|i |≤l) =
(gi )|i |≤l+1 given by (18) for l = 4, 5, . . . provide us with r ji (x) such that

g j =
∑

|i |≤4

r ji (x)gi (| j | ≥ 5). (19)

Thus (16)–(19) provide c ji , r ji . Since det Ax �=0 and x40 =∑
|i |=4 xi t i |t=e1 <0, the

denominators of the rational functions r ji do not vanish at x = λ∗. �
It would be interesting to generalize Proposition 8 to arbitrary n and k, for a class of

simple domains T including R
n , [0,∞)n and get rid of assumptions like g ∈ G0,G, for

Lagrangians Lε with ε > 0. Also, numerical tests of systems like (13) could be tried.
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