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Abstract

We present a unified characterization of Whittaker newforms for infinite dimensional
admissible representations π of GL(2,R) and GL(2,C). We connect this problem
with that of finding test vectors for toric linear forms on the representation space of
π. This method allows us to treat in the same way the real and complex fields, thus
identifying Whittaker newforms in all cases, including those previously unavailable
in the literature.

1 Introduction

A Whittaker newform for a representation π of G = GL(2) over a local field
F is a function in the Whittaker model whose Mellin transform equals the L-
function of π. In the nonarchimedean case, such a newform can be found in the
one dimensional subspace of π invariant under a compact subgroup depending
on the conductor of π. Here we provide a similar simple description of Whit-
taker newforms in the archimedean case as well, where Whittaker newforms
have been previously computed for some, but not for all representations. Our
approach follows a suggestion of B.H. Gross [Gr01, §11-12], and it is inspired
by a connection between this problem, and that of determining test vectors
for toric linear forms on the representation space of π. The connection with
test vectors for linear forms allows us to treat the real and complex fields in a
unified manner, thus identifying Whittaker newforms for all representations.

Determining Whittaker newforms is important in the theory of automorphic
representations, for example in the computation of Rankin-Selberg integrals
over R, e.g. see [Zh01]. In most real cases, this has been done in [JL70], [Go70]
or [Ge75], but in the complex case, Whittaker newforms have not been previ-
ously computed.
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Let F be either R or C, and let π be an admissible, irreducible, infinite di-
mensional representation of G(F ), that is a (g, K)-module, where g is the
complexification of the Lie algebra of GL2(F ) and K is a maximal compact
subgroup [Bu97, p.200]. LetW (π, ψ) be the Whittaker model of π with respect
to a nontrivial additive character ψ of F . For any W ∈ W (π, ψ), define the
“Mellin transform:”

ΨW (s, g) =
∫
F×

W


x 0

0 1

 g
 |x|s−1/2

F d×x (1)

where d×x is the multiplicative Lebesgue measure on R× or C×, and the abso-
lute value is the usual one on R and the square of the one on C. The integral
converges if the real part of s is large enough, and it can be meromorphi-
cally continued to the complex plane. The L-function L(s, π) is defined as the
greatest common denominator of all ΨW (s, g), appropriately normalized. The
choice of exponent s−1/2 in formula (1) is made so that the Mellin transform
has a functional equation for s→ 1− s.

Our goal is to identify explicit vectors, called Whittaker newforms Wπ ∈
W (π, ψ) such that:

ΨWπ(s, e) = L(s, π), (2)

where e is the unit matrix in G(F ). We will look for Whittaker newforms in the
K-types of π (see §3 for the definition), and show that they can always be found
in the minimal test space (see Definition 1), a one dimensional subspace of the
minimal K-type containing vectors W for which ΨW (s, e) does not vanish.
The proof is by direct computation: a Whittaker vector in the minimal test
space can be explicitly computed in terms of Bessel functions, since it satisfies
differential equations expressing the action of g [Go70],[JL70], and the result
follows from integral identities satisfied by Bessel functions.

We emphasize the connection with test vectors for linear forms since it gives
a conceptual framework that may prove useful for extending the notion of
Whittaker newforms to higher rank groups. In the next section, we describe
this connection and reformulate the problem in terms of finding test vectors
for toric linear forms.

2 Test vectors for linear forms

In the next few paragraphs only, we let F be a local field, not necessarily
archimedean. Let π : G(F ) → AutV be an admissible, irreducible, infinite
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dimensional representation with central character ω. Let T be the split two
dimensional torus over F and we identify T (F ) with the diagonal matrices
inside G(F ). Consider a character χ : T (F ) → Aut C whose restriction to the
center of G(F ) equals ω−1.

Let HomT (π⊗ χ,C) be the space of linear forms on V on which T (F ) acts by
χ−1. A special case of a theorem of J.-L. Waldspurger and J. Tunnell, shows
that in this case the space HomT (π⊗χ,C) is one dimensional (it is at most one
dimensional for any embedded torus T ). A natural question is then of finding
test vectors on which such a form is nonzero, and this problem has been treated
in the nonarchimedean case by B. H. Gross and D. Prasad [GP91].

Let l : V → C be the Whittaker functional, the unique linear form (up to a
constant) on which the group of unipotent matrices acts by the character ψ.
The connection between the test vector problem and that of finding Whittaker
newforms arises from observing that the integral

mχ(v) =
∫
F×

l[π(a(t))v]χ[a(t)]d×t, (3)

defines, when it converges, a linear form mχ ∈ HomT (π ⊗ χ,C). Here a(t) is
the diagonal matrix with upper entry t and lower entry 1. Taking χ = χs with

χs

a 0

0 d

 :=
∣∣∣∣ad
∣∣∣∣s− 1

2

F

ω−1(d), (4)

the integral mχ(v) becomes the Mellin transform denoted by ΨWv(s, e) before,
where Wv ∈ W (π, ψ) is given by Wv(g) := l(gv) for v ∈ V . Therefore what we
have called Whittaker newforms before provide test vectors for the toric linear
forms associated with the character χs of (4).

In the nonarchimedean case, Proposition 2.6 in [GP91] implies that the lin-
ear form mχ, when χ is unramified, does not vanish on the minimal nonzero
subspace of V fixed by a compact subgroup of G(OF ) consisting of matrices
congruent to the identity matrix modulo $n

F for some integer n ≥ 0, where OF

is the ring of integers and $F is a uniformizer in F . The minimal subspace is
one dimensional, and the minimal n equals the conductor of π [Ca73]. For vπ an
appropriately normalized vector in this one dimensional space, it is well know
that mχ(vπ) equals the L-function of π, so the corresponding Wπ ∈ W (π, ψ)
is a Whittaker newform.

We show that in the archimedean case the situation is entirely similar. The
representation π, restricted to the standard maximal compact subgroup K
of G, decomposes into a sum of finite dimensional representations, called K-
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types. Inside each fixed K-type W we consider the test space of vectors WT

on which the compact torus Tc = T ∩K acts by the character χ−1. We show in
Proposition 1 that WT is at most one dimensional, and when it is trivial, the
linear form mχ vanishes on the whole K-type W . When χ = χs, the Whittaker
newform is then found to reside in WT , for the “minimal” K-type W for which
WT is one dimensional. This proves also that the corresponding linear form
mχs is nonzero on the minimal test space WT .

3 K-types

Henceforth we assume F is R or C. We fix the characters ψ(x) = e2πix of R
and ψ(z) = e2πi(z+z̄) of C, and we denote by K the standard maximal compact
subgroup of G = GL2(F ), so K = O2(R) or K = U2(C) respectively.

The representation π restricted to K decomposes into a direct sum of finite
dimensional nontrivial subspaces, called K-types :

π|K = Wn ⊕Wn+2 ⊕Wn+4 ⊕ . . . ,

indexed by the infinite set of nonnegative integers {n + 2k}k∈Z≥0
, to be de-

scribed below. The smallest one, n, is called the weight of π.

For F = R, the K-type Wm is the span of the vectors in the representation
space of π having weight ±m under the action of SO2(R). The vector v has
weight m if:

π(kθ)v = eimθv for all kθ =

 cos θ sin θ

− sin θ cos θ

 ∈ SO2(R).

The space Wm is 1-dimensional for m = 0 and 2-dimensional for m > 0. If π is
a principal series representation with central character µ(t) = |t|rsgn(t)n with
n ∈ {0, 1}, then the weight of π is n; if π is a discrete series representation
σ(µ1, µ2) with µ1µ

−1
2 (t) = tpsgn(t) for some integer p > 0, then the weight of

π is p+ 1.

For F = C, the K-type Wm is the (m+1)-dimensional subspace of π on which
SU2(C) acts by its unique irreducible (m+ 1)-dimensional representation ρm.
We recall that the representation ρm can be realized on the space Vm of degree
m homogenous polynomials in two variables:

ϕ(x, y) =
m/2∑

k=−m/2

akx
m/2+kym/2−k,
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on which SU2(C) acts by:

ρm(g)ϕ(x, y) = ϕ[(x, y)g]. (5)

If π is the principal series representation π(µ1, µ2), with µ1µ
−1
2 (z) = zpz̄q

such that p − q is an integer, then the weight of π is |p − q|. Recall that all
irreducible, admissible representations of G(C) are isomorphic to a principal
series representation.

4 Test space.

Towards our goal of finding a Whittaker vector Wπ whose Mellin transform
equals the L-function, we first identify inside each K-type of π a natural “test
space” for the nonvanishing of any linear form m ∈ HomT (π ⊗ χ,C). Recall
that χ is a character of T whose restriction to the center equals ω−1, hence we
can write:

χ

a 0

0 d

 = χ1(ad
−1)ω−1(d),

with χ1 a character of F×.

Definition 1 If W is a K-type of π, the test space associated to W, denoted
by WT is the (possibly zero) subspace of W on which the compact torus Tc :=
T ∩K acts by χ−1.

Explicitly, for F = R:

WT =
{
v ∈ W : π(ε)v = χ1(−1)−1v

}
, (6)

where ε =

−1 0

0 1

 ∈ Tc, while for F = C:

WT =
{
v ∈ W : π[t(a)]v = ω(a)−1χ1(a)

−2v, ∀a ∈ S1
}
, (7)

where S1 = {a ∈ C : |a| = 1}, and t(a) =

a 0

0 ā

 ∈ Tc for a ∈ S1.

The following proposition justifies the definition, connecting the space WT

with the question of vanishing of linear forms on which T acts by χ−1.
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Proposition 1 (i) If W is an arbitrary K-type of π, then the space WT is at
most one dimensional.
(ii) If W is a K-type of π such that dimWT = 0, then m(v) = 0 for every
linear form m ∈ HomT (π ⊗ χ,C) and for every v ∈ W.

PROOF. Case 1: F = R. If W is one dimensional (i.e. π has weight 0 and
W is the minimal K-type), then it is obvious that WT is 0 or 1 dimensional,
depending on the eigenvalue of ε on W , hence dimWT ≤ 1 [see Eqn. (6)]. The
second part is obvious in this case.

On the other hand, if W is two dimensional, the action of ε on W decomposes
into two eigenspaces with eigenvalues ±1, hence dimWT = 1. There is nothing
to prove for part (ii) in this case.

Case 2: F = C. Let W be the (unique) (n+ 1)-dimensional subspace of π on
which SU2(C) acts by its irreducible representation ρn.

Part (i) follows from the fact that the restriction of ρn to Tc decomposes com-
pletely into a direct sum of one dimensional representations, each appearing
with multiplicity one. If the character χ restricted to Tc is not among them,
then dimWT = 0; otherwise, dimWT = 1.

For part (ii), notice that if 0 6= v ∈ W and if m ∈ HomT (π ⊗ χ,C), then by
definition we have:

m[π(t(a))v] = ω−1(a)χ−2
1 (a)m(v) if |a| = 1.

By (7), it follows that m(v) = 0 if Tc acts on v by a character different from
ω−1χ−2

1 . IfWT = 0, we have observed above thatW is spanned by such vectors
v, hence m vanishes on W . 2

5 Whittaker newforms

The previous proposition suggests that the space WT , when nonzero, provides
test vectors on which linear forms m ∈ HomT (π⊗χ,C) do not vanish. To show
that this is indeed the case, one can use the specific formmχ ∈ HomT (π⊗χ,C),
defined on Whittaker functions by averaging as in (3). However, in this paper
we are mostly interested in identifying Whittaker newforms, hence we restrict
ourselves from now on to the case χ = χs, the character in equation (4). The
linear form mχ(W ) becomes the Mellin transform ΨW (s, e) for this choice of
χ, and we have the following main theorem.
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Theorem 1 In both the real and the complex case, let W be the minimal
K-type in the Whittaker model W (π, ψ) such that dimWT = 1. Then

ΨW (s, e) = L(s, π)

for some W ∈ WT , and for Re(s) large enough.

We first describe explicitly the minimal K-type W of the proposition. In the
course of the proof, we also compute explicitly the Whittaker newforms be-
longing to the corresponding test space WT .

• F = R: Let π be a representation of G(R) of weight n. The minimal K-
type W for which WT 6= 0 is Wn, unless π is the weight 0 representation
π(| |r1sgn, | |r2sgn), when it is W2.

• F = C : Let π be a principal series representation π(µ1, µ2) of G(C), where
µi(z) = zpi z̄qi are characters of C×, with pi, qi ∈ C such that pi − qi ∈ Z. If
n = |p1 − q1 − (p2 − q2)| is the weight of π, and m = q1 − p1 + q2 − p2 is the
exponent of ω−1(a) for a ∈ S1, then the minimal K-type W for which WT 6= 0
is WN , with N = max(n, |m|).

PROOF. ForW ∈ W (π, ψ) and t ∈ R, let fW (t) be the function of one variable:

fW (t) = W

|t|1/2sgnt 0

0 |t|−1/2

 or W

|t|1/2 0

0 |t|−1/2

 , (8)

depending on whether F = R or C respectively. Using the lowering and raising
operators in the complexification of the Lie algebra of GL2(F ), we will show
that if W ∈ WT , where W is the minimal K-type of the proposition, then
fW satisfies a second order differential equation satisfied also by the function
taJu(4πt) for some a, u ∈ C, where Ju is the Bessel function whose properties
we recall below. Since fW is of rapid decay at infinity, and the Bessel equa-
tion has only one solution of rapid decay, it follows that fW (t) is of the form
taJu(4πt) (up to a constant). The theorem then follows from properties of the
Bessel function which we recall below.

The Bessel function Ju satisfies the differential equation:

J ′′
u(y) +

J ′
u(y)

y
−
(
1 +

u2

y2

)
Ju(y) = 0 for y > 0. (9)

It can be shown that (up to a constant) this equation admits a unique solution
of moderate growth at infinity. Normalized appropriately, this solution satisfies

7



the following identities: ∫ ∞

0
e−y(t+t−1)tud×t = 2Ju(2y), (10)

∫ ∞

0
Ju(y)y

sd×y = 2s−2Γ
(
s+ u

2

)
Γ
(
s− u

2

)
, (11)

where y > 0 in the first equation, and Re s > |Re u| in the second. We also
need the equation satisfied by the functions G(y) = yaJu(y), where a ∈ C. It
can be easily seen that:

G′′(y) + (1− 2a)
G′(y)

y
−
(
1 +

u2 − a2

y2

)
G(y) = 0. (12)

The real case. When π is a discrete series representation, a weight 1 principal
series representation, or a weight 0 principal series representation of the type
π(| |r1 , | |r2), it is well-known that the minimal weight Whittaker vector is a
Whittaker newform, if appropriately normalized [JL70], [Zh01]. The minimal
weight vector belongs to WT in these cases by the remark following the state-
ment of the theorem. The only case left is when π is the weight 0 principal
series π(| |r1sgn, | |r2sgn), when the minimal K-type of the proposition is W2.

Let r = r1−r2. LetW2,W0,W−2 ∈ W2 be Whittaker vectors of weights 2, 0,−2
respectively, normalized (up to a constant) such that L2W2 = (r − 1)LW0 =
(r2−1)W−2, where L ∈ g is the lowering operator. Then it is shown in [Go70],
p. 2.7, Eq. (21), that π(ε)W2 = −W−2, hence W− := W2 −W−2 ∈ WT

2 .

Let f2, f0, f−2 be the functions corresponding to W2,W0,W−2 by (8). The ac-
tion of the raising and lowering operators translates into the following system
of differential equations [JL70]:

(r + 1)f2(t) = 2tf ′
0(t)− 4πtf0(t)

(r + 1)f−2(t) = 2tf ′
0(t) + 4πtf0(t)

f ′′
0 (t)− [4π2 + (r2 − 1)/4t2]f0(t) = 0

Subtracting the first two equations we obtain (r = r1 − r2 6= ±1 because π is
a principal series representation):

f2(t)− f−2(t) = −8πtf0(t)/(r + 1),

while the third equation has as solution f0(t) = −t1/2Jr/2(2πt)(r + 1)/8π
(compare with equation (12)). For W =W− ∈ WT

2 we have:

ΨW−(s, e) =
∫ ∞

0
t(r1+r2)/2t3/2Jr/2(2πt)t

s−1/2d×t = L(s, π)
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where for the second equality we have used formula (11). The integral ΨW+(s, e)
vanishes for W+ = W2 +W−2, because the function f+ corresponding to W+

by (8) is an odd function. Therefore:

Ψ2W2(s, e) = ΨW−(s, e) + ΨW+(s, e) = L(s, π),

which proves that the Whittaker newform can be taken to be the weight two
function 2W2.

The complex case. Since all irreducible, admissible representations of GL2(C)
are isomorphic to principal series representations, we can assume that π is of
the type π(µ1, µ2). Here µi(z) = zpi z̄qi are characters of C×, with pi, qi ∈ C
such that pi − qi ∈ Z.

Let µ(z) := µ1µ
−1
2 (z) = zpz̄q, and assume without loss of generality that p ≥ q

(since π(µ1, µ2) ' π(µ2, µ1)). Then π has weight n = p− q, and the restriction
of π to SU2(C) decomposes as follows:

π|SU2(C) ' ρn ⊕ ρn+2 ⊕ ρn+4 ⊕ · · · , (13)

where ρN is the unique (N + 1)-dimensional irreducible representation of
SU2(C), acting as in (5).

Next we compute the Whittaker vectors belonging to the minimal K-type W
of the Proposition, using the differential equations satisfied by their diagonal
functions [JL70]. Fix an integer N ≥ n, having the same parity as n, so that
ρN appears in the decomposition (13), and fix an SU2(C) intertwining map:

iN : VN → W (π, ψ). (14)

For k between −N/2 and N/2, letWk ∈ W (π, ψ) be the image of the monomial
xN/2+kyN/2−k. That isWk is in the image of iN and transforms as follows under
Tc:

Wk[gt(a)] = a2kWk(g) for |a| = 1.

It is clear that Wk is then completely determined by the function fk(t) :=
fWk

(t) defined in (8), for t > 0. Using the action of certain elements in the
center of the universal enveloping algebra of GL2(C), it is shown in [JL70] that
the functions fk(t) satisfy the following differential equations 1 for −N/2 ≤
k ≤ N/2:

f ′′
k (t)−(1−2k)

f ′
k

t
−
(
16π2 +

p2 − (1− k)2

t2

)
fk(t) = −8πi(N/2+k)

fk−1

t
(15)

1 There is a factor of 4π missing in [JL70]. To correct the equations there, u has to
be replaced by 4πu
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f ′′
k (t)− (1+2k)

f ′
k

t
−
(
16π2 +

q2 − (1 + k)2

t2

)
fk(t) = 8πi(N/2− k)

fk+1

t
. (16)

Taking k = −N/2 in equation (15) and k = N/2 in equation (16) and com-
paring with equation (12) we see immediately that f−N/2, fN/2 are related to
Bessel functions as follows (up to a constant which we choose to be one):

f−N/2(t) = t1+N/2Jp(4πt), fN/2(t) = t1+N/2Jq(4πt). (17)

Moreover, if N = n (the minimal K-type) one can compute all the functions
fk(t),−n/2 ≤ k ≤ n/2, in terms of Bessel functions (which does not seem
easily feasible for higher N). With our assumption that n = p − q ≥ 0, one
can show proceeding recursively that:

fk(t) = tn/2+1Jq+n/2−k(4πt), for k = n/2, n/2− 1, · · · ,−n/2. (18)

Coming back to the proof of the proposition, denote by m the integer such
that ω−1(a) = am if |a| = 1, that is m = q1 − p1 + q2 − p2. As pointed out
following the statement of the proposition, the minimal K-type W such that
WT 6= 0 is isomorphic to ρN , where

N = max(n, |m|).

Given the definition of WT , for W ∈ WT we have:

ΨW (s, e) =
∫
R>0

W

t 0
0 1

 t2s−1d×t. (19)

To compute this integral, we consider two cases:

Case 1: N = |m| > n, that is (p1 − q1)(p2 − q2) > 0. Since we have assumed
p ≥ q, we must have pi > qi, hence m = −N < 0 and:

L(s, π) = G2(s+ p1)G2(s+ p2).

On the other hand, the space WT is spanned by Wπ = W−N/2, hence by
equation (17):

Wπ

t 0
0 1

 = ω(t1/2)Wπ

t1/2 0

0 t−1/2

 = tp1+p2+1Jp1−p2(4πt).

Plugging this expression back into the formula (19) and using formula (11),
we obtain the desired identity (2) (provided Wπ is appropriately normalized).
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Case 2: N = n ≥ |m|, that is (p1 − q1)(p2 − q2) ≤ 0. Since we have assumed
p ≥ q, we have also p1 ≥ q1, q2 ≥ p2, hence:

L(s, π) = G2(s+ p1)G2(s+ q2).

In this case, the space WT is spanned by Wπ =Wm/2, hence by equation (18)
we have (taking into account the relations among the pi, qi):

Wπ

t 0
0 1

 = ω(t1/2)Wπ

t1/2 0

0 t−1/2

 = tp1+q2+1Jp1−q2(4πt).

As before, identity (2) follows. 2
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