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Abstract

We study the Rankin L-series of a cuspidal automorphic representation of GL(2) of even
weight over the rational numbers, twisted by a character of a real quadratic field. When
the sign of the functional equation is +1, we give an explicit formula for the central value
of the L-series, analogous to the formulae obtained by B. Gross, S.W. Zhang, and H. Xue
in the imaginary case. The proof uses a version of the Rankin-Selberg method in which the
theta correspondence plays an important role. We also discuss an arithmetic application
to computing the order of the Tate-Shafarevich group of the base change to real quadratic
fields of an elliptic curve over the rationals, and an analytic application to proving the
equidistribution of individual closed geodesics on modular curves.
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1. Introduction

Let f be a newform of even weight 2k > 0, level N , and trivial central character. Throughout
the paper we adopt the language of automorphic representations, and denote by πf the cuspidal
automorphic representation of GL(2,A) associated to f , where A denotes the adeles of the rational
numbers Q. Let K be a real quadratic field of discriminant dK , and let χ be a (unitary) Hecke
character of K, trivial on A×. Denote by πχ the automorphic representation of GL(2,A), attached
to χ via the Jacquet-Langlands correspondence.

When the sign of the functional equation for the (completed) Rankin L-series L(s, πf × πχ) is
+1, we give an explicit formula for its central value. Throughout the paper, we assume that N ,
dK , and the conductor c(χ) of χ are pairwise coprime, and that N is square free. If f is a weight 0
Maass form, we also impose a mild restriction on the archimedean component of πf (see §4).

Before describing our result in more generality, we state it in the simplest form, when f has
weight 2, the character χ is unramified and all the primes dividing N split in the quadratic field
K. Then χ can be viewed as a character of the narrow class group of K, and the formula can be
written in entirely classical terms (see Theorem 6.3.1 for arbitrary weight):

Lfin(1/2, πf × πχ) =
1√
dK

∣∣∣∣∣∣
∑

Q

χ−1(Q)
∫

γQ

ωf

∣∣∣∣∣∣

2

,

where ωf = 2πif(z)dz is a holomorphic differential on the compactified Riemann surface X =
H/Γ0(N) (with H the upper half plane, and Γ0(N) the standard congruence subgroup of level
N), and Lfin is the L-function with the archimedean component removed. The sum is over Γ0(N)-
equivalence classes of Heegner quadratic forms Q of discriminant dK and level N , and the integral
is over the closed geodesic γQ on X obtained by projecting the geodesic on the upper half plane
connecting the two real roots of the quadratic polynomial Q(z, 1). See §6.2 for the definition of
Heegner forms, and for the correspondence between such forms and ideal classes in the narrow class
group of K.

The formula can be seen as a generalization of a classical formula for the integral of a weight
zero Eisenstein series over geodesic cycles attached to ideal classes in real quadratic fields [Si61,
Ch. II, §3]. It extends to the real quadratic case results obtained in the imaginary case by B.H.
Gross [Gr87] (for weight 2 forms of prime level over Q), by S.W. Zhang [Zh01] (for weight two
forms over a totally real number field), and by H. Xue [Xu02] (for even weight forms). The place
of the Heegner points appearing in the imaginary case is taken in this paper by the geodesic cycles
γQ, and our result opens the way for applying techniques that have been developed for studying
Heegner points to the study of the geodesic cycles. For example, recent subconvexity bounds for
the central value L(1/2, πf × πχ), when the discriminant of the imaginary field K goes to infinity,
have been shown in [HM04] to imply equidistribution results for Heegner points in Galois orbits,
via S.W. Zhang’s formula, thus generalizing a result of W. Duke [Du88]. In the real quadratic case,
we show in the same way that individual “long” closed geodesics become equidistributed on X0(N)
(Theorem 6.5.1).

Another application is a formula for the order of Tate-Shafarevich groups of the base change to
real quadratic fields of an elliptic curve E defined over Q, assuming the Birch and Swinnerton-Dyer
conjecture (§6.4). Since it relates the order of this mysterious group with a geometric invariant
attached to K (the homology class of the sum of geodesic cycles), this formula may be used in the
future to shed light on this group.

For another application of our formula to a construction of Heegner point analogues over real
quadratic fields using p-adic interpolation of special values of L-functions, see the upcoming paper
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[BD05].
We proceed to describe our result in more detail, while also sketching the method of proof. Our

approach can be applied, in principle, to the imaginary case as well, after suitable modifications
at the infinite place. However, in that case the analogous formula is known, thanks to the work of
S.W. Zhang and H. Xue, hence we concentrate on the real quadratic case in this paper.

Let S be the set of primes dividing N which are inert in K. The assumption about the sign of
the functional equation implies that S has even cardinality, hence there exists a quaternion algebra
B defined over Q and ramified at the primes in S. Fix an embedding of K into B.

By the Jacquet-Langlands correspondence, there is an automorphic representation of B×(A),
denoted by πJLf , having the same local L-factors as πf . In [Wa85], J.-L. Waldspurger has connected
the nonvanishing of the central value of the Rankin L-series to the nonvanishing of a toric linear
form l defined on the space of adelic automorphic forms φ on B×(A) on which the representation
πJLf acts:

l(φ) =
∫

A×K×\A×K
φ(x)χ−1(x)dx.

In the present paper, we make this connection more precise by proving that the central value
L(1/2, πf×πχ) equals the absolute value of the linear form above evaluated on a specific automorphic
form in the space of πJLf , up to a nonzero constant (for the precise statement see Theorem 5.3.9).
In the case that χ is unramified, we also determine the constant explicitly (Theorem 5.4.1). Finally,
assuming further that all the primes dividing N split in K, so that B is the matrix algebra, we
rewrite the result in terms of the classical newform f , thus obtaining the formula stated in the
beginning of the introduction (Theorem 6.3.1).

The proof is inspired by J.-L. Waldspurger’s approach in [Wa85], and by the work of S.-W.
Zhang in the imaginary case [Zh01]. In a first stage, we deduce an integral representation for the
L-function using an adelic version of the Rankin-Selberg method, similar to that developed by S.-
W. Zhang [Zh01]. The novelty here is that the Rankin-Selberg integral is taken over the subgroup
GL2(A)+ of GL2(A) consisting of matrices with determinant belonging to NK/Q(A×K), and that two
of the forms entering into the integral are constructed using the Weil representation:

L(s, πf × πχ) = M(s)
∫

Z(A)GL2(Q)+\GL2(A)+
φf (g)θχ(g;ϕ1)E(s, g;ϕ2)dg.

Here φf is a newform in the space of πf , while the theta series θχ, and the Eisenstein series E
are constructed using the Weil representation attached to the field K, viewed as a quadratic space
over Q with form given by the norm, and by a multiple of the norm respectively. The multiple
is chosen such that the two quadratic spaces above provide an orthogonal decomposition of the
four dimensional space B, with form given by the reduced norm. The automorphic forms θχ and E
depend on two Schwartz functions ϕ1, ϕ2 on AK , which are carefully chosen at each place so that
the local zeta integrals equal the local Rankin L-functions, up to simple factors. Essential in this
step is the notion of Whittaker newform, which we review in Section 3.

The next step fits in the general philosophy of “seesaw dual pairs” of S. Kudla [Ku83], which
in this setting has been considered by B. Roberts [Ro98]. Using the Siegel-Weil formula for SL(2)
[KR88], extended to similitudes in §2.4, we realize the special value E(1/2, g;ϕ2) as the theta lift of
the trivial character of A×K , and interchange the order of integration in the Rankin-Selberg formula
to obtain:

L(1/2, πf × πχ) = M

∫

(A×K×\A×K)2
θf (x, y;ϕ)χ(xy−1)dxdy,

with an explicit constant M , where θf (x, y) is the Shimizu theta lift of φf to the special similitude
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group GSO(BA) ' B×A × B×A /A×, the isomorphism being given by (x, y)v = xvy−1. It depends on
the Schwartz function ϕ = ϕ1 ⊗ ϕ2 on BA.

To identify the form θf , we need to replace ϕ by a Schwartz function ϕ′ which differs from ϕ at
the primes dividing dK and at infinity. By computing the level and weight of the theta lift, and using
a result of Shimizu [Sh72], we show that if χ is unramified it decomposes as follows (for ramified χ
see Proposition 5.3.6):

θf (x, y;ϕ′) = CφJLf (x)φJLf (y),

where C is a nonzero constant and φJLf is an explicit automorphic form on B×(A) belonging to
the space of πJLf . The form φJLf is determined up to a constant by its weight and level structure
(Proposition 5.3.6), and it is the analogue of the “toric newform” defined by S.-W. Zhang in the
imaginary quadratic setting. The effect of replacing ϕ by ϕ′ is then computed locally, yielding
Theorem 5.3.9.

When χ is unramified, the constant C is determined by using a result of T. Watson [Wa02]. We
obtain the explicit formula:

L(1/2, πf × πχ) =
R√
dK

‖φf‖2
‖φJLf ‖2

|l(φJLf )|2

with R a rational number given in Theorem 5.4.1. The norms are with respect to the adelic Petersson
inner products on GL2(A) and B×(A), with respect to Tamagawa measures on the two groups. Note
that the right hand side is well-defined, even though φJLf is only determined up to a constant.

In Section 6, we review the theory of optimal embeddings and Heegner forms, and use it to
rewrite the previous formula in the classical language, when χ is unramified and the quaternion
algebra B is the matrix algebra. We also discuss two applications of this classical formula.

We point out that the method developed here could equally apply over an arbitrary totally real
base field F in place of Q, and in fact the local computations are carried over an arbitrary local field
(except for the even residue characteristic case). However, to keep the exposition clear and to avoid
complications in constructing explicitly the quaternion algebra B, we have restricted ourselves to
working over the rational field.
Acknowledgements. This paper is a revised and expanded version of the author’s Harvard Ph.D.
thesis, and I am greatly indebted to my advisor, Benedict Gross, for his constant help and encour-
agement. I wish to thank Steve Kudla, for sharing his expertise on the Weil representation during a
visit at the University of Maryland, and for many useful comments on an earlier version of this pa-
per. I also wish to thank Shou-Wu Zhang, for providing me with an early draft of his paper [Zh01],
which has been an inspiration for the present work. Last but not least, I am indebted to Henri
Darmon, for taking an early interest in this work, and for providing the motivation for extending
the result to forms of arbitrary weight.

1.1 Notation
Local fields. When F is a finite extension of a p-adic field Qp, we denote by $F ,OF , UF a fixed
uniformizer, the ring of integers, and the units of F respectively. For each integer r > 0, we let U rF
denote the subgroup of UF consisting of units congruent to 1 modulo $r

FOF . We normalize the
absolute value on F , denoted | |F or simply | | when there is no danger of confusion, by requiring
that |$F | = q−1, where q is the cardinality of the residue field of F . The valuation on F is denoted
by νF , and it is always normalized by νF ($F ) = 1. If F = R then the absolute value is the usual
one.
Norms. If K/F is a separable quadratic algebra extension of perfect field F , we denote by NK/F

the norm NK/F (x) = xx̄, where the bar denotes the unique nontrivial involution of K fixing F . If
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K = F ⊕ F , we have (x1, x2) = (x2, x1). If F is a local field, we also denote by ωK/F the character
of F× attached to the quadratic extension K, which is trivial if K is split and is the nontrivial
quadratic character of F×/NK/FK

× otherwise.
Subgroups of GL(2). Throughout the paper we denote by G the algebraic group GL(2). We denote
by Z the center of G, by B the Borel subgroup of upper triangular matrices, by N the unipotent
subgroup of B, and by T1 the subgroup of diagonal matrices with lower right entry equal to 1. If a is
a scalar, we denote by i(a) ∈ T1, n(a) ∈ N , the matrices having upper left, respectively upper right

entry equal to a. If g ∈ G(F ) for some field F , we denote by g1 ∈ SL2(F ) the matrix
(

1 0
0 det g

)−1

g.

Adeles and ideles. If F is a number field, we denote by AF the adele ring of F and by A×F the group
of ideles. We also write A = AQ, and occasionally write FA or F×A instead of AF and A×F respectively
(especially when F is viewed as a vector space over Q).
Congruence subgroups. When F is a local nonarchimedean field and α ∈ OF , we consider the
congruence subgroups of GL2(F ):

K1(α) =
{(

a b
c d

)
∈ GL2(OF ) : c ∈ αOF , d ∈ 1 + αOF

}
;

K0(α) =
{(

a b
c d

)
∈ GL2(OF ) : c ∈ αOF

}
.

If χ is a character of conductor C, we often view χ as a character of the congruence subgroup
K0(πCF ) by acting on the lower right entry of a matrix.

If F is a global field and N is an integral ideal in the ring of integers of F , we denote by K0(N)
the subgroup

∏
vK0(Nv) of GL2(AF ), where the product is over all finite places v, and Nv denotes

the image of N under fixed embeddings F → Fv.
Induced representations. For F a local field and µ1, µ2 two characters of F×, we denote by B(µ1, µ2)
the induced representation space of functions on G(F ) satisfying:

f

((
a x
0 b

)
g

)
= µ1(a)µ2(b)|a/b|1/2f(g), for all

(
a x
0 b

)
∈ G(F ),

which are K-finite and locally constant (in the nonarchimedean case) or smooth (in the archimedean
case).

2. Review of the Weil Representation

In this section we collect the facts about the Weil representation which are used throughout
the paper. For our purposes, we only need to consider the Weil representation for the dual pair
(SL(2),O(V )), where V is an even dimensional space with a nondegenerate quadratic form (over
a local or a global field). The assumption that the quadratic space V is even dimensional implies
that the Weil representation can be viewed as a representation of SL(2), and not of its metaplectic
cover. The only possibly new contribution appears in §2.5, where we compute the level and weight
of various Schwartz functions under the two dimensional Weil representation.

2.1 The local Weil representation for SL(2)
Let F be a local field and let V be a 2n-dimensional vector space over F endowed with a nonde-
generate quadratic form q. We will also denote by q the bilinear form on V :

q(x, y) = q(x+ y)− q(x)− q(y).
Let ψ be a fixed nondegenerate character of F , which we assume unramified if F is nonarchimedean.
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The Weil representation rψ is a representation of SL2(F ) depending on ψ, attached to the
quadratic space (V, q). In a model suitable for our needs, the Weil representation acts on the space
S(V ) of Schwartz functions on V as follows:

rψ

(
1 a
0 1

)
f(x) = ψ(aq(x))f(x)

rψ

(
a 0
0 a−1

)
f(x) = |a|nω(a)f(ax)

rψ

(
0 1
−1 0

)
f(x) = γf̂(x)

Here γ is an eighth root of unity whose precise value is given in Lemma 2.1.3, ω is the discriminant
character of F× associated with the quadratic space V , and f̂(x) =

∫
V f(y)ψ(q(x, y))dy denotes the

Fourier transform with respect to a self-dual Haar measure dy.

The three equations above can be combined into one for g =
(
a b
c d

)
∈ SL2(F ), with c 6= 0:

rψ(g)ϕ(x) = |c−1|ω(−c−1)γ
∫

K
ϕ(y)ψ[c−1(aq(x) + dq(y)− q(x, y))]dy. (2.1.1)

The quadratic spaces we shall consider in this paper are either two or four-dimensional, and
they fall in one of the following two cases:

i) V is a separable quadratic algebra K over F (a field or the split algebra);

ii) V is a quaternion algebra B over F .

These spaces are endowed with a natural quadratic form q, that is the norm in the algebra extension
K/F in case (i), and the reduced norm in case (ii). The character ω appearing in the definition
of rψ is trivial if K = F ⊕ F is a split algebra or a quaternion algebra, while it is the nontrivial
character of F×/NK/F (K×) if K is a quadratic field extension of F .

For later use, in the next lemma we record the normalization factor for the self-dual measure
used in the Fourier transform, in case V = K is a quadratic algebra extension of F .

Lemma 2.1.1. If the different of the quadratic extension K/F is $s
KOK (s > 0), then the self-dual

measure on K is the one which gives OK measure |$K |s/2K .

The constant γ appearing in the definition of the Weil representation is the p-adic version of a
classical Gauss sum. Before giving its value, we recall the following connection between Gauss sums
and local epsilon factors [Zh01, Section 2.1]:

Lemma 2.1.2. Let ψ be an unramified nontrivial additive character of a nonarchimedean field F ,
and let η be a unitary character of F×, of conductor s > 0. Then:

|a|1/2
∫

UF

η(ax)−1ψ(ax)dx =

{
ε(η, ψ) if νF (a) = −s ,
0 otherwise,

where the measure is normalized such that OF has unit measure, and ε(η, ψ) is the epsilon factor
appearing in the functional equation for the zeta function of the character η, as in Tate’s thesis.

An easy modification of the proof of Lemma 1.2 in [JL70] yields:

Lemma 2.1.3. (i) If V = B is a quaternion algebra over F , then γ = 1 if B is split, and γ = −1 if
B is a division algebra;
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(ii) If V = K is a quadratic extension of F then

γ = ε(ω, ψ) =
∫

$−l
K OK

ψ(q(x))dx for l > C,

where C is the exponent of the different of the extension K/F . The measure used in the integral is
normalized as in Lemma 2.1.1.

Finally, a scalar change in the quadratic form modifies the Weil representation as follows. For
λ ∈ F×, let r′ψ be the Weil representation associated to the quadratic form q′(x) = λq(x). Let ω′,
γ′, dx′, be the corresponding character, Gauss sum and self-dual measure for the representation r′ψ.
They are related to the original quantities as follows:

ω′ = ω, γ′ = ω(λ)γ, dx′ = |λ|Fdx.

2.2 Local theta correspondence for GL(2)
H. Jacquet and R. Langlands used the Weil representation in [JL70] to construct representations
of GL(2) over a local field F , attached to representations of K× or B×, where K is a quadratic
extension, and B is a quaternion algebra over F . This correspondence preserves L− and ε− factors.

In this paper we are interested mostly in the global construction of the Jacquet-Langlands
correspondence, which will be reviewed in the next section. Therefore we only state the local results,
without getting into the details of the local construction.

First, let K be a quadratic extension of F , either a field or the split algebra, and let χ be a
quadratic character of K×. Denote by πχ the associated representation of GL2(F ) attached to χ by
Jacquet-Langlands.

Theorem 2.2.1 [JL70], Theorem 4.6. The representation πχ of is admissible and irreducible, of
central character ωK/Fχ|F× . More precisely:

(a) If K = F ⊕ F is split, then χ = (χ1, χ2) for two characters of F×, and πχ is the principal
series representation π(χ1, χ2).

(b) If χ does not factor through the norm NK/F and F is nonarchimedean, then πχ is supercus-
pidal;

(c) If χ = δ ◦ NK/F for a character δ of F×, then πχ is the principal series representation
π(δ, δωK/F ).

Let now B be a nonsplit quaternion algebra over F . Let χ be an irreducible (finite dimensional)
representation of B×. Denote as before by πχ the representation of GL2(F ) attached to χ.

Theorem 2.2.2 [JL70], Theorem 4.2. The representation πχ is admissible and irreducible, of
central character χ|F× . More precisely

(a) If the dimension of χ is greater then 1 and F is nonarchimedean, then πχ is supercuspidal.

(b) If χ = η ◦ NB/F for some character η of F×, then πχ is the discrete series representation

σ(η| |1/2F , η| |−1/2
F ).

Moreover, all special, and supercuspidal in the nonarchimedean case, representations of GL2(F )
can be obtained in this way.

As a matter of notation, if π is a special or supercuspidal representation of GL2(F ), we denote
by πJL the irreducible representation of B× whose Jacquet-Langlands lift it is. For other admissible,
irreducible representations of GL2(F ), we set πJL = 0.
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2.3 The global theta correspondence for GL(2)
At the global level, the Jacquet-Langlands correspondence of the previous section is a particular
case of a more general construction that relates automorphic forms on GL(2) over a global field F
to automorphic forms on the similitude group of a quadratic space over F . We first review this more
general construction, following [HK92], and then specialize to the cases of interest. Throughout this
section, we write A = AF , and fix a nontrivial character ψ of A/F .

Let (V, q) be a 2n dimensional quadratic vector space over F , and assume that V is anisotropic
over F . By taking the restricted tensor product of the local Weil representations, we obtain a global
representation:

rψ : O(VA)× SL2(A)→ Aut S(VA).

Since we are interested in automorphic forms on GL2(A), we would ideally like to extend this repre-
sentation to the group GO(VA)×GL2(A). This is not possible without enlarging the representation
space of rψ, as in [Wa85], and instead we proceed as follows [HK92, Sh72].

First extend the action of O(VA) to GO(VA) by:

L(h)f(x) = |ν(h)|−n/2f(h−1x) for h ∈ GO(VA), f ∈ S(VA)

where ν : GO(VA) → A× denotes the similitude factor. This action does not commute with the
action of SL2(A); instead, it satisfies the following global version of Lemma 1.4 in [JL70]:

Lemma 2.3.1. Let h ∈ GO(VA) and let a = ν(h) ∈ A×. Then:

L(h)rψ(g)L(h)−1 = rψ

((
1 0
0 a

)
g

(
1 0
0 a−1

))
,

for all g ∈ SL2(A).

The lemma allows us to extend the representation rψ to the adelic points of the algebraic group:

R := {(h, g) ∈ GO(V )×GL(2) : ν(h) = det g}
by defining:

r(h, g)f(x) = L(h)rψ(g1)f(x) for (h, g) ∈ R(A),

where g1 =
(

1 0
det g−1

)
g ∈ SL2(A).

Remark 2.3.2. There is another possible extension of rψ to R(A), given by

r′(h, g)f = rψ

(
g

(
1 0

det g−1,

))
L(h)f

as in[HK92]. The previous lemma shows that r′ and r are isomorphic, but it turns out that the
Siegel-Weil formula of the next section can be more easily generalized to similitudes if one uses r
and not r′. The advantage of working with r rather than with r′ was pointed out by Harris and
Kudla in a later paper [HK01].

Using the extended representation, one can define a theta kernel for (h, g) ∈ R(A) generalizing
the usual theta kernel on O(VA)× SL2(A):

θ(h, g;ϕ) =
∑

x∈VF

r(h, g)ϕ(x), for ϕ ∈ S(VA).

The correspondence ϕ→ θ(· ;ϕ) defines a map from S(VA) into the space of functions onR(F )\R(A),
which is intertwining for the action of R(A) (Lemma 5.1.7 in [HK92]).
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Let G(A)+ be the subgroup of G(A) consisting of elements whose determinant belongs to
ν(GO(VA)). Integrating against the theta kernel gives a correspondence between automorphic forms
on GO(VF )\GO(VA) and automorphic forms on G(F )\G(A), as follows:

If χ is an automorphic form on GO(VF )\GO(VA), then for g ∈ G(A)+ define:

θχ(g;ϕ) =
∫

O(VF )\O(VA)
θ(σh, g;ϕ)χ(σh)dσ,

where h ∈ GO(VA) with ν(h) = det g. The assumption that V is an anisotropic space over F
guarantees that the domain of integration is compact, so that the integral converges. From the
properties of the theta kernel, it is easy to see that θχ is left invariant under G(F )+, hence it can be
extended to G(F )G(A)+ by left invariance under G(F ), and to the whole of G(A) by setting it equal
to 0 off G(F )G(A)+, a subgroup of index two in G(A). The resulting form, still denoted by θχ, is
an automorphic form on G(F )\G(A), with central character χ|F×ωV , where ωV is the discriminant
character of V .

Conversely, if f is an automorphic form on G(F )\G(A), define for h ∈ GO(VA):

θf (h;ϕ) =
∫

SL2(F )\SL2(A)
θ(h, σg;ϕ)f(σg)dσ,

where g ∈ G(A) such that det g = ν(h). The form θf is an automorphic form on GO(VF )\GO(VA),
of central character ωfωnV , where ωf is the central character of f .

Now we specialize the quadratic space (V, q) to the cases of interest in this paper. If (V, q) =
(K,NK/F ) for a quadratic field extension K of F , then the similitude group GO(V ) ' K× o µ2,
with K× acting by multiplication, and the nontrivial element in the order two group µ2 acting
by the nontrivial Galois automorphism of K/F . A Hecke character χ of A×K/K

× determines a
unique irreducible automorphic representation Π(χ) of GO(VF )\GO(VA). If we denote by Θ(χ) the
automorphic representation of G(A) generated by θeχ(g;ϕ) when ϕ varies in S(VA) and χ̃ in the
space of Π(χ), we have the following theorem ([HK91], Section 13):

Theorem 2.3.3 Local-global compatibility. Let V = K be a quadratic field extension of F ,
with quadratic form NK/F . If χ is a Hecke character of A×K/K

× ≡ GSO(VA)/GSO(VF ) with local
components χv, let πχ be the restricted tensor product of the local representations πχv defined in
Theorem 2.2.1. Then πχ is isomorphic to the automorphic representation Θ(χ) of G(A) attached to
χ via the global correspondence.

Let now (V, q) = (B,NB/F ) for a quaternion algebra B over F . The similitude group GO(V ) '
GSO(V ) o µ2, with µ2 generated by the principal involution of B/F . We identify the special
similitude group GSO(V ) with B× ×B×/F× via the action (x, y)v = xvy−1, for (x, y) ∈ B× ×B×
and v ∈ V .

Let π be a cuspidal automorphic representation of G(F )\G(A), and let πJL be the automorphic
representation of B×A attached to π by Jacquet-Langlands (Theorem 2.2.2). Let Θ(π) be the set of
functions on B×A ×B×A of the form θf (· ;ϕ), for f in the space of π and for ϕ ∈ S(VA). The following
theorem is proved in [Sh72]; see also [Ha93] where it is stated in the form given here.

Theorem 2.3.4 Shimizu’s correspondence. With the notations above, assume that the central
character of π is unitary. Then the set Θ(π) is spanned by E ⊗ Ec, where E is the space of auto-
morphic forms on B×A on which πJL acts, and Ec is the representation space of the contragredient
representation.

9
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2.4 The Siegel-Weil formula
As in the previous section, let V be a 2n dimensional quadratic space over the totally real number
field F . To ensure convergence of the theta integrals, assume that V is anisotropic over F . The Weil
representation r = rψ, attached to V and to an additive character ψ, gives rise to Eisenstein series
on GL2(A) in the following way. For g ∈ GL2(A), s ∈ C, ϕ ∈ S(VA) define the function:

f(s, g;ϕ) = r(g1)ϕ(0)|a(g)|s−s0 |det g|−n/2ω−1
V (det g)

where s0 = n − 1 and |a(g)| = |a/b|1/2, if g =
(
a x
0 b

)
k, for k in the standard maximal compact

subgroup K of G(A). An easy computation shows that f(s, g;ϕ) belongs to the induced represen-
tation space B(| |s/2, ω−1| |−s/2), and that f(s, g;ϕ) is a flat section in this representation space,
that is, its restriction to the standard maximal compact subgroup of G(A) is independent of s. The
corresponding Eisenstein series is given by:

E(s, g;ϕ) =
∑

γ∈B(F )\G(F )

f(s, γg;ϕ).

For g ∈ SL2(A), the Eisenstein series coincides with the one for SL(2) defined in [KR88]. For a
fixed g ∈ GL2(A) the series converges absolutely for Re(s) > 1, and has a meromorphic analytic
continuation and functional equation, provided the function ϕ is K-finite [KR88], [Bu97, Ch. 3.7].

Recall the theta kernel θ(h, g;ϕ) for (h, g) ∈ R(A), used to define the theta correspondence. For
g ∈ G+(A) (the subgroup of G(A) of matrices whose determinant belongs to ν(GO(VA))), consider
the integral:

I(g;ϕ) =
∫

O(VF )\O(VA)
θ(σh, g;ϕ)dσ,

where h ∈ GO(VA) has ν(h) = det g (ν is the similitude factor), and the measure on the compact
group O(VA)/O(VF ) is normalized to give this group unit volume. Note that in the language of the
previous section, I(g;ϕ) is simply the theta lift of the constant function on O(VA). As before, it
can be shown that I(g;ϕ) is left-invariant under (G(F ) ∩ G(A)+), and therefore it extends to an
automorphic form on G(A).

The Siegel-Weil formula relates this theta lift with a special value of an Eisenstein series. It has
been proved for g ∈ SL2(A) in [KR88], and can be extended to similitudes by following the proof of
Theorem 4.2 in [HK01].

Theorem 2.4.1 Siegel-Weil for similitude groups. Let κ be 1 or 2 as n > 1 or n = 1
respectively. Then:

E(s0, g;ϕ) = κI(g;ϕ) for all g ∈ G(A)+.

Recall that s0 = n− 1.

2.5 Special vectors in the Weil representation
Let F be a local field and let K be a quadratic extension of F (either a field or the split algebra).
For Λ ∈ F×, let rΛ = rΛ,ψ be the Weil representation of attached to the vector space K with
quadratic form ΛNK/F (x) and to a nontrivial character ψ of F . Let ω be the quadratic character
of F× attached to K.

The purpose of this section is twofold. First we identify Schwartz functions in S(K) that are
invariant under certain congruence subgroups of GL(2) in the nonarchimedean case, or that have
prescribed weight in the archimedean case. These Schwartz functions are later used in Proposition
4.1 to determine the level of a global automorphic form which is a theta lift of a character of a real
quadratic field.

10
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Second, in Lemma 2.5.2 we compute the “Gaussian transforms” of various nonarchimedean
Schwartz functions, which play a central role in solving the local Rankin-Selberg integrals in §4.2.
We also use Lemma 2.5.2 to determine the image of Schwartz functions under the map ϕ →
f(s, g;ϕ) ∈ B(| |s−1/2, ω−1| |1/2−s), used to construct Eisenstein series the previous section:

f(s, g;ϕ) = rΛ(g1)ϕ(0)|a(g)|2s−1| det g|−1/2ω−1
K/F (det g). (2.5.1)

For simplicity, denote by I(s, ω) the space B(| |s−1/2, ω−1| |1/2−s).

2.5.1 Nonarchimedean case Assume F is nonarchimedean. As before, let ω = ωK/F be the
quadratic character of F× whose kernel is NK/F (K×) and let δ = $C

KOK be the different of the
extension K/F . It is well-known that the conductor of ω is C. If K is a field we fix uniformizers $K ,
$F of K and F such that $K = $F if K/F unramified and NK/F$K = $F if K/F is ramified. Let
γ, and dx be the gamma-factor and the self-dual measure for the Weil representation attached to
the norm NK/F (x); as pointed out in Section 2.1, the corresponding quantities for the representation
attached to the norm ΛNK/F (x) are ω(Λ)γ, and |Λ|dx respectively. We assume that the character
ψ appearing in the definition of the Weil representation is unramified.

For Λ = 1, the level of the global theta series θχ in Proposition 4.1 will be determined using the
following local computation.

Proposition 2.5.1. (i) Let δ = $COK be the different of the extension K/F (C > 0). If ϕ = 1OK
,

then for all k ∈ K0($C
F ) ∩ SL2(F ) we have

r1(k)ϕ = ωK/F (k)ϕ

(ii) Assume K/F unramified, and let χ be a (unitary) character of K×/F× of conductor s > 0.
If ϕ(x) = χ(x)1UK

(x), then for all k ∈ K0($2s) ∩ SL2(F ) we have:

r1(k)ϕ = ϕ

Proof. (i) It is enough to check the statement for a set of generators of K0($C
F ). Note that the

function ϕ = 1OK
has Fourier transform ϕ̂ = µ(OK)1δ−1 . We have two cases:

Case 1: K/F unramified. The group K0(1) ∩ SL2(F ) is generated by matrices of the type:

t(a) =
(
a 0
0 a−1

)
, n(b) =

(
1 b
0 1

)
, w =

(
0 1
−1 0

)
,

with a ∈ UF , b ∈ OF . The first two matrices clearly fix ϕ = 1OK
, while for the third we have (γ = 1

in the unramified case) :

r1(w)ϕ = γϕ̂ = ϕ,

since γ = 1 and µ(OK) = 1 in the unramified case.
Case 2: K/F ramified. The group K0($C)∩SL2(F ) is generated by the matrices t(a), n(b), together
with

v($C
F u) =

(
1 0

$C
F u 1

)
= −wn(−$C

F u)w,

for a, u ∈ UF , b ∈ OF . The action of the first two matrices is easily seen to satisfy the claim, while
r1[n($C

F u)] fixes ϕ̂ = µ(OK)1δ−1 , therefore:

r1[wn(−$C
F u)w]ϕ(x) = r1[wn($C

F u)]γϕ̂(x) = γ2ϕ(−x),
by the Fourier inversion formula. Since γ2 = ωK/F (−1), the claim follows.

(ii) As in part (i), we need to check that ϕ = χ(x)1UK
(x) is fixed by the generators t(a), n(b),

and v($2su) of K0($2s) ∩ SL2(F ), for any a, u ∈ UF , b ∈ OF . For the first two, the claim follows

11
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from the definition, while for the last we need to consider two cases:
Case 1: K is a field. The character ψK := ψ ◦ Tr of K is unramified, hence the Fourier transform
of ϕ = χ1UK

can be computed using Lemma 2.1.2 (here $ = $F = $K):

ϕ̂(x) =
∫

UK

χ(y)ψK(xy)dy = |$|−1/2ε(χ, ψ)χ(x)1$−sUK
(x).

Since r1[n($2su)] fixes ϕ̂, it follows that:

r1[wn(−$2su)w]ϕ = r1[wn($2s
F u)]ϕ̂ = ϕ(−x).

But χ(−1) = 1 since χ is trivial on F×, hence the conclusion follows.
Case 2: K = F ⊕F . Since χ is trivial on F×, there is a character η of F× of conductor s such that
χ = (η, η−1). Using again Lemma 2.1.2, we have:

ϕ̂(x1, x2) =
∫

UF×UF

η(y1)η(y2)−1ψ(x1y2 + x2y1)dy1dy2

= |$|−1η(x1)1$−sUF
(x1)η(x2)−11$−sUF

(x2)ε(η, ψ)ε(η−1, ψ).

Since r1[n($2su)] fixes ϕ̂, the conclusion follows as in the previous case.
The following lemma, which determines the Gaussian transform of various Schwartz functions,

plays an important role in computing local Rankin-Selberg integrals in Section 4.2.

Lemma 2.5.2 Nonarchimedean Gaussian. Let ψ be an unramified nontrivial character of F , and
let K/F be a quadratic algebra extension of different $C

KOK .

(i) If K = F ⊕ F is split, then:

∫

$s
FOF×$t

FOF

ψ(αxy)dxdy =

{
|$F |s+t if ν(α) > −s− t,
|α|−1 if ν(α) 6 −s− t.

(ii) If K/F is a field extension, t is an integer, and α ∈ F×, then:

∫

$t
KOK

ψ[αN(y)]dy =





|$F |ftµ(OK) if ν(α) > −ft,
0 if −ft > ν(α) > −C − ft
γ|α|−1ω(α)−1 if ν(α) 6 −C − ft,

where f is the residue class degree of the extension K/F (that is, f = 1 or 2 corresponding as K is
ramified or not respectively).

(iii) If K/F is ramified, t ∈ K with νK(t) = −r, 0 < r 6 C, and α ∈ F , then:

∫

t+OK

ψ[αN(y)]dy =

{
ψ[αN(t)]µ(OK) if α ∈ OF ,
0 if α /∈ OF , and νF (α) 6= r − C.

The remaining case, α /∈ OF and νF (α) = r − C, can occur only when the residue characteristic of
F is 2. Assuming F = Q2 in this case, the integral has complex norm 2(r+1−2C).

Proof. Part (i) follows easily by direct integration. To prove part (ii), first change coordinates
y = $t

KOK to obtain (recall that $K = $F in the unramified case and N($K) = $F in the
ramified case): ∫

$t
KOK

ψ(αyȳ)dy = |$F |ft
∫

OK

ψ(α$ft
F xx̄)dx.

The statement of the lemma follows from Lemma 2.1.3 in the case ν(α) + ft 6 −C, while if
ν(α) + ft > 0 it is obvious. We are left with the middle case (which can only occur if the residue

12
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characteristic of F is 2), for which it is enough to prove that:∫

OK

ψ($−r
F xx̄)dx = 0 if 0 < r < C.

A change of variables z = xx̄ reduces the integral to:∫

OF

ψ($−r
F z)(1 + ω(z))dz =

∫

OF

ψ($−r
F z)ω(z)dz.

To show that the last integral vanishes, it is enough to prove that the same integral over UF vanishes.
Writing z = a+$r

F b+$C
F t, with a ∈ UF /U rF , b ∈ OF /$C−r

F OF , and t ∈ OF , we have:
∫

UF

ψ($−r
F z)ω(z)dz =

∑

a,b

ψ(a$−r
F )ω(a+$r

F b)

Since ω has conductor C, the sum over b ∈ OF /$C−r
F vanishes for any a ∈ UF , thus finishing the

proof of this case.
For part (iii), we change variables y = tx, with x ∈ U rK . Denoting the integral by I, we have:

I = |t|
∫

Ur
K

ψ[αN(t)N(x)]dx.

If α ∈ OF , we further change variables x = 1 +$r
Kx

′ to conclude I = ψ(αN(t))µ(OK).
Assume therefore α 6∈ OF . We change variables z = N(x). If r = C, the norm maps UCK onto

UCF , and the integral is easily seen to vanish. Assume further 0 < r < C, which can only occur if
the residue characteristic of F is 2. The norm maps U rK into U rF , and we have:

I = |t|
∫

Ur
F

ψ(αN(t)z)[1 + w(z)]dz,

where the measure on F is normalized by µ(OF ) = µ(OK). It is easy to see that
∫
Ur

F
ψ(αN(t)z)dz =

0, and to compute the remaining integral we change variables z = 1 + $r
Fa + $C−r

F y with a ∈
OF /$C−r

F OF , y ∈ OF :

I = |$F |C−rψ(αN(t))
∑
a

∫

OF

ψ[αN(t)($r
Fa+$C

F y)]ω(1 +$r
Fa)dy

The integral over y vanishes, unless νF (α) > r − C, which we assume. We are left to compute:

I = |$F |C−rψ(αN(t))µ(OF )
∑
a

ψ[αN(t)$r
Fa]ω(1 +$r

Fa),

where the sum is over a ∈ OF /$C−r
F OF .

It is here that we assume F = Q2. The sum over a has two or four terms, as C − r = 1 or
C − r = 2 respectively, and it is easy to check, by examining the four possible cases for which
3 > C > r > 0 and 0 > νF (α) > r − C, that the sum vanishes unless ν(α) = r − C, when its
absolute value is 2(C−r+1)/2. Using the fact that µ(OF ) = |$F |C/2, and |$F | = 1/2, we obtain that
the (complex) absolute value of I is 2(r+1−2C)/2. Its exact value depends on the character ψ, but it
will not be needed in the sequel.

The previous lemma allows us to determine the image of the map ϕ ∈ S(K) → f(s, g;ϕ) ∈
I(s, ω) given by equation (2.5.1), for suitable functions ϕ. The function f(s, g;ϕ) is determined
by its restrictions to K0(1), which is independent of s, hence it is enough to compute the values
f(k;ϕ) := f(s, k;ϕ) = rΛ(k1)ϕ(0)ω−1(det k), for k ∈ K0(1).

Proposition 2.5.3. Let k =
(
a b
c d

)
∈ K0(1).

13
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(i) Assume that K/F is unramified (split or not), and that νF (Λ) = M > 0. If ϕ = 1OK
, then:

f(k;ϕ) =

{
ω(d)−1 = 1 if k ∈ K0($M

F ) ,
|Λc−1|Fω(Λc−1) otherwise.

(ii) Assume that K/F is ramified with different δ = $C
KOK , and that νf (Λ) = M > 0. If

ϕ = 1$−M
K OK

, then:

f(k;ϕ) =





ω(d)−1 if k ∈ K0($C
F ) ,

0 if C > νF (c) > 0
|$F |−MF µ(OK)γ|Λ|ω(−Λc−1) if c ∈ UF .

The middle case occurs when C > 2, which can only happen if the residue characteristic of F is 2.

(iii) Assume that K/F is split, and ν(Λ) = M > 0. If ϕ = 1OF×$−M
F OF

, then f(k;ϕ) = 1 for all

k ∈ K0(1).

Proof. Since f(g;ϕ) ∈ B(| |s−1/2, ω−1| |1/2−s), it is enough to check the claim for k ∈ K0(1)∩SL2(F ).
If c = 0, by the definition of the Weil representation we have:

rΛ

(
a b
0 a−1

)
ϕ(x) = ω(a)|a|ψ(abΛq(x))ϕ(ax)

and it follows that f(k;ϕ) = ω(a)ϕ(0) = ω(a) as desired.
If c 6= 0, the conclusion follows from formula (2.1.1) together with the previous lemma.

2.5.2 Archimedean case Assume now that F = R, and fix the character ψ(x) = e2πix. For
future applications, we need to consider only the case when the extension K/F is split, that is
K = R2. We are interested in functions F (s, g;ϕ) ∈ I(s, ω) given by Eq. (2.5.1) of arbitrary even
weight under the action of rΛ. Equivalently, it is enough to find Schwartz functions ϕk of weight
−2k under the action of rΛ, for each integer k. We assume here that Λ > 0.

The basic computational tool for the action of the orthogonal group is the following:

Lemma 2.5.4. Let λ ∈ C with Re(λ) > 0. Then:
∫

R
y2ne−πλy

2
dy =

(2n)!
(4π)nn!

· 1
λn
√
λ

Proof. The case n = 0 is the well-known Gaussian integral, and the general case follows by induction,
using integration by parts.

Let now kθ =
(

cos θ sin θ
− sin θ cos θ

)
∈ SO2(R).

Proposition 2.5.5. For each integer k > 0, let ϕk ∈ S(R2) be given by ϕk(x1, x2) = Pk(x1 −
x2)e−πΛ(x2

1+x2
2), where Pk is the polynomial:

Pk(X) =
k∑

j=0

(−4πΛ)jj!
(2j)!

(
k

j

)
X2j .

Then

rΛ(kθ)ϕk(x) = e−2πikθϕk(x).

Proof. Note that the map φ(x1, x2) → φ(
√

Λx1,
√

Λx2) provides an isomorphism between the Weil
representations r1 and rΛ. Therefore we can assume without loss of generality that Λ = 1.
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We are looking for a polynomial P (x1, x2) of degree 2k such that:

r1(kθ)ϕ(0) = e−2πikθ, where ϕ(x1, x2) = e−π(x2
1+x2

2)P (x1, x2).

Let a = cos θ, c = − sin θ. Then formula (2.1.1) gives:

r1(kθ)ϕ(0) = |c−1|
∫

R2

e−π(x2
1+x2

2)P (x1, x2)e2πac
−1x1x2dx1dx2.

We change variables x1 = y1 +y2, x2 = y1−y2. Denoting by Q(y1, y2) the polynomial P (y1 +y2, y1−
y2), we have:

r1(kθ)ϕ(0) = 2|c−1|
∫

R2

e−2πy21(1−iac−1)e−2πy22(1+iac−1)Q(y1, y2)dy1dy2

We shall look for a polynomial of the shape:

Q(y1, y2) =
k∑

n=0

any
2n
2 ,

where an are to be determined. The integral is then easy to compute using Lemma 2.5.4:

r1(kθ)ϕ(0) =
k∑

n=0

an
(2n)!

(8π)nn!
(1 + ia/c)−n.

Note that (1 + ia/c)−1 = i sin θe−iθ, and that the following identity holds:

e−2kiθ =
k∑

n=0

(−2i sin θe−iθ)n
(
k

n

)
. (2.5.2)

It follows that r1(kθ)ϕ(0) = e−2kiθ, if an satisfies:

an
(2n)!

(8π)nn!
= (−2)n

(
k

n

)
.

With these values, the polynomial P (x1, x2) = Q[(y1 + y2)/2, (y1 − y2)/2] is seen to satisfy

P (x1, x2) = Pk(x1 − x2)

where Pk is the polynomial defined in the statement of the proposition.

It remains to check that r1(k)ϕ(x) = e−2kiθϕ(x) for all values of x ∈ R2, which can be done by
direct computation using Lemma 2.5.4 and identity (2.5.2).

Remark 2.5.6. A more conceptual proof would consist of defining Pk as the result of applying k
times the lowering operator L to P0, where L is a certain matrix in the complexification of the Lie
algebra of SL2(R). However the action of the lowering operator seems to be harder to compute than
the direct method presented here.

The polynomials Pk have a very simple Gaussian transform, which we state here for later use:

Proposition 2.5.7. If λ ∈ C with Re(λ) > 0, then:

∫

R
Pk(x)e−πλx

2
dx =

1√
λ

(
1− 1

λ

)k

Proof. The identity follows from the binomial formula, using Lemma 2.5.4.
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3. Local L-function theory and Whittaker newforms

Let F be a local field, and let ψ be a fixed nontrivial, additive character of F . Let π be an admissible,
irreducible, infinite dimensional representation of G(F ) = GL2(F ), and let K be the standard
maximal compact subgroup of G. We recall that any such π admits a Whittaker model, in which
G(F ) acts by right translation on a space W (π, ψ) of smooth1 and K-finite functions W on G(F )
satisfying:

W

((
1 x
0 1

)
g

)
= ψ(x)W (g) for all x ∈ F.

For the construction of the space W (π, ψ), we refer the reader to [Go70], or to [Bu97]. For any
W ∈W (π, ψ), define the “Mellin transform:”

ΨW (s, g) =
∫

F×
W

((
x 0
0 1

)
g

)
|x|s−1/2d×x (3.0.1)

where d×x is the invariant measure on F× such that the set of units in F has measure 1 in the
nonarchimedean case, and the multiplicative Lebesgue measure on R× or C× if F = R or F = C
respectively. The L-function L(s, π) is defined as the greatest common denominator of all ΨW (s, g),
appropriately normalized. Our choice of exponent s − 1/2 in formula (3.0.1) guarantees that the
Mellin transforms above have a functional equation for s→ 1− s.

In this section, we review the theory of Whittaker newforms, which are elements Wπ ∈W (π, ψ)
such that:

ΨWπ(s, e) = L(s, π), (3.0.2)

where e is the unit matrix in G(F ). Such elements are not unique, but there are natural choices
that we review below.

3.1 The nonarchimedean case
Assume now that F is a nonarchimedean field, and that the nontrivial character ψ used to define
the Whittaker model is unramified.

Following Casselman [Ca73], we define the conductor of π as the smallest integer C > 0 such
that there is a nonzero function W ∈ W (π, ψ) which is invariant under K1($C

F ). Casselman has
shown that the space of K1($C

F )-invariant functions in W (π, ψ) is one-dimensional, and we define
the Whittaker newform as the function in this space that takes value 1 at the identity (that this is
possible follows from [Ca73]). It is an easy check that Wπ satisfies the identity (3.0.2).

The following proposition can be used to determine the values of Wπ. Part (i) is well-known,
while for part (ii) see [Zh01].

Proposition 3.1.1. Let C > 0 be the conductor of π, and Wπ the Whittaker newform.

(i) Let α1, α2 ∈ C be such that L(s, π) =
∏

1,2(1− αi|$F |s)−1. Then we have:

Wπ

(
a 0
0 1

)
=

{
0 if |a| > 1,
|a|1/2 ∑

k+l=ν(a) α
k
1α

l
2 otherwise,

with the convention that 00 = 1, in case α1 or α2 is 0.

(ii) Let ε(π, ψ) be the epsilon factor attached to π, and let Wπ̃ be the Whittaker newform for
the contragredient representation π̃. Then:

Wπ(gh) = Wπ̃(g)ω(det g)ε(π, ψ),

1If F is nonarchimedean, smooth means locally constant.
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where h =
(

0 1
−$C

F 0

)
is the Atkin-Lehner operator of level $C

F .

3.2 The archimedean case
Consider now the case F = R (the case F = C is not needed in this paper and it is treated in [Po04]).
We fix the character ψ(x) = e2πix, and denote by K = O2(R) the maximal compact subgroup of
GL2(R). Let π be an admissible, irreducible, infinite dimensional representation of GL2(R), that is
a (g,K)-module, where g is the complexification of the Lie algebra of GL2(R). See [Bu97, p.200] for
a definition of (g,K)-modules.

Since it will be often used, we recall the formula for the L-function L(s, π). It is defined as follows
in terms of the gamma factors:

G1(s) = π−
s
2 Γ

(s
2

)
, G2(s) = 2(2π)−sΓ(s) = G1(s)G1(s+ 1).

If π is a principal series representation π(µ1, µ2) of G(R) with µi = | |risgnmi , ri ∈ C,mi ∈ {0, 1},
then:

L(s, π) =
∏

i=1,2

G1(s+ ri +mi).

On the other hand, if π is a discrete series representation σ(µ1, µ2), we can assume without loss of
generality that µ1 = | |s1 , µ2 = | |s2sgnm2 , with s1 − s2 = S a positive integer, m2 ∈ {0, 1}, and
S −m2 odd. Then:

L(s, π) = G2 (s+ s1) .

The notion of level in the nonarchimedean case is replaced by that of weight in the archimedean
case. A Whittaker element W ∈ W(π, ψ) is said to have weight m if:

W (gkθ) = eimθW (g) for all kθ =
(

cos θ sin θ
− sin θ cos θ

)
∈ SO2(R).

The weight of π is the smallest nonnegative integer n such that W(π, ψ) contains a nontrivial
vector of weight n. If π is a principal series representation with central character µ(t) = |t|rsgn(t)m

with m ∈ {0, 1}, then the weight of π is m; if π is a discrete series representation σ(µ1, µ2) with
µ1µ

−1
2 (t) = tpsgnt for some integer p > 0, then the weight of π is p+ 1.
We are now ready to identify Whittaker newforms in the real case. These statements are well-

known, and for proofs we refer to [Po04].

Proposition 3.2.1. (i) If π is an admissible, irreducible representation of G(R) of weight k, which
is not of the form π(| |r1sgn, | |r2sgn), then there is a Whittaker function Wπ ∈ W (π, ψ) of weight
k such that ΨWπ(s, e) = L(s, π).
(ii) If π is the weight 0 representation π(| |r1sgn, | |r2sgn), then there is a Whittaker function
W ∈W (π, ψ) of weight 2 such that ΨW (s, e) = L(s, π).

We call the function Wπ of Proposition 3.2.1 a Whittaker newform for the representation π, in
case π is not of the form π(| |r1sgn, | |r2sgn). In the latter case, following [Zh01], we call Whittaker
newform the weight 0 function Wπ such that Wπ(g)sgn(det g) is a newform for the representation
π ⊗ sgn = π(| |r1 , | |r2). Even though ΨWπ(s, e) = 0 in this case, it will be important for the next
section that the newform Wπ have the same weight as the representation π.

We also need to know the values of Wπ on the diagonal torus, for which we refer to [Po04], and
[Zh01].

Proposition 3.2.2. Let Wπ be the Whittaker newform defined above. Then Wπ is completely

determined by the function fπ(t) = Wπ

(|t|1/2sgnt 0
0 |t|−1/2

)
, which is given by:

17
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• If π is discrete of weight k, then:

fπ(t) =

{
2t

k
2 e−2πt if t > 0,

0 if t < 0.

• If π is the weight 0 principal series π(| |r1sgnm, | |r2sgnm) with m ∈ {0, 1}, and r = r1 − r2, then:

(−1)mfπ(−t) = fπ(t) = 2t1/2Jr/2(2πt) for t > 0,

where Jr/2 is the Bessel function defined below.

For each complex number u, the Bessel function Ju = J−u is a solution of the following differential
equation:

J ′′u(y) +
J ′u(y)
y
−

(
1 +

u2

y2

)
Ju(y) = 0 for y > 0.

It can be shown that (up to a constant) this equation admits a unique solution of moderate growth
at infinity. If normalized appropriately, this solution satisfies the following identities, which will be
often used: ∫ ∞

0
e−y(t+t

−1)tud×t = 2Ju(2y), (3.2.1)

∫ ∞

0
Ju(y)ysd×y = 2s−2Γ

(
s+ u

2

)
Γ

(
s− u

2

)
, (3.2.2)

where y > 0 in the first equation, and Re s > |Re u| in the second.

4. The Rankin-Selberg method

We start by outlining the classical Rankin-Selberg method, as in [Ja72] and [Zh01], and then
describe a version that is suitable for our goals.

Recall the global setting considered in the Introduction. Let πf be the cuspidal automorphic
representation of G(A), associated with a newform f of even weight 2k, and trivial nebentypus for
Γ0(N) over Q. Let K be a real quadratic field of discriminant dK , let χ be a character of A×K/K

×A×
of conductor c(χ) ∈ Z, and let πχ be the associated representation of G(A), whose local components
are described in Theorem 2.2.1. The representation πχ has conductor D := dKc(χ)2, weight 0 at
infinity, and central character ω = ωK , the quadratic character of A×/Q× attached to K by class
field theory.

In this paper we assume that N, dK , c(χ) are pairwise coprime, and that N is square free. The
later assumption implies that the local components of πf,p at the primes dividing N are discrete
series representations σ(ηp| |1/2, ηp| |−1/2) with ηp unramified. When πf has weight 0, its archimedean
component is a principal series π(µ, µ−1), and we also assume that µ(−1) = χ∞,1(−1) where χ∞,1

is one of the archimedean components of χ (the other being χ−1
∞,1).

The Rankin L-series L(s, πf × πχ) satisfies a functional equation:

L(s, πf × πχ) = ε(s, πf × πχ)L(1− s, πf × πχ).
Moreover, we have ε(1/2, πf×πχ) = αK(−N), independent of χ, where αK is the Dirichlet character
of (Z/dKZ)× attached to the quadratic field K. In this paper we study the case when αK(−N) = 1,
so that the sign of the functional equation is +1. Recalling that αK(−1) = 1 (since K is real
quadratic) and that N is square free, this assumption means that the number of primes dividing N
which are inert in K is even.
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Let W (πf , ψ), W (πχ, ψ) be the Whittaker models of πf , πχ with respect to the unramified
character ψ of A/Q having infinity component ψ∞(x) = e2πix. The Rankin-Selberg method for
studying the L-function L(s, πf×πχ), developed in general by H. Jacquet [Ja72], can be summarized
as follows:

L(s, πf × πχ) =
∫

Z(A)N(A)\G(A)
Wf (g)Wχ(εg)f(s, g)dg

=
∫

Z(A)G(Q)\G(A)
φf (g)φχ(g)E(s, g)dg.

(4.0.1)

In the first integral, the Whittaker functions Wf ∈ W (πf , ψ),Wχ ∈ W (πχ, ψ) are pure tensors
whose local components are Whittaker newforms, and the section f(s, g) is a suitably chosen pure
tensor belonging to the induced representation space I(s, ω) := B(| |s−1/2, ω−1

K | |1/2−s) (see [Zh01]
for the construction of f(s, g) in the case K is imaginary quadratic). The first identity can be proved
locally, using the definition of L(s, πf × πχ) as an Euler product, and the properties of Whittaker
newforms.

The second integral, the adelic version of the Petersson inner product, is obtained from the first
by the folding process characteristic of the Rankin-Selberg method. Here φf , φχ are the automorphic
forms in the space of πf , πχ whose Whittaker coefficients are Wf , Wχ respectively, and E(s, g) is
the Eisenstein series:

E(s, g) =
∑

γ∈B(Q)\G(Q)

f(s, γg).

The functional equation and analytic continuation of L(s, πf ×πχ) then follow from the correspond-
ing properties of the Eisenstein series, via the integral representation (4.0.1).

Our goal in this section is to prove a version of the Rankin-Selberg identity (4.0.1) in which
the form φχ(g) is replaced by a theta lift θχ(g;ϕ1) of the character χ via the Weil representation
attached to the quadratic space (K,NK/Q) as in §2.3, and the section f(s, g) is replaced by the section
f(s, g;ϕ2) constructed using the Weil representation attached to the quadratic space (K,ΛNK/Q),
as in §2.4. The Schwartz functions ϕ1, ϕ2 ∈ S(KA) will be chosen later, and Λ ∈ Z is a constant
chosen so that the quaternion algebra B ramified at the primes dividing N which are inert in K
has global Hilbert symbol (dK ,−Λ). Since θχ is defined as an integral only on G(A)+, the subgroup
of matrices with determinant belonging to N(A×K), it is not surprising that the following version of
the Ranking-Selberg identity holds over G(A)+:

L(s, πf × πχ) = M(s)
∫

Z(A)N(A)\G(A)+
Wf (g)Wχ(εg;ϕ1)f(s, g;ϕ2)dg

= M(s)
∫

Z(A)G(Q)+\G(A)+
φf (g)θχ(g;ϕ1)E(s, g;ϕ2)dg,

(4.0.2)

where Wχ(g;ϕ1) is the Whittaker coefficient of θχ(g;ϕ1). The factor M(s) is a product of local
terms that will be computed while proving the first identity above.

This section is devoted to proving this identity, and it is organized as follows. In §4.1, we study the
properties of the theta lift θχ(g;ϕ1), in particular we compute its level and its Whittaker coefficients
for a suitable choice of ϕ1. Using this information, the proof of the first identity in (4.0.2) is done in
§4.2, which is entirely local. The second identity then follows just like the classical Rankin-Selberg
identity, leading to Proposition 4.3.1, the main result of this section.

4.1 Theta series
In this section, we view K as a quadratic space over Q with quadratic form q = NK/Q, and the
character χ as an automorphic form on the adelic points of the special similitude group GSO(K) =
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K×. We analyze the theta lift θχ(g;ϕ) defined in section 2.3, and we show that for a suitable choice
of Schwartz function ϕ, the Whittaker coefficient of θχ(g;ϕ) decomposes as a product of Whittaker
newforms for the local factors of the automorphic representation πχ, for most g ∈ G(A)+. For most
of this section, we let χ be an arbitrary Hecke character of K, while for Proposition 4.1.3 we assume
that χ is trivial on A×.

We start by recalling the construction of θχ, since it is slightly different from that in §2.3. Denote
by K1 the group of elements of K of norm 1, identified with the special similitude group SO(K). We
denote by N the norm in the field extension K/Q, as well as in the local and adelic extensions. We
also denote by G(Q)+, G(Qv)+, G(A)+ the subgroup of the corresponding linear groups consisting
of matrices with determinants belonging to N(K×), N(K×

v ), and N(A×K) respectively.
Let r : R(A) → Aut S(KA) be the Weil representation extended to the subgroup R(A) of

GO(KA)×GL2(A) consisting of pairs (h, g) with q(h) = det g (see Section 2.3), and define the theta
kernel:

θ(h, g;ϕ) =
∑

x∈K
r(h, g)ϕ(x) for (h, g) ∈ R(A),

depending on a choice of Schwartz function ϕ ∈ S(KA). Let θχ(g;ϕ) be the theta lift of the “auto-
morphic form” χ on GSO(KA)/GSO(K) = K×

A /K
×:

θχ(g;ϕ) :=
∫

SO(K)\SO(KA)
θ(σh, g;ϕ)χ(σh)dσ, (4.1.1)

where h is any element in GSO(KA) with q(h) = det g. Note that the integral is taken over the
compact group K1\K1

A, hence it converges absolutely. The integral is independent of h and it
defines a function on G(A)+, left invariant under G(Q)+. We extend it to G(Q)G(A)+, an index
two subgroup of G(A), by left invariance under G(Q).

We normalize the measure on K1
A = SO(KA) by requiring that the compact sets K1

p ∩UK,p have
measure one if p is nonarchimedean, and on K1∞ ' R× we use the multiplicative Lebesgue measure
dx/x. This measure normalization is compatible with the Hilbert exact sequence:

1→ A× → A×K → K1
A → 1,

where the measures on A× and A×K are the restricted product measures for which the units have
measure 1 at all primes p, and the multiplicative Lebesgue measure at infinity. We can then compute
the total measure of K1\K1

A ' A×K×\A×K using the decomposition:

A×K×\A×K/Ô×K '
⊔

a∈HK

a · εZK\K1
∞ (4.1.2)

where a runs through a set of finite idele representatives of the narrow class group HK , εZK denotes
the group generated by the smallest totally positive power εK of the fundamental unit (εK is either
the fundamental unit or its square), and K1∞ = {(t, t−1) ∈ K∞ : t > 0}. It follows that the total
measure of SO(K)\SO(KA) equals hK ln εK , with hK the cardinality of HK .

Remark 4.1.1. The definition of θχ given here differs from that in §2.3, where the domain of inte-
gration in Eq. (4.1.1) is the entire orthogonal group O(K)\O(KA), and the character χ is replaced
by an automorphic form χ̃ on GO(K)\GO(KA) belonging to the representation space of Π(χ) (see
Theorem 2.3.3 and the paragraph preceding it for the notation). This difference is responsible for
not being able to identify the Whittaker coefficients of our θχ with Whittaker newforms in the repre-
sentation space of πχ, and for the slightly awkward statement of Proposition 4.1.3 (ii). We consider
the less general theta series θχ defined above in order to avoid complications due to considering
forms χ̃ and integrating over the orthogonal group, and since they are sufficient for our purposes.
See also Remark 5.2.1 for a comparison between the two theta integrals for χ = 1.
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Next we compute the Whittaker coefficient of θχ(g;ϕ) under the assumption that ϕ ∈ S(KA) is
a pure tensor.

Proposition 4.1.2. Assume that the Schwartz function ϕ used to define the theta lift is a pure
tensor ϕ =

∏
v ϕv, and let Wχ(g;ϕ) be the Whittaker coefficient of θχ(g;ϕ).

(i) For g ∈ G(A)+, the Whittaker function Wχ(g;ϕ) decomposes into a product of local Whit-
taker functions on G(Qv)+ given by:

Wχ,v(gv;ϕv) =
∫

K1
v

L(hv)r(gv,1)ϕv(σ−1)χv(σhv)dσ, (4.1.3)

where hv ∈ Kv is such that N(hv) = det gv.
(ii) For ξ ∈ Q×, g ∈ G(A)+, we have:

Wχ

((
ξ 0
0 1

)
g;ϕ

)
= 0 if ξ /∈ NK/Q(K×).

Proof. (i) We compute the Whittaker coefficient of θχ:

Wχ(g;ϕ) =
∫

Q\A
θχ(n(x)g;ϕ)ψ(−x)dx,

where n(x) ∈ N(A) is the unipotent matrix with upper right entry equal to x. Assuming g ∈ G(A)+

we have (after switching the order of integration):

Wχ(g;ϕ) =
∫

K1\K1
A

∫

Q\A
θ(σh, n(x)g;ϕ)ψ(−x)χ(σh)dxdσ, (4.1.4)

where h ∈ AK with NK/Q(h) = det g.
The inner integral is seen to be:∫

Q\A

θ(σh, n(x)g;ϕ)ψ(−x)dx =
∑

t∈K

∫

Q\A

L(h)r(g1)ϕ(σ−1t)ψ(xq(t)− x)dx

=
∑

t∈K1

L(h)r(g1)ϕ(σ−1t).

For the first equality we have used Lemma 2.3.1 together with the fact that the Weil representation
for SL2(A) commutes with the action of the orthogonal group SO(KA). Now the integral in (4.1.4)
collapses with the summation, and we obtain:

Wχ(g;ϕ) =
∫

K1
A

L(h)r(g1)ϕ(σ−1)χ(σh)dσ.

This proves that Wχ(g;ϕ) is a product of the local Whittaker functions from Eq. (4.1.3).
(ii) Assume ξ ∈ Q×, g ∈ G(A)+. Then (see Notation for i(x)):

Wχ[i(ξ)g;ϕ] =
∫

Q\A
θχ(i(ξ)n(ξ−1x)g;ϕ)ψ(−x)dx.

Using the fact that θχ is left G(Q)-invariant we obtain as before:

Wχ[i(ξ)g;ϕ] =
∫

K1\K1
A

∫

Q\A

θ(σh, n(ξ−1x)g;ϕ)ψ(−x)χ(σh)dxdσ,

where h ∈ AK with NK/Q(h) = det g. The inner integral is now:
∑

t∈K

∫

Q\A
L(h)r(g1)ϕ(σ−1t)ψ(xξ−1q(t)− x)dx,
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and we see that all the terms of this series vanish if ξ 6∈ NK/Q(K×), which proves part (ii).
Let Wχ be the Whittaker newform for the global representation πχ, that is the pure tensor in

the Whittaker model W (πχ, ψ) whose local component at a place v is the Whittaker newform for
πχ,v. The next proposition shows that, for an appropriate ϕ ∈ S(KA), the Whittaker coefficient
Wχ(g, ϕ) of θχ(g, ϕ) is almost equal to the Whittaker newform Wχ(g), for g ∈ G(A)+. Recall that
D = dKc(χ)2 is the conductor of πχ.

Proposition 4.1.3. Assume that the unitary Hecke character χ is trivial on A×, and that its
conductor is coprime to dK . Let ϕ ∈ S(KA) be the function whose local components are:

ϕp(x) =





1OKp
(x) if χp is unramified,

χp(x)1UKp
(x) if χp is ramified,

e−π(x2
1+x2

2) if p =∞.
where 1A denotes the characteristic function of the set A.

(i) For k ∈ K0(D)+ := K0(D) ∩G(A)+, and g ∈ G(A)+ we have:

θχ(gk;ϕ) = ωK(k)θχ(g;ϕ), (4.1.5)

and moreover θχ has weight 0 at the archimedean place.

(ii) For all primes p - D (including p =∞), and for g ∈ G(Qp)+, the local component Wχ,p(g;ϕp)
given by Proposition 4.1.2 equals the Whittaker newformWχ,p(g). If p|D, thenWχ,p(t;ϕp) = Wχ,p(t)
for t ∈ T1(Qp)+.

Proof. (i) To show that the automorphic form θχ(g;ϕ) has level K0(D)+, let first k ∈ K0(D) ∩
SL2(A). We need to show that:

θχ(gk;ϕ) = ωK(k)θχ(g;ϕ),
hence it is enough to show that the theta kernel has the same invariance property. This boils down
to showing that:

r(k)ϕ(x) = ωK(k)ϕ(x),
which follows from Lemma 2.5.1 (note that the places where χ ramifies are unramified in the
extension K/F ).

Take now δ(a) =
(

1 0
0 a

)
∈ K0(D)+, with a = N(α) for some α ∈ A×K . By definition we have:

θχ(gδ(a);ϕ) =
∫

SO(K)\SO(KA)
θ(αhσ, gδ(a);ϕ)χ(αhσ)dσ,

for all g ∈ G(A)+ and h ∈ KA with ν(h) = det g. Using lemma 2.3.1, we can compute the theta
kernel as follows:

θ(αhσ, gδ(a);ϕ) =
∑

x∈K
L(αhσ)r(δ(a)−1g1δ(a))ϕ(x)

=
∑

x∈K
L(hσ)r(g1)ϕ(α−1x).

Since α is a unit at all finite local places, we have ϕ(α−1x) = χ(α−1)ϕ(x), which shows that

θ(αhσ, gδ(a);ϕ) = θ(hσ, g;ϕ)χ(α−1).

Coming back to the theta integral, it follows that θχ(gδ(a);ϕ) = θχ(g;ϕ), which proves Eq. (4.1.5).
At the archimedean place, it is easy to see that θχ has weight 0, that is θχ(gkθ;ϕ) = θχ(g;ϕ) for

kθ ∈ SO2(R). Indeed, the theta kernel is invariant under the action of SO2(R) by Proposition 2.5.5.
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(ii) By Proposition 4.1.2, the Whittaker coefficient Wχ(g;ϕ) decomposes into a product of local
Whittaker functions for g ∈ G(A)+. For primes p - D and for p =∞, part (i) implies that Wχ,p(g;ϕ)
is invariant under the maximal compact subgroup K0(1)p, or under SO2(R) for p =∞, hence it is
completely determined by its restriction to the diagonal torus T1(Qp)+. We are reduced to computing
these diagonal values at all places.

Recall that the values of the Whittaker newforms Wχ,p on T1(Qp) have been computed in
Proposition 3.1.1 for p a finite prime, and in Proposition 3.2.2 for p = ∞. On the other hand, for
a = N(h) formula (4.1.3) gives:

Wχ,p[i(a);ϕp] = |a|1/2
∫

K1
p

ϕp(aσ−1h−1)χp(σh)dσ. (4.1.6)

For p a finite prime, we only need to consider the case a ∈ Zp, since the right invariance of Wχ,p(·;ϕ)
under K0(D)+p shows that Wχ,p[i(a);ϕ] vanishes if |a|p > 1. For simplicity, we denote by Op the
ring of integers in Kp.

There are four cases to consider:
• p = pp′ splits in K. Then Kp = Qp + Qp, and χp = (χp, χp′) with χp, χp′ characters of Q×p such
that χpχp′ = 1. Taking h = (1, a) in the integral (4.1.6), we have:

Wχ,p[i(a);ϕp] = |a|1/2p

∫

Q×p
ϕp(ax, x−1)χp(x−1)χp′(ax)d×x. (4.1.7)

If χp, χp′ are unramified and ϕp is the characteristic function of Zp × Zp, then we have:

Wχ,p[i(a);ϕp] = |a|1/2
νp(a)∑

i=0

χp(p)iχp′(p)νp(a)−i.

On the other hand, if χp, χp′ are ramified, and ϕp = χp1UK,p
, the integral (4.1.7) vanishes unless

a ∈ Z×p , when it equals 1. In both cases, it agrees with the values of the Whittaker newform for
πχ,p = π(χp, χp′).
• p is inert in K. Let a = p2ku with u ∈ Z×p , k > 0, and h = pku′ with u′ ∈ O×p , N(u′) = u. If the
character χp is unramified, then it must be trivial since it is trivial on Q×p , and for ϕp = 1Op the
integral in (4.1.6) equals 1. This agrees with the Whittaker newform for πχ,p, which is the principal
series π(1, ωK,p).

On the other hand, if χp is ramified and ϕp = χp1UKp
, the integral (4.1.6) vanishes unless a ∈ Z×p ,

when it equals χp(a) = 1. It agrees therefore with the Whittaker newform for πχ,p, which is either
supercuspidal, or of the type π(η, ηωK,p) if χ = η ◦N, for a ramified character η of Q×p .

• p is ramified in K. Let a = pku with u ∈ Z×p , k > 0, and h = pku′ with N(h) = a. Since ϕ is the
characteristic function of Op, we have:

Wχ,p[i(a);ϕp] = |a|1/2
∫

K1
p

χp(pk)dσ.

The character χ is unramified, hence χ = η ◦ N, for η an unramified character of Q×p , hence this
formula agrees with the values of the Whittaker newform for π(η, ηωK,p).
• p =∞. Let χ1 = | |rsgnm be the first component of χ∞, with r ∈ C and m ∈ {0, 1}. Taking
h = (1, a) and σ = (t, t−1) ∈ K1∞ in formula (4.1.6), we obtain:

Wχ,∞[i(a);ϕ∞] = |a|1/2
∫

R×
e−π(a2t−2+t2)|t|2r|a|−rsgn(a)md×t.

The expression on the right is even or odd as a function of a as m = 0 or m = 1 respectively, in
agreement with the formula for Wχ,∞ given in Proposition 3.2.2. Moreover, for a > 0 we obtain,
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after a change of variables t2 = au:

Wχ,∞[i(a);ϕ∞] = a1/2

∫ ∞

0
e−πa(u+u

−1)urd×u = 2a1/2Jr(2πa).

In the last equality we have used formula (3.2.1). Comparison with Proposition 3.2.2 shows that
the local Whittaker functions agree in this case as well, which finishes the proof.

4.2 Local Rankin-Selberg convolutions
Let F be a local field, and π1, π2 be two admissible, irreducible representations of G(F ) = GL2(F )
of central characters ω1, ω2. Let ω = ω1ω2, and fix as usually a nontrivial additive character ψ
of F (which is unramified in the nonarchimedean case). The convolution L-function L(s, π1 × π2)
is defined as the common denominator (appropriately normalized) of the following local Rankin–
Selberg integrals:

Ψ(s,W1,W2, f) =
∫

Z(F )N(F )\G(F )
W1(g)W2(εg)f(s, g)dg

where Wi ∈ W (πi, ψ), ε = i(−1) ∈ G(F ), and f(s, g) is a function in the induced representation
space I(s, ω) := B(| |s−1/2, ω−1| |1/2−s). Given our choice of exponents, the Rankin–Selberg integral
satisfies a functional equation for s → 1 − s. See [Zh01] for a concise account. When one of the
representations π1, π2 is a principal series, the convolution L-function can be computed as follows:

L(s, π1 × π2) = L(s, µ1 ⊗ π2)L(s, µ2 ⊗ π2) if π1 = π(µ1, µ2).

In this section we specialize π1 and π2 to the local factors of the global representations πf and πχ
respectively. We consider a modified version of the Rankin-Selberg integral, in which W1 is always
taken to be a Whittaker newform for π1, while W2 and f ∈ I(s, ω) are constructed via the Weil
representation from Schwartz functions ϕ1, ϕ2 ∈ S(K) respectively, with K a quadratic separable
extension of F . We show that L(s, π1 × π2) equals the modified Rankin-Selberg integral up to an
explicit factor, for a suitable choice of ϕ1, ϕ2.

Let π be an admissible, irreducible representation of G(F ) with trivial central character, which
is to be thought of as a local component of the global representation πf . Let K/F be a quadratic
separable extension with norm N = NK/F , and let χ be a character of K×, trivial on F×. Let πχ be
the irreducible representation associated to χ as in Theorem 2.2.1, which has central character ω,
the quadratic character of F× determined by K. Fix also a constant Λ ∈ F×, and let r1, rΛ be the
Weil representations associated with the quadratic spaces (K,NK/F ), and (K,ΛNK/F ) respectively.
We denote by G(F )+ the index two subgroup of G(F ) consisting of matrices with determinant in
N(K×), and for any subgroup H of G(F ) we let H+ = H ∩G(F )+.

Fix a nontrivial character ψ of F , and let W (π, ψ) be the corresponding Whittaker model of π.
Let W+(πχ, ψ) be the set of functions on G(F )+ of the type:

Wχ(g;ϕ) =
∫

K1

L(h)r1(g1)ϕ(σ−1)χ(σh)dσ,

for ϕ ∈ S(K) and h ∈ K with N(h) = det g. This is the local component of the Whittaker coefficient
of the global form θχ(g, ϕ) considered in §4.1, and the space W+(πχ, ψ) is closely related to the
Whittaker model of πχ. We will not be concerned however with the exact relationship between the
two spaces.

We shall only consider sections f(s, g;ϕ) ∈ I(s, ωK) constructed using the representation rΛ as
in §2.4.1:

f(s, g;ϕ) = rΛ(g1)ϕ(0)|a(g)|2s−1|det g|−1/2ω(det g),
for ϕ ∈ S(K).
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The local Rankin-Selberg integral that we consider here depends on a choice of two Schwartz
functions ϕ1, ϕ2 ∈ S(K) as follows:

Ψ+(s, ϕ1, ϕ2) =
∫

Z(F )N(F )\G(F )+
Wπ(εg)Wχ(g;ϕ1)f(s, g;ϕ2)dg (4.2.1)

where Wπ is the Whittaker newform for π. We shall show that under certain restrictions on the
data π, K/F , χ, Λ, the local Rankin-Selberg integral exactly equals L(s, π × πχ) up to a simple
factor, for a suitable choice of Schwartz functions. The restrictions are exactly the ones imposed at
the local places in the global situation.

4.2.1 Nonarchimedean case Let F be a nonarchimedean local field, and assume that the char-
acter ψ is unramified. Let q = |$F |−1 be the cardinality of the residue field of F .

If π1, π2 are two arbitrary representations of G(F ) such that L(s, π1) =
∏2
i=1(1− αiq−s)−1 and

L(s, π2) =
∏2
i=1(1− βiq−s)−1, the convolution L-function can be computed as follows:

L(s, π1 × π2) =
2∏

i,j=1

(1− αiβjq−s)−1,

provided at least one of π1, π2 is a principal series representation. If that is the case, the following
lemma is used in computing the local Rankin–Selberg integrals.

Lemma 4.2.1. Assuming that least one of π1, π2 is a principal series representation, let Wi be the
Whittaker newform for πi, i = 1, 2. If the measure on F× is such that UF has measure 1, then:

∫

F×
W1[i(a)]W2[i(−a)]|a|s−1d×a =




L(s, π1 × π2)
L(2s, ω) if π1, π2 unram.,

L(s, π1 × π2) otherwise.

Proof. This is a routine computation using the formulas for the diagonal values of the Whittaker
newforms given in Proposition 3.1.1, together with a power series identity.

We now specialize π1, π2 to the setting considered in §4.2. Our data consists of a representation
π with trivial central character; a quadratic, separable extension K/F with discriminant δK and
quadratic character ω = ωK ; a character χ of K× trivial on F× with Jacquet-Langlands lift πχ; an
element Λ ∈ F×. If c(χ) = S > 0 denotes the conductor of χ, recall that πχ has conductor C + 2S,
where C > 0 is the exponent of δK (and also the conductor of ω).

The modified Rankin-Selberg integral can be written in this case:

Ψ+(s, ϕ1, ϕ2) =
∫

N(K×)

∫

K0(1)+
Wπ[i(−t)k]Wχ[i(t)k;ϕ1)f(k;ϕ2)|t|s−1dkd×t, (4.2.2)

where f(k;ϕ) := f(s, k;ϕ) is independent of s for k ∈ K0(1). We normalize the measure dg on
Z(F )N(F )\G(F )+ in formula (4.2.1) as follows:

dg = |t|−1d×tdk

for the decomposition G(F )+ = Z(F )N(F )T1(F )+K0(1)+, where d×a is the measure on F× such
that N(UK) has measure 1, and dk is a measure on K0(1)+ of total measure 1. Note that this
measures give both K0(1) and UF volume 1, except when K/F is ramified, when they both have
volume 2.

In view of the global case, it is enough to consider the following restriction on our data:

Assumption 4.2.2. At most one of the representation π, the extension K/F , and the character χ
is ramified, and π is either unramified or special with unramified twist.
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If K/F is ramified, we further assume that Λ ∈ UF , and −Λ = N(u) for some fixed u ∈ UK ; for
each α ∈ δ−1

K /OK , we define the functions:

ϕα1 = 1α+OK
, ϕα2 = 1αu−1+OK

.

Under the previous assumptions, we collect in a table the data that will be used to compute
Ψ+(s, ϕ1, ϕ2) (for reasons of space, we abbreviate Unramified by Unr. and Ramified by Ram.). For
future reference, in the last column we have included the primes p in the global case that correspond
to a given local case. To state the next proposition in a more compact manner, we also define the
integer M to be the largest of the conductors of π and πχ. Thus, the integer M equals: 0 in the
cases A1, A1’; 1 in case A2; C in case A3, and 2S in case A4.

Case π K/F χ νF (Λ) ϕ1 ϕ2 Global
A1. Unr. Unr. Unr. 0 1OK

1OK
p - ΛdK

A1’. Unr. Split Unr. 1 1OK
1OF
× 1$−1

F OF
p = λ

A2. Ram. Unr. Unr. 1 1OK
1OK

p|N
A3. Unr. Ram. Unr. 0 ϕα1 ϕα2 p|dK
A4. Unr. Unr. Ram. 2S χ1UK

1OK
p|c(χ)

Proposition 4.2.3. In each of the cases above, we have:

Ψ+(s, ϕ1, ϕ2) = M(s)−1L(s, π × πχ)
where the factor M(s) is given by:

• A1., A1’.:

M(s) = L(2s, ω);

• A2., A4.:

M(s) =
L(1, ω)

µ[K0(πMF )+]
;

• A3.:

M(s) =
L(1, ω)

2µ[K0(πMF )+]
·
{

2 if νF (α) = −C,
1 if α ∈ OK , or if F = Q2 and −C < νF (α) 6 −1.

Here µ[K0(πMF )+] = 1/(qM + qM−1) is the measure of the compact subgroup K0(πMF )+ , for M > 1.

Proof. In the cases when πχ is unramified (that is A1., A1’., A2.), it has been shown in the proof of
Proposition 4.1.5 that Wχ(g;ϕ1) = Wχ(g) for g ∈ G(F )+, where Wχ is the Whittaker newform for
πχ. The proof in these cases is therefore simpler than in the remaining ones, which require a direct
computation of Wχ(g;ϕ1).
Cases A1. and A1’. We can apply proposition 2.5.3 (i) (in case A1.) or 2.5.3 (iii) (in case A1’.)
to conclude that f(k;ϕ2) = 1 for all k ∈ K0(1). Since Wπ, Wχ are both invariant under K0(1)+ =
K0(1), and Wχ[i(t)] = 0 if t 6∈ N(K×) (if K/F is a field), Lemma 4.2.1 applied to Eq.. (4.2.2)
implies that:

Ψ+(s, ϕ1, ϕ2) =
L(s, π × πχ)
L(2s, ω)

.

Case A2. The representation π is the special series σ(η| |1/2, η| |−1/2), with η unramified, hence
the Whittaker newform is right invariant under K0($F ). Since ν(Λ) = 1, Proposition 2.5.3 implies
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that the function f(k;ϕ2) is also right invariant under K0($F ), and formula (4.2.2) becomes:

Ψ+(s, ϕ1, ϕ2) = µ[K0($F )]
∑

ξ∈K0(1)/K0($F )

∫

N(K×)
Wχ[i(−t)]Wπ[i(t)ξ]f(ξ;ϕ2)|t|s−1d×a.

As system of representatives for the cosets K0(1)/K0($F ) we take the set {I} ∪ Σ, where:

Σ =
{(

β 1
−1 0

)
: β ∈ OF /$FOF

}
.

We are led to compute the following sum:

S(t) =
∑

ξ∈Σ

Wπ[i(t)ξ]f(ξ;ϕ2),

for t ∈ OF , where the values f(ξ;ϕ2) are given by Proposition 2.5.3:

f

[(
β 1
−1 0

)
;ϕ2

]
= |Λ|ω(Λ). (4.2.3)

From the identity:
(
t 0
0 1

)(
β 1
−1 0

)
=

(
1 −βt
0 1

)(
t 0
0 $−1

F

)(
0 1
−$1

F 0

)
,

together with the functional equation for the Whittaker newform (Proposition 3.1.1 (ii)), we deduce
that for ξ ∈ Σ:

Wπ[i(t)ξ] = W̃π[i(t$F )]ε(π, ψ),

where W̃π is the Whittaker newform for the contragredient representation π̃.

Since π = σ(η| |1/2, η| |−1/2), with η unramified and η2 = 1, we have that π = π̃ , and the epsilon
factor is ε(π, ψ) = −η($F ) (see [Zh01]). By Proposition 3.1.1, we have:

Wπ[i(t$F )] = η($F )|$F |Wπ[i(t)],

hence we find:

Wπ[i(t)ξ] = −|$F |Wπ[i(t)] for all ξ ∈ Σ.

Since there are |$F |−1 terms in the sum S, we obtain (taking into account that f(ξ;ϕ2) =
|$F |ω($F ) for ξ ∈ Σ):

S(t) = −|$F |ω($F )Wπ[i(t)].

It follows that:

Ψ+(s, ϕ1, ϕ2) = µ(K0($F ))[1− |$F |ω($F )]
∫

N(K×)
Wχ[i(−a)]Wπ[i(a)]|a|s−1d×a.

The integral over N(K×) is the same as the integral over F×: when K = F ⊕ F this is clear, and
when K is a field we have Wχ[i(−t)] = 0 if t 6∈ N(K×). Hence the conclusion follows by applying
lemma 4.2.1.

Case A3. In this case, we compute directly the Whittaker coefficient Wχ(i(t)k;ϕα1 ) and the
function f(k;ϕα2 ) appearing in the integral (4.2.2), using Lemma 2.5.2. The computation is more
complicated when the residue characteristic of F is 2, when we take the liberty of assuming that
F = Q2. Fix α ∈ δ−1/OK , and let r = −νK(α), so 0 6 r 6 C.
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Using formula (2.1.1), we have for k ∈ K0(1)+ with k1 =
(
a b
c d

)
(see Notation):

f(k;ϕα2 ) = ω(−Λc−1)|c|−1
F γ

∫

αu−1+OK

ψ[Λc−1dN(y)]dy

= ω(−Λc−1)|c|−1
F γ

∫

α+OK

ψ[−c−1dN(y)]dy,

where the second equality follows from a change of variables, using the fact that N(u) = −Λ. The
integral appearing above is computed in Lemma 2.5.2, parts (ii) and (iii), for α ∈ OK and α 6∈ OK
respectively.

The Whittaker function can be computed using Proposition 4.1.2:

Wχ[i(t)k;ϕα1 ] = |t|1/2F η(t)
∫

K1

r1(k1)ϕα1 (th−1σ−1)dσ,

where h ∈ K with N(h) = t det k, and η is the unramified character of F× such that η($F ) = χ($K).
Using the definition of the Weil representation (2.1.1), we have:

r1(k1)ϕα1 (x) = |c−1|ω(−c−1)γ
∫

α+OK

ψ[c−1(aN(x) + dN(y)− Tr(xȳ))]dy.

Since Wπ[i(−t)] = 0 if t /∈ OF in the integral (4.2.2), we can assume t ∈ OF in the next formula,
which implies that x = th−1σ ∈ OK . Using the fact that ψ[(c−1a− c−1d−1)N(x)] = 1 for x ∈ OK ,
we have:

r1(k1)ϕα1 (x) = |c−1|ω(−c−1)γ
∫

α+OK

ψ[c−1dN(y)]dy.

Noting that the last integral is the complex conjugate of the integral appearing in the formula
f(k;ϕα2 ), it follows that:

Wχ[i(t)k;ϕα1 ]f(k;ϕα2 ) = Wχ[i(t)]|c|−2

∣∣∣∣
∫

α+OK

ψ[c−1dN(y)]dy
∣∣∣∣
2

,

where we have used Wχ[i(t)] = |t|1/2F η(t) for the Whittaker newform Wχ. The integral appearing in
the last formula is computed in Lemma 2.5.2 (ii) or (iii), depending on whether α ∈ OK :
• α ∈ OK . Then Lemma 2.5.2 (ii) applies and we obtain:

Wχ[i(t)k;ϕα1 ]f(k;ϕα2 ) =





Wχ[i(t)]|πF |C if c ∈ UF ,
0 if 0 < νF (c) < C,

Wχ[i(t)] if νF (c) > C.

The Rankin-Selberg integral becomes:

Ψ+(s, ϕα1 , ϕ
α
2 ) = τ

∫

N(K×)
Wf [i(−t)]Wχ[i(t)]|t|s−1dt, (4.2.4)

where τ = |πF |Cµ[K0(1)+ −K0($F )+] + µ[K0($C
F )+]. Since the measure is normalized such that

µ(K0(1)+) = 1, we obtain

τ = 2|$F |C−1(1 + |$F |−1)−1 = 2µ[K0($C
F )+].

Together with Lemma 4.2.1 and the fact that the measure of N(UK) is 1, this proves the desired
identity.
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• α 6∈ OK . Then Lemma 2.5.2 (iii) applies and we obtain:

Wχ[i(t)k;ϕα1 ]f(k;ϕα2 ) =





Wχ[i(t)]|$F |C if c ∈ UF ,
0 if 0 < νF (c) 6= C − r,
Wχ[i(t)]|$F |2r−2C if 0 < νF (c) = C − r,

where the last case can occur only when C > 1, that is F = Q2. The formula (4.2.4) still holds, but
now τ is given by

τ =

{
|$F |C−1(1 + |$F |−1)−1 if νF (α) = −C,
|$F |C−2(1 + |$F |−1)−1 if −C < νF (α) 6 −1.

.

The conclusion follows by Lemma 4.2.1.
Case A4. Let the conductor of χ be S > 0. In this case, both Wχ(·;ϕ1) and f(k;ϕ2) are right
invariant under K0($2S

F ), by Propositions 4.1.5 and 2.5.3 respectively. Formula (4.2.2) becomes:

Ψ+(s, ϕ1, ϕ2) = µ[K0($2S
F )]

∑

ξ∈K0(1)/K0($2S
F )

∫

N(K×)
Wπ[i(−a)]Wχ[i(a)ξ;ϕ1]f(ξ;ϕ2)|a|s−1d×a.

As system of representatives for the cosets K0(1)/K0($2S
F ) we take the set Σ = Σ1 ∪ Σ2, where:

Σ1 =
{(

β 1
−1 0

)
: with β ∈ OF /$2S

F OF
}
,

Σ2 =
{(

1 0
$Fα 1

)
: with α ∈ OF /$2S−1

F OF
}
.

We are lead to compute the sums:

Si(a) =
∑

ξ∈Σi

Wχ[i(a)ξ;ϕ1]f(ξ;ϕ2), i = 1, 2.

As in case A3., the Whittaker function can be computed as follows for a ∈ OF :

Wχ[i(a)ξ;ϕ1] = |a|1/2F

∫

K1

r1(ξ)ϕ1(ah−1σ−1)χ(σh)dσ,

where Nh = a. For ξ ∈ Σ1, it is easy to see from formula (2.1.1) that r1(ξ)ϕ1(th−1σ−1) = 0 (since
χ is ramified), hence S1(a) = 0.

To compute S2, let ξ =
(

1 0
$Fα 1

)
∈ Σ2 with α ∈ OF /$2S−1

F OF , α 6∈ $2S−1
F OF . By Proposition

2.5.3 (i) and by formula (2.1.1) we have:

f(ξ, ϕ2) = |Λ$−1
F α−1|ω($Fα)

r1(ξ)ϕ1(x) = ω($Fα)|$−1
F α−1|

∫

UK

χ(y)ψ[$−1
F α−1N(y − x)]dy.

Writing α = $r+1
F u, with r = 1, . . . , 2S − 1, u ∈ UF /U2S−r

F , the summation over α becomes:

S2(a) = Wχ[i(a)] + |a|1/2
2S−1∑

r=1

∑

u∈UF /U
2S−r
F

|$F |2S−2r·

·
∫

K1

∫

UK

χ(σhy)ψ[$−r
F u−1N(y − aσ−1h−1)]dydσ. (4.2.5)
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We compute the sum by keeping r fixed and summing over u, using the identity (valid for n > 0):

∑

u∈UF /U
n
F

ψ(ux) =





0 if −n 6 νF (x) 6 −2,
−qn−1 if νF (x) = −1,
(q − 1)qn−1 if x ∈ OF .

(4.2.6)

Note that the same formula holds if u is replaced by u−1 in the argument of ψ.
There are two cases to consider, depending on whether K is a field or the split algebra.

• K a field. When a ∈ $FOF [implying that N(y − aσ−1h−1) ∈ UF independent of y ∈ UK ], we
claim that the sum over u vanishes for each fixed r. Indeed, if r 6 S, identity (4.2.6) applies to
conclude that the sum over u is independent of y, hence the integral over y vanishes. If r > S, then
the integral over y is seen to vanish by a change of variables y = v+$S

Kz, with v ∈ UK/USK , z ∈ OK .
Assume from now on that a ∈ UF . After a change of variables y = ah−1σ−1z, the sum becomes

(taking into account that the measure on K1 is normalized such that K1 has measure 1):

S2(a) = Wχ[i(a)] +
2S−1∑

r=1

∑

u∈UF /U
2S−r
F

|$F |2S−2r

∫

UK

χ(y)ψ[$−r
F u−1aN(y − 1)]dy. (4.2.7)

When r 6 S, we can sum over u first, using identity (4.2.6). When r > S, a change of variables
y = v +$S

Kz as before reveals that the integral over z vanishes unless v ∈ U r−SK . In the later case
the sum over u can again be computed using identity (4.2.6). The result is:

S2(a) = Wχ[i(a)] +
2S−1∑

r=1

(
∫

ν[N(y−1)]>r

qrχ(y)dy −
∫

ν[N(y−1)]>r−1

qr−1χ(y)dy).

We finally obtain:

S2(a) = Wχ[i(a)] + q2S−1

∫

US
K

χ(y)dy −
∫

UK

χ(y)dy = Wχ[i(a)](1 + q−1),

where we have used the fact that the Whittaker newform Wχ[i(a)] is 1 if a ∈ UF and 0 otherwise
(since L(s, πχ) = 1). It follows that:

Ψ+(s, ϕ1, ϕ2) = µ[K0($2S
F )]L(1, ω)−1,

which is the desired identity since L(s, π × πχ) = 1.
• K = F + F is split. Then χ(y1, y2) = η(y1)η−1(y2), with η a character of F× of conductor S. We
let $ = $F in the sequel. Formula (4.2.5) becomes in this case (recall that we assume a ∈ OF :

S2(a) = Wχ[i(a)] + |a|1/2
2S−1∑

r=1

∑

u∈UF /U
2S−r
F

|$F |2S−2r·

·
∫

F×

∫

UF×UF

η(y1σy
−1
2 σa)ψ[$−r

F u−1(y1 − σ−1)(y2 − aσ)]dy1dy2dσ

By lemma 2.1.2, the integral over UF × UF vanishes unless there exist y1, y2 ∈ UF such that
νF (y1 − σ−1) = νF (y2 − aσ) = r − S, which can only happen if both σ−1, aσ ∈ OF . Moreover,
if a ∈ $OF , the integral vanishes unless r = S. In the latter case, the identity (4.2.6) applies
to conclude that the sum over u ∈ UF /U

S
F is independent of either y1 (if σ−1 ∈ $OF ) or y2 (if

aσ ∈ $OF ). Therefore the integral over either y1 or y2 vanishes after performing the summation
over u, hence the sum vanishes for a ∈ $OF .

Assume therefore a ∈ UF from now on. After a change of variables, the sum becomes (taking
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into account that the measure on K1 is normalized such that K1 ∩ UK has measure 1):

S2(a) = Wχ[i(a)] +
2S−1∑

r=1

∑

u∈UF /U
2S−r
F

|$F |2S−2r·

·
∫

UF×UF

η(y1y
−1
2 )ψ[$−r−S

F u−1a(y1 − 1)(y2 − 1)]dy1dy2.

If r < S, the integral vanishes by Proposition 2.1.2. For r > S, a change of variables y = v +$z,
with v ∈ UF /USF × UF /USF , z ∈ OF ×OF , shows that the integral over y = (y1, y2) vanishes unless
v ∈ UF /U r−SF × UF /U r−SF . If that is the case, we can apply again identity (4.2.6), to obtain (we
have replaced r by r − S):

S2(a) = Wχ[i(a)] + qS
S−1∑

r=0

(
∫

Ur
F×Ur

F
ν[N(y−1)]>r+S

qrχ(y)dy −
∫

Ur
F×Ur

F
ν[N(y−1)]>r+S−1

qr−1χ(y)dy).

The two integrals can be computed as before by breaking down the integration domains, e.g.

{y ∈ U rF × U rF : N(y − 1) > r + S} = U rF \U r+1
F × USF ∪ . . . ∪ USF × U rF .

Taking into account that η has conductor S, it follows that the second integral is always 0, while
the first is nonzero only for r = S − 1. We obtain:

S2(a) = Wχ[i(a)](1− q−1),

which leads to the desired formula as in the previous case.

4.2.2 Archimedean case Assume now that F = R and that ψ(x) = e2πix. The archimedean
Rankin-Selberg integral can be computed using the following well-known lemma:

Lemma 4.2.4 Barnes’ Lemma. Assume f1, f2 are smooth functions defined on R×, at least one of
which is even, and such that:

∫

R×
f1(a)|a|s−1/2d×a = G1(s+ r1)G1(s+ r2)

∫

R×
f2(a)|a|s−1/2d×a = G1(s+ t1)G1(s+ t2),

the integrals converging absolutely for large enough Re(s). Then the following identity holds:

∫

R×
f1(a)f2(a)|a|s−1d×a =

∏2
i,j=1G1(s+ ri + tj)

G1(2s+ r1 + r2 + t1 + t2)
.

Recall that G1(s) = π−s/2Γ(s/2).

Proof. See [Ja72, p. 77].
Consider the setting described in §4.2. Let π be an irreducible representation G(R) with trivial

central character, K = R+R the split algebra, χ a character of K× trivial on R×, πχ the principal
series representation attached to χ, and Λ ∈ R×, Λ > 0.

Since χ is trivial on the diagonal R×, we can write χ = (χ1, χ
−1
1 ), for χ1 a character of R×. For

the global case, it is enough to consider the following restriction on the data above:

Assumption 4.2.5. The representation π is either discrete of weight 2k > 0, or a principal series
π(µ1, µ2) of weight 0, such that µ1(−1) = χ1(−1).
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By Proposition 4.1.3, we have that:

Wχ(g;ϕ1) = Wχ(g), for ϕ1(x1, x2) = e−π(x2
1+x2

2),

where Wχ is the Whittaker newform for πχ. With this choice of ϕ1, the Rankin-Selberg integral
becomes:

Ψ+(s, ϕ1, ϕ2) =
∫

R××SO2(R)
Wπ[i(a)k]Wχ[i(−a)k]|a|s−1f(k;ϕ2)dkd×a, (4.2.8)

which is the classical zeta integral denoted by Ψ[s,Wπ,Wχ, f(·;ϕ2)] in §4.2. We have normalized
the measure dg on Z(R)N(R)\G(R) in equation (4.2.1) such that:

dg = |a|−1d×adk for the decomposition G(R) = Z(R)N(R)T1(R)SO2(R).

Here d×a is the multiplicative Lebesgue measure on T1(R) ' R× and dk is the measure on SO2(R)
of total mass 1.

Proposition 4.2.6. Let π, πχ be two representations of G(R) satisfying Assumption 4.2.5, and let
2k > 0 be the weight of π. Let ϕ2 ∈ S(R2) be the weight −2k function denoted by ϕk in Proposition
2.5.5. Then

Ψ+(s, ϕ1, ϕ2) = χ1(−1)L(s, π1 × π2)/G1(2s+ 2k).

Proof. By Proposition 2.5.5, the function f(·, ϕ2) has weight −2k under the action of SO2(R). Hence
the integrand in the formula (4.2.8) is right SO2(R)-invariant, and the desired identity follows easily
from Proposition 3.2.1 and Lemma 4.2.4. If π is a principal series π(µ1, µ2), the assumption that
µ1(−1) = χ1(−1) has been made to ensure that the product Wπ[i(a)]Wχ[i(−a)] is an even function
of a, otherwise Ψ+(s, ϕ1, ϕ2) vanishes.

4.3 The Rankin-Selberg identity
We now come back to the global setting considered in the beginning of §4. We choose Λ = λNc(χ)2

with λ a prime that splits in K such that λ ≡ −N (mod dK). As we shall show in §5.1, the
quaternion algebra ramified exactly at the even number of places dividing N which are inert in K,
has global Hilbert symbol (dK ,−Λ).

Putting together the local computations from the previous section, we obtain the following
integral representation for the Rankin L-function:

L(s, πf × πχ) = M(s)
∫

Z(A)N(A)\G(A)+
Wf (g)Wχ(εg;ϕ1)f(s, g;ϕ2)dg,

where Wf is the product of the Whittaker newforms for πf over all places, and the local components
of the functions ϕ1, ϕ2 ∈ S(KA) are given in the table of §4.2.1 in the nonarchimedean case (see
the last column in that table for the case corresponding to a given finite prime p; if p|dK , take
α ∈ OK,p), and in Proposition 4.2.6 in the archimedean case. The constant M(s) is the product of
the local factors given in Propositions 4.2.3 and 4.2.6; we are only interested in its value at s = 1/2:
(recall χ∞ = (χ1, χ

−1
1 )):

M(1/2) = χ1(−1)2αG1(1 + 2k)Lfin(1, ωK)ND
∏

p|ND
(1 + 1/p), (4.3.1)

where χ1 is one of the components of χ∞ and α is the number of primes dividing dK .
Let E(s, g) = E(s, g;ϕ2) be the Eisenstein series formed from the flat section f(s, g;ϕ2) :

E(s, g) =
∑

γ∈B(Q)\G(Q)

f(s, γg;ϕ2).
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Also let φf be the automorphic form on G(A) with Whittaker coefficientWf , and recall that θχ(·;ϕ1)
is the automorphic form on G(Q)G(A)+ with Whittaker coefficient Wχ(·;ϕ1). That is:

φf (g) =
∑

ξ∈Q×
Wf

((
ξ 0
0 1

)
g

)
(4.3.2)

θχ(g;ϕ1) = C(g) +
∑

ξ∈N(K×)

Wχ

((
ξ 0
0 1

)
g;ϕ1

)
(4.3.3)

where C(g) is the (possibly 0) constant term of θχ, which appears since the representation πχ is
not cuspidal in general. The second series is summed over N(K×) rather than over Q× because of
Proposition 4.1.2 (ii).

Then an easy modification of the standard Rankin-Selberg argument (e.g. [Bu97, Ch. 3.7]) leads
to the following:

Proposition 4.3.1. With ϕ1, ϕ2,M(s) defined above, the following identity holds for Re(s) large
enough:

L(s, πf × πχ) = M(s)
∫

Z(A)G(Q)+\G(A)+
φf (g)θχ(g;ϕ1)E(s, g;ϕ2)dg.

Proof. We have to prove the identity:∫

Z(A)N(A)\G(A)+
Wf (g)Wχ(εg;ϕ1)f(s, g;ϕ2)dg =

∫

Z(A)G(Q)+\G(A)+
φf (g)θχ(g;ϕ1)E(s, g;ϕ2)dg.

For reasons of space we omit the Schwartz functions from the notation. Denote by I1 the integral
appearing in the first line above and by I2 the integral on the second line. Using the formula for
E(s, g) we have (see Notation):

I2 =
∫

Z(A)B(Q)+\G(A)+
φf (g)φχ(g)f(s, g)dg

=
∫

B(A)+\G(A)+

∫

Z(A)B(Q)+\B(A)+
φf (bg)θχ(bg)f(s, bg)dbdg

=
∫

B(A)+\G(A)+

∫

T1(Q)+\T1(A)+

∫

N(Q)\N(A)
φf (tng)θχ(tng)f(s, tng)dndtdg.

The superscript + denotes the intersection of the corresponding groups with G(A)+. For the second
identity we use the isomorphism B/Z ' T1N . The measures on G(A)+/B(A)+ is normalized in the
same way as in the integral I1 (using the local measures), while the measures on T1(A) ' A× and
N(A)/N(Q) ' A/Q are the standard ones.

Next we replace θχ by its Fourier expansion (4.3.3). Since T1 normalizes N , we have C(tng) =
C(tg), f(s, tng) = f(s, tg) for t ∈ T1(A), n ∈ N(A), where C(g) is the constant term in the Fourier
expansion. Therefore integrating C(tng) against φf (tng) over N(Q)\N(A) yields 0, and we have:

I2 =
∫

B(A)+\G(A)+

∫

T1(Q)+\T1(A)+

∫

N(Q)\N(A)
φf (tng)

∑

ξ∈T1(Q)+

Wχ(ξtng)f(s, tg)dndtdg

=
∫

B(A)+\G(A)+

∫

T1(A)+

∫

N(Q)\N(A)
φf (tng)Wχ(tng)f(s, tg)dndtdg.

In the last step we have collapsed summation with integration. The inner integral can be written
using a change of variables and the fact that Wχ has character ψ under left multiplication by N(A):

∫

N(Q)\N(A)
φf (tnt−1tg)Wχ(tnt−1tg)dn = Wf (εtg)Wχ(tg)|t|−1
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hence we finally obtain:

I2 =
∫

B(A)+\G(A)+

∫

T1(A)+
Wf (εtg)Wχ(tg)f(s, tg)|t|−1dtdg.

But this is just another way of writing the integral I1 (recalling that the measure on T1(A) ' A×
was normalized by a factor of |t|−1 in the local integrals).

5. The Shimizu Correspondence

Evaluating the formula in Proposition 4.3.1 at s = 1/2 (by the principle of analytic continuation)
we obtain:

L(1/2, πf × πχ) = M(1/2)
∫

Z(A)G+(Q)\G+(A)
φf (g)θχ(g;ϕ1)E(1/2, g;ϕ2)dg,

where M(1/2) is given by (4.3.1). The forms θχ, E(1/2, g) are theta lifts from the quadratic field
K viewed as a vector space with norms NK/F ,ΛNK/F respectively (the second in virtue of the
Siegel-Weil formula). Recall that Λ = λNc(χ)2, with an odd prime λ such that λ ≡ −N (mod dK),
and α is the number of prime divisors of dK .

This section is organized as follows. In §5.1, we consider the quaternion algebra B ramified at the
primes in S = {p|N : p inert in K}, and we show that the quadratic space (B,NB/Q) decomposes
orthogonally into the two dimensional quadratic spaces of the previous paragraph. In §5.2, we apply
the “seesaw identity” to rewrite the Rankin-Selberg integral above in terms of a toric integral of the
Shimizu theta lift θf (x, y) on GSO(BA) ' B×A × B×A /A×, of the form φf . In §5.3, we compute the
level of θf , thus identifying up to a constant its components belonging to the space of the Jacquet-
Langlands lift of πf . When the character χ is unramified, the constant is determined in §5.4 using
a result of T. Watson [Wa02].

5.1 Quaternion algebras
First we show that the quadratic vector spaces (K,NK/F ), and (K,ΛNK/F ) provide an orthogonal
decomposition of the quaternion algebra B ramified at the set S of primes dividing N , which are
inert in K. Recall that the set S has even cardinality, due to the assumption on the sign in the
functional equation for L(s, πf × πχ).

Indeed, we claim that the quaternion algebra B has global Hilbert symbol (dK ,−Λ), that is:

B = Q⊕Qi⊕Qj ⊕Qk
with i2 = dK , j

2 = −Λ, and k = ij = −ji, where Λ = λNc(χ)2 as above. To check that B is ramified
exactly at the primes in S, we compute the local Hilbert symbols (dK ,−Λ)p for all odd primes p
and use the product formula (see [Vi80] for the facts about the local Hilbert symbol that we use):
• If p|N , p odd, then (dK ,−Λ)p = (dK , p)p since N is assumed square free, and the latter symbol is
1 or -1 as p is split or inert in K respectively.
• If p|dK , p odd, then (dK ,−Λ)p = (p,−λN)p = 1 by the assumption that λ ≡ −N (mod dK).
• If p = λ, then (dK ,−Λ)λ = (dK , λ)λ = 1 because λ splits in K.
• If p - λNdK , p odd, clearly (dK , λNc(χ)2)p = 1.

Note that the quadratic field K embeds into B and the decomposition above becomes:

B = K ⊕Kj, (5.1.1)

where j ∈ B is such that kj = jk̄ for all k ∈ K, and NB/Q(j) = Λ. The bar denotes the nontrivial
automorphism of K over Q. The decomposition (5.1.1) is orthogonal with respect to the quadratic
form on B induced from the reduced norm, and we can viewK and Kj as two dimensional quadratic
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spaces over Q with norm derived from the reduced norm NB/Q on B.

5.2 The seesaw identity

Let B be the quaternion algebra defined in §5.1. Viewing θχ and E(1/2, g) as global theta lifts, we
change the order of integration in the Rankin-Selberg integral, a technique which has been formalized
by S. Kudla in [Ku83]. The present situation has also considered by B. Roberts in [Ro98], and it
can be summarized by the following seesaw dual pair diagram.

G(A)+ [GSO(KA)×GSO(KAj)] = H(A)

[G(A)+ ×G(A)+] GSO(BA)
6 6

!!!!!!!!!!!!!!!

aaaaaaaaaaaaaaa

The square brackets around a product of groups indicate the subgroup of elements with the
same scale factor (e.g. with the same determinant inside G(A)+ × G(A)+). The diagonal lines
indicate the dual pairs on which the theta correspondence takes place. The left vertical arrow is
diagonal inclusion, and the right vertical arrow is the natural embedding given by viewing (µ, ν) ∈
[GSO(KA)×GSO(KAj)] as the similitude x+ yj → µ(x)+ ν(y)j of B(A). Note that the similitude
(µ, ν) of BA has the same similitude factor as that of µ or ν.

To make the notation uniform, in this section we denote by r1, r2, rB the Weil representations
defined on the groups [GSO(KA) × G(A)+], [GSO(KAj) × G(A)+], and on [GSO(BA) × G(A)+]
respectively, as in Section 2.3 (r2 has been denoted by rΛ previously). Let θ1, θ2, θB be the corre-
sponding theta kernels. For simplicity, denote by H(A) the group [GSO(KA)×GSO(KAj)].

Tensoring the decomposition B = K⊕Kj in equation (5.1.1) with Qp at all primes p (including
p =∞), we obtain local decompositions:

Bp = Kp ⊕Kpjp, (5.2.1)

where jp = j for p 6= λ, while if p = λ we take jλ = j/(1, λ) (recall Λ = λNc(χ)2, with λ split in
K). Here and in the sequel we fix embeddings B → Bp at all places p. Thus jp is an element of Bp
which anticommutes with Kp and whose reduced norm satisfies Njp = Λ, for p 6= λ, while Njλ a
unit in Zλ.

Let ϕ1, ϕ2 ∈ S(KA) be the functions that give rise to θχ, E(1/2, g), and which were determined
in Section 4.3. Also let ϕ ∈ S(BA) be the function with local components

ϕp(x1 + x2jp) = ϕ1,p(x1)ϕ2,p(x2). (5.2.2)

The crucial property of the seesaw pair is that the representation rB decomposes as follows:

rB[(h1, h2), g]ϕ(x1 + x2j) = r1(h1, g)ϕ1(x1)r2(h2, g)ϕ2(x2),

where (h1, h2) ∈ H(A) with similitude factors λ(h1) = λ(h2) = det g. In terms of the theta kernels,
this implies:

θB((h1, h2), g;ϕ1 ⊗ ϕ2) = θ1(h1, g;ϕ1)θ2(h2, g;ϕ2) (5.2.3)

The seesaw identity uses this observation together with Fubini’s theorem to move the integration
from one side of the seesaw to the other.

Consider the theta lift of the form φf to an automorphic form on GSO(BA) (the adjoint to
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“Shimizu’s lift”):

θf (σ;ϕ) =
∫

SL2(Q)\SL2(A)
θB(σ, g1g;ϕ)φf (g1g)dg1, (5.2.4)

for σ ∈ GSO(BA) and g ∈ G(A) with det g = λ(σ) (here λ denotes the similitude factor). Then the
following “seesaw identity” holds:

∫

ZG(A)G(Q)+\G(A)+
φf (g)θχ(g;ϕ1)E(1/2, g;ϕ2)dg = 2

∫

A×H(Q)\H(A)
θf (h;ϕ)χ(h)dh, (5.2.5)

where the group A× on the right hand side is identified with the center of GSO(BA).
First it is convenient to replace the integration domains by ZG(A∞,+)G(Q)+\G(A)+, and by

A×∞,+H(Q)\H(A) (which does not change the integrals since A×/A×∞,+Q× has volume 1). We have
denoted by A×∞,+ the ideles with positive archimedean component and unit nonarchimedean com-
ponents. Let C denote the compact group NK/Q(A×K)/A×∞,+NK/QK

×. We use the following exact
sequences to normalize the measure on the groups involved:

1→ SL2(Q)\SL2(A)→ ZG(A∞,+)G(Q)+\G(A)+ det→ C → 1; (5.2.6)

1→ H1(Q)\H1(A)→ A×∞,+H(Q)\H(A) λ→ C → 1. (5.2.7)

Here λ denotes the similitude homomorphism, and H1 denotes the subgroup of elements of H with
unit similitude factor. Note that H1(Q)\H1(A) can be identified with two copies of SO(K)\SO(KA).

Fix a measure dξ on C which is the restricted product of local measures on N(Kp) such that
N(UK,p) has volume 1, and of the multiplicative Lebesgue measure at infinity. It is easy to see
that C has unit volume with respect to this measure. In the first exact sequence, let dg be the
measure on ZG(A∞,+)G(Q)+\G(A)+ used to derive the Ranking-Selberg formula, and let dg1 be
the measure on SL2(Q)\SL2(A) such that dg = dg1dξ. It follows that dg1 is the restricted product
of local measures on SL2(Qp) such that SL2(Zp) has volume 1, and a measure at infinity for which
SO2(R) has volume 1.

In the second exact sequence, let dh1 be the measure on SO(K)\SO(KA) used in the theta
integral for θχ, which has total mass hK ln εK , where hK is the cardinality of the narrow class group
of K, and εK is the smallest power of the fundamental unit which is totally positive (see §4.1). It
follows that the measure on SO(K)\SO(KA) used in the Siegel-Weil formula is dh2 = dh1/(hK ln εK)
(since it is a measure of unit total mass). The measure on H1(Q)\H1(A) ' (SO(K)\SO(KA))2 is
then dh1dh2, and we normalize the measure dh on A×∞,+H(Q)\H(A) by dh = dh1dh2dξ. Then the
right term of the seesaw identity becomes:

∫

C

∫

H1(Q)\H1(A)

∫

SL2(Q)\SL2(A)

θB[(h1h(ξ), h2h(ξ)), g1g(ξ);ϕ1 ⊗ ϕ2] ·

· φf (g1g(ξ))χ(h1h(ξ))dg1dh1dh2dξ,

where h(ξ) ∈ GSO(KA) = GSO(KAj), g(ξ) ∈ G(A) with λ(h(ξ)) = det g(ξ) = ξ. Similarly, the left
term can be written:

2
∫

C

∫

SL2(Q)\SL2(A)

∫

(SO(K)\SO(KA))2

θ1[h1h(ξ), g1g(ξ);ϕ1]θ2[h2h(ξ), g1g(ξ);ϕ2] ·

· φf (g1g(ξ))χ(h1h(ξ))dh1dh2dg1dξ,

where the constant 2 in front of the integral is the value of κ in the Siegel-Weil formula (Theorem
2.4.1). The identity now follows from Eq. (5.2.3) by interchanging the order of integration. This is
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justified, since both sides converge absolutely due to the presence of the rapidly decaying cusp form
φf .

Remark 5.2.1. In the proof of the seesaw identity, we have used a version of the Siegel-Weil formula
in which the integration is over SO(K)\SO(KA) rather than over the whole orthogonal group. The
difference between the two integrals is due to the existence of places p such that ϕp 6= ϕp ◦ ip, where
ϕ =

∏
p ϕp, and ip is the generator of Gal(Kp/Qp). Indeed, letting S be the (finite) set of such finite

places, the two integrals are related as follows:∫

O(K)\O(KA)
θ(σh, g;ϕ)dσ =

1
2#S

∑

R⊂S

∫

SO(K)\SO(KA)
θ(σh, g;ϕR)dσ,

where ϕRp = ϕp ◦ ip for p ∈ R, and ϕRp = ϕp for p 6∈ R. Since the function ϕ2 considered here is
invariant under the local involutions ip for each prime p, it follows that the two integrals agree here.
However that is not the case for more general functions ϕ, as it will be seen in the proof of Theorem
5.3.9.

To interpret the right hand side of Eq. (5.2.5), we identify the right vertical embedding in the
seesaw diagram as follows:

GSO(BA) '←−−−− B×A ×B×A /A×x
x

H(A) '←−−−− K×
A ×K×

A /A
×

(5.2.8)

The top isomorphism is given by (g, g′)v = gvg′−1 for g, g′ ∈ B×, v ∈ B, while the bottom one is
given by viewing (x, y) ∈ K×

A ×K×
A as multiplication by xy−1 in KA, and as (left) multiplication

by xȳ−1 in KAj. Finally, the right vertical arrow is given by the fixed embedding KA ↪→ BA.
Using the identification (5.2.8), the seesaw identity (5.2.5) becomes:∫

Z(A)G+(Q)\G+(A)
φf (g)θχ(g;ϕ1)E(1/2, g;ϕ2)dg =

2
hK ln εK

∫

(A×K×\K×A )2
θf (x, y;ϕ)χ(xy−1)dxdy.

The measure on A×K×\K×
A is normalized as in §4.1. The factor 1/hK ln εK appears because of the

difference between the measure normalization in the two dimensional theta integrals, as explained
above.

5.3 A level computation
Combining the last identity in the previous section with Proposition 4.3.1, and taking into consid-
eration Dirichlet’s class number formula2 Lfin(1, ωK) = hK ln εK/

√
dK , we have shown that:

L(1/2, πf × πχ) = χ1(−1)
21+α

√
dK

G1(1 + 2k)ND
∏

p|ND
(1 + 1/p)I(ϕ),

where:

I(ϕ) =
∫

(A×K×\K×A )2
θf (x, y;ϕ)χ(xy−1)dxdy. (5.3.1)

Recall that θf is the automorphic form on GSO(BA) ' B×A × B×A /A
× defined via the Shimizu

correspondence in Eq. (5.2.4), and that χ1 is one of the two components of χ∞.
Note at this stage that the form θf (x, y;ϕ) depends on the quadratic fieldK and on the character

χ only via the Schwartz function ϕ ∈ S(BA) used to define the theta kernel in the integral (5.2.4).

2Dirichlet’s formula is usually stated in terms of the class number and fundamental unit of K, while here we have
written it in terms of the narrow class number hK and the smallest totally positive power εK of the fundamental unit.
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We shall first express the Schwartz function more intrinsically in terms of certain orders in the
quaternion algebra B.

Using the decomposition (5.2.1), define for each p <∞ an order Rp of Bp as follows:

Rp = Op +Opjp,
where we write Op for OK,p, the ring of integers in Kp. By our choice of jp, the order Rp is maximal
for p - D and for p|N , p inert in K, and it has level ND for p|D and for p|N , p split in K (recall
that D = dKc(χ)2).

For p|c(χ), the character χp extends to a character of the group of units R×p in the order Rp by:

χp(k1 + k2jp) = χp(k1), for k1, k2 ∈ Op such that k1 + k2jp ∈ R×p
(this makes sense since Njp is a unit multiple of c(χ)2). From the definition (5.2.2) of ϕ, it follows
that:

ϕp =

{
1Rp

if p - c(χ),
χ1R×p if p|c(χ).

At p = ∞, it is convenient to embed K∞ into B∞ = M2(R) as the diagonal subgroup, and to

let j∞ =
(

0
√

Λ
−√Λ 0

)
in the archimedean decomposition:

B∞ 'M2(R) = K∞ +K∞j∞. (5.3.2)

With this identification the Schwartz function ϕ∞ is given by (recall that πf,∞ has weight
2k > 0):

ϕ∞

(
x y
z t

)
= Pk(y + z)e−π(x2+y2+z2+t2),

where Pk is the polynomial in Proposition 2.5.5.

Remark 5.3.1. This decomposition is conjugate to that of Eq. (5.2.1) by a matrix γ∞ ∈ G(R). To
simplify notation, we ignore this matrix in the sequel, with the understanding that if τ(x) is an
archimedean Schwartz function defined using the identification (5.3.2), then it should be read as
τ(γ−1∞ xγ∞). The matrix γ∞ will reappear in the final result, Theorem 5.3.9.

Unfortunately the Schwartz function ϕ does not endow the theta lift θf (x, y;ϕ) with the desired
level at primes p|dK , and with the desired weight at infinity (if f has positive weight). Therefore we
replace the function ϕ ∈ S(BA) with a similar one ϕ′, which agrees with ϕ at all finite places not
dividing dK , and which gives the theta lift θf (x, y;ϕ′) a level structure and weight that identifies
it uniquely, via Shimizu’s theorem. Of course we then have to check how these changes affect the
integral (5.3.1), by tracing back the changes to the local Rankin-Selberg integrals, via the seesaw
identity.

At infinity, we let ϕ′∞ depend on the weight 2k of πf as follows:

ϕ′∞

(
x y
z t

)
= [(x− t) + i(y + z)]2ke−π(x2+y2+z2+t2).

Note that this function agrees with ϕ∞ for k = 0. It is easy to check that ϕ′∞(kαxkβ) = e2kπi(β−α)ϕ′(x),
for kα, kβ ∈ SO2(R).

At each prime p dividing dK , there are two maximal orders R±p containing Rp:

R±p = {a+ bjp : a, b ∈ δ−1
p such that a ≡ ±bup (mod OKp)}, (5.3.3)
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where δp denotes the different of the extension Kp/Qp, and up ∈ UKp is such that Nup = −Λ (such
a choice of up is possible because ωp(−Λ) = (dK ,−Λ)p = 1). The two orders R±p are conjugate; if
vp is a generator of the ideal δ−1

p , then:

R−p = v−1
p R+

p vp, (5.3.4)

which follows from the fact that Tr(δ−1
p ) ⊂ Zp.

We denote by R̃p either of the two maximal orders R±p , and we set:

ϕ′p = 1 eRp
.

Remark 5.3.2. The choice of maximal orders R̃p in the definition of ϕ′p at primes p|dK does not
influence the integral I(ϕ′) defined in equation (5.3.1). Indeed, if ϕ′′ is defined as ϕ′ with a different
choice of orders R̃p, then equation (5.3.4) implies that:

θf (x, y;ϕ′′) = θf (xv, yv;ϕ′),

with v ∈ A×K supported at some of the primes dividing p|dK , for which vp is a generator of δp or of
δ−1
p . It is then clear that I(ϕ′) = I(ϕ′′) by a change of variables.

The unit groups in the orders Rp, R̃p determine a compact subgroup of B×A , which we denote
R̂×:

R̂× =
∏

p-dK

R×p
∏

p|dK

R̃×p . (5.3.5)

The notation is motivated by the fact that R̂× ∩B is the unit group in an Eichler order R ⊂ B of
level Nc(χ)2, such that Rp := R⊗Qp is either Rp or R̃p.

Remark 5.3.3. Fix isomorphisms Bp 'M2(Qp) at the primes p where B splits. We can choose the
decomposition (5.1.1) such that Rp is the standard order of level Nc(χ)2 in Bp. Indeed, choose a
global order R ⊂ B whose localizations Rp are the standard orders above, and choose an algebra
embedding Ψ : K → B such that Ψ(OK) = Ψ(K) ∩R (that this is possible can be checked locally,
and it follows from [Vi80]). This embedding can then be extended to a decomposition as in (5.1.1).

Proposition 5.3.4. The automorphic form θf (x, y;ϕ′) has the following level structure:

θf (xk, yk′;ϕ′) = θf (x, y;ϕ′)
∏

p|c(χ)

χp(k−1
p k′p) for k, k′ ∈ R̂×

θf (xkα, ykβ;ϕ′) = θf (x, y;ϕ′)e2πki(α+β) for kα, kβ ∈ SO2(R),

where kθ =
(

cos θ sin θ
− sin θ cos θ

)
.

Proof. Recall that the theta kernel used to define the form θf in §5.2 is given by:

θB((x, y), g;ϕ′) =
∑

t∈B
rB[(x, y), g]ϕ′(t),

where (x, y) ∈ B×A × B×A and g ∈ G(A) such that N(xy−1) = det g. Since φf is right invariant
under the action of K0(N), it is clear from the definition of θf in (5.2.4) that the proposition is an
immediate consequence of the following lemma. This lemma can be found in [Wa02], however the
proof given here is different in that it only makes use of the Weil representation attached to two
dimensional quadratic spaces.
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Lemma 5.3.5. (i) Let k, k′ ∈ R̂×, and choose g ∈ K0(Nc(χ)2) such that NB/Q(kk′−1) = det g. Then:

rB[(k, k′), g]ϕ′fin =
∏

p|c(χ)

χ−1
p (kk′)ϕ′fin.

(ii) If kα, kβ ∈ SO2(R), then rB[(kα, kβ), 1]ϕ′∞ = e2πki(α+β)ϕ′∞.

Proof. (i) By the definition of the Weil representation:

rB[(k, k′), g]ϕ = L(k, k′)rB(g1)ϕ

where L(k, k′)ϕ(t) = ϕ(k−1tk′), and g1 ∈ K0(Nc(χ)2) ∩ SL2(A) (see Notation). To prove the state-
ment, it is enough to show that rB(g1)ϕ′ = ϕ′, as the action of L(k, k′) is easy to compute from the
definition of ϕ′p in terms of the characteristic function of Rp or R̃p.

If p - dK , we have ϕ′p = ϕp, and the Weil representation rB decomposes as follows with respect
to the decomposition 5.2.1:

rB(h)ϕp(x1 + x2jp) = r1(h)ϕ1,p(x1)rΛ(h)ϕ2,p(x2),

where r1, rΛ are the Weil representations of SL(2) associated with (K,NK/Q), (K,ΛNK/Q) respec-
tively. The conclusion then follows from Proposition 2.5.1.

If p|dK , the function ϕ′p is the characteristic function of the maximal order R̃p, and no longer
decomposes as product of two dimensional functions. Instead:

ϕ′p(x1 + x2jp) =
∑

α∈δ−1
p /OK,p

1α+Op(x1)1αu−1
p +Op

(x2), (5.3.6)

[for concreteness, we take R̃p = R+
p with the notations from (5.3.3)]. Denote by ϕα1,p, ϕ

α
2,p the

characteristic functions appearing in the decomposition above, for α ∈ δ−1
p /Op. To check that ϕ′p is

invariant under SL2(Zp), it is enough to check it on the generators, the only nontrivial case being the

action of w =
(

0 1
−1 0

)
. We compute it by decomposing again the action of rB on the components

of ϕ′p into the action of the two dimensional Weil representations, which are easy to compute:

rB(w)ϕα1,p ⊗ ϕα2,p(x1 + x2jp) = ψK,p[ᾱ(x1 + Λū−1
p x2)]1̂Op(x1)1̂Op(x2)

where ψK = ψ ◦TrK/Q, and the hat denotes Fourier transform on Kp with respect to the character
ψK,p. The Fourier transform has been computed in the proof of Lemma 2.1.1: 1̂Op = µ(Op)1δ−1

p
.

Since the character ψK,p has conductor ideal δ−1
p , it follows that for x1, x2 ∈ δ−1

p we have:

∑

α∈δ−1
p /Op

ψK,p[ᾱ(x1 + Λū−1
p x2)] =

{
0 if x1 + Λū−1

p x2 /∈ Op,
#(Op/δp) if x1 + Λū−1

p x2 ∈ Op.

Since N(up) = −Λ, and µ(Op)−2 = #(Op/δp), it follows that rB(w)ϕ′p = ϕ′p as desired.

(ii) It is easy to check that ϕ′∞(k−1
α tkβ) = e2πki(β+α)ϕ′∞(t).

The level computation allows us to identify the forms in the space of πJLf appearing in the
decomposition of θf (x, y;ϕ′) (by Shimizu’s Theorem 2.3.4).

Proposition 5.3.6. There is a nontrivial automorphic form φJLf on B×(A), belonging to the space

of πJLf , such that

θf (x, y;ϕ′) = CφJLf (xε)φJLf (y),
for a constant C, where ε = i(−1) ∈ G(R) (see Notation), and the bar denotes complex conjugation.
The form φJLf is uniquely determined up to a constant by the following level structure:
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LS. φJLf has weight 2k at infinity, and it transforms as follows under the action of the compact

group R̂× defined in Eq. (5.3.5):

φJLf (xk) =
∏

p|c(χ)

χp(kp)φJLf (x) for k ∈ R̂×.

Moreover, φJLf is an eigenform of the Hecke operators at all finite primes not dividing ND, with
the same eigenvalues as those of φf .

Remark 5.3.7. If χ is unramified, the Shimizu lift has been computed explicitly by T. Watson
[Wa02, Ch. 3], leading also to a value for the constant C in the proposition. We shall review T.
Watson’s computation in §5.4.

Remark 5.3.8. The form φJLf has almost the same level structure at finite primes as the toric
newform appearing in S.W. Zhang’s formula for the central value of the Rankin L-function in the
quadratic imaginary case [Zh01]. It differs, however, at the primes p dividing dK , when our form
has full level, while Zhang’s toric newform has level dK , and transforms by χ under the action of
K×
p . It would be best to replace the form φJLf in Theorem 5.3.9 by a form of level N , independent

of χ, in view of applications to nonvanishing results for twists by characters of varying conductor
(as in the work of Cornut and Vatsal). This is plausible by comparison with the imaginary case,
where a similar result was proved by S.W. Zhang in a later paper [Zh04].

Proof. We prove first the claim that the level structure of the form φJLf determines it uniquely up to a
constant. This is a local statement, which follows from the fact that the space of vectors in the local
representations πJLf,p having the behavior described above under the action of the corresponding
compact subgroups of B×p , is one dimensional. For p - c(χ), this follows from Casselman’s work
[Ca73], while if p|c(χ) it follows from work of Zhang [Zh01, Theorem 2.3.5] (if p|N , p inert in K,
then Bp is a division algebra so Casselman’s theorem does not apply; in this case however πJLf,p itself is
one dimensional). Therefore, φJLf also lies in a one dimensional subspace of the representation space
of πJLf . The statement about the action of the Hecke operators follows from the strong multiplicity
one theorem for automorphic representations of B×(A).

By Shimizu’s theorem (Theorem 2.3.4), the automorphic form θf (x, y;ϕ′) can be written as a
linear combination of products of forms on B×(A) belonging to the representation space of πJLf .
The level structure of θf (x, y;ϕ′) given in Proposition 5.3.4 then implies:

θf (x, y;ϕ′) = φ̃JLf (x)φJLf (y),

where φ̃JLf is a form with the same level structure as φJLf , but with χ replaced by χ−1. Note that

the same is true about the form φJLf (xε), and both are eigenforms for the Hecke operators at primes
not dividing ND. Therefore they must differ by a constant, by the strong multiplicity one theorem
invoked before. See also [Zh01, Thm. 2.4.3], where a similar argument is used to define the notion
of toric newform.

The previous proposition allows us to express the integral I(ϕ′) given by (5.3.1), in terms of the
linear form l defined in the Introduction. By identifying ε with (−1, 1) ∈ K∞ via the decomposition
(5.3.2), it follows that:

I(ϕ′) = Cχ1(−1)|l(φJLf )|2. (5.3.7)

It remains to compute how the integral I(ϕ) changes, when we replace the Schwartz function
ϕ by ϕ′. Tracing back the changes through the seesaw identity and into the local Rankin-Selberg
integrals for p|dK and for p =∞, we arrive at the following theorem:
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Theorem 5.3.9. If the form φJLf and the constant C are the ones defined in Proposition 5.3.6, we
have the identity:

L(1/2, πf × πχ) = M · C · |l(φJLf )|2
where

M =
β√
dK

2−2kNc(χ)2
∏

p|Nc(χ)

(1 + 1/p),

with β = 4 for k > 0, β = 2 if k = 0, and the linear form l is given by:

l(φ) =
∫

A×K×\K×A
φ(xγ∞)χ−1(x)dx.

The presence of the matrix γ∞ ∈ G(R) is explained in Remark 5.3.1.

Proof. First we note that if the central value of the L-function is zero, the linear form l vanishes
by Waldspurger’s result mentioned, and thus the theorem is trivial. Otherwise, the constant C is
clearly nonzero.

Because of Eq. (5.3.7) and the formula for the central value given in the beginning of §5.3, we
only need to check how the integral I(ϕ) given by equation (5.3.1) changes when we replace ϕ by
ϕ′. That amounts, via the seesaw identity, to re-computing the local integrals encountered already
in §4.2:

Ψ+
p (s, ϕ1,p, ϕ2,p) =

∫∫

K0(1)+p ×N(K×p )

Wf,p[i(t)k]Wχ,p[i(−t)k;ϕ1,p]fp(s, k;ϕ2,p)|t|s−1dtdk, (5.3.8)

for p|dK and p = ∞, when we replace the components ϕ1,p, ϕ2,p of ϕp by the components of ϕ′p.
The situation is complicated by the fact that ϕ′p is no longer a product of two dimensional Schwartz
functions, but a linear combination of such products.

First assume p is a prime dividing dK , and denote by δp the different ideal of the quadratic
extension Kp/Qp. Assume for concreteness R̃p = R+

p with the notations of equation (5.3.3). Then
ϕ′p decomposes into two dimensional components as in Eq. (5.3.6), and for α ∈ δ−1

p /OK,p we have
to compute Ψ+

p (s, ϕα1,p, ϕ
α
2,p) (see the paragraph following Eq. (5.3.6) for the notations). This has

already been done in Proposition 2.5.1, and we have:
∑

α∈δ−1
p /Op

Ψ+
p (s, ϕα1,p, ϕ

α
2,p) = Lp(s, πf × πχ).

Globally, let T =
∏
p|dK

δ−1
p /Op (a direct product), and for each element t = (tp)p|dK

∈ T , let
ϕt1, ϕ

t
2 ∈ S(KA) be two Schwartz functions that agree with ϕ1, ϕ2 for all p - dK , while for p|dK :

(ϕt1)p = ϕ
tp
1,p, (ϕt2)p = ϕ

tp
2,p.

Then the previous identity together with the Ranking-Selberg identity over G(A)+ (Proposition
4.3.1) yield:

L(s, πf × πχ) = M ′(s)
∑

t∈T
Ψ+(s, ϕt1, ϕ

t
2)

= M ′(s)
∑

t∈T

∫

Z(A)G(Q)+\G(A)+
φf (g)θχ(g;ϕt1)E(s, g;ϕt2)dg,

where M ′(1/2) = χ1(−1)G1(1 + 2k)Nc(χ)2
∏
p|Nc(χ)(1 + 1/p).

Before applying the seesaw identity, we have to take into account the fact that ϕt2,p is not always
invariant under the generator ip of Gal(Kp/Qp), and hence integrating over the whole orthogonal
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group in the Siegel-Weil formula for E(1/2, g;ϕt2) is not the same as integrating over the special
orthogonal group. By Remark 5.2.1, we have instead:

E(1/2, g;ϕt2) =
2

2#S

∑

R⊂S

∫

SO(K)\SO(KA)
θ2[σh, g; (ϕt2)

R]dσ,

where S denotes the set of primes diving dK . By applying the seesaw identity 2#SdK times we
obtain:

L(1/2, πf × πχ) = 2M ′(1/2)
∑

t∈T

1
2#S

∑

R⊂S
I[ϕt1 ⊗ (ϕt2)

R],

where I(ϕ) is given by equation (5.3.1) for ϕ ∈ S(BA). For a fixed set of primes R ⊂ S, define the
function ϕR ∈ S(BA) as follows:

ϕR =
∑

t∈T
ϕt1 ⊗ (ϕt2)

R.

Note that ϕR equals ϕ′ locally at each finite place, except at the primes p ∈ R, when ϕRp is the
characteristic function of the order R−p . By Remark 5.3.2, we conclude that I(ϕR) = I(ϕ′finϕ∞)
independent of R, and we have:

L(1/2, πf × πχ) = 2M ′(1/2)I(ϕ′finϕ∞).

Assume now that p = ∞, and assume that the weight of f is 2k > 0. We need to compute
the change in I(ϕ) when ϕ is replaced by ϕfinϕ

′∞. This is done by decomposing the four variable
function ϕ′∞ into a sum of functions which have weights (2j, 2k−2j) under the two dimensional Weil
representations associated with the decomposition (5.3.2). It is convenient to denote by Qk(X,Y )
the polynomial appearing in the definition of ϕ′∞, that is:

Qk(X,Y ) = (X + iY )2k.

Write Qk = Qek + iQok, where Qek, Q
o
k are the real and imaginary parts of Qk, respectively (the

first is an even, while the second is an odd polynomial in X and Y ). We will see that the odd
polynomial Qok will not give any contribution in the local Rankin-Selberg integral, while the even
part decomposes as follows in terms of the polynomials Pj defined in Proposition 2.5.5:

Qek(X,Y ) =
(2k)!

(4π)kk!

k∑

j=0

(−1)j
(
k

j

)
Pj(X)Pk−j(Y ).

To prove this identity, we integrate both sides over R2 against the kernel e−πΛ1X2
e−πΛ1Y 2

dXdY ,
using Lemma 2.5.4 on the left hand side, and Proposition 2.5.7 on the right hand side; the identity
then becomes the binomial formula for expanding (1/Λ1−1/Λ2)k. Note that the constant appearing
in front of the sum equals G1(1 + 2k).

The previous identity shows that, with respect to the decomposition of B∞ fixed in Eq. (5.3.2),
the four dimensional function ϕ′ decomposes as follows in terms of two dimensional functions:

ϕ′∞

(
x y
z t

)
= G1(1 + 2k)

k∑

j=0

(−1)j
(
k

j

)
ϕ

(j)
1 (x, t)ϕ(k−j)

Λ (y/
√

Λ, z/
√

Λ) + odd part, (5.3.9)

where ϕ(j)
Λ (x1, x2) ∈ S(K∞) is the weight −2j function under the Weil representation rΛ at infinity

given in Proposition 2.5.5, while “odd part” denotes the sum of terms whose two dimensional
components are products of an odd polynomial and the Gaussian in two variables. We let ϕ(j)

∞ (t1 +
t2j∞) = ϕ

(j)
1 (t1)ϕ

(k−j)
Λ (t2) denote the j-th term in the sum above, with respect to the decomposition

(5.3.2); note that for j = 0 we recover the original function ϕ∞. We also let ϕ(j) = ϕfinϕ
(j)
∞ .
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The odd part in the decomposition above does not contribute to the Rankin-Selberg integral
(5.3.8), since f∞(s, g;ϕo∞) = 0 for all functions ϕo∞ ∈ S(K∞) which are a product of an odd
polynomial and the two dimensional Gaussian. Therefore we only have to compute the terms I(ϕ(j)),
which reduces to computing the archimedean integrals Ψ+∞(s, ϕ(j)

1 , ϕ
(k−j)
Λ ), by the seesaw identity.

We shall see that although each such integral is fairly complicated, their sum evaluated at s = 1/2
simplifies to an elementary function of k.

By Proposition 2.5.5, the functions ϕ(j)
1 , ϕ

(k−j)
Λ have weights j, k− j under the two dimensional

Weil representations r1 and rΛ respectively, hence the integral (5.3.8) becomes:

Ψ+
∞(s, ϕ(j)

1 , ϕ
(k−j)
Λ ) =

∫

R×
Wf,∞[i(t)]Wχ,∞[i(−t);ϕ(j)

1 ]|t|s−1d×t.

The values of Wχ,∞ on T1(R) can be computed using Eq. (4.1.6). Let χ∞ = (χ1, χ
−1
1 ), with χ1 =

| |rsgnm for r ∈ C, m ∈ {0, 1}. We only need to consider t > 0 in the following formula, since
Wf,∞[i(t)] vanishes for t < 0:

Wχ,∞[i(−t);ϕ(j)
1 ] = χ1(−1)t1/2

j∑

i=0

(−4π)ii!
(2i)!

(
j

i

) ∫

R×
(tx+ 1/x)2i(tx2)−re−π(t2x2+x−2)d×x

The integrals above can be computed in terms of Bessel functions, using formula (3.2.1), after a
change of variables u = tx2, and after using the binomial formula:

Wχ,∞[i(−t);ϕ(j)
1 ] = 2χ1(−1)t1/2

j∑

i=0

(−4π)ii!
(2i)!

(
j

i

)
ti

i∑

l=−i

(
2i
i+ l

)
Jl−r(2πt).

We compute Ψ+∞(s, ϕ(j)
1 , ϕ

(k−j)
Λ ) by using Barnes’ lemma, for which we need the value of the

integral:

∫ ∞

0
Wχ,∞[i(−t);ϕ(j)

1 ]ts−1/2d×t =
χ1(−1)

2

j∑

i=0

i∑

l=−i

(−4π)ii!
(2i)!

(
j

i

)(
2i
i+ l

)
·

·G1(s+ i− l + r)G1(s+ i+ l − r).
This follows from formula (3.2.2). Recall that G1(s) = π−s/2Γ(s/2).

Since Wf,∞ is a Whittaker newform, its Mellin transform equals the L-function of πf,∞, and
moreover Wf,∞[i(t)] = 0 for t < 0 (see Proposition 3.2.1 and the Corollary following it). Hence we
can apply Barnes’ Lemma 4.2.4 to conclude:

Ψ+
∞(s, ϕ(j)

1 , ϕ
(k−j)
Λ ) = χ1(−1)

j∑

i=0

i∑

l=−i

(−4π)ii!
(2i)!

(
j

i

)(
2i
i+ l

)∏
G1[s+ i+ k ± (l − r)± 1/2]

G1(2s+ 2i+ 2k)
,

where here and in the sequel, the product is taken over all combinations of plus and minus signs.
In order to get the whole contribution corresponding to ϕ′∞, we sum over j with weights given by
the decomposition (5.3.9); denoting by Sk(s) the resulting sum, we obtain:

Sk(s) = χ1(−1)G1(1 + 2k)
k∑

j=0

j∑

i=0

i∑

l=−i
(−1)j

(
k

j

)
(−4π)ii!

(2i)!

(
j

i

)(
2i
i+ l

)
·

·
∏
G1[s+ i+ k ± (l − r)± 1/2]

G1(2s+ 2i+ 2k)
.

It is remarkable that the resulting triple sum simplifies considerably. We interchange the first two
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sums, and sum over j, using the identity:
k∑

j=i

(−1)j−i
(
k

j

)(
j

i

)
=

{
0 if i < k,

1 if i = k.

Using the identity G2(s) = G1(s)G1(s+ 1), we obtain:

Sk(s) = χ1(−1)
k∑

l=−k

(
2k
k + l

)∏
G2[s− 1/2 + 2k ± (l − r)]

G1(2s+ 4k)
.

We relate the last expression to the L-factor L∞(s, πf × πχ) =
∏
G2(s − 1/2 + k ± r) using the

recurrence relation G2(s+ 1) = s
2πG2(s):

Sk(s) = χ1(−1)L∞(s, πf × πχ)(2k)!(2π)−2k

G1(2s+ 4k)

k∑

l=−k

(
s− 3/2− r + 2k + l

k + l

)(
s− 3/2 + r + 2k − l

k − l
)
,

where the binomial coefficient
(
x
n

)
is defined as usually for x ∈ C, n ∈ Z, n > 0. The sum over

l equals the binomial coefficient
(
2s−2+4k

2k

)
, by a standard combinatorics identity3. Since we are

interested in the central value, we let s = 1/2, and use the formula for G1(1 + 4k) quoted above.
We finally have:

Sk(1/2) = χ1(−1)22k−1L∞(1/2, πf × πχ),
whence the factor 21−2k in the theorem, when k > 0.

5.4 Determining the constant
It remains to find the constant C appearing in Theorem 5.3.9. This has been done by T. Watson in
[Wa02, Ch. 3], using an explicit computation of the Shimizu correspondence, and we merely have
to translate that result to the present setting.

In order to apply T. Watson’s result, we assume henceforth that χ is unramified. Then the
function ϕ′ from the previous section can be easily expressed in terms of the Schwartz function used
in [Wa02], which we shall denote ϕw. It is convenient to denote by N− the product of the primes
dividing N that are inert in K, that is the discriminant of the quaternion algebra B.

For each finite prime p, the function ϕwp is a multiple of ϕ′, depending on the measure normaliza-
tion on SL2(Qp) used in the integral (5.2.4) to define the form θf . Explicitly, recall that the measure
on SL2(Qp) is normalized using the local version of the exact sequence Eq. (5.2.6), and with respect
to this measure we have µ[K0(N)p ∩ SL2(Qp)] = µ[K0(N)+p ]. We respect to this measure, we have:

ϕwp =
1

µ[K0(N)+p ]
·
{
ϕ′ if p - N−,
p−1
p+1ϕ

′ if p|N−.

Note that µ[K0(N)+p ] is either 1 (if p - N), or 1/(1 + p) (if p|N).
At infinity, the function ϕw∞ is given by [recall ε = i(−1) ∈ G(R)]:

ϕw∞ =
1

4kµ[SO2(R)]
rB[(ε, 1), ε]ϕ′∞,

3If x, y ∈ C, and c is a positive integer, then:

X
m+n=c

Ã
x + m

m

!Ã
y + n

n

!
=

Ã
x + y + c + 1

c

!
.
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and the measure on SO2(R) has total volume 1. Even though the definition of our measure on
SL2(Q)\SL2(A) differs from that in [Wa02] (there it is a Tamagawa measure), the theta lift θf (x, y;ϕw)
is the same as in that paper.

Therefore we can use Theorem 1 from section 3.2.2 in [Wa02], which computes the theta lift θf
of the form φf in terms of the form φJLf from Proposition 5.3.6:

θf (x, y;ϕ
w) =

‖φf‖2
‖φJLf ‖2

φJLf (x)φJLf (y),

where the norms are with respect to the Petersson inner product, normalized by using Tamagawa
measures on G(A) and B×(A), as in [Wa02, §2.2]. This identity is proved by first showing that
θf = CφJLf φJLf for a constant C, as in the proof of Proposition 5.3.6. The constant is then computed
via the adjoint identity, relating the Petersson inner products of lifts in both directions (again with
respect to Tamagawa measures on G(A) and GSO(BA)):

(θH , φf )G(A) = (H, θf )GSO(BA),

where H(x, y) = φJLf (x)φJLf (y) is a form on GSO(BA), and θH denotes the theta lift of H to a
form on G(A), with respect to the same Schwartz function ϕw as before. The form θH can be
computed explicitly by identifying its Whittaker coefficients, and it equals ‖φJLf ‖2φf . It follows that
C = ‖φf‖2/‖φJLf ‖2 as desired.

It remains to express the form θf (x, y;ϕ′) in terms of the form θf (x, y;ϕ
w):

θf (x, y;ϕ
w) =

∫

SL2(Q)\SL2(A)
θB[(x, y), g1g;ϕw]φf (g1g)dg1

= M ′
∫

SL2(Q)\SL2(A)
θB[(xε, y), g1gε;ϕ′]φf (g1g)dg1

= M ′θf (xε, y;ϕ′),

where M ′ = 1
4kµ[K0(N)+]

∏
p|N−

p−1
p+1 , and the last equality follows from the fact that φf (gε) = φf (g),

as φ is the adelization of a newform with real Fourier coefficients. Therefore we have:

θf (x, y;ϕ′) =
1
M ′
‖φf‖2
‖φJLf ‖2

φJLf (xε)φJLf (y).

Theorem 5.3.9 becomes:

Theorem 5.4.1. Assuming the character χ is unramified, we have the following explicit formula:

L(1/2, πf × πχ) =
β√
dK

∏

p|N−

p+ 1
p− 1

‖φf‖2
‖φJLf ‖2

|l(φJLf )|2,

where β = 4 if k > 0 and β = 2 if k = 0. The linear form l has been defined in Theorem 5.3.9, and
the form φJLf is a form of level N and weight 2k belonging to the space of πJLf , as in Proposition
5.3.6.

6. Classical formulation

For applications, it is useful to rewrite the main formula in terms of the classical newform f . We only
consider here the case when χ is unramified, and the quaternion algebra B is the matrix algebra,
that is when all the primes diving N split in K. This case contains many features of the general
case, and it is the case employed in [BD05].
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6.1 Geodesic cycles
We start by exhibiting a decomposition of M2(Q) into quadratic spaces in Eq. (5.1.1) such that
the local orders used to define the level of πJLf are the standard orders of level N in M2(Qp) (see
Remark 5.3.3).

To define the embedding Ψ : K → M2(Q), choose a, b, c ∈ Z such that the following conditions
are satisfied:

a2 + bc = dK , 2N |c, 2|b, gcd(a, b/2, c/2) = 1. (6.1.1)

Such a choice is possible because all primes dividing N split in K by assumption. We then have an
embedding Ψ : K →M2(Q) given by

Ψ(
√
dK) =

(
a b
c −a

)
= i,

which satisfies Ψ(K) ∩M0(N) = Ψ(OK), where M0(N) is the set of matrices with integer entries
whose lower left entry is divisible by N . By Remark 5.3.3, Ψ extends to a decomposition:

M2(Q) = K +Kj.

as in Eq. (5.1.1) and the orders Rp, R̃p that give the level of φJLf are the standard orders of level N
in M2(Qp).

At the archimedean place, the embedding Ψ ⊗ R is not the diagonal embedding considered

in (5.3.2), rather it is the conjugate of that one by the matrix4 γ∞ =
(
a+
√
dK a−√dK

c c

)
(see

Remark 5.3.1). Without loss of generality, we can assume c > 0, so that γ∞ has positive determinant.
Note that the form φJLf in Theorem 5.4.1 can be taken to be φf , hence the Petersson norms cancel

out in the statement of the theorem, since both norms are computed with respect to Tamagawa
measures. The task at hand is to rewrite the integral:

l(φf ) =
∫

A×K×\A×K
φf (ΨA(x)γ∞)χ−1(x)dx, (6.1.2)

in terms of the modular form f . In order to avoid confusion, we denote by ΨA,Ψfin,Ψ∞ the embed-
dings obtained from Ψ by tensoring with A, with Afin, and with R respectively.

Let HK denote the narrow class group of K, that is the group of integral ideals modulo principal
ideals having a totally positive generator. The measure used in Eq. (6.1.2) has been normalized using
the decomposition (4.1.2), and, since ΨA(Ô×K) ⊂ K0(N) by the choice of embedding, the integral
(6.1.2) becomes:

l(φf ) =
∑

a∈HK

χ−1(a)
∫

εZK\R×+
φf [Ψfin(a)Ψ∞(t, t−1)γ∞]d×t,

where a runs through a set of idele representatives for HK . Recall that εK is the smallest totally
positive power of the fundamental unit of K.

Fix a choice of i =
√−1. In terms of the decomposition:

GL2(A) = GL2(Q)Z(A)K0(N)GL+
2 (R), (6.1.3)

the form φf is related to the classical modular form f as follows:

φf (g) = 2f(g∞i)j(g∞, i)−2k, for g = γzkg∞, (6.1.4)

4Strictly speaking, we need a matrix γ∞ that also conjugates j to the matrix j∞ in (5.3.2), but it is easy to see that
such a matrix would equal the chosen γ∞, up to a scaling of its rows. It is easy to check that such a scaling has no
effect on the computations below.
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where j(A, z) = (cz + d)(detA)−1/2 is the automorphy factor for A =
(
a b
c d

)
∈ GL+

2 (R). The

factor of 2 is due to the fact that f is normalized such that its first nonzero Fourier coefficient is 1
(if k > 0), while the first Fourier coefficient of φf is 2, due to the normalization of the Whittaker
newforms. If f is a weight zero Maass form, we use this formula to normalize it.

We change variables z = Ψ∞(t, t−1)γ∞i = γ∞it2 in the integrals above. As t varies in the
interval [1, εK ], the complex number z varies between zΨ = γ∞i and Ψ(εK)zΨ, along the semicircle
on the upper half-plane, connecting the real numbers a±√dK

c . We call this path the geodesic cycle
corresponding to the embedding Ψ. The terminology is justified by the fact that Ψ(εK) ∈ Γ0(N),
so the endpoints of the path become identified on the modular curve H/Γ0(N).

In terms of the new variable z we have:

d×t =
√
dK

−cz2 + 2az + b
dz (6.1.5)

j(Ψ∞(t, t−1)γ∞, i)2 =
2
√
dKi

−cz2 + 2az + b
. (6.1.6)

Note that 2d×t is the hyperbolic differential along the semicircle parameterized by z = γ∞it2.
Let ga ∈ GL+

2 (R) be the inverse of the archimedean component of Ψfin(a) with respect to the
decomposition (6.1.3) (the archimedean component is not unique, but all choices give the same
value for the integrals below). Using the identity j(AB, z) = j(A,Bz)j(B, z), after the change of
variables the integral becomes:

l(φf ) =
√
dK

1−k
i−k

∑

a∈HK

χ−1(a)
∫ Ψ(εK)zΨ

zΨ

f [g−1
a z]j(ga, g

−1
a z)2kQΨ(z, 1)k−1dz, (6.1.7)

where QΨ is the binary quadratic form of discriminant dK associated to the embedding Ψ as follows:

QΨ(x, y) = − c
2
x2 + axy +

b

2
y2.

Note that the variable z in the integral above describes a portion of the geodesic semicircle con-
necting the roots a±√dK

c of the quadratic polynomial Qψ(z, 1).

The group GL+
2 (R) acts on the right on quadratic forms in the usual way:

(Q · g)(x, y) :=
1

det g
Q(Ax+By,Cx+Dy), for g =

(
A B
C D

)
∈ GL+

2 (R).

After a change of coordinates z = gaz
′, the integral in Eq. (6.1.7) corresponding to the idele a,

which we denote M(a), becomes:

M(a) =
∫ (g−1

a Ψga)(εK)za

za

f(z′)[(QΨ · ga)(z′, 1)]k−1dz′, (6.1.8)

where za = g−1
a zΨ, and the integral is over part of the geodesic semicircle connecting the two real

roots of the quadratic polynomial (Qψ · ga)(z, 1).

Next we choose a system of representatives for the narrow class field HK that will alow us to
compute the matrices ga explicitly. Let p1 = 1, p2, . . . , ph be a set of ideal representatives for Hilbert
class group of K, such that pi, 2 6 i 6 h, are prime ideals that split in K, dividing primes pi ∈ Z
which are coprime to 2Nc. Then a set of ideal representatives for the narrow class group HK is:

SK =

{
{p1, p2, . . . , ph} if hK = h,

{p1, p2, . . . , ph} ∪ {
√
dKp1,

√
dKp2, . . . ,

√
dKph} if hK = 2h .
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For an ideal α of K, denote by α̂ the corresponding finite idele (which is well defined modulo ÔK).
We shall take as idele class representatives a in Eq. (6.1.7) the ideles α̂, for α ∈ SK .

In order to compute the matrices ga, for each 2 6 i 6 h, let ai ∈ Z such that:

ai ≡ a (mod c), a2
i ≡ dK (mod pi). (6.1.9)

To make the notation uniform, set a1 = a, p1 = 1. We claim that for one of the two choices of ai
(mod dK) satisfying (6.1.9), we have (this holds trivially for i = 1 as well):

pi = [(ai +
√
dK)/2, pi], (6.1.10)

where [u, v] denotes the oriented ideal generated over Z by u, v ∈ OK . Indeed, the ideal piOK
factorizes as follows:

piOK = [(ai +
√
dK)/2, pi][pi, (ai −

√
dK)/2],

since both sides have norm p2
i , and the congruences (6.1.9) ensure that the right hand side is

contained in the left hand side (using the fact that c is even, so a, ai, dK have the same parity).

For 1 6 i 6 h, define the matrices:

γi =
(
pi (a− ai)/c
0 1

)
∈M2(Z). (6.1.11)

Since pi is split, we have:

Ψfin(p̂i) =



pi + 1

2
+
pi − 1
2
√
dK

a
pi − 1
2
√
dK

b

pi − 1
2
√
dK

c
pi + 1

2
− pi − 1

2
√
dK

a



pi

,

where
√
dK is viewed as a unit of Qpi = Kpi via a fixed embedding K → Qpi . The index pi indicates

that the matrix is to be viewed as belonging to GL2(Qpi) ⊂ GL2(A). With γi defined as above, the
congruence a2

i ≡ dK (mod pi) implies that

Ψfin(p̂i) = (γi)pik, with k ∈ K0(N)pi .

Since γi ∈M2(Q), the matrix Ψfin(p̂i) factors as follows with respect to the decomposition (6.1.3):

Ψfin(p̂i) = γik
′(γ−1

i )∞,

where k′ ∈ K0(N), which means that we can take ga = γi, for a = p̂i.

Similarly, letting ε = i(−1) ∈ G(R) (see Notation), we can take:

ga =
(
a b
c −a

)
γiε, for a =

√̂
dKpi.

As a runs through the chosen set of idele representatives for the narrow class group, we shall show
that the embeddings g−1

a Ψga and the quadratic forms QΨ ·ga run through a system of representatives
for oriented embeddings, and Heegner forms respectively, of level N , modulo the action of Γ0(N).
Towards this goal, in the next section we recall the connection between optimal embeddings, Heegner
forms, and ideal classes in the narrow class group of K.

6.2 Optimal embeddings and Heegner forms

As in the previous section, let K be a real quadratic field and N an integer coprime with the
discriminant dK of K. We assume that all prime divisors of N split in K, and we fix a choice of
square root a0 of dK modulo 4N .

49



Alexandru A. Popa

An algebra embedding α : K →M2(Q) given by:

α(
√
dK) =

(
a b
c −a

)

is called optimal of level N if α(K) ∩M0(N) = α(OK), where M0(N) is the set of matrices with
entries in Z which are upper triangular modulo N . It is easy to check that α is optimal if and only
if a, b, c ∈ Z satisfy the conditions (6.1.1). Such embeddings exist if and only if all prime divisors of
N split in K (otherwise condition (6.1.1) cannot be satisfied), which we are assuming here.

An embedding α is called oriented, with respect to the given choice of a2
0 ≡ dK (mod 4N), if

a ≡ a0 (mod 2N). The group GL+
2 (R) acts on embeddings by conjugation, and the subgroup Γ0(N)

of matrices of determinant 1 in M0(N)× fixes the set of oriented optimal embeddings of level N .
Next we define Heegner forms. A quadratic form with integer coefficients Q(x, y) = Cx2 +

Axy + By2 of discriminant dK is called Heegner of level N if N |C, and A ≡ a0 (mod 2N). The
group GL+

2 (R) acts on quadratic forms on the right as described in the last section, and Γ0(N) fixes
the set of Heegner forms of level N . The form Q is called primitive if its coefficients do not have
any nontrivial common divisor. The action of Γ0(N) takes primitive forms to primitive forms, and
we assume from now on that all Heegner forms are primitive.

To each embedding α : K → M2(Q) with α(
√
dK) =

(
a b
c −a

)
one can associate a quadratic

form Qα as in the last section:

Qα(x, y) = − c
2
x2 + axy +

b

2
y2.

This correspondence is compatible with the action of GL+
2 (R) on both sides, and oriented optimal

embeddings of level N correspond bijectively to Heegner forms of level N .
Let us denote by EN , FN the set of oriented optimal embeddings, respectively Heegner forms of

level N . Their number, modulo the action of Γ0(N), equals hK , the cardinality of the narrow class
group HK , independent of N . For N = 1, this is just the Gauss correspondence between narrow
ideal classes and primitive quadratic forms of discriminant dK . For an arbitrary N , the connection
between Heegner forms of level N and ordinary primitive forms of discriminant dK is discussed in
great detail in [GKZ, §I.1]. A concise account of the facts needed here is given in [Da92], from where
we have taken the terminology “Heegner forms.”

We first recall the correspondence between optimal embeddings (or Heegner forms), and narrow
ideal classes. We denote by [u, v] the oriented ideal of OK generated over Z by u and v, whose norm
is |uv − vu|/√dK . Recall that the ideal [u, v] is called oriented if uv − vu > 0.

Proposition 6.2.1. There is a bijection:

I : EN/Γ0(N)→ HK

that sends an embedding α ∈ EN with α(
√
dK) =

(
a b
c −a

)
to the class of the oriented ideal

I(α) =

{
[(a+

√
dK)/2, c/2] if c > 0,

[
√
dK(a+

√
dK)/2,

√
dKc/2] if c < 0.

Proof. Let F be the set of primitive forms of discriminant dK . The natural map i : FN/Γ0(N) →
F/Γ0(N) is a bijection, by [Da92], Proposition 1.4, while the map I ′ : F/Γ0(N) → HK , acting
as in the statement of the proposition on the form −x2c/2 + axy + y2b/2, is a bijection–see for
example [He23, Thm. 153]. The statement now follows from the fact that Heegner forms and optimal
embeddings are in one to one correspondence.
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For any matrix A ∈ M2(R), let A∗ denote the conjugate of A by the matrix ε = i(−1). We
extend this definition to embeddings α by defining α∗(

√
dK) = [α(

√
dK)]∗. If α is an oriented

optimal embedding of level N , so is α∗, and α and α∗ are congruent modulo Γ0(N) if and only if
hK = h, with h the cardinality of the Hilbert class group of K.

Let Ψ be the embedding fixed in the previous section, and recall that Ψ(
√
dK) =

(
a b
c −a

)
,

with c > 0. In the previous section we have chosen a system of representatives SK for the narrow
class group of K, in terms of which we have defined matrices γi ∈M2(Z), for i = 1, . . . , h. Keeping
the notations from the end of last section, we have the following explicit description of a distinct
set of oriented optimal embeddings of level N .

Proposition 6.2.2. (i) The map E : SK → EN/Γ0(N) defined as follows:

E(pi) = γ−1
i Ψγi

E(
√
dKpi) = E(pi)∗ = (γ∗i )

−1Ψ∗γ∗i (if hK = 2h)

is a bijection.

(ii) More precisely, if I : EN/Γ0(N)→ HK is the correspondence defined in the previous propo-
sition, then we have:

I ◦ E(α) = [I(Ψ)][α] for all α ∈ SK ,
where [α] denotes the class of the ideal α in the narrow class group.

Proof. For 1 6 i 6 h, the image of
√
dK under the embedding E(pi) defined above is (recall that

a1 = a, p1 = 1):

E(pi)(
√
dK) =

(
ai bi
cpi −ai

)
, with bi =

dK − a2
i

cpi
.

Clearly 2N |cpi, and bi ∈ 2Z because of the congruences (6.1.9). Moreover ai ≡ a ≡ a0 (mod 2N),
hence the embeddings E(pi), and therefore E(

√
dKpi), are oriented optimal embeddings.

To show they are distinct modulo conjugation by Γ0(N), it is enough to prove the second part of
the proposition, which would imply that the given embeddings map to distinct ideal classes under
the map I of Proposition 6.2.1. We have to show that

I ◦ E(pi) = [I(Ψ)][pi],

which, by the explicit formula (6.1.10), reduces to proving the following identity between oriented
ideals (recall also that we have assumed c > 0):

[(ai +
√
dK)/2, cpi/2] = [(a+

√
dK)/2, c/2] · [(ai +

√
dK)/2, pi].

Indeed, both sides have the same ideal norm, and it can be easily checked, using the congruences
(6.1.9), that the ideal on the right side is contained in the ideal on the left side. For example,
pi(a +

√
dK) = pi(ai +

√
dK) + pi(a − ai), and since a ≡ ai (mod c), the last term belongs to the

ideal on the left side, etc.
Similarly,

I ◦ E(
√
dKpi) = [I(Ψ)][

√
dKpi],

hence the map I◦E : SK → HK is simply translation by the ideal class [I(Ψ)], hence it is a bijection.
It follows that the map E is a bijection as well.

6.3 A classical formula
Proposition 6.2.2 shows that, as α runs through the set of representatives SK for the narrow ideal
class group, the embedding g−1

bα Ψgbα appearing in the integral (6.1.8) runs through the set of repre-

51



Alexandru A. Popa

sentatives {E(α) : α ∈ SK} for EN/Γ0(N). Therefore, formula (6.1.7) becomes:

l(φf ) =
√
dK

1−k
ik ·

∑

α∈SK

χ−1(α̂)
∫ E(α)(εK)zα

zα

f(z)QE(α)(z, 1)k−1dz,

where the integral is over part of the semicircle in the upper half plane connecting the real roots of
QE(α)(z, 1). The matrix E(α)(εK) ∈ Γ0(N) is an automorph of the quadratic form QE(α), that is a
generator (modulo torsion) of the rank 1 subgroup of SL2(Z) fixing the quadratic form; denote it
by ME(α). Concretely, if εK = m+ n

√
dK , with m,n ∈ Z/2, and QΨ(x, y) = −x2c/2 + axy+ by2/2,

then:

MΨ =
(
m+ na nb
nc m− na

)
.

Note that the previous formula for l(φf ) depends on the choice of embedding Ψ used to define
the map E : SK → EN/Γ0(N). However, its absolute value does not, due to the second part of
Proposition 6.2.2, and to the fact that χ is unitary. Viewing χ as a character of the narrow class
group HK , and identifying narrow ideal classes with oriented optimal embeddings by Proposition
6.2.1, we arrive at the following formula:

|l(φf )|2 = d1−k
K

∣∣∣∣∣∣
∑

Ψ∈EN/Γ0(N)

χ−1(Ψ)
∫ MΨzΨ

zΨ

f(z)QΨ(z, 1)k−1dz

∣∣∣∣∣∣

2

,

where the integral is over part of the semicircle connecting the real roots of QΨ. If f is a holomorphic
form of weight 2k > 0, the integrals above do not depend on the base point zΨ, since MΨ ∈ Γ0(N).
If f is a weight zero Maass form, the value of the base point becomes important, and it can be
extracted from the preceding computation:

zΨ =

{
a+i

√
dK

c if c > 0,
a−i√dK

c if c < 0,
for Ψ(

√
dK) =

(
a b
c −a

)
.

Theorem 5.4.1 becomes in this case:

Theorem 6.3.1. Let K be a real quadratic field of discriminant dK , and f a newform of even weight
2k > 0, trivial central character, and square free level N , coprime to dK . Assume that all the primes
dividing N split in K. If χ is a character of the narrow class group of K, the central value of the
(completed) Rankin L-series L(s, πf × πχ) is given by:

L(1/2, πf × πχ) =
β

d
k−1/2
K

∣∣∣∣∣∣
∑

Ψ∈EN

χ−1(Ψ)
∫ MΨzΨ

zΨ

f(z)QΨ(z, 1)k−1dz

∣∣∣∣∣∣

2

,

where the sum is over oriented optimal embeddings modulo conjugation by Γ0(N). Recall that
β = 4, unless f has weight 0, when β = 2.

Remark 6.3.2. When f is a Maass form of weight zero, normalized by means of Eq. (6.1.4), the
differential

√
dKdz
QΨ(z) appearing in Theorem 6.3.1 is the hyperbolic arc length differential over the

geodesic arc between zΨ and MΨzΨ.

Remark 6.3.3. When f is a holomorphic form of weight 2k > 0, the geodesic cycle integrals can be
easily computed, being values of the period mapping between f and the weight 2k modular symbols:
Qk−1

Ψ {0,MΨ0}. Using the PeriodMapping algorithm implemented by W. Stein in MAGMA, and an
algorithm implemented by T. Dokchitser [Do02] in PARI for computing the special values, we have
checked that the formula in Theorem 6.3.1 is exact up to more than 10 decimal digits for a range
of forms f of weight 2, 4, 6 and 8, taking for χ the trivial character.
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6.4 Connection with the Birch and Swinnerton-Dyer Conjecture
For a weight 2 newform f , the central value of the finite Rankin L-series can be written in terms
of the differential ωf = 2πif(z)dz on the compactified Riemann surface X = H/Γ0(N):

Lfin(1/2, πf × πχ) =
1√
dK

∣∣∣∣∣
∫

αχ

ωf

∣∣∣∣∣
2

,

where αχ ∈ H1(X,Z)⊗ C is the complex valued one-cycle:

αχ =
∑

Ψ∈EN/Γ0(N)

χ−1(Ψ)γΨ,

and where γΨ ∈ H1(X,Z) is the homology class of the closed geodesic on X obtained by projecting
the geodesic arc between zΨ and MΨzΨ.

Assume now that f is the newform associated to an elliptic curve E of conductor N defined
over Q. For simplicity, assume E is a strong Weil curve for a modular parameterization Π : X → E,
and the Manin constant of this modular parameterization is 1,5 so that the pullback of a Neron
differential ωE is ωf . If χ = 1, the L-function Lfin(s, πf × π1) equals the L-function L(s,E/K) of
the base change of E to the real quadratic field K. Assuming that the group E(K) is finite, and
assuming the Birch and Swinnerton-Dyer conjecture, we compare our formula with that given by
the conjecture.

The action of complex conjugation on the cycle α1 ∈ H1(X,Z) is easy to compute, and yields
α1 ∈ {γ+γ : γ ∈ H1(X,Z)}, where the bar denotes complex conjugation. Consider the pushforward
αK = Π∗(α1) ∈ H1(E,Z). From the previous observation, it follows that αK = mKαE , where
mK ∈ Z and αE is the class of E(R), that is a generator of {γ + γ : γ ∈ H1(E,Z)}. By the
assumption that the Maning constant is 1, it follows that:

L(1/2, E/K) =
Ω2
E√
dK

m2
K ,

where ΩE =
∫
αE
ωE is the real period of E.

Comparison with the formula conjectured by Birch and Swinnerton-Dyer yields

|mK | =
∏
p|N cp
|E(Q)|

√
|Sha(E/K)|,

where cp are the Tamagawa factors for E/Q, and Sha denotes the Tate-Shafarevich group of E. We
have used the fact that all the primes dividing N split in K, which implies that the product of the
Tamagawa factors for E/K is the square of that for E/Q, and that E(K) = E(Q).

For example, when the conductor N is prime, it is a theorem of Manin that cN = |E(Q)|, and the
formula reduces to: |Sha(E/K)| = m2

K . Since both integers have geometric meaning, this equality
suggests a deeper connection between elements of the Tate-Shafarevich group of E over K, and the
sum of geodesic cycles αK attached to K.

6.5 Equidistribution of closed geodesics on the modular curve
As in the imaginary case discussed in [HM04], the formula of Theorem 6.3.1 can be used in con-
junction with subconvexity bounds for L(1/2, π×πχ) when K and the unramified character χ vary,
to prove equidistribution results for the closed geodesics appearing in the formula. The following
theorem generalizes W. Duke’s result on the equidistribution of the cycles γa as the discriminant of
K goes to infinity [Du88].

5This is true for a large class of elliptic curves, and conjectured to be true in general

53



Alexandru A. Popa

Theorem 6.5.1. Let K run through quadratic fields of narrow class number hK ¿ dδK with δ =
1/23042, and let γK be any of the geodesic arcs attached to K. Then γK becomes equidistributed
on X0(N), in the sense that for any convex set Ω ⊂ X0(N) with smooth boundary we have:

|Ω ∩ γK |
|γK | → µ(Ω),

as dK tends to infinity, where µ is the hyperbolic measure normalized by having total mass 1 and |γ|
is the hyperbolic length of the curve γ. Assuming Lindelöff’s hypothesis instead of the subconvexity
result of [HM04], one can replace the exponent δ by 1/4− ε, for any ε > 0.

Remark 6.5.2. Since |γK | = ln εK , using Siegel’s theorem we can rephrase the theorem as follows:
“long” geodesics attached to quadratic fields K become equidistributed individually when dK tends
to infinity, where “long” means of length À d

1/2−δ
K (or À d

1/4+ε
K assuming Lindelöff’s hypothesis).

Remark 6.5.3. This is one of the few theorems available in the literature on the equidistribution
of individual closed geodesics on X0(N). The assumption on the class number growth seems to be
very often satisfied in view of existing heuristics for the growth of class numbers of real quadratic
fields [CL82], [Ho84]. Also note that an assumption of this type is necessary, due to the fact that
there are individual closed geodesics that do not become equidistributed in the limit, for example
the ones attached to the principal ideal class in certain families of real quadratic fields of large class
number and small fundamental unit. See [Sa05] for a concrete example and other interesting open
problems related to equidistribution of naturally defined sequences of closed geodesics.

Proof. By Weyl’s equidistribution criterion, it is enough to check that:
∫
γK
ψ(z)ds

|γK | → 0 as dK →∞,

where ψ runs through a basis of eigenforms for the Laplacian acting on X0(N) and ds is the
hyperbolic arc differential. Let us parameterize the optimal embeddings Ψ and the quadratic forms
QΨ by ideal classes a ∈ HK , and let γa be the geodesic arc from zΨ to MΨzΨ for Ψ = Ψa. If the
geodesic arc γK corresponds to the ideal class c, then by the orthogonality relation for characters
of HK we have: ∫

γK
ψ(z)ds

|γK | =
1

hK ln εK

∑

χ∈ bHK

∑

a∈HK

χ(a)−1

∫

γac

ψ(z)ds. (6.5.1)

We show below that subconvexity bounds for L-functions from [HM04] and [DFI2] imply that the
interior sums are ¿ d

1/2−δ′
K for δ′ = 1/23041, and that Lindelöff’s hypothesis implies they are

¿ d
1/4+ε
K for every ε > 0. The conclusion then follows from Remark 6.5.2.
We treat the discrete spectrum first. A basis for it consists of:

{fq(dz) : q|N, d|(N/q), fq Maass newform of level q},
so it is enough to take ψ(z) = fq(dz). A change of variables t = dz, together with the fact that
i(d)Γ0(N)i(d)−1 ⊂ Γ0(q) for d|(N/q), shows that (see Remark 6.3.2):

∑

Ψ∈EN

χ−1(Ψ)
∫

γΨ

fq(dz)
dz

QΨ(z, 1)
=

∑

Ψ∈Eq

χ−1(Ψ)
∫

γΨd

fq(t)
dt

QΨd
(t, 1)

where Ψd ∈ Eq is the embedding i(d)Ψi(d)−1. It is easy to see that the map from EN to Eq sending
Ψ to Ψd maps a system of representatives of EN/Γ0(N) to a system of representatives of Eq/Γ0(q),
and that the corresponding map on ideals (cf. Prop. 6.2.1) is multiplication by a fixed ideal of OK of
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norm d dividing dOK (recall that N is square free and that all of its divisors split in K). It follows
from Theorem 6.3.1 that:

∑

Ψ∈EN

∣∣∣∣χ−1(Ψ)
∫

γΨ

fq(dz)ds
∣∣∣∣
2

=
√
dK
2

L(1/2, πfq × πχ),

and the subconvexity bounds for L(1/2, πfq × πχ) due to G. Harcos and P. Michel yield the bound

¿ d
1/2−1/5296
K for the weighted sum, as in Theorem 6 of [HM04].
The continuous spectrum is spanned by Eisenstein of level N , and a similar discussion to [HM04,

§6.4] reduces the problem to bounding the interior sum in (6.5.1) when ψ(z) = E(z, 1/2 + it) with
t real, the standard weight zero Eisenstein series for the full modular group. The Weyl sum for this
Eisenstein series when χ = 1 has been computed by C.L. Siegel [Si61, Ch. II, §3] (compare the first
two equations on p.113 and p.115, modified to take into consideration that we are considering ideal
classes in the narrow sense). The computation for general χ is similar, and it yields:

∑

a∈HK

χ(a)−1

∫

γa

E(z, s)ds′ = d
s/2
K

Γ2(s/2)
Γ(s)

LK(s, χ)

where LK(s, χ) is the zeta function of K twisted by χ. The following subconvexity bound is known
on the line Re(s) = 1/2 [DFI2, Thm. 2.6]: LK(s, χ) ¿ |s|10d

1/4−δ′
K for δ′ = 1/23041, and the

conclusion follows.
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