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ON THE PETERSSON SCALAR PRODUCT OF ARBITRARY MODULAR

FORMS

VICENTIU PASOL, ALEXANDRU A. POPA

Abstract. We consider a natural extension of the Petersson scalar product to the entire space of
modular forms of integral weight k > 2 for a finite index subgroup of the modular group. We show
that Hecke operators have the same adjoints with respect to this inner product as for cusp forms,
and we show that the Petersson product is nondegenerate for Γ1(N) and k > 2. For k = 2 we give
examples when it is degenerate, and when it is nondegenerate.

1. Introduction

Let Γ be a finite index subgroup of SL2(Z), let k > 2 be an integer, and denote by Mk(Γ),
Sk(Γ) the spaces of modular forms, respectively cusp forms of weight k for Γ. For f, g ∈Mk(Γ), at
least one of which is a cusp form, the Petersson scalar product is defined by

(f, g) =
1

[Γ1 : Γ]

∫

Γ\H
f(z)g(z)yk

dxdy

y2
.

where Γ1 = PSL2(Z) and Γ denotes the projectivisation of Γ. An extension toMk(Γ1) was given by
Zagier [Za81], using a renormalized integral over a fundamental domain for Γ1\H. In this note we
use the same approach to extend the Petersson product to all ofMk(Γ). We show that the extended
Petersson product has the same equivariance properties under the action of Hecke operators as the
usual one, and for Γ = Γ1(N) we show that it is nondegenerate when k > 2. When k = 2, we find
somewhat surprisingly that it can be degenerate, and we give examples when it is nondegenerate
and when it is degenerate.

Our motivation comes from the theory of period polynomials associated to modular forms.
In [PP12], we generalize Haberland’s formula by showing that the extended Petersson product
of arbitrary modular forms is given by a pairing on their (extended) period polynomials. The
nondegeneracy of the extended Petersson product is then needed to show that Mk(Γ) is isomorphic
to the plus and minus parts of the space of period polynomials of all modular forms, extending the
classical Eichler-Shimura isomorphism. For Γ0(N), the Hecke equivariance is used to show that the
pairing on extended period polynomials is also Hecke equivariant.

Other approaches to extending the Petersson inner product to all modular forms are given by
Chiera [Ch07], and by Deitmar and Diamantis [DD09]. An adelic version of the renormalization
method is given by Michel and Venkatesh [MV10, Ch. 4.3].

2. Extended Petersson scalar product

We give three equivalent definitions of the extended Petersson product following [Za81]. The
first definition appears naturally in [PP12], where we show that the Petersson product of f, g ∈
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Mk(Γ) can be computed in terms of a pairing on the period polynomials of f, g, generalizing a
formula proved by Haberland for Sk(Γ1).

For the first definition assume that Γ is a finite index subgroup of SL2(Z), and let CΓ = [Γ1 : Γ].
Let F be the fundamental domain {z ∈ H : |z| > 1, |Re z| 6 1/2} for Γ1, and for T > 1 let FT be
the truncated domain for which Im z < T . Let

Tr(fg)(z) =
∑

A

f |A(z)g|A(z),

where here and below sums over A are over complete system of representatives for Γ\Γ1.
1 The

function ykTr(fg) is a Γ1-invariant, renormalizable function in the sense of [Za81], satisfying

ykTr(fg)(z) = a0(f, g)y
k + O(y−K) for all K, with a0(f, g) =

∑

A a0(f |A)a0(g|A). Therefore
we can define for f, g ∈Mk(Γ) the scalar product

(2.1)

(f, g) =
1

CΓ
lim
T→∞

[

∫

FT

ykTr(fg)dµ− a0(f, g)
T k−1

k − 1

]

=
1

CΓ

∫

F
[ykTr(fg)(z)− a0(f, g)E(z, k)]dµ

where E(z, s) =
∑

γ∈Γ1∞\Γ1
Im(γz)s is the weight 0 Eisenstein series (Γ1∞ is the stabilizer of the

cusp ∞), and dµ = dxdy
y2 is the SL2(R)-invariant measure.

The next version can be defined for an arbitrary Fuchsian group of the first kind. Let D be
a fundamental domain for Γ, and for s ∈ C let As(Γ) be the space of (weight 0) automorphic
functions for Γ, which are eigenforms of the hyperbolic Laplacian with eigenvalue s(s − 1). For

any function Ff,g ∈ Ak(Γ) such that f(z)g(z)yk −Ff,g(z) vanishes at all cusps (an example will be
given shortly), we have:

(2.2) (f, g) =
π

3Vol D

∫

D
[f(z)g(z)yk − Ff,g(z)]dµ

The right side is independent of Ff,g: if F ′
f,g is another choice, the difference Ff,g − F ′

f,g ∈ Ak(Γ)
is a cusp form, so its integral over D vanishes.

Assume now that Γ is a finite index subgroup of SL2(Z), so that Vol D = π
3CΓ. Decomposing

D = ∪AAF , (2.2) becomes

(f, g) =
1

CΓ

∫

F

[

ykTr(fg)(z)−
∑

A

Ff,g(Az)
]

dµ.

Since both
∑

A Ff,g(Az) and a0(f, g)E(z, k) belong to Ak(Γ1), and they have the same behaviour

at infinity as ykTr(fg) it follows as before that the last equation agrees with (2.1).
To give an example of Ff,g as above, let S ⊂ P1(Q) be a complete set of inequivalent cusps of

Γ. For a ∈ P1(Q) fix σa ∈ PSL2(R) with σa∞ = a. Let Γa be the subgroup of Γ of elements fixing
a. Define the weight 0 Eisenstein series associated with the cusp a by:

Ea

Γ(z, s) =
∑

γ∈Γa\Γ

Im(σ−1
a γz)s

1If k is odd, there is a sign ambiguity in defining f |A for A in Γ1 = PSL2(Z), but the ambiguity dissapears when
considering the product f |Ag|A.
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which converges absolutely for Res > 1, and belongs to As(Γ). From the Fourier expansion of
Ea

Γ(σbz, s) (see [Iw02], Theorem 3.4), it follows that

Ea

Γ(σbz, s) = δaby
s + ϕab(s)y

1−s +O
(

(1 + y−Res)e−2πy
)

with δab = 1 if a = b and 0 otherwise, and ϕab(s) an explicit function. Assuming that the
fundamental domain D is chosen such that its vertices on the boundary of H are precisely a
complete set of representatives for the cusps of Γ, it follows that the linear combination

Ff,g(z) =
∑

a∈S

a0(f |σa)a0(g|σa)E
a

Γ(z, k) ∈ Ak(Γ)

is such that f(z)g(z)yk − Ff,g(z) vanishes at all cusps, so Ff,g is a valid choice in (2.2).
Lastly, assuming Γ is a finite index subgroup of SL2(Z), from (2.2) with the choice of Ff,g as

in the previous paragraph we have

(2.3) (f, g) =
π

3
(4π)−kΓ(k)Ress=kL(s, f, g).

This identity is well known if f, g are cuspidal when it goes back to Rankin. If both f, g are
noncuspidal, it follows from extending to Γ the Rankin-Selberg method developed in [Za81] for the
full modular group. Since the generalization is straightforward, we omit the details.

3. Adjoints of Hecke operators

In this section we show that Hecke operators have the same adjoints with respect to the
extended Petersson product on Mk(Γ) as with respect to the one on Sk(Γ). The proof copies the
classical one given in [Sh71], using the definition of (f, g) in (2.2). We assume Γ is a Fuchsian
subgroup of SL2(R) of the first kind, namely a subgroup acting discretely on H and of finite
covolume.

Let Γ̃ consist of elements α of GL2(R) such that αΓα−1 is commensurable with Γ. For α ∈ Γ̃,
let Γ = ∪ri=1(Γ ∩ α−1Γα)γi (disjoint union). Then αγi is a complet system of representatives for
Γ\ΓαΓ and the action of the Hecke operator associated with the coset ΓαΓ is defined on f ∈Mk(Γ)
by

f |[ΓαΓ] = nk−1
r

∑

i=1

f |kαγi

where n = detα and f |kγ(z) = f(γz)j(γ, z)−k for γ ∈ GL2(R) (note that the stroke operator is
normalized differently than by Shimura).

Proposition 3.1. The adjoint of the operator [ΓαΓ] is [Γα∨Γ] namely for f, g ∈Mk(Γ)

(f |[ΓαΓ], g) = (f, g|[Γα∨Γ])

where α∨ = α−1 detα.

Proof. The proof is identical to that of eq. (3.4.5) in [Sh71], except that a term involving Ff,g has
to be subtracted at each step, and one has to use repeatedly the fact that Ff,g can be replaced by
any other function in Ak(Γ) having the same behaviour at the cusps. �
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4. Nondegeneracy

We show that the Petersson product is nondegenerate on Mk(Γ) for Γ = Γ1(N) and for k > 2.
For k = 2 and Γ = Γ0(N) or Γ = Γ1(N), we give examples when it is degenerate or nondegerate.
For the proof, we compute explicitly the determinant of the matrix of the Petersson product, with
respect to a basis of Hecke eigenforms for Ek(Γ), using formula (2.3). The degeneracy when k = 2 is
somewhat surprising, and we give an alternate proof for Γ = Γ0(6) in [PP12, Sec. 7], using period
polynomials and a generalization of Haberland’s formula.

Let ψ,ϕ be primitive characters of conductors cψ, cϕ with cψcϕ|N and ψϕ(−1) = (−1)k, and
let t be a divisor of N/(cψcϕ). When k > 2, a basis of Ek(Γ) consists of the Eisenstein series

Eψ,ϕ,tk (z) = Eψ,ϕk (tz) where

Eψ,ϕk (z) =
δ(ψ)

2
L(1− k, ϕ) +

∞
∑

n=1

σψ,ϕk−1(n)q
n

where σψ,ϕk−1(n) =
∑

n=ad ψ(a)ϕ(d)d
k−1, and δ(ψ) is 1 if ψ = 1 (the character of conductor 1), and

zero otherwise. When k = 2, the same elements form a basis, with the series E1,1,t
k replaced by

E1,1
k (z) − tE1,1

k (tz) for t > 1, and with E1,1,1
k removed. For χ a character mod N , a basis of the

space of Eisenstein series for Γ0(N) with character χ consists of those Eψ,ϕ,tk for which χ = ψϕ.
These Eisenstein series are Hecke eigenforms for the operators Tn with (n,N) = 1 [DS05].

For (n,N) = 1, the adjoint of Tn with respect to the Petersson scalar product is the operator
T ∗
n =< n >−1 Tn, with < n > the diamond operator. On the basis above < n > acts by

< n > Eψ,ϕ,tk = ψ(n)ϕ(n)Eψ,ϕ,tk ,

and Proposition 3.1 shows that
(

Eψ,ϕ,tk , Eψ
′,ϕ′,t′

k

)

= 0 unless ψ = ϕ′, ϕ = ψ′. Therefore the Petersson
product is nondegenerate on Ek(Γ) if and only if for every pair ψ,ϕ as above, the matrix

Mψ,ϕ = [(Eψ,ϕ,tk , Eϕ,ψ,t
′

k )]t,t′

is nonsingular, where the rows and columns are indexed by divisors t, t′ of N/(cψcϕ) (with t, t
′ 6= 1

if k = 2 and ψ = ϕ = 1).
We compute the entries of Mψ,ϕ with the aid of (2.3). Assuming (k, ψ, ϕ) 6= (2,1,1), we have

L(s,Eψ,ϕk ) = L(s, ψ)L(s − k + 1, ϕ), which has an Euler product. Using [Sh76, Lemma 1] we get

L(s,Eψ,ϕ,tk , Eϕ,ψ,t
′

k ) =
L(s, ψϕ)L(s − 2k + 2, ϕψ)L(s− k + 1, ψψ)L(s − k + 1, ϕϕ)

L(2s − 2k + 2, ψϕψϕ)
·

· (drr′)−s
∏

pe||rr′

Xp(e, s)

1− ψϕψϕ(p)p2k−2−2s

where d = (t, t′) and t = dr, t′ = dr′, and Xp(e, s) is a polynomial of degree 6 2 in p−s, given
below. The product is over primes p|rr′, with pe|rr′, pe+1 ∤ rr′, and it equals 1 if rr′ = 1. Note that
L(s, ψψ), L(s, ϕϕ) have simple poles at s = 1, and L(s, ϕψ) has a zero at s = 2− k. Denoting by
Rψ,ϕ the residue at s = k of the fraction on the first line, it follows from (2.3) that

(4.1) Mψ,ϕ =
π

3
(4π)−kΓ(k)Rψ,ϕM

ψ,ϕ
k (L)
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where L = N/(cψcϕ) and M
ψ,ϕ
s (L) is the matrix whose rows and columns are indexed by divisors

t, t′ of L with the entry corresponding to t, t′ equal to

(4.2) m(t, t′) = (drr′)−s
∏

pe‖rr′

Xp(e, s)

1− ψϕψ′ϕ′(p)p2k−2−2s
.

When k > 2 we have Rψ,ϕ 6= 0, since L(s, ϕψ) has a simple zero at s = 2− k (recall ψϕ(−1) =

(−1)k). Therefore the Petersson product is nondegenerate if and only if the matrix Mψ,ϕ
k (L) is

nonsingular for all choices ψ,ϕ as above. When k = 2, one can have Rψ,ϕ = 0, as L(s, ϕψ) may

have a zero of order at least two at s = 0 when ϕψ is not primitive. We discuss in more detail the

case k = 2 at the end of this section, and we now proceed to compute detMψ,ϕ
s (L), assuming only

(k, ψ, ϕ) 6= (2,1,1). We fix ψ,ϕ and let Ms(L) =Mψ,ϕ
s (L) for brevity.

Let α = ψ(p), α′ = ϕ(p)pk−1, and β = ϕ(p), β′ = ψ(p)pk−1 be the local factors in the Euler

product of L(s,Eψ,ϕk ), and L(s,Eϕ,ψk ) respectively, and

a(pn) =
αn+1 − α′n+1

α− α′
, b(pn) =

βn+1 − β′n+1

β − β′

(if α = α′ = 0, then a(pn) = 0, n > 0). If pe‖r we have

(4.3) Xp(e, s) = a(pe)− a(pe−1)b(p)αα′p−s + a(pe−2)(αα′)2ββ′p−2s

while if pe‖r′ interchange α,α′ with β, β′ and a(pi) with b(pi) in the definition of Xp(e, s). We use
the convention a(n) = 0 if n /∈ Z.

The next lemma reduces the computation of detMs(L) to the case L is a prime power.

Lemma 4.1. With the notations as above, consider L1, L2 two relatively prime numbers. Then:

det(Ms(L1L2)) = det(Ms(L1))
σ0(L2) · det(Ms(L2))

σ0(L1),

where σ0(L) denotes the number of divisors of L.

Proof. If t1t2, t
′
1t

′
2 are two divisors of L1L2, with ti, t

′
i|Li, it follows from (4.2) that m(t1t2, t

′
1t

′
2) =

m(t1, t
′
1)m(t2, t

′
2), so the matrix M(L1L2) is the Kronecker product of the matrices M(L1), M(L2)

and the conclusion follows. �

Lemma 4.2. For p a prime and n > 1, let Cp,s = p
n(n+1)

2
s and y = pk−1−s. We have:

Cp,s detMs(p
n) =











1 if ϕ(p) = ψ(p) = 0

(1− y)n if exactly one of ϕ(p), ψ(p) is 0
(1−y)n−1

(1+y)n+1

(

1− α
α′ y

)n(
1− α′

α y
)n

if ψ(p)ϕ(p) 6= 0

with α = ψ(p), α′ = ϕ(p)pk−1.

Proof. For 0 6 i, j 6 n, denote by m(i, j) = m(pi, pj) in (4.2). The matrix Ms(p
n) has elements

1, p−s, . . . , p−ns on the diagonal. We rescale it by multiplying the i-th line by pis, 0 6 i 6 n,
which multiplies its determinant by Cp,s, and we denote by M ′

s(p
n) the resulting matrix, having

detM ′
s(p

n) = Cp,s detMs(p
n). Note that the matrix M ′

s(p
n) has constant entries on all diagonals

parallel to the main diagonal, and m′(i, i) = 1, where m′(i, j) are its entries, 0 6 i, j 6 n.
When ϕ(p) = ψ(p) = 0, the matrix M ′

s(p
n) is the identity, and the first formula follows.
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When exactly one of ψ(p), ϕ(p) is 0, the off diagonal elements arem′(i+e, i) = ae, m′(i, i+e) =
bep−se, e > 0, with a = a(p), b = b(p) as in (4.3), ab = pk−1. The determinant is easy to compute,
by subtracting from line i the quantity a times the previous line, starting with i = n, n − 1, . . . 1.
The resulting matrix will be diagonal, of determinant (1− abp−s)n = (1− y)n.

Assume now that ψ(p)ϕ(p) 6= 0. By (4.3), for e > 1 we have m′(i+ e, i) = X(e), m′(i, i+ e) =
p−seY (e), where X(e) is given by

X(e) =
a(pe)− a(pe−1)a(p)y + a(pe−2)αα′y2

1− y2
, e > 1,

with a(p−1) = 0, and Y (e) given by the same formula as X(e) with a interchanged with b and α,α′

with β, β′. We set X(0) = 1, so that m′(i+ e, i) = X(e) for e > 0.
Since {a(pe)} satisfies the recurrence a(pe) − a(pe−1)a(p) + a(pe−2)αα′ = 0, the same is true

about X(e), namely

X(e)−X(e − 1)a(p) +X(e− 2)αα′ = 0, e > 3.

In fact one checks that the recurrence holds for e = 2 as well, with X(0) = 1, and also for e = 1,
with X(−1) = p−sY (1) (using αα′b(p) = pk−1a(p) and recalling y = pk−1−s). Starting with
i = n, n − 1, . . . , 2, we subtract from the i-th line a multiple a(p) of the (i − 1)-th line, and add a
multiple αα′ of the (i − 2)-th line. The resulting matrix will be upper-triangular, except for the
entry m′(1, 0) = X(1), so

detM ′
s(p

n) = [1−X(1)Y (1)p−s][1− a(p)Y (1)p−s + αα′Y (2)p−2s]n−1,

which is easily seen to equal the expression in the statement. �

Corollary 4.3. a) If k > 2 we have detMk(L) 6= 0.
b) If k = 2 we have detMk(L) = 0 if and only if ϕ(p) = ψ(p) 6= 0.

From the discussion above we conclude:

Theorem 4.4. Let Γ = Γ1(N).
a) If k > 2 then the extended Petersson product on Mk(Γ) is nondegenerate.
b) The extended Petersson product on M2(Γ) is nondegenerate if N is prime. It is degenerate:

if N is divisible by p2q with p 6= q primes; or if N is divisible by pq with p 6= q primes such that q
is not a primitive residue mod p.

Proof. Part a) was already proved above.
For part b), assume p2q|N . We take ψ = ϕ characters of conductor p. Then ψ(q) = ϕ(q) 6= 0,

and Corollary 4.3 shows that detMψ,ϕ
2 (N/p2) = 0, so the Petersson product is degenerate.

Assuming pq|N with p, q as in the statement, it follows that there is a primitive character ψ

mod p with ψ(q) = 1. Taking ϕ = 1, Corollary 4.3 shows that detMψ,ϕ
2 (N/p) = 0, so the Petersson

product is degenerate.
When N = p is prime, the L-function L(s,E1,1,p

2 ) = ζ(s)ζ(s − 1)(1 − 1
ps−1 ) has an Euler

product. Then Ress=kL(s,E
1,1,p
2 , E1,1,p

2 ) can be computed as before, and it is nonzero. Also if ψ is
a primitive character of conductor p, Rψ,1 6= 0 with the notation of (4.1), so the Petersson product
is nondegenerate in this case. �
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Note that part a) implies that the Petersson product is nondegenerate onMk(Γ0(N)) for k > 2.
To investigate what happens for k = 2 and Γ = Γ0(N), we now consider the case k = 2, ψ = ϕ = 1.

Denote E2 = E1,1
2 , and for t > 1 let Et2(z) = E2(z)− tE2(tz). We have

L(s,E2) =
∑

n>1

a(n)

ns
= ζ(s)ζ(s− 1),

with a(p) = 1 + p for p prime, and L(s,Et2) =
∑

n>1
a(n)−ta(n/t)

ns . It follows that L(s,Et2, E
t
2) is a

sum of four Rankin L-functions with an Euler product, and we have as before

(4.4) L(s,Et2, E
t′
2 ) =

ζ(s)ζ(s− 1)2ζ(2− s)

ζ(2s− 2)
·ms(t, t

′)

where, after writing t = dr, t = dr′ with d = (t, t′), yp = p1−s , we have

ms(t, t
′) = 1 +

tt′

(drr′)s

∏

pe||rr′

Xp(e, s)

1− y2p
− t1−s

∏

pe||t

Xp(e, s)

1− y2p
− t′1−s

∏

pe||t′

Xp(e, s)

1− y2p

with Xp(e, s) as in (4.3) with α = β = 1, α′ = β′ = p.

Theorem 4.5. Let Γ = Γ0(N) with N > 1 square-free. Then the Petersson product is degenerate
on M2(Γ), unless N is prime when it is nondegenerate.

Proof. A basis for the space E2(Γ) consists of the Eisenstein series Eψ,ϕ,t2 with cϕ = cψ = c,
ψϕ = 1c (the principal character of conductor c), and t|(N/c2), so when N is square-free, only the

case ψ = ϕ = 1 is possible. Since
Xp(1,s)
1−y2p

= pγs(p), with γs(p) =
1+p−1

1+p1−s , setting γs(u) =
∏

p|u γs(p)

for u square-free and γs(1) = 1, we have

ms(t, t
′) = 1 + (drr′)2−sγs(r)γs(r

′)− (dr)2−sγs(r)γs(d) − (dr′)2−sγs(r
′)γs(d)

Since γ2(p) = 1 for every p, it follows that m2(t, t
′) = 0, so the L-function (4.4) has a simple pole

at s = 2 with residue equal to ζ(0) times the quantitity

m′(t, t′) =
dms(t, t

′)

ds

∣

∣

s=2
.

Therefore the Petersson product is nondegerate if and only if the matrixM(N), with entriesm′(t, t′)
indexed by divisors t, t′ of N with t, t′ > 1, is nonsingular.

Since dγs(p)
ds

∣

∣

s=2
= ln(p)

1+p and γ2(p) = 1, we have dγs(u)
ds

∣

∣

s=2
=

∑

p|u
ln(p)
1+p for u squarefree, and

m′(t, t′) =

{

0 if (t, t′) = 1
∑

p|d
p−1
p+1 ln(p) if d = (t, t′) > 1.

Then the lines indexed by primes p 6= q add up to the line indexed by pq, showing that the
determinant is 0, so the pairing is degenerate unless N = p is prime. �
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