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MODULAR FORMS AND PERIOD POLYNOMIALS

VICENŢIU PAŞOL, ALEXANDRU A. POPA

Abstract. We study the space of period polynomials associated with modular forms of integral
weight for finite index subgroups of the modular group. For the modular group, this space is en-
dowed with a pairing, corresponding to the Petersson inner product on modular forms via a formula
of Haberland, and with an action of Hecke operators, defined algebraically by Zagier. We generalize
Haberland’s formula to (not necessarily cuspidal) modular forms for finite index subgroups, and we
show that it conceals two stronger formulas. We extend the action of Hecke operators to period
polynomials of modular forms, we show that the pairing on period polynomials appearing in Haber-
land’s formula is nondegenerate, and we determine the adjoints of Hecke operators with respect to
it. We give a few applications for Γ1(N): an extension of the Eichler-Shimura isomorphism to the
entire space of modular forms; the determination of the relations satisfied by the even and odd
parts of period polynomials associated with cusp forms, which are independent of the period rela-
tions; and an explicit formula for Fourier coefficients of Hecke eigenforms in terms of their period
polynomials, generalizing the Coefficients Theorem of Manin.

1. Introduction

Let Γ be a finite index subgroup of Γ1 = SL2(Z), and let Sk(Γ) be the space of cusp forms
of integer weight k > 2 for Γ. Let Vw be the Γ-module of complex polynomials of degree at most
w = k − 2. Each form f ∈ Sk(Γ) determines a collection of polynomials ρf : Γ\Γ1 → Vw given by

ρf (A) =

∫ i∞

0
f |kA(t)(t−X)wdt.

The object ρf belongs to the induced Γ1-module IndΓ1

Γ Vw, and we call it the (multiple) period
polynomial associated to f . The goal of this paper is to investigate the structure of the space of
period polynomials, reflecting the Petersson inner product and the Hecke operators on modular
forms. Working inside the subspace of period polynomials WΓ

w ⊂ IndΓ1

Γ Vw, we show that the
Petersson product, and the action of Hecke operators, can be stated in a simple way in terms
of period polynomials. On an abstract level, this is explained by the fact that the parabolic
cohomology class associated to f is completely determined by ρf , as reviewed in Section 2 where
we restate the Eichler-Shimura isomorphism in terms of period polynomials. Our results can be
interpreted as translating the cup product and the action of Hecke operators on cohomology, into
a pairing and a Hecke action on the space of period polynomials.

An essential ingredient in our approach is a generalization of a formula of Haberland expressing
the Petersson product of two cusp forms for the modular group in terms of a pairing on their
period polynomials [Ha83, KZ84]. In Section 3 we show that Haberland’s formula can be extended
to finite index subgroups of Γ1. More importantly, using an involution on period polynomials
that corresponds to complex conjugation, we show that Haberland’s formula splits in two simpler
formulas, pairing the opposite sign parts (respectively the same sign parts) of the period polynomials
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of the two forms when k is even (respectively when k is odd). For the full modular group, the
stronger formulas were proved by different means in [Po11]. When k = 2, a generalization of
Haberland’s formula was given by Merel [Me09], and a proof for finite index subgroups and arbitrary
weight was very recently given by Cohen [Co12]. Our proof is simplified by the use of Stokes’
theorem on a fundamental domain for Γ(2), which clarifies the appearence of the period polynomial
pairing in the formula.

The action of Hecke operators on period polynomials was defined algebraically by Zagier for
the full modular group [Za90, Za93, CZ93]. It was extended by Diamantis to operators of index
coprime with the level for the congruence subgroups Γ0(N) [Di01]. We show in Section 5 that the
same elements as in the full level case, which go back to work of Manin [Ma73], have actions on
period polynomials that correspond to actions of a large class of double coset operators on modular
forms, including Hecke and Atkin-Lehner operators for Γ1(N). We also determine the adjoint of the
Hecke action with respect to the pairing on period polynomials appearing in Haberland’s formula.
The proof of Hecke equivariance given here relies on the generalization of Haberland’s formula, and
a completely algebraic proof is given in [PP12a].

As an application of the action of Hecke operators on period polynomials, we obtain a gener-
alization of the Coefficients Theorem of Manin, giving the Fourier coefficients of a Hecke eigenform
for Γ1(N) in terms of its even period polynomial. We also give a simple proof of the rationality of
period polynomials of Hecke eigenforms for Γ1(N) in §5.3. We discuss period polynomials of cusp
forms with nontrivial Nebentypus in §5.4. Our results can be used to efficiently compute period
polynomials of Hecke eigenforms numerically, as well as Hecke eigenvalues and Petersson norms,
and we give an example in §5.5.

We give two applications of the stronger form of Haberland’s formula for cusp forms: in Section
6 we prove a decomposition of cusp forms in terms of Poincaré series generators; while in Section
7 we obtain the extra relations satisfied by the even and odd period polynomials of cusp forms,
obtained by Kohnen and Zagier in the full level case [KZ84]. For Γ = Γ0(N), we characterize those
N for which the extra relations involve only the even parts of period polynomials just like in the
full level case, that is those N for which the map ρ− : Sk(Γ) → (WΓ

w)
− is an isomorphism (Prop.

4.4). The extra relations are explicit once the period polynomials of the generators with rational
periods are computed, as partially done in [An92], [FY09]. For small N that is enough to give
completely explicit relations, and we illustrate this for Γ0(2).

In the last section, we define the space ŴΓ
w of period polynomials of all modular forms, following

the construction for the modular group in [Za91]. We generalize Haberland’s formula and its
refinement to this larger space, and we show that the pairing appearing in Haberland’s formula is

nondegenerate on ŴΓ
w . In contrast, on WΓ

w the radical of this pairing consists of the “coboundary
polynomials”, of dimension equal to the dimension of the Eisenstein subspace of Mk(Γ), as shown
in Section 4.

For Γ = Γ1(N) and k > 2, we show that the plus and minus period polynomial maps extend

to isomorphisms ρ± : Mk(Γ) → (ŴΓ
w)

±. This can be seen as an extension of the Eichler-Shimura
isomorphism to the entire space of modular forms. Surprisingly, when k = 2 the two maps are not
always isomorphisms: for Γ = Γ0(N) with N square free with at least two prime factors, precisely
one of the two maps is an isomorphism (Proposition 8.4 and Remark 8.5). In this context we point
out that Haberland’s formula has been generalized to weakly holomorphic modular forms of full
level in [BGKO], and it would be interesting to investigate if the results proved here for modular
forms hold in that setting as well.



MODULAR FORMS AND PERIOD POLYNOMIALS 3

In §8.3 we extend the action of Hecke operators to the space of period polynomials of all

modular forms, and we show that the adjoints of Hecke operators on the larger space ŴΓ
w are the

same as on WΓ
w . As an application, for Γ = Γ1(N) we show that for (n,N) = 1

Tr(WΓ
w |∆T̃n) = Tr(Mk(Γ)|Tn) + Tr(Sk(Γ)|Tn)

where the |∆T̃n is the action on period polynomials corresponding to the action of the Hecke
operator Tn on modular forms. A similar statement holds for modular forms with Nebentypus,
and for traces of Atkin-Lehner operators on Γ0(N). This fact is used in upcoming joint work of
the second author with Don Zagier to give a simple proof of the Eichler-Selberg trace formula for
modular forms on Γ0(N) with Nebentypus.

A second method of obtaining explicit extra relations among periods of cusp forms is sketched
in Section 8.4. It generalizes the Γ1 approach in [KZ84], by using period polynomials of Eisenstein
series and Haberland’s formula for arbitrary modular forms.

We note that period polynomials are dual to modular symbols, in the sense that the coeffi-
cients of period polynomials are values of the integration pairing between modular forms and Manin
symbols (the duality between cohomology and homology). The results of this paper are therefore
parallel to the modular symbol formalism developed by Merel [Me94], and they also lead to effi-
cient algorithms for modular form computations, as shown in §5.5. An additional structure that

we introduce here is the extended pairing on ŴΓ
w , whose nondegeneracy and Hecke equivariance

properties are important even if one is interested only in period polynomials of cusp forms. For
example, the properties of the extended pairing were used in the computation of the Hecke and
Atkin-Lehner traces on WΓ

w mentioned above, and in the proof of rationality of ρ±f for newforms

f ∈ Sk(Γ1(N)) (Prop. 5.11).
The paper is self-contained, except for using the fact that the dimension of the parabolic

cohomology group H1
P (Γ, Vw) equals twice the dimension of Sk(Γ), a consequence of the Eichler-

Shimura isomorphism.

2. Period polynomials and the Eichler-Shimura isomorphism

The theory of period polynomials for Γ0(N) has been treated in [Sk90, An92, Di01]. We
review it here in a general setting, and interpret the Eichler-Shimura isomorphism in terms of
period polynomials. We use the properties of the pairing on period polynomials introduced in
Section 3 to prove injectivity of the Eichler-Shimura map. In this section we fix notations in use
throughout the paper.

Let Γ be a finite index subgroup of Γ1 = SL2(Z), and denote by Γ = Γ/(Γ ∩ {±1}) the
projectivisation of Γ. Throughout the paper, the weight k > 2 is an integer, and we set w = k− 2.
Let Vw be the module of complex polynomials of degree at most w, with (right) Γ1-action by the
|−w operator: P |−wg(z) = P (gz)j(g, z)w where j(g, z) = cz + d for g = ( ∗ ∗

c d ) ∈ GL2(R). Since this
is the only action on polynomials, we will omit the subscript.

Viewing Vw as a Γ-module, let Ṽ Γ
w be the induced Γ1-module IndΓ1

Γ (Vw). Since Vw is also a

Γ1-module, we can identify Ṽ Γ
w with the space of maps P : Γ\Γ1 → Vw with Γ1 action:

P |g(A) = P (Ag−1)|−wg.

By the Shapiro isomorphism, we have H1
P (Γ, Vw) ≃ H1

P (Γ1, Ṽ
Γ
w ) (parabolic cohomology groups).

For background on Shapiro’s lemma and induced modules, see [NSW, p.59].
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Letting J =
(
−1 0
0 −1

)
, for any cocycle σ : Γ1 → V Γ

w we have σ(g)|(1 − J) = σ(J)|(1 − g) for all

g ∈ Γ1(which follows from σ(Jg) = σ(gJ)). It follows that the cocycle σ̃ = σ+σ|J
2 is in the same

cohomology class as σ, where σ|J(g) := σ(g)|J . Since the cocycle σ̃ takes values in the subspace

V Γ
w := {P ∈ Ṽ Γ

w : P |J = P, that is P (A) = (−1)wP (−A)}
we have H1

P (Γ1, Ṽ
Γ
w ) ≃ H1

P (Γ1, V
Γ
w ) and from now on we will only work inside the space V Γ

w . Note

that when k is even, Vw is both a Γ and a Γ1 module, and the space V Γ
w can be identified with

IndΓ1

Γ
(Vw).

Let now f ∈ Sk(Γ), and define a cocycle σf : Γ1 → V Γ
w by:

σf (g)(A) =

∫ i∞

g−1i∞
f |A(t)(t−X)wdt,

where the stroke operator acting on modular forms of weight k is f |g = f |kg for g ∈ GL2(R)+.
The action of the coset A is defined by acting with any coset representative; this is independent of
the representative chosen since f |kγ = f for γ ∈ Γ. We will show at the end of this section that σf
satisfies the cocycle relation

σf (g1g2) = σf (g2) + σf (g1)|g2.
Let S =

(
0 −1
1 0

)
, T = ( 1 1

0 1 ), and let U = TS, so that U3 = J . Clearly σf (±T n) vanishes for
n ∈ Z, and it is easy to see (by a change of variables) that it is a coboundary for other parabolic
elements of Γ1, hence σf defines an element [σf ] ∈ H1

P (Γ1, V
Γ
w ). Since T , S and J generate Γ1, it

follows that the cohomology class [σf ] is completely determined by the value ρf = σf (S) ∈ V Γ
w ,

which is the multiple period polynomial attached to f in the introduction. Using the fact that
σf (S

2) = σf (U
3) = σf (US) = 0 and the cocycle relation, it follows that ρf satisfies the period

polynomial relations:
ρf |(1 + S) = 0, ρf |(1 + U + U2) = 0.

We also have ρf (−A) = (−1)wρf (A), so ρf |J = ρf . Therefore the image of the map f → ρf is

contained in the subspace1

WΓ
w = {P ∈ V Γ

w : P |(1 + S) = 0, P |(1 + U + U2) = 0, P |J = P}
whose elements we call period polynomials (each element is in fact a collection of [Γ1 : Γ] polynomials
belonging to Vw).

In fact, setting CΓ
w = {P |(1 − S) : P ∈ V Γ

w , P |T = P} ⊂ WΓ
w , we have an isomorphism

(2.1) H1
P (Γ1, V

Γ
w ) ≃ WΓ

w/C
Γ
w,

obtained by choosing representative cocycles σ such that σ(T ) = σ(J) = 0, and sending [σ] to
σ(S) ∈ WΓ

w . The space CΓ
w is the image of coboundaries, and we show in Lemma 4.2 that its

dimension equals the dimension of the Eisenstein subspace Ek(Γ) of Mk(Γ).
Assume now that Γ is normalized by ǫ =

(
−1 0
0 1

)
. The matrix ǫ acts on P ∈ V Γ

w by

(2.2) P |ǫ(A) = P (A′)|−wǫ,

where A′ = ǫAǫ. This action is compatible with the action of Γ1: P |g|ǫ = P |ǫ|ǫgǫ for all g ∈ Γ1. If

f∗ ∈ Sk(Γ) denotes the form f∗(z) = f(−z), then

(2.3) ρf∗ = (−1)w+1ρf |ǫ
1The condition P |J = P is part of the definition of V Γ

w , but we include it for clarity.
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where P (A) is obtained by taking the complex conjugates of the coefficients of P (A).
Under the action of ǫ, the space V Γ

w breaks into ±1-eigenspaces, denoted by (V Γ
w )±. For P ∈ V Γ

w

we denote its +1 and -1-components by P+ and P− respectively:

(2.4) P± =
1

2
(P ± P |ǫ) ∈ (V Γ

w )±.

We call P+ the even part and P− the odd part of P , which is justified by the fact that P (I)+ is an
even polynomial, and P (I)− is an odd polynomial (I is the identity coset). For P ∈ WΓ

w , it is easily
checked that P |ǫ ∈ WΓ

w as well. Therefore P+, P− ∈ WΓ
w , and the space WΓ

w also decomposes into
eigenspaces (WΓ

w)
±.

Making use of the pairing on period polynomials introduced in Section 3, we restate the
Eichler-Shimura isomorphism in terms of period polynomials as follows.

Theorem 2.1 (Eichler-Shimura). The two maps ρ± : Sk(Γ) → (WΓ
w)

±, f 7→ ρ±f , give rise to

isomorphisms, denoted by the same symbols:

(2.5) ρ± : Sk(Γ) −→ (WΓ
w)

±/(CΓ
w)

±.

Proof. By the stronger version of Haberland’s formula (Theorem 3.3), the two maps ρ± : Sk(Γ) →
(WΓ

w)
± are injective. Moreover, their images intersect trivially with CΓ

w by Lemma 4.1, so the two
maps in (2.5) are also injective. Using (2.1) and the Eichler-Shimura isomorphism [Sh71, Ch. 8]
we have dimWΓ

w = 2dimSk(Γ) + dimCΓ
w, and we conclude that ρ± in (2.5) are isomorphisms. �

We now show that σf satisfies the cocycle relation, while also giving another construction of
the associated period polynomial. In analogy with the Γ1 case, the “Eichler integral” associated

with f ∈ Sk(Γ) is a function f̃ : Γ\Γ1 → A, where A is the space of holomorphic functions on the
upper half plane, given by:

(2.6) f̃(A)(z) =

∫ i∞

z
f |A(t)(t− z)wdt,

with Γ1-action as on period polynomials: f̃ |g(A) = f̃(Ag−1)|−wg for g ∈ Γ1. By a change of

variables we see that f̃ |(1 − g) = σf (g), which implies that σf satisfies the cocycle relation. Note
that this provides another construction for the period polynomial ρf attached to f , which we record
for further use:

(2.7) ρf = f̃ |(1− S).

Remark 2.2. A similar construction will be used in Section 8 to define period polynomials of

arbitrary modular forms, by means of an Eichler integral f̃ of f ∈ Mk(Γ), which has the property

that f̃ |(1−T ) = 0 and f̃ |(1−S) is the (extended) period polynomial attached to f . As pointed out
in [DIT10], the construction of period polynomials of cusp forms using their higher order integrals
goes back to Poincaré.

3. Generalization of Haberland’s formula

In [Ha83], Haberland proved a formula expressing the Petersson product of two cusp forms
for the full modular group in terms of a pairing on their period polynomials. In this section we
extend Haberland’s formula to a finite index subgroup Γ of Γ1, and we prove a stronger version for
subgroups normalized by ǫ.
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For f, g ∈ Sk(Γ), define the Petersson scalar product:

(f, g) =
1

[Γ1 : Γ]

∫

Γ\H
f(z)g(z)yk

dxdy

y2
.

On Vw×Vw we have a natural pairing 〈∑ anx
n,
∑

bnx
n 〉 =

∑
(−1)w−n

(
w
n

)−1
anbw−n, satisfying

〈P,Q 〉 = (−1)w 〈Q,P 〉 . We will mostly use the equivalent formulation

(3.1) 〈 (aX + b)w, (cX + d)w 〉 = (ad− bc)w.

An easy consequence of (3.1) is that 〈P |g,Q 〉 = 〈P,Q|g∨ 〉 for g ∈ GL2(R), where g∨ = g−1 det g;
in particular the pairing is SL2(R)-invariant.

We define a similar pairing on V Γ
w × V Γ

w :

(3.2) 〈〈P,Q 〉〉 =
1

[Γ1 : Γ]

∑

A∈Γ\Γ1

〈P (A), Q(A) 〉 for P,Q ∈ V Γ
w .

Remark 3.1. For odd k there is a sign ambiguity in defining P (A), Q(A) for P,Q ∈ V Γ
w and

A ∈ Γ\Γ1, but the pairing is well-defined since P (−A) = (−1)wP (A), Q(−A) = (−1)wQ(A). For
the same reason, one can replace the range by A ∈ Γ\Γ1 and the normalizing factor by 1

[Γ1:Γ]
without

changing the pairing. A similar observation applies below, when f |A always appears paired with
g|A, for f, g ∈ Sk(Γ).

This pairing is Γ1-invariant: 〈〈P |g,Q|g 〉〉 = 〈〈P,Q 〉〉 , for all P,Q ∈ V Γ
w and g ∈ Γ1. It is

normalized such that if f, g ∈ Sk(Γ) and Γ′ ⊂ Γ then 〈〈 ρf , ρg 〉〉 Γ = 〈〈 ρf , ρg 〉〉 Γ′ . Define also the

modified pairing on V Γ
w × V Γ

w :

(3.3) {P,Q} = 〈〈P |T − T−1, Q 〉〉 ,

which satisfies {P,Q} = (−1)w+1{Q,P}.
Part a) of the following theorem generalizes Haberland’s formula [Ha83, KZ84]. Part b) follows

easily from the proof of part a), although to our knowledge it has not appeared previously in the
literature (except for Γ1 in [Po11], but the proof there is more complicated).

Theorem 3.2. (a) For f, g ∈ Sk(Γ), we have

6Ck · (f, g) = {ρf , ρg},

where complex conjugation acts coefficientwise on polynomials and Ck = −(2i)k−1.
(b) For f, g ∈ Sk(Γ), we have {ρf , ρg} = 0.

Proof. (a) The proof is based on Stokes’ theorem, as in [KZ84], except that we apply it to a
fundamental domain for Γ(2), namely the quadrilateral region D with vertices i∞,−1, 0, 1 and
with sides the geodesics connecting the points in that order. The region D consists of six copies of
the fundamental domain for Γ1, which explains the constant 6 appearing in the formula. Therefore
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we have:

(3.4)

6Ck[Γ1 : Γ] · (f, g) = 6

∫

Γ\H
f(z)g(z)(z − z)wdzdz

=
∑

A∈Γ\Γ1

∫

D
f |A(z)g|A(z)(z − z)wdzdz

=
∑

A∈Γ\Γ1

∫

∂D
FA(z)g|A(z)dz

where FA(z) =
∫ z
i∞ f |kA(t)(t− z)wdt, so that ∂FA

∂z = f |A(z)(z − z)w, and the last line follows from
Stokes’ theorem. For B ∈ SL2(Z) a change of variables shows that

(3.5) j(B, z)wFA(Bz) = FAB(z)−
∫ B−1i∞

i∞
f |AB(t)(t− z)wdt.

We denote by
∫ b
a the integral over the geodesic arc from the cusp a to the cusp b. A change of

variables z = T 2τ and (3.5) yields:
∫ i∞

1
FA(z)g|A(z)dz =

∫ i∞

−1
FAT 2(τ)g|AT 2(τ)dτ ,

and it follows that the sum of integrals over the vertical sides of D vanishes.
A change of variables z = Sτ and (3.5) yields:
∫ 0

−1
FA(z)g|A(z)dz =

∫ i∞

1
FAS(τ)g|AS(τ)dτ +

∫ i∞

1

∫ i∞

0
f |AS(t)(t− τ)wg|AS(τ)dtdτ .

∫ 1

0
FA(z)g|A(z)dz =

∫ −1

i∞
FAS(τ)g|AS(τ)dτ −

∫ i∞

−1

∫ i∞

0
f |AS(t)(t− τ)wg|AS(τ)dtdτ .

When adding the last two equations and summing over A ∈ Γ\Γ1, the single integrals cancel as
before and (3.4) becomes

6Ck[Γ1 : Γ] · (f, g) =
∑

A∈Γ\Γ1

∫ i∞

1

∫ i∞

0
−
∫ i∞

−1

∫ i∞

0
f |A(t)(t− τ)wg|A(τ)dtdτ .

To write the double integrals in terms of the period polynomial pairing, we use (3.1). After a
change of variables τ = Tz the first double integral becomes

∫ i∞

0

∫ i∞

0
f |A(t)

〈
(t−X)w, (Tz −X)w

〉
g|AT (z) dtdz = 〈 ρf (A), ρg(AT )|T−1 〉 .

The second integral yields the same result, with T replaced by T−1, and the conclusion follows
from the fact that the pairing 〈〈 , 〉〉 is Γ1 invariant.
(b) Going backwards in the proof of part (a) we have:

{ρf , ρg} =
1

[Γ1 : Γ]

∑

A∈Γ\Γ1

∫

∂D
HA(z)g|A(z)dz

where HA(z) =
∫ z
i∞ f |kA(t)(t − z)wdt = −f̃(A)(z). Since the integrand is now holomorphic and

vanishes exponentially at the cusps, it follows that each integral above vanishes. �
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Now let Γ be a congruence subgroup normalized by ǫ. The pairing {·, ·} satisfies

(3.6) {P |ǫ,Q|ǫ} = (−1)w+1{P,Q},
hence {P,Q} = 0 if k is even and P,Q ∈ V Γ

w have the same parity, or if k is odd and P,Q have
opposite parity. We have the following stronger version of Haberland’s theorem, generalizing the
result for the full modular group from [Po11].

Theorem 3.3. Let Γ be a subgroup of finite index in Γ1, normalized by ǫ. For f, g ∈ Sk(Γ):

3Ck · (f, g) = {ρκ1

f , ρκ2
g }

for any κ1, κ2 ∈ {+,−} with κ1 6= κ2 if k even and κ1 = κ2 if k odd.

Proof. We assume k even, the case k odd being entirely similar. In view of Theorem 3.2 (a)

and (3.6), it is enough to show that {ρ+f , ρ−g } = {ρ−f , ρ+g }. By (2.3), we have ρ+g = (−1)w+1ρ+g∗ ,

ρ−g = (−1)wρ−g∗ , and the previous equality reduces to {ρf , ρg∗} = 0, which is Theorem 3.2 b). �

4. Coboundary polynomials

In this section we show that the space of coboundary polynomials

CΓ
w = {P |(1 − S) : P ∈ V Γ

w ∩ ker(1− T )}
is the radical of the bilinear form {·, ·} on WΓ

w . The dimension of CΓ
w equals the dimension of the

Eisenstein subspace Ek(Γ) ⊂ Mk(Γ). For Γ = Γ0(N), we characterize those N for which (CΓ
w)

− is
trivial, namely those N for which the map ρ− : Sk(Γ) → (WΓ

w)
− is an isomorphism, as in the full

level case.

Lemma 4.1. Let Γ be a finite index subgroup of Γ1. The period polynomials WΓ
w are orthogonal to

the coboundary polynomials CΓ
w ⊂ WΓ

w with respect to the pairing {·, ·}.
Proof. Let P |(1−S) ∈ CΓ

w with P |1−T = 0, and let Q ∈ WΓ
w . Then 〈〈P |(1−S)(T −T−1), Q 〉〉 = 0

follows from the following relation in Z[Γ1]

(4.1) (1− S)(T − T−1) = (T − 1)(2 + T−1 + ST − S) + (1 + TS + ST−1)(1− S)

using the Γ1 invariance of the pairing 〈〈 ·, · 〉〉 (recall U = TS). �

Let e∞(Γ), ereg∞ (Γ) denote the number of inequivalent cusps, respectively regular cusps [DS05,
Ch. 3]. The next lemma shows that dimCΓ

w = dim Ek(Γ).
Lemma 4.2. Let Γ be any finite index subgroup of Γ1. The dimension of CΓ

w equals: e∞(Γ) if
k > 2 is even; e∞(Γ)-1 if k = 2; ereg∞ (Γ) if k > 2 is odd.

Proof. Let P ∈ V Γ
w ∩ ker(1 − T ). Then P |T n = P for every n ∈ Z, that is P (AT−n)|T n = P (A)

for A ∈ Γ\Γ1. Since Γ\Γ1 is finite, there is n such that AT−n = A, and P (A)(X + n) = P (A)(X).
Since the only periodic polynomials are the constants, it follows that P (A)(X) = cA ∈ C, with
cAT = cA. Since P |J = P we also have cAJ = (−1)wcA. Hence we have:

(4.2) CΓ
w = {(cA − cAS−1Xw)A ∈ V Γ

w : cA ∈ C, cAT = cA, cAJ = (−1)wcA}.
If k > 2 is even it follows that dimCΓ

w = |Γ\Γ1/Γ1∞|, with Γ1∞ = {±T n : n ∈ Z} the stabilizer
of ∞. Since the map

Γ\Γ1/Γ1∞ → Γ\P1(Q), [γ] → [γ∞]

is a bijection and |Γ\P1(Q)| = e∞(Γ), the claim follows.
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If k = 2, we identify Ce∞(Γ) with the vector space {(cA)A∈Γ\Γ1
: cAT = cA = cAJ ∈ C} and

define the (surjective) map Ce∞(Γ) → CΓ
w by (cA)A → (cA − cAS)A. Its kernel consists of those

vectors (cA)A with cAT = cAS = cAJ = cA. Since S, T, J generate Γ1, it follows that cA = c for all
A ∈ Γ\Γ1, so the kernel is isomorphic to C. Therefore dimCΓ

w = e∞(Γ)− 1.
If k > 2 is odd (so −1 /∈ Γ), we have cAJ = −cA. Therefore dimCΓ

w equals the number of
classes [A] ∈ Γ\Γ1/Γ1∞, such that the two associated classes [A]+, [AJ ]+ ∈ Γ\Γ1/Γ

+
1∞ are distinct,

where Γ+
1∞ = {T n : n ∈ Z} (when [A]+ = [AJ ]+ then clearly cA = cAJ = 0). But [A]+ 6= [AJ ]+

precisely when [A] corresponds to a regular cusp of Γ since [A]+ = [AJ ]+ means that A−1γA = −T n

for some γ ∈ Γ, n > 1, so the cusp A∞ is irregular. We conclude that dimCΓ
w = ereg∞ (Γ). �

Definition 4.3. Following the proof of Lemma 4.2, we call cusp a double coset C ∈ Γ\Γ1/Γ1∞,
which corresponds to the Γ-equivalence class of the usual cusp A∞ for any representative A ∈ C.
We call regular those cusps C = [A] such that the double cosets [A]+, [AJ ]+ ∈ Γ\Γ1/Γ

+
1∞ are

distinct. The terminology agrees with the usual one for the cusp A∞ by the last paragraph in the
proof of the lemma.

For Γ0(N) it turns out that (CΓ
w)

− is often trivial, in which case ρ− : Sk(Γ) → (WΓ
w)

− is an
isomorphism just like for Γ1. The following proposition was discovered using SAGE [SG].

Proposition 4.4. Let Γ = Γ0(N). Then (CΓ
w)

− = {0} if and only if N = 2eN ′ with N ′ odd square
free and 0 6 e 6 3.

Proof. From the proof of Lemma 4.2 we identify (CΓ
w)

− with the space (Ce∞(Γ))− of vectors
(cA)A∈Γ\Γ1

with cA = cAT and cA = −cA′ (including for k = 2).

Assume N does not satisfy the conditions, so there exists t > 3 with t2|N . We claim that
[A] 6= [A′] for A = ( x y

t z ) ∈ Γ1, so (CΓ
w)

− 6= {0}. Assuming by contradiction that γAT s = A′ for
γ = ( ∗ ∗

c d ) ∈ Γ, it follows that cx + dt = −t, c(y + sx) + d(z + st) = z. The first equation implies
that t|d+ 1 while the second that t|d− 1, a contradiction with t > 3.

Assuming N satisfies the conditions, let (cA)A∈Γ\Γ1
with cA = cAT and cA = −cA′ . Identifying

the coset space Γ0(N)\Γ1 with P1(Z/NZ), it follows that c(a:b) = c(a:a+b), c(a:b) = −c(−a:b). The
second relation implies c(0:1) = 0. Let N = dd′ and k ∈ Z, (k, d) = 1. We will show that c(d:k) = 0.
We have:

c(d:k) = c(d:k+ad) = −c(−d:k) = −c((bd′−1)d:k)

and it is enough to find a, b ∈ Z with (bd′ − 1, N) = 1 and k ≡ (bd′ − 1)(k + ad) (mod N). The
latter equation can be written k(bd′ − 2) ≡ ad (mod dd′) and the hypothesis on N ensures that
(d, d′)|2, so that we can find b, u such that bd′ − 2 = du. Taking a ≡ ku (mod d′), it follows that
(d : k+ad) = ((bd′− 1)d : k), which implies that c(d:k) = 0. It follows that cA = 0 for all A ∈ Γ\Γ1,
finishing the proof. �

5. Hecke operators

Following the Eichler integral method sketched in [Za93] for the modular group, we show that

the same elements T̃n as in the full level case define actions on period polynomials corresponding to
a large class of double coset operators on modular forms, including the Hecke operators and Atkin-
Lehner operators. On modular symbols, the action of the same type of double coset operators was
determined by Merel, and the results of §5.1 parallel those of [Me94]. We find the adjoints of these
operators with respect to the pairing {·, ·} in §5.2.2 In §5.3 we give a new proof of the rationality of

2For Γ1, the Hecke equivariance of the pairing is mentioned without proof in [GKZ, p.96].
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the plus and minus parts of period polynomials of newforms, while in §5.4 we discuss modular forms
with Nebentypus. We end with a discussion of the numerical computation of period polynomials,
Hecke eigenvalues, and Petersson norms of newforms.

5.1. The universal Hecke operators. Let Mn be the set of integer matrices of determinant n,
set Mn = Mn/{±I}, and let Rn = Q[Mn]. Thus Γ1 acts on Rn by left and right multiplication.
Let

M∞
n =

{ (
a b
0 d

)
: n = ad, 0 6 b < d

}

be the usual system of representatives for Γ1\Mn, and T∞
n =

∑
M∈M∞

n
M ∈ Rn. Following [CZ93],

let T̃n, Yn ∈ Rn be such that

(5.1) T∞
n (1− S) = (1− S)T̃n + (1− T )Yn.

We will show that for all n, the elements T̃n define Hecke operators on period polynomials for a

large class of congruence subgroups. Note that the elements T̃n are universal, not depending on
the weight or level.

Let Γ be a finite index subgroup of Γ1 normalized by ǫ, which we will often specialize to be
Γ1(N) or Γ0(N). Fix an integer n > 1, and let Σn ⊂ Mn such that Σn = ΓΣn = ΣnΓ and Σn is a
disjoint finite union of cosets Γσ. Such double cosets Σn define operators [Σn] on f ∈ Mk(Γ)

f |[Σn] = nw+1
∑

σ∈Γ\Σn

f |kσ.

Setting g∨ = g−1 det g, the adjoint of [Σn] with respect to the Petersson product is given by
Σ∨
n = {g∨ : g ∈ Σn}, namely (f |[Σn], g) = (f, g|[Σ∨

n ]).
We now define an action of Mn on V Γ

w which depends on Σn, and which is based on the
following property of the pair (Γ,Σn)

(H) The map Γ\Σn → Γ1\Γ1Σn, Γσ 7→ Γ1σ is bijective.

See [Sh71, Prop. 3.36] for a large class of congruence subgroups when this property holds.
For M ∈ Mn, A ∈ Γ1 and MA−1 ∈ Γ1Σn, there exists a decomposition MA−1 = A−1

M MA, with
MA ∈ Σn, AM ∈ Γ1, and by (H) the coset ΓAM is independent of the decomposition. Moreover
ΓAM depends only on ΓA, since ΓΣn = ΣnΓ. For P ∈ V Γ

w we define an element P |ΣM = P |ΣnM ∈
V Γ
w by3

(5.2) P |ΣM(A) =

{
P (AM )|−wM if MA−1 ∈ Γ1Σn

0 otherwise.

Note that both M and JM act in the same way (recall J = −I), so the action of Mn = Mn/{±I}
is also well defined. This action extends linearly to an action of Rn on V Γ

w . In the same way we

define an action of Mn and Rn on the Eichler integrals f̃ in (2.6).
We are interested in the following double cosets Σn satisfying (H), for Γ = Γ1(N) or Γ0(N).

(1) The double coset ∆n consisting of
(
a b
c d

)
∈ Mn with N |c, and a ≡ 1 (mod N) if Γ = Γ1(N),

or (a,N) = 1 if Γ = Γ0(N). The operator [∆n] is the usual Hecke operator, denoted by
Tn, and Property (H) follows from [Sh71, Prop. 3.36]. Note that for (n,N) = 1 we have
Γ1∆n = Mn, so the second case in (5.2) does not occur.

3With the notation P |ΣM , the dependence on n is recorded in the fact that M ∈ Mn.
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(2) The double coset ∆∨
n for (n,N) = 1. The operator [∆∨

n ] is denoted by T ∗
n , the adjoint of Tn

with respect to the Petersson inner product. Property (H) can be checked directly.
(3) The double coset Θn = ΓwnΓ for N = nn′, (n, n′) = 1, where wn = ( nx y

Nz nt ) ∈ Mn

with x, y, z, t ∈ Z for Γ = Γ0(N), while for Γ = Γ1(N) we impose the extra conditions
nx ≡ 1 (mod n′), y ≡ 1 (mod n). Then Γ\Θn has one element so Property (H) is trivially
satisfied. The operator [Θn] is denoted by Wn, and if W ∗

n = [Θ∨
n ] denotes its adjoint we have

f |Wn|W ∗
n = nwf . For Γ = Γ0(N) (so that Wn = W ∗

n), the usual Atkin-Lehner involution is

Wn/n
w/2 due to our choice of normalization.

(4) The double coset Θ∨
n with Θn as in (3). If Γ = Γ0(N) then [Θ∨

n ] = [Θn], and if Γ = Γ1(N)
then [Θ∨

n ] = 〈 d 〉 [Θn] for d ≡ −1 (mod n), nd ≡ 1 (mod n′), where 〈 d 〉 denotes the
diamond operator.

Remark 5.1. Assume Γ = Γ1(N) and Σn is as in (1) or (3). The action of Mn on V Γ
w can be

determined as follows. Applying adjoint we have that MA−1 ∈ Γ1Σn if and only if

(
a b
c d

)
= AM∨ = M∨

AAM ∈ Σ∨
nΓ1.

For Σn = ∆n, the inclusion is satisfied if and only if gcd(c, d,N) = 1, and in that case
AM = ( ∗ ∗

c′ d′ ) ∈ Γ1 has c′ ≡ c, d′ ≡ d (mod N), which uniquely defines its class in Γ\Γ1.
For Σn = Θn, let N = nn′ with n‖N . The inclusion is satisfied if and only if n|c, n|d, and the

class of AM = ( ∗ ∗
c′ d′ ) in Γ\Γ1 is determined by

c′ ≡ −a, d′ ≡ −b (mod n), c′ ≡ c/n, d′ ≡ d/n (mod n′).

When Γ = Γ0(N) and Σn = Θn, the last congruences are replaced by yc′ ≡ a, yd′ ≡ b (mod n)
and tc′ ≡ c/n, td′ ≡ d/n (mod n′) where t, y are any integers such that nxt − n′yz = 1 (taking
M∨

A = ( nx y
Nz nt ) ∈ Mn). The class of (c′, d′) in P 1(Z/NZ) ∼ Γ\Γ1 is then independent of y, t.

While the operation P |ΣM is not a proper action, it is compatible with the action of Γ1 and
of ǫ. For h ∈ Γ1, M ∈ Mn a formal computation shows that

(5.3) P |ΣM |h = P |ΣMh, P |h|ΣM = P |ΣhM, P |ΣM |ǫ = P |ǫ|Σ′ǫMǫ,

where Σ′
n = {g′ = ǫgǫ : g ∈ Σn}. Using the compatibility with the Γ1 action, we show that the

universal operators T̃n play on period polynomials the role of all double coset operators [Σn] on
modular forms, as long as the pair (Γ,Σn) satisfies (H).

Proposition 5.2. Assume the pair (Γ,Σn) satisfies (H). If T̃n ∈ Rn satisfies (5.1) then for every
f ∈ Sk(Γ)

ρf |[Σn] = ρf |ΣT̃n.

In particular for Γ = Γ1(N), we have ρf |Tn
= ρf |∆T̃n and, if n‖N , ρf |Wn

= ρf |ΘT̃n.

Proof. Using the fact that ρf = f̃ |(1− S) and f̃ |(1− T ) = σf (T ) = 0, we have as in [Za93]

ρf |ΣT̃n = f̃ |Σ(1− S)T̃n = f̃ |ΣT∞
n (1− S) = f̃ |[Σn]|(1 − S) = ρf |[Σn],

once we show that f̃ |ΣT∞
n = f̃ |[Σ].
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For M ∈ M∞
n and A ∈ Γ1, let MA−1 = A−1

M MA with AM ∈ Γ1, MA ∈ Σn. By (5.2)

f̃ |ΣT∞
n (A) =

∑

M∈M∞
n ∩Γ1ΣnA

∫ i∞

Mz
f |AM(t)(t−Mz)wj(M,z)wdt

= nw+1
∑

M∈M∞
n ∩Γ1ΣnA

∫ i∞

z
f |MAA(u)(u− z)wdu

(5.4)

where we made a change of variables t = Mu. For fixed A, the map

M∞
n ∩ Γ1ΣnA → Γ\Σn, M 7→ MA

is well defined by (H). It is easy to check that the map is bijective, hence the last expression equals

f̃ |[Σn](A) finishing the proof. �

Corollary 5.3. If in addition to the hypotheses of Proposition 5.2 we assume that Γ is normalized
by ǫ and that Σ′

n = Σn then

ρ±f |[Σn]
= ρ±f |ΣT̃n.

In particular if Γ = Γ1(N), then ρ±f |Tn
= ρ±f |∆T̃n, and if Γ = Γ0(N), then ρ±f |Wn

= ρ±f |ΘT̃n.

Proof. By the last compatibility in (5.3), it is enough to show that ǫT̃nǫ also satisfied (5.1) (for a
different Yn). This follows from conjugating (5.1) by ǫ, and using that T∞

n − ǫT∞
n ǫ ∈ (1− T )Rn.

We have ∆′
n = ∆n and, for Γ = Γ0(N), Θ′

n = Θn. Note that if Γ = Γ1(N), then [Θ′
n] =

〈 d 〉 [Θn] with d ≡ −1 (mod n), d ≡ 1 (mod n′), so the action |ΘT̃n on (WΓ
w)

± does not correspond
to Wn in this situation. �

Taking Σn = ∆n in Corollary 5.3, we obtain explicit formulas for the Fourier coefficients of a
Hecke eigenform f ∈ Sk(Γ) in terms of the polynomials ρ±f , generalizing the Coefficients Theorem

of Manin [Ma73]. The formulas can be used for fast computation of Hecke eigenvalues, as explained
in §5.5, and they also yield an explicit inverse of the Eichler-Shimura maps ρ± of Theorem 2.1.

We state the formula corresponding to ρ+f . For Γ = Γ1(N) we identify a coset representative

A ∈ Γ\Γ1 with the element (cA, dA) ∈ EN , where cA, dA are the lower left, respectively lower right
entries of A and

EN =
{
(c, d) ∈ (Z/NZ)2 : (c, d,N) = 1

}
.

For P ∈ WΓ
w , we write P (A) = P (cA, dA) ∈ Vw.

Proposition 5.4. Let f ∈ Sk(Γ1(N)) be an eigenform for Tn with eigenvalue λn, and let T̃n =∑
M∈Mn

α(M)M be any operator satisfying (5.1).

(a) Assume rI,w(f) 6= 0 (which is satisfied if k > 2 and f is a newform), and let P+
f =

ρ+f /rI,w(f). Then

λn =
∑

M∈Mn

(cM ,aM ,N)=1

α(M)P+
f (−cM , aM )|M(0)

where M =
(

aM bM
cM dM

)
. When (n,N) = 1 the congruence condition in the sum can be omitted.
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(b) If k = 2, let (x, y) ∈ EN represent a coset in Γ\Γ1 with ρ+f (x, y) 6= 0 and let P+
f =

ρ+f /ρ
+
f (x, y). For each M ∈ Mn, let xM = xdM − ycM , yM = −xbM + yaM . Then

λn =
∑

M∈Mn

(xM ,yM ,N)=1

α(M)P+
f (xM , yM ).

Remark 5.5. By Proposition 5.11, when f is a newform the polynomials P+
f have coefficients in

the field Kf of coefficients of f . When f has known Nebentypus, we obtain simpler formulas using
the results of §5.4.

Proof. By Corollary 5.3, P+
f is an eigenform of T̃n with eigenvalue λn, and the conclusion follows

by writing the action of T̃n on P+
f explicitly, using Remark 5.1. �

Elements T̃n satisfying condition (5.1) go back to work of Manin [Ma73], and particular ex-

amples are given in [CZ93, Za90]. The element T̃n is unique, up to addition of any element in the
right Γ1-module

(5.5) I = (1 + S)Rn + (1 + U + U2)Rn.

Remark 5.6. In [Me94] Merel gives several examples of elements T̃n ∈ Rn acting on modular
symbols, satisfying a condition that plays the same role as (5.1). It can be shown that the elements

T̃∨
n (with the notation explained in the next paragraph) satisfy Property (5.1), reflecting the fact

that the action of Γ1 on modular symbols is on the left, and on period polynomials is on the right.

5.2. Adjoints of Hecke operators. Next we determine the adjoint of the action of Hecke and
Atkin-Lehner operators for the pairing on WΓ

w defined in (3.3). For g ∈ Mn we denote by g∨ =
g−1 det g the adjoint of g, and we apply this notation to all elements of Rn by linearity. Recall that
〈P |g,Q 〉 = 〈P,Q|g∨ 〉 for P,Q ∈ Vw, g ∈ GL2(C).

Lemma 5.7. Assume that both (Γ,Σn) and (Γ,Σ∨
n) satisfy (H). For P,Q ∈ V Γ

w ,M ∈ Mn we have

(5.6) 〈〈P |ΣM,Q 〉〉 = 〈〈P,Q|Σ∨M∨ 〉〉 .
In particular, (5.6) holds for Γ = Γ1(N) and Σn = ∆n with (n,N) = 1, or Σn = Θn for n‖N .

Proof. For A ∈ Γ1 and M ∈ Γ1ΣnA, let MA−1 = A−1
M MA with AM ∈ Γ1,MA ∈ Σn. We have (see

Remark 3.1)

[Γ1 : Γ] 〈〈P |M,Q 〉〉 =
∑

A∈Γ\Γ1

MA−1∈Γ1Σn

〈P (AM ), Q(A)|M∨ 〉 .

Taking adjoint we have M∨A−1
M = A−1M∨

A with M∨
A ∈ Σ∨

n , hence MA−1 ∈ Γ1Σn if and only if

M∨A−1
M ∈ Γ1Σ

∨
n . Moreover the map A 7→ AM is injective, by Property (H) applied to Σ∨

n . Summing
over AM instead of A finishes the proof. �

Next we give two proofs of the Hecke equivariance of the period polynomial pairing, one of
them requiring the following lemma.

Lemma 5.8. The space CΓ
w is preserved by the Hecke operators T̃n, whenever an action of Mn on

V Γ
w satisfying (5.3) can be defined.
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Proof. Let P |(1 − S) ∈ CΓ
w with P |1 − T = 0. By (5.1), P (1 − S)|ΣT̃n = P |ΣT∞

n (1 − S), and the
latter is an element of CΓ

w, since T∞
n (1− T ) ∈ (1− T )Rn, so P |ΣT∞

n (1− T ) = 0. �

Theorem 5.9. Assume that both (Γ,Σn) and (Γ,Σ∨
n) satisfy property (H). For P,Q ∈ WΓ

w and

any T̃n as in (5.1) we have:

{P |ΣT̃n, Q} = {P,Q|Σ∨ T̃n}.
Proof. We give two proofs. For the first we assume that both Σn,Σ

∨
n satisfy (H), and in addition

Σn = Σ′
n. From Theorem 3.3 and Corollary 5.3, it follows that the claim is true for P = ρ±f and

Q = ρ∓g , for any f, g ∈ Sk(Γ). By (2.5), any P ∈ WΓ
w can be written P = ρ+f +ρ−g +Q with Q ∈ CΓ

w.

Since T̃n preserves (WΓ
w)

± and CΓ
w, the claim follows taking into account Lemmas 4.1.

The second proof is purely algebraic and we only assume that Σn,Σ
∨
n satisfy (H). Via (5.6)

the equality to prove is equivalent to

〈〈P |Σ
[
T̃n(T − T−1) + (T−1 − T )T̃∨

n

]
, Q 〉〉 = 0.

Since P,Q ∈ WΓ
w , we are reduced to proving the next theorem. �

Theorem 5.10. For any element T̃n ∈ Rn satisfying property (5.1) we have

T̃n(T − T−1) + (T−1 − T )T̃∨
n ∈ I + I∨,

where I is defined in (5.5).

The proof is quite involved, and we give it in the short article [PP12a].

5.3. Rationality of period polynomials of Hecke eigenforms. Let Γ = Γ1(N) and for a
character χ modulo N let Sk(N,χ) ⊂ Sk(Γ) be the subspace of forms of Nebentypus χ. The
following proposition is well-known, although the precise statement is hard to find in the literature.
For the trivial character, an equivalent statement to part (a) was given in terms of modular symbols
in [GS94]. The proof requires the extension of the pairing {·, ·} to the whole space of modular forms
and its properties proved in Section 8.

Proposition 5.11. Assume that f ∈ Sk(N,χ) is a newform (a normalized eigenform for all Hecke
operators which does not come from lower levels) and let Kf be the field of coefficients of f .

(a) There exist nonzero complex numbers ω+
f and ω−

f such that all the polynomial components

of ρ±f /ω
±
f have coefficients in Kf .

(b) We have

ω+
f ω

−
f

i(2π)k−1(f, f)
∈ Kf if k is even,

|ω±
f |2

(2π)k−1(f, f)
∈ Kf if k is odd.

In particular, if k is even one can choose ω±
f such that ω+

f ω
−
f = i(2π)k−1(f, f).

(c) If f has real Fourier coefficients at infinity, then ω+
f ∈ ik+1R and ω−

f ∈ ikR.

Proof. (a) We view f ∈ Sk(Γ) for Γ = Γ1(N). By multiplicity one and Corollary 5.3, the polynomi-
als ρ±f are the unique (up to scalars) elements in ρ±(Sk(Γ)) ⊂ WΓ

w with the same eigenvalues under

|∆T̃n as those of f . Moreover on CΓ
w there is no eigenvector for |∆T̃n with the same eigenvalues λn

as those of f for every n coprime to N . Indeed, |λn| ≪ n(k−1)/2+ǫ by the Ramanujan bounds (even

a nontrivial upper bound would suffice), and by Corollary 8.9 the eigenvalues of |∆T̃n on CΓ
w are

the same as the eigenvalues of an Eisenstein series, which are of order nk−1 if (n,N) = 1.
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Therefore the common eigenspace of |∆T̃n for (n,N) = 1 acting on (WΓ
w )

± having the same

eigenvalues as those of f is one dimensional, generated by ρ±f . Since the matrix of T̃n has integer

coefficients with respect to a basis of V Γ
w , and (WΓ

w )
± are subspaces cut by relations with integer

coefficients, it follows that there is a common eigenvector defined over Kf .
(b) The claim follows from (a) and Theorem 3.3.
(c) The conclusion follows from (2.3). �

The coefficients of ρ±f (I) are related to the critical values of the L-function of L(s, f), so the
proposition implies well-known rationality statements about critical values. With the notation of
(6.1), we have

(5.7) rI,n(f) = in+1Λ(n+ 1, f), with Λ(s, f) := (2π)−sΓ(s)L(s, f)

the completed L-function. This proves the following special case of Theorem 1 in [Sh77].

Corollary 5.12. Assume that f ∈ Sk(N,χ) is a newform, and let Kf be the field of coefficients of

f . Then with the periods ω±
f defined in the Proposition 5.11 we have

inΛ(n, f)

ω±
f

∈ Kf for 0 < n < k, (−1)n = ±(−1)k−1.

When k is even, our convention regarding the signs of the transcendental factors differs from the
usual one eg. in [Sh77], since ω+

f is the normalizing factor for odd critical values (and for even

period polynomials).

Remark 5.13. When k is odd it follows from Prop. 5.11 (b) that
|ω+

f
|2

|ω−

f
|2

∈ Kf . In fact, when

Kf is a real field, it follows from the functional equation N s/2Λ(s, f) = ±N (k−s)/2Λ(k − s, f) that
ω+

f

iω−

f

∈ Kf (
√
N). From (5.7) and the functional equation, when Kf is real we can choose

ω−
f = −iΛ(1, f), ω+

f = ±iw+1N (k−1)/2Λ(k − 1, f)

so that
ω+

f

iω−

f

=
√
N .

5.4. Modular forms with Nebentypus. Let Γ = Γ1(N), Γ′ = Γ0(N) and χ a Dirichlet character
modulo N . For f ∈ Sk(N,χ) ⊂ Sk(Γ) a cusp form with Nebentypus χ, we view the period
polynomial ρf as an element of WΓ

w . It clearly satisfies ρf (BC) = χ(B)ρf (C) where B runs
through a fixed system of coset representatives for Γ\Γ′ and C runs through a fixed system of coset
representatives for Γ′\Γ1. Here χ(B) = χ(dB) where dB is the lower right entry of B (dB is well

defined modulo N). Let therefore WΓ,χ
w , CΓ,χ

w be the subspaces of WΓ
w , C

Γ
w consisting of elements

P with P (BC) = χ(B)P (C) with B,C as above. We have orthogonal decompositions with respect
to the pairing {·, ·}

WΓ
w =

⊕

χ

WΓ,χ
w , CΓ

w =
⊕

χ

CΓ,χ
w

where the direct sums are over all characters modulo N . It is easily checked that the spaces WΓ,χ
w ,

CΓ,χ
w are preserved by the action of Hecke operators T̃n, and the dimension of CΓ,χ

w equals the
dimension of the Eisenstein subspace Ek(N,χ) ⊂ Mk(Γ). An indirect proof that the dimensions are

equal is provided by Prop. 8.3, which shows that CΓ,χ
w is dual to the space of period polynomials
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of Eisenstein series ÊΓ,χ
w with respect to an extension of {·, ·} to the space ŴΓ

w of extended period
polynomials (see also Prop. 8.10).

The action of ǫ also preserves these subspaces and we have the following generalization of the
Eichler-Shimura isomorphism theorem 2.1.

Theorem 5.14 ((Eichler-Shimura)). The two maps ρ± : Sk(N,χ) → (WΓ,χ
w )±, f 7→ ρ±f , give rise

to isomorphisms, denoted by the same symbols:

ρ± : Sk(N,χ) −→ (WΓ,χ
w )±/(CΓ,χ

w )±.

Proof. Injectivity follows from the refinement of Haberland’s formula (Theorem 3.3) as in the proof
of Theorem 2.1. Surjectivity follows by considering the maps above for all characters χ, and using
the fact that the sum of the dimensions of their domains equals the sum of the dimensions of their
ranges. �

When computing spaces of modular forms, it is much more efficient to fix coset representatives

C1, . . . , Cd for Γ
′\Γ1, with d = [Γ1 : Γ

′], and to view P ∈ WΓ,χ
w as a vector (P (C1), . . . , P (Cd)) ∈ V d

w ,
since the values at other cosets in Γ\Γ1 are determined by those above. Note however that this
representation depends on the coset representatives chosen, which are fixed once for all.

The action of γ ∈ Γ1 on P ∈ V d
w can be described as follows. Let Ciγ

−1 = BiCσ(i) where Bi

are coset representatives for Γ\Γ′ and σ = σγ is a permutation of {1, . . . , d}. Then
P |γ(Ci) = χ(Bi)P (Cσ(i))|γ.

Similarly one can compute the actions P |ΣT̃n with Σn the double cosets giving the action of Hecke
or Atkin-Lehner operators.

5.5. Computing period polynomials numerically. The period polynomials of a newform f ∈
Sk(Γ0(N), χ) can be easily computed numerically using the results of this chapter. One finds
the space of period polynomials as the kernel of the matrix of period relations, and then its plus
and minus subspaces. Assuming the Hecke eigenvalues of f at primes p ∤ N are known, then

one can find a rational common eigenvector of enough operators T̃p acting on (WΓ
w)

± such that

the resulting eigenspace is one dimensional (often one operator T̃p for the smallest prime p ∤ N
suffices). The period polynomials ρ±f are thus determined up to scalars. The normalizing factors

can be determined from the critical values L(w + 1, f) (nonzero if k > 2) and L(w, f) (nonzero if
k > 2, k 6= 4), unless they vanish and one has to determine L(n, f |A) for some A ∈ Γ\Γ1. Once the
polynomials ρ±f are determined, Theorem 3.3 gives the Petersson product (f, f), and Proposition

5.4 gives the Hecke eigenvalue λn of f for every n.
We have implemented the procedure sketched above in MAGMA [Mgm] (available upon re-

quest). To give an idea of the running time, when f = q + 12q3 + 88q7 + . . . ∈ S6(Γ0(100)) is a
newform with rational coefficients, the computation of ρ±f takes 1 sec (in this case dim(WΓ

w)
+ = 78,

dim(WΓ
w)

− = 72, dimSk(Γ) = 66, and [Γ1 : Γ] = 180). Once the polynomial ρ+f is computed, the
Hecke eigenvalue for p = 10037 is computed in less than 1 sec using Prop. 5.4. The ‘Coefficient’
command in MAGMA computes the same eigenvalue in 140 sec, while the ‘coefficients’ command
in SAGE takes 3 sec for the same computation (on the same machine). We used the efficient imple-
mentation by W. Stein of the coset space P 1(Z/NZ) ≃ Γ0(N)\Γ1 via ‘P1Classes’, and the Hecke
elements given by ‘HeilbronnCremona’ in MAGMA (which give the action of Hecke operators on
modular symbols, but see Remark 5.6).
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An example. Let Γ = Γ0(5), k = 4, and f = q − 4q2 + 2q3 + 8q4 − 5q5 . . . ∈ Sk(Γ) the unique
normalized cusp form. In the following table, the first row contains the elements of P 1(Z/5Z),
namely the bottom rows of a system of representatives for Γ\Γ1, while the second and third rows
list the components of rational generators P±

f of the Hecke eigenspace of (WΓ
w)

± that corresponds

to the Hecke eigenform f (here P−
f generates (WΓ

w)
−, and only the eigenvalue of T2 is needed for

the computation of P+
f ).

(0 1) (1 1) (1 3) (1 2) (1 4) (1 0)

P+

f −5X2 + 1 −5X2 + 5 8X2 + 13X − 8 8X2 − 13X − 8 −5X2 + 5 −X2 + 5

P−

f X X2 + 2X + 1 2X2 − 3X − 2 −2X2 − 3X + 2 −X2 + 2X − 1 X

We have ρ±f = ω±
f P

±
f with

ω+
f = rI,w(f) = −0.0051365773i, ω−

f = −wrI,w−1(f) = 0.0208651386,

computed via (5.7) using the numerical computation of L-series implemented by Tim Dokchitser
in MAGMA. Theorem 3.3 then gives (f, f) = 0.00014513335, in agreement with the value obtained
analytically in [Co12].

Notice that r+A,n(f)/rI,w(f) ≡ 0 (mod 13) for all n with 0 < n < w, and all A ∈ Γ\Γ1 (see

(6.1) for notation). As in Manin’s proof of Ramanujan’s congruence mod 691 [Ma73], this suggests
that there should be a congruence between f and an Eisenstein series. Indeed by looking at the
first few coefficients4 we obtain that

f ≡ E4(z)− E4(5z) (mod 13)

where E4 is the weight 4 Eisenstein series of full level, normalized to have the coefficient of q equal
to 1. A generalization of Ramanujan’s congruence to Hecke eigenforms and Eisenstein series for
Γ0(N) is in progress.

6. Rational decomposition of modular forms

For Γ a finite index subgroup of Γ1 normalized by ǫ, we give an explicit decomposition of
f ∈ Sk(Γ) in terms of explicit generators, generalizing the result in the full level case [Po11]. For
Γ1, these are the generators with rational periods studied in [KZ84], where their periods were first
computed. For Γ0(N), the periods of these generators were computed for N square free in [An92],
and for arbitrary N in [FY09]. These generators have explicit formulas as Poincaré series when
k > 2.

To define these generators, for A ∈ Γ\Γ1 , 0 6 n 6 w, define the periods rA,n(f) by

(6.1) ρf (A)(X) =
w∑

n=0

(−1)w−n

(
w

n

)
rA,n(f)X

w−n

and similarly define r±A,n(f) with ρf replaced by ρ±f . Let RA,n ∈ Sk(Γ) be the dual of the linear

functional f → 1
[Γ1:Γ]

rA,n(f), with respect to the Petersson product:

(f,RA,n) =
rA,n(f)

[Γ1 : Γ]
, for all f ∈ Sk(Γ),

4By Sturm’s result checking the first three coefficients of both sides is enough to prove the congruence.
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and similarly define R+
A,n, R

−
A,n. For Γ = Γ0(N), the polynomials ρ−(R+

A,n), ρ
+(R−

A,n) have rational
coefficients.

For κ ∈ {+,−} and 0 6 j 6 w, define the linear combinations of periods:

sκA,j(f) =

j∑

n=0

(
j

n

)
(−1)j−nrκA,j(f).

We then have the following generalization of Theorem 1.1 in [Po11], which gives explicit inverses
of the Eichler-Shimura maps (2.5).

Theorem 6.1. Let Γ be a finite index subgroup of Γ1 normalized by ǫ, and let κ1, κ2 ∈ {+,−} with
κ1 6= κ2 if k even and κ1 = κ2 if k odd. For f ∈ Sk(Γ)

−3Ck

2
· f =

∑

A∈Γ\Γ1

w∑

n=0

(
w

n

)
sκ1

AU−1,n
(f)Rκ2

A,n.

Proof. Let P ∈ (WΓ
w)

κ1 , Q ∈ (WΓ
w)

κ2 . Then

{P,Q} = 〈〈P |US − SU2, Q 〉〉 = 〈〈P |U2 − U,Q 〉〉 = −2 〈〈P |U,Q 〉〉
where the second equality follows since P |S = −P,Q|S = −Q, while the third from P |U2 − U =
P | − 1− 2U , together with (3.6).

If R(X) =
∑w

n=0(−1)w−n
(w
n

)
rnX

w−n ∈ Vw then

R|U(X) =

w∑

j=0

(
w

j

)
sjX

j , with sj =

j∑

n=0

(−1)j−n

(
j

n

)
rn.

By Theorem 3.3 and the preceding computations it follows that for f, g ∈ Sk(Γ)

3Ck(f, g) = {ρκ1

f , ρκ2
g } = − 2

[Γ1 : Γ]

∑

A∈Γ\Γ1

w∑

j=0

(
w

j

)
sκ1

AU−1,j
(f)rκ2

A,j(g).

Since r+A,j(g) = [Γ1 : Γ] · (R+
A,j, g), the claim follows. �

7. Extra relations satisfied by period polynomials of cusp forms

In this section, we determine the image of the maps ρ± : Sk(Γ) → (WΓ
w)

±, namely the extra
relations satisfied by ρ±f for f ∈ Sk(Γ) which are independent of the period relations. To be explicit,

the extra relations we obtain require the determination of the periods r∓B,m(R±
A,w) of the generators

defined in the previous section. For Γ1, these periods were computed in [KZ84], and for Γ0(N), they
were computed in [An92] (for N square free, and not quite in closed form), and in [FY09] (only the
principal periods r∓I,m(R±

I,n)). For Γ0(N) with small N , the computations in [FY09] are sufficient

to make completely explicit the extra relations, and we illustrate this for the case Γ = Γ0(2). The
relations are similar to the relation found by Kohnen and Zagier in the full-level case [KZ84] (see
also [Po11, Sec. 2]).

We first define bases of (CΓ
w)

±, using the terminology in Definition 4.3. For each cusp C ∈
Γ\Γ1/Γ1∞, which is regular if k is odd, define PC ∈ CΓ

w as in (4.2) by fixing AC ∈ C a representative,
and setting cA = (−1)wcAJ = 1 if [A]+ = [AC ]

+, and cA = 0 if [A] 6= [AC ]. Then {PC} form a basis
of CΓ

w if k > 2, and if k = 2 there is only one relation
∑

C PC = 0.
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Assume that Γ is normalized by ǫ, and denote A′ = ǫAǫ. Note that if C = [A] is a cusp, then
C′ = [A′] is well-defined. Since PC |ǫ = PC′ , we have P+

C = P+
C′ and P−

C = −P−
C′ . Therefore a basis

of (CΓ
w)

− consists of P−
C for each unordered pair (C, C′) of cusps with C 6= C′, and a basis of (CΓ

w)
+

consists of P+
C for each unordered pair (C, C′) of cusps (when k is odd only pairs of regular cusps

are considered; note that C is regular iff C′ is regular).
We now fix A ∈ C for each (regular if k odd) cusp C ∈ Γ\Γ1/Γ1∞ and we write, by a slight

abuse of notation, RC,n = RA,n, rC,n = rA,n with the notation of the previous section (RC,n does
depend on the choice of representative A, but we fix such a choice). For each unordered pair of
cusps (C, C′) we take g = R+

C,w in Theorem 3.3, and if C 6= C′ we take also g = R−
C,w (again only for

regular cusps if k is odd), obtaining the following linear relations satisfied by all f ∈ Sk(Γ)
5

(7.1)
3Ck

[Γ1 : Γ]
r+C,w(f) = {ρ+(f), ρ−(R+

C,w)},
3Ck

[Γ1 : Γ]
r−C,w(f) = {ρ−(f), ρ+(R−

C,w)}.

The linear forms appearing in these relations can be applied to all P ∈ (WΓ
w)

±, and putting
together the relations involving ρ+(f) into a map λ+, and the relations involving ρ−(f) (for pairs
with C 6= C′) into a map λ−, we obtain two linear maps λ± : (WΓ

w)
± → Cd± with d± = dim(CΓ

w)
±.

If d− = 0 the map λ− is trivial.

Proposition 7.1. Assume k > 3 and let Γ be a finite index subgroup of Γ1 normalized by ǫ. With
λ± defined above, we have exact sequences:

0 → Sk(Γ)
ρ±−→ (WΓ

w)
± λ±−→ Cd± → 0.

Proof. We have Imρ± ⊂ kerλ± by construction. Note that the first relation in (7.1) is not satisfied
by P+

C , while the second is not satisfied by P−
C if C 6= C′, since the LHS is nonzero, while the RHS

vanishes by Lemma 4.1 a). Since {P±
C } form a basis of (CΓ

w)
±, the conclusion follows. �

Remark 7.2. For Γ = Γ0(N), Proposition 4.4 characterizes those N for which the extra relations
involve only the even parts of the period polynomials.

For example, if Γ = Γ0(p) with p prime, there are only two cusps [I] and [S], and for all
P ∈ WΓ

w we have P (S) = −P (I)|S by the period relations. In particular rS,w(f) = −rI,0(f).

Noting also that P (I)+, P (S)+ are the even parts of P (I), P (S), so that R+
I,n = RI,n for n even,

we have the following simpler version of Proposition 7.1.

Corollary 7.3. Let Γ = Γ0(p) with p prime, and let k > 2 even. Then the two extra relations
satisfied by all even period polynomials ρ+(f) for f ∈ Sk(Γ) are

3Ck

[Γ1 : Γ]
rI,a(f) = {ρ+(f), ρ−(RI,a)}, for a = 0, w.

For small values of N (eg N = 2, 3, 4, 5), the polynomials ρf are completely determined by
the principal parts ρf (I), so that the relations above are completely explicit via the computation
of ρ−(RI,a)(I) in [FY09]. In the remainder of this section, we discuss in detail the case of period
polynomials for Γ = Γ0(2), which have been studied in [IK05],[FY09], [KT11].

We take as coset representatives for Γ\Γ1 the set {I, U, U2}. Denoting by A the coset ΓA, we

have S = U , US = I, U2S = U2. For P ∈ WΓ
w , the period relations P |1+S = 0, P |1+U +U2 = 0

5In this section we occasionally write ρ(f) instead of ρf to simplify notation.
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reduce to

(7.2) P (U) + P (I)|S = 0, P (U2)|1 + S = 0, P (U2) + P (U)|U + P (I)|U2 = 0.

The polynomials P (U), P (U2) are therefore determined by P (I) which satisfies the relation

(7.3) P (I)|(ST − ST−1)(1 + S) = 0.

Let Uw ⊂ Vw denote the set of polynomials satisfying (7.3), so that we can identify WΓ
w with Uw

via P → P (I). Conjugation by ǫ leaves unchanged each coset I, U, U2, hence P+, P− correspond
to the even and odd parts of the polynomial P (I) in this identification.

To express the formula in Theorem 3.3 in terms of ρf (I), ρg(I) alone, let P ∈ (WΓ
w)

+, Q ∈
(WΓ

w)
−. We have 〈〈P |T − T−1, Q 〉〉 = −2 〈〈P |U,Q 〉〉 as in the proof of Theorem 6.1, and using

(7.2) we obtain

〈〈P |U,Q 〉〉 =
1

3
< P (I)|2T−1 − 2I − T,Q(I) >= −1

2
< P (I)|T − T−1, Q(I) >

where 〈P (I), Q(I) 〉 = 〈P (I)|T + T−1, Q(I) 〉 = 0 since P (I), Q(I) have opposite parity. We can
therefore restate Theorem 3.3 as follows, setting Pf = ρf (I) ∈ Uw

(7.4) 3Ck · (f, g) = 〈P+
f |T − T−1, P−

g 〉 .
By Proposition 4.4 and the Eichler-Shimura isomorphism (2.5), the map f → P−

f gives an

isomorphism Sk(Γ0(2)) ≃ U−
w , while the image of the map f → P+

f is a codimension 2 subspace of

U+
w . 6 To simplify notation, let rn(f) = rI,n(f), and Rn = RI,n for 0 6 n 6 w.

Corollary 7.4. For f in Sk(Γ0(2)), let sn(f) =
n∑

j=0
n−j odd

(
n

j

)
rj(f). The extra relations satisfied by

the even periods of f are

ra(f) =

w∑

n=0
n odd

(
w

n

)
sw−n(f)

2

Ck
ra(Rn) for a = 0, w.

From [FY09], for 0 < w < n, n odd, we have rw(Rn) = −r0(R ñ)

Nn
and

2

Ck
r0(Rn) = −N ñB ñ+1

ñ+ 1
+

k

Bk

Bn+1

n+ 1

B ñ+1

ñ+ 1

αN,k(n)

N
+

δw,n+1

w
,

where ñ = w−n, αN,k(n) =
1−N−n−1

1−N−k (recall N = 2), and Bm are the Bernoulli numbers. Note that

there is a minus sign missing in the normalization of the generators denoted by RΓ,w,n in [FY09,

Def. 1.1], and with this correction we have Rn = −Ck

2 RΓ,w,n.

Proof. Since Pf |T − T−1(X) = −2
∑w

n=0(−1)n
(w
n

)
sn(f)X

w−n, and rn(R0) = r0(Rn), the claim
follows from Corollary 7.3.

�

The periods rn(f) are related to the critical values of the L-series associated to f , and when f
is a newform they can be readily computed using MAGMA [Mgm]. The relations in Corollary 7.4
have been checked numerically for k = 8, 10, 14.

6A direct proof in this case is contained in [KT11, Theorem 4].



MODULAR FORMS AND PERIOD POLYNOMIALS 21

8. Period polynomials of arbitrary modular forms

In this section we define period polynomials for noncuspidal modular forms, and extend Haber-
land’s formula and the action of Hecke operators to the larger space of period polynomials of all

modular forms. An important feature of the larger space ŴΓ
w is that the the pairing {·, ·} has a nat-

ural nondegenerate extension to it, while on WΓ
w it is degenerate (its radical is CΓ

w). If Γ = Γ1(N)
and k > 2, the period polynomial maps ρ± extend naturally to the larger space, and they give iso-

morphisms between Mk(Γ) and (ŴΓ
w)

±. Surprisingly, when k = 2, Γ = Γ0(N) and N is squarefree
with at least two prime factors, only one of the two maps is an isomorphism.

For the full modular group, period polynomials of Eisenstein series were defined in [KZ84],
using the description of periods as special values of the associated L-function, and the enlarged
space of period polynomials was introduced in [Za91]. A different construction using an Eichler
integral was given more recently in [BGKO], in the more general context of weakly holomorphic
modular forms. We extend both the Eichler integral and the L-function approach to a finite index
subgroup Γ of Γ1.

For f ∈ Mk(Γ), we define ρ̂f = f̃ |1 − S as in (2.7) (with the same action as on period

polynomials), where the Eichler integral f̃ : Γ\Γ1 → A is given by

(8.1) f̃(A)(z) =

∫ i∞

z
[f |A(t)− a0(f |A)](t− z)wdt

with a0(f |A) the constant term of the Fourier expansion of f |A. Note that a0(f |A) = a0(f |AT ),
so f̃ |1− T = 0. Let

V̂w :=
{ ∑

−16i6w+1

aiX
i : ai ∈ C

}
,

and let V̂ Γ
w be the space of functions P : Γ\Γ1 → V̂w with P (−A) = (−1)wP (A) for A ∈ Γ\Γ1. We

define an action of g ∈ Γ1 on P ∈ V̂ Γ
w by P |g(A) = P (Ag−1)|−wg as before. Note that this is no

longer well defined in general, as elements of Γ1 do not preserve the space V̂w. However one can
still define the subspace

ŴΓ
w = {P ∈ V̂ Γ

w : P |1 + S = P |1 + U + U2 = 0}.
We will show below that ρ̂f ∈ ŴΓ

w . That it satisfies the period relations is immediate: we have
ρ̂f |1 + S = 0, and ρ̂f |1− T = 0 from the definition, while

ρ̂f |1 + U + U2 = f̃ |(1− S)(1 + U + U2) = f̃ |(1 − T−1)(1 + U + U2) = 0.

It remains to show that ρ̂f ∈ V̂ Γ
w , and we will do this by relating it with the polynomial ρf ∈ V Γ

w

defined by (6.1), where

(8.2) rA,n(f) = (−1)n+1Γ(n+ 1)

(2πi)n+1
L(n+ 1, f |A).

The L-function L(s, f) =
∑∞

n=1 an(f)n
−s is given, if Re(s) > k, by the Mellin transform

(−1)s(2πi)−sΓ(s)L(s, f) =

∫ i∞

0
[f(t)− a0(f)]t

s−1dt,

and it can be extended meromorphically to C by fixing z0 ∈ H, decomposing
∫ i∞
0 =

∫ z0
0 +

∫ i∞
z0

,
and making a change of variables t = Su in the first integral. We obtain a meromorphic function
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with at most simple poles at s = 0 and s = k:

(−1)sΓ(s)

(2πi)s
L(s, f) =

∫ i∞

z0

[f(t)− a0(f)]t
s−1dt+ (−1)s

∫ i∞

Sz0

[f |S(t)− a0(f |S)]tk−s−1dt−

−a0(f)
zs0
s

− (−1)sa0(f |S)
(Sz0)

k−s

k − s
.

Introducing as in [KZ84] the function Hz0 ∈ V Γ
w defined for A ∈ Γ\Γ1 by

(8.3) Hz0(A) =

∫ i∞

z0

[f |A(t)− a0(f |A)](t−X)wdt− a0(f |A)
∫ z0

0
(t−X)wdt ∈ Vw

we obtain from (6.1) and the analytic continuation above

(8.4) ρf (A) = Hz0(A)−HSz0(AS
−1)|S,

namely ρf = Hz0 −HSz0 |S.
We now determine the relation between ρ̂f and ρf , which also shows that ρ̂f ∈ ŴΓ

w .

Proposition 8.1. For f ∈ Mk(Γ), let ρ
0
f ∈ V̂ Γ

w be given by ρ0f (A) = (−1)w a0(f |A)
w+1 Xw+1. We have

ρ̂f = ρf + ρ0f |(1 − S),

namely ρ̂f (A) = ρf (A) + (−1)w a0(f |A)
w+1 Xw+1 + a0(f |AS−1)

w+1 X−1.

Proof. Fixing z0 ∈ H and decomposing the integral in (8.1) as
∫ i∞
z0

+
∫ z0
z we have

f̃(A)(z) = Hz0(A)(z) +

∫ z0

z
f |A(t)(t− z)wdt+ a0(f |A)

∫ z

0
(t− z)wdt.

Using the same relation for f̃(AS−1)(Sz)j(S, z)w with Sz0 in place of z0 we obtain, after a change
of variables u = St in the first integral above

(f̃ |1− S)(A)(z) =Hz0(A)(z) −HSz0(AS
−1)|S(z)+

+ a0(f |A)
∫ z

0
(t− z)wdt− a0(f |AS−1)

∫ Sz

0
(t− Sz)wj(S, z)wdt.

Computing the last integrals and comparing with (8.4) yields the conclusion. �

We now determine the exact relationship between ŴΓ
w and WΓ

w . For P̂ ∈ ŴΓ
w write P̂ = P +P0

where P ∈ V Γ
w and P0(A) = cAX

w+1+dAX
−1 for A ∈ Γ\Γ1. From P̂ |1+S = 0 we obtain dA = cAS .

From P̂ |1 + U + U2 = 0, it follows that P0|1 + U + U2 ∈ V Γ
w , which implies that cA = cAT for all

A ∈ Γ1. Therefore we have P0 = P 0|1−S, where P 0(A) = cAX
w+1, with cA = cAT . In conclusion,

letting

(8.5) DΓ
w = {(cAXw+1)A|(1− S) : cA = cAT = (−1)wcAJ ∈ C} ⊂ V̂ Γ

w

we have a unique decomposition of P̂ ∈ ŴΓ
w as above

(8.6) P̂ = P + P 0|(1− S), P ∈ V Γ
w , P 0|(1 − S) ∈ DΓ

w.

For ρ̂f this is the decomposition in Proposition 8.1, since a0(f |A) = a0(f |AT ) = (−1)wa0(f |AJ).
As in the proof of Lemma 4.2, note that dimDΓ

w equals e∞(Γ) or ereg∞ (Γ), depending on whether k
is even or odd respectively.
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When k = 2 there is an extra relation satisfied by the coefficients of P 0 in (8.6). Letting
P (A) = dA ∈ C, P 0(A) = cAX

w+1, the period relations now imply that

dA + dAU + dAU2 + 2(cA + cAU + cAU2) = 0, with dA + dAS = 0, cA = cAT

for all A ∈ Γ\Γ1. The relation dA + dAS = 0 implies
∑

A dA = 0, and then the first relation above
implies that

∑
A cA = 0 as well, where the sum is over a complete system of representatives for

Γ\Γ1. From Proposition 8.1 it follows that
∑

A a0(f |A) = 0 for all f ∈ M2(Γ).

Proposition 8.2. a) If k > 3 there is an exact sequence

0 → WΓ
w → ŴΓ

w → DΓ
w → 0

where the first map is inclusion, and the second is the map P̂ → P 0|1− S defined above.
b) If k = 2 there is an exact sequence

0 → WΓ
w → ŴΓ

w → DΓ
w → C → 0

where the last map takes P 0|1− S ∈ DΓ
w with P 0(A) = cAX

w+1 to
∑

A∈Γ\Γ1
cA.

Proof. Exactness at ŴΓ
w follows from the definition. If k > 3, surjectivity of the second map follows

from Proposition 8.1, and the fact that there is a basis of Eisenstein series EC
k ∈ Mk(Γ) for C = [AC ]

a complete system of representatives for the (regular if k is odd) cusps in Γ\Γ1/Γ1∞, such that
a0(E

C
k |A) = (−1)wa0(E

C
k |AJ) equals 1 if [A]+ = [AC ]

+, and 0 if [A] 6= C (see Definition 4.3 for
notation). If k = 2 the Eisenstein subspace of M2(Γ) is spanned by modular forms f which are
nonzero only at a fixed pair of nonequivalent cusps and are zero at other cusps, and such that∑

A∈Γ\Γ1
a0(f |A) = 0. Their images in DΓ

w span the kernel of the last map, proving exactness at

DΓ
w. �

The previous proposition shows that dim ŴΓ
w = 2dimMk(Γ). From the proof we conclude that

there is a direct sum decomposition

(8.7) ŴΓ
w = WΓ

w ⊕ ÊΓ
w

where ÊΓ
w is the image of the Eisenstein subspace Ek(Γ) ⊂ Mk(Γ) under the map f → ρ̂f .

The pairing {·, ·} extends to a pairing on ŴΓ
w × ŴΓ

w , by decomposing P̂ , Q̂ ∈ ŴΓ
w as in (8.6)

and setting:

(8.8) {P̂ , Q̂} = 〈〈P |T − T−1, Q 〉〉 + 〈〈 2P 0|T − T−1, Q 〉〉 + 〈〈P, 2Q0|T−1 − T 〉〉 + Ik(P
0, Q0),

where Ik(P
0, Q0) = 0 if k even and Ik(P

0, Q0) = 6(k−1)
k[Γ1:Γ]

∑
A∈Γ\Γ1

cAc
′
A if k is odd, where P 0(A) =

cAX
w+1, Q0(A) = c′AX

w+1.

Since P 0|T − T−1 ∈ V Γ
w this pairing is well-defined, and it is easily checked that it behaves as

in (3.6) under the action of ǫ defined as in (2.2). We will show below that this definition is natural
for two reasons: Haberland’s formula generalizes to arbitrary modular forms, if the Petersson
product is extended in a natural way to all modular forms, and this pairing is Hecke equivariant

for Γ = Γ1(N), with the same action of Hecke operators on ŴΓ
w as on WΓ

w .
Recall that on WΓ

w the pairing {·, ·} is degenerate, its radical being CΓ
w (Lemma 4.1). We now

show that the extended pairing is nondegenerate on ŴΓ
w , more precisely that the dual of CΓ

w inside

ŴΓ
w is the space ÊΓ

w.
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Proposition 8.3. (a) Let P = P ′|1− S ∈ CΓ
w and Q̂ = Q+Q0|1 − S ∈ ŴΓ

w , and let P ′(A) = c′A,

Q0(A) = (−1)wcA
Xw+1

w+1 for A ∈ Γ\Γ1 (so that c′A = c′AT = (−1)wc′AJ , cA = cAT = (−1)wcAJ).
Then

{P, Q̂} = − 6

[Γ1 : Γ]

∑

A∈Γ\Γ1

c′AcA.

(b) The pairing {·, ·} is nondegenerate on ŴΓ
w , and the dual of CΓ

w is ÊΓ
w.

Proof. (a) As in the proof of Lemma 4.1, we use the formal relation (4.1), together with the relation
(1− S)(1 + U + U2) = (1− T−1)(1 + U + U2) and the Γ1 invariance of the pairing 〈〈 ·, · 〉〉 :

{P, Q̂} = 〈〈P ′|(1− S)(T − T−1), Q 〉〉 + 2 〈〈P ′, Q0|(T−1 − T )(1 − S) 〉〉
= 2 〈〈P ′, Q|1 + U + U2 〉〉 + 2 〈〈P ′, Q0|(T−1 − T )(1− S) 〉〉
= −2 〈〈P ′, Q0|[(1− T−1)(1 + U + U2) + (T − T−1)(1− S)] 〉〉
= −2 〈〈P ′, Q0|[2(1 − T−1) + T − 1] 〉〉

= − 6

[Γ1 : Γ]

∑

A

c′AcA.

(b) We choose a basis of ŴΓ
w by concatenating bases for CΓ

w, ρ
−(Sk(Γ))+ρ+(Sk(Γ)), Ê

Γ
w in this

order. The block form matrix of the pairing {·, ·} with respect to this basis is
(

0 0 A
0 B 0

(−1)w+1At 0 C

)
,

so it is enough to show that A is nonsingular (B is nonsingular by Theorem 3.3). When k > 2 this
is obvious from part (a). For k = 2, we fix a cusp C0 in Γ\Γ1/Γ1∞ = {C0, C1, . . . , Cn} and we let a
basis of CΓ

w consist of Pi, 1 6 i 6 n, as in the statement of the lemma, with the constants c′iA = 1

if [A] ∈ Ci, and c′iA = 0 otherwise (note that P0 = −∑n
i=1 Pi). Letting li = #{A ∈ Γ\Γ1 : [A] ∈ Ci}

(the width of the cusp Ci), we take a basis of ÊΓ
w to consist of Q̂i as in the statement, 1 6 i 6 n,

with ciA = 1 if [A] ∈ Ci, ciA = − li
l0

if [A] ∈ C0, and ciA = 0 otherwise. With respect to this basis
the matrix A is diagonal, so the pairing is nondegenerate. �

Assume now that Γ is normalized by ǫ. Since the action of ǫ given by (2.2) preserves ŴΓ
w and

DΓ
w, passing to the ±1 eigenspaces in Proposition 8.2 gives exact sequences

(8.9) 0 → (WΓ
w)

± → (ŴΓ
w)

± → (DΓ
w)

± → C → 0,

where the last map is nontrivial only if k = 2 and the sign is minus, when it is defined in Proposition
8.2 b) (when k = 2 and P 0|1− S ∈ (DΓ

w)
+ with P 0(A) = cAx

w+1, then cA = −cA′ and
∑

A cA = 0

automatically). From (4.2) and (8.5) we see that dim(DΓ
w)

+ = dim(CΓ
w)

− for all k; dim(DΓ
w)

− =
dim(CΓ

w)
+ for k > 3; and dim(DΓ

w)
−−1 = dim(CΓ

w)
+ for k = 2. Combined with the Eichler-Shimura

isomorphism (2.5) and Lemma 4.2, this implies that dim(ŴΓ
w)

± = dimMk(Γ).
The next Proposition can be seen as a extension of the Eichler-Shimura isomorphism (2.5) to

the entire space of modular forms.

Proposition 8.4. (a) Assume that k,Γ are such that the extended Petersson scalar product on

Mk(Γ) defined in §8.2 is nondegenerate (see Remark 8.5). Then the maps ρ̂± : Mk(Γ) → (ŴΓ
w)

±,
f → ρ̂±f , are isomorphisms.
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(b) Assume that (CΓ
w)

− = 0 (for example Γ = Γ0(N) with N as in Proposition 4.4). Then ρ̂−

is an isomorphism.

Remark 8.5. It is shown in [PP12] that the extended Petersson product is nondegenerate for
Γ1(N) (and therefore also for Γ0(N)) when k > 2. When k = 2 the extended Petersson product is
nondegenerate for Γ1(p) or Γ0(p) with p prime, while it is degenerate for Γ0(N) with N squarefree
with at least two prime factors. This implies that in the latter case the map ρ̂+ is not an isomor-
phism; indeed, part b) shows that ρ̂− is an isomorphism, and if both ρ̂± were isomorphisms, then
the Petersson product would be nondegenerate by Theorem 8.6 c) below, since the pairing {·, ·} is
nondegenerate.

Proof. a) Since the dimensions of the spaces are equal, we only have to prove injectivity. If ρ̂±f = 0,

it follows from Theorem 8.6 c) that f = 0, when the extended Petersson product on Mk(Γ) is
nondegenerate.

b) If (CΓ
w)

− = 0, then (DΓ
w)

+ = 0 as well. Assuming ρ̂−f = 0 for f ∈ Mk(Γ), it follows that

ρ0f = 0 so f is a cusp form, hence f = 0 by Theorem 3.3. �

8.1. An example. As an example, we check directly that the map ρ̂+ is not an isomorphism for
k = 2 and Γ = Γ0(6). As explained in Remark 8.5, this gives an alternative proof that the extended
Petersson product is degenerate in this case, in agreement with [PP12].

As representatives Aj for Γ\Γ1 we take the matrices

ST−iS{I, U2, U}, i = 0, 1, 2, 3

in this order (namely (A1, . . . , A12) = (I, U2, U, ST−1S, ST−1SU2, . . . , ST−3SU)), obtained from
the set of representatives provided by the command ‘CosetRepresentatives’ in MAGMA. There are
four cusps Ci ∈ Γ\Γ1/Γ1∞, and we have C1 = [A1], C2 = [A9] = [A12], C3 = [A6] = [A7] = [A11],
while the remaining six matrices are in the class C4.

Since there are no cusp forms of weight two on Γ0(6), we have WΓ
w = CΓ

w. The latter space
is spanned by polynomials Pi supported at the class Ci, i = 1, 2, 3, namely Pi = (cA)A|1 − S with
cA = cAT and cA = 1 if [A] = Ci, cA = 0 otherwise. We identify a polynomial P ∈ CΓ

w with a
vector d = (di) ∈ C12 with P (Ai) = di. Let σ ∈ S12 be the permutation such that AjS = Aσj .
We have σ = (3, 4, 1, 2, 7, 10, 5, 12, 11, 6, 9, 8), and it follows that the vectors d corresponding to the
polynomials P1, P2, P3 are given respectively by (the entries not specified are equal to 0):

d1 = 1, d3 = −1; d9 = d12 = 1, d11 = d8 = −1; d6 = d7 = d11 = 1, d10 = d5 = d9 = −1.

Therefore in order to decompose a polynomial P ∈ CΓ
w with respect to the basis {P1, P2, P3} it is

enough to know d1, d12 and d9.
The spaceM2(Γ0(6)) is spanned by the Eisenstein series Et

2(z) = E2(z)−tE2(tz), for t = 2, 3, 6,
where E2(z) = − 1

24 +
∑

n>1 σ1(n)e
2πinz. Since (DΓ

w)
+ = (CΓ

w)
− = 0, we have ρ̂+(Et

2) = ρ+(Et
2) ∈

CΓ
w. Letting ρ(Et

2)(Ai) = ei, ρ(E
t
2)(A

′
i) = e′i, we have ρ

+(Et
2)(Ai) =

ei+e′i
2 = di, where e

′
j = eτj with

τ = (1, 4, 3, 2, 10, 7, 6, 8, 9, 5, 11, 12) ∈ S12.
We now determine the constants di for each of the three Eisenstein series. Taking into account

that L(s,E2) = ζ(s)ζ(s−1) and L(s,Et
2) = ζ(s)ζ(s−1)

(
1− 1

ts−1

)
, the constant d1 is given by (8.2):

d1 = C ln(t), where C = −ζ(0)

2πi
.

Since E2
2 ∈ M2(Γ0(2)), and A6, A7, A11 ∈ Γ0(2) it follows that e1 = e6 = e7 = e11. We also

have e′6 = e7, e
′
11 = e11, hence d1 = d6 = d7 = d11. We obtain ρ+(E2

2) = C ln(2)(P1 + P3).
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Since E3
2 ∈ M2(Γ0(3)), and A9, A12 ∈ Γ0(3), we have d1 = d9 = d12 and ρ+(E3

2) = C ln(3)(P1+
P2).

For E6
2 , in order to determine d9, d12 we easily find

L(s,E6
2 |A9) = ζ(s)ζ(s− 1)

(
1− 2s−1

3s−1

)
, L(s,E6

2 |A12) = ζ(s)ζ(s− 1)
(
1− 32−s + 2s−1

3s−1 + 61−s
)
.

By (8.2) it follows d9 = C(ln(3)− ln(2)) , d12 = C ln 3, so that

ρ+(E6
2) = C(P1 ln 6 + P2 ln 3 + P3 ln 2) = ρ+(E2

2) + ρ+(E3
2)

concluding that ρ̂+ is not surjective.

8.2. Haberland’s formula for arbitrary modular forms. The Petersson scalar product of two
Eisenstein series of full level is defined by Zagier in [Za81]. Let F be the fundamental domain
{z ∈ H : |z| > 1, |Re z| 6 1/2} for Γ1, and for T > 1 let FT be the truncated domain for which
Im z < T . Since

∑
A f |A(z)g|A(z)yk is a Γ1-invariant, renormalizable function in the sense of

[Za81], we can define for f, g ∈ Mk(Γ)

(8.10) (f, g) =
1

[Γ1 : Γ]
lim
T→∞

∑

A

[ ∫

FT

f |A(z)g|A(z)ywdxdy − T k−1

k − 1
a0(f |A)a0(g|A)

]

where the sum is over a complete system of representatives A ∈ Γ\Γ1. As in [Za81], it can be
shown that the extended Petersson product equals Ress=kL(s, f, g) up to a nonzero constant, where

L(s, f, g) =
∑

n>1
an(f)an(g)

ns . Using this fact, we show in [PP12] that for Γ = Γ1(N) the extended
Petersson product is nondegenerate when k > 2, while for k = 2 it may or may not be degenerate.

We have the following generalization of Theorems 3.2 and 3.3.

Theorem 8.6. Assume k > 2, and Γ is a finite index subgroup of Γ1. Let f, g ∈ Mk(Γ).

a) We have: 6Ck · (f, g) = {ρ̂f , ρ̂g}, where Ck = −(2i)k−1.
b) We have: {ρ̂f , ρ̂g} = 0.
c) Assuming further that Γ is normalized by ǫ, and letting κ1, κ2 ∈ {+,−} as in Theorem 3.3:

3Ck · (f, g) = {ρ̂κ1

f , ρ̂κ2
g }.

Proof. a) If one of f, g is a cusp form, then we can apply Stokes’ theorem over the fundamental
domain D for Γ(2) as in the proof of Theorem 3.2, and easily obtain the desired identity. When
both f, g have nonzero constant terms, this approach is complicated by the fact that both f and
g blow up at the cusps −1, 0, 1, and we prefer to apply Stokes’ theorem to the domain F as in
[KZ84]. We use the following abbreviations: fA = f |A, gA = g|A, aA = a0(f |A), bA = a0(g|A),
CΓ = [Γ1 : Γ], Ck = −(2i)k−1. Sums over A are over systems of representatives A ∈ Γ\Γ1. For all
T > 1 we have

CkCΓ(f, g) =
∑

A

∫

F
[fA(z)gA(z)− aAbA](z − z)wdzdz + aAbA

[ ∫

FT

(z − z)wdzdz − Ck
T k−1

k − 1

]

By Stokes’ theorem we find
∫
FT

(z− z)wdzdz = Ck
Tw+1

w+1 + 1
w+1

∫ ρ
ρ2(z− z)w+1dz. In the first integral

we apply Stokes’ theorem after writing fAgA − aAbA = (fA − aA)gA + aA(gA − bA) to get

CkCΓ(f, g) =
∑

A

∫

∂F
−FA(z)gA(z) + aA[gA(z)− bA]

(z − z)w+1

w + 1
dz +

aAbA
w + 1

∫ ρ

ρ2
(z − z)w+1dz
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where FA(z) =
∫ i∞
z [fA(t) − aA](t− z)wdt. Since FAT (z) = FA(Tz), the integrals over the vertical

sides of F cancel (after summing over A) and setting F̃A(z) = FA(z)− aA
∫ z
0 (t− z)wdt we obtain:

CkCΓ(f, g) =
∑

A

∫ ρ2

ρ
F̃A(z)gA(z)dz + (−1)w

aA
w + 1

∫ ρ2

ρ
gA(z)z

w+1dz.

In the first integral we change variables z → Sz, which reverses the order of integration. As in the

proof of Proposition 8.1 we have F̃A(z)− F̃AS−1 |−wS(z) = ρf (A)(z) obtaining

(8.11) CkCΓ(f, g) =
∑

A

1

2

∫ ρ2

ρ
ρf (A)(z)gA(z)dz + (−1)w

aA
w + 1

∫ ρ2

ρ
gA(z)z

w+1dz.

We now proceed to write the result in terms of the pairing 〈〈 ·, · 〉〉 on V Γ
w . Define Hz0 ∈ V Γ

w as in

(8.3), with g in place of f . Using
∫ ρ2

ρ gA(z)(z −X)wdz = Hρ(A)−Hρ2(A) and (3.1) we get

∫ ρ2

ρ
ρf (A)(z)gA(z)dz =

〈
ρf (A),

∫ ρ2

ρ
gA(z)(z −X)wdz

〉
= 〈 ρf (A),Hρ(A)−Hρ2(A) 〉 .

The second integral in (8.11) can be written
∫ ρ2

ρ
gA(z)z

w+1dz = bA

∫ ρ2

ρ
zw+1dz +

∫ i∞

ρ
−
∫ i∞

ρ2
(gA(z)− bA)z

w+1dz

and changing variables z = t − 1 in the last integral, recalling that ρ0f (A) = (−1)waA
Xw+1

w+1

(=ρ0f (AT )), and using (3.1) we obtain

∑

A

(−1)w
aA

w + 1

∫ ρ2

ρ
gA(z)z

w+1dz =
∑

A

〈 ρ0f (A)|1 − T−1,Hρ(A) 〉+

∑

A

aAbA

[ ∫ 1

0

∫ ρ

0
(t− z)wdzdt+ (−1)w

∫ ρ2

ρ

zw+1

w + 1
dz

]
.

The expression inside square brackets equals 1
(k−1)k , and setting I(f, g) = 2

k(k−1)CΓ

∑
A aAbA we get

2Ck(f, g) = 〈〈 ρf ,Hρ −Hρ2 〉〉 + 2 〈〈 ρ0f |1− T−1,Hρ 〉〉 + I(f, g).

Now we use

(8.12) Hρ2 = Hρ|T − ρ0g|(1− T ), ρg = Hρ −Hρ2 |S = Hρ|(1 − TS) + ρ0g|(1− T )S.

Taking into account the relation (1+U2) = 1
3 (U

2 −U)(1−U−1)+ 2
3(1+U +U2) in Q[Γ1] we have

〈〈 ρf ,Hρ|1− T 〉〉 = 〈〈 ρf |1− T−1,Hρ 〉〉 = 〈〈 ρf |1 + ST−1,Hρ 〉〉 =

=
1

3
〈〈 ρf |U2 − U,Hρ|1− U 〉〉 +

2

3
〈〈 ρf |1 + U + U2,Hρ 〉〉

=
1

3
〈〈 ρf | − T−1 − TS, ρg − ρ0g|(1 − T )S 〉〉 +

2

3
〈〈 ρf |1 + U + U2,Hρ 〉〉

=
1

3
〈〈 ρf |T − T−1, ρg 〉〉 +

1

3
〈〈 ρf |T + T−1S, ρ0g|1− T 〉〉−

− 2

3
〈〈 ρ0f |(1− T−1)(1 + U + U2),Hρ 〉〉
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(on the last line we used Proposition 8.1) and collecting terms we get

6Ck(f, g) = 〈〈 ρf |T − T−1, ρg 〉〉 + 〈〈 ρf |3 + T−1S + T, ρ0g|1− T 〉〉+
+2 〈〈 ρ0f |(1− T−1)(2− U − U2),Hρ 〉〉 + 3I(f, g)

In the second term we use the relation

(1− T )(3 + ST + T−1) = 2(T−1 − T ) + (1− T )S[1 + U + U2 − U2(1 + S)]S,

while in the third we use 2− U − U2 = (1− U)(1− U2) and (8.12):

6Ck(f, g) = 〈〈 ρf |T − T−1, ρg 〉〉 + 〈〈 ρf , 2ρ0g|(T−1 − T ) 〉〉 + 〈〈 2ρ0f |(T − T−1), ρg 〉〉+
+ 〈〈 ρ0f |(1− T )(T−1S − ST − 3), ρ0g|1− T 〉〉 + 3I(f, g)

(8.13)

Let p(X) = Xw+1

w+1 |1− T , q(X) = Xw+1

w+1 |1− T−1. Then

〈〈 ρ0f |(1− T )(T−1S − ST ), ρ0g|1− T 〉〉 =
1

CΓ

∑

A

(aAbAS−1 − (−1)waAS−1bA) 〈 p, q|S 〉 = 0,

where we changed A to AS−1 in one of the sums and used that aAJ = (−1)waA. We also have

〈〈 ρ0f |(1 − T ), ρ0g|1− T 〉〉 =
1

CΓ

∑

A

aAbA 〈 p, p 〉 =
1 + (−1)w

k(k − 1)CΓ

∑

A

aAbA,

which vanishes if w is odd, and equals I(f, g) if w is even. Therefore the second line in (8.13)
vanishes if k is even, and it equals 3I(f, g) = Ik(ρ

0
f , ρ

0
g) if k is odd, finishing the proof.

b) Going backwards in the proof of part a) up to the first equation after applying Stokes’
theorem, we obtain

CΓ{ρ̂f , ρ̂g} = −6
∑

A

∫

∂F
f̃(A)(z)gA(z)dz

with f̃ defined in (8.1). Since the integrand is holomorphic and vanishes at i∞, each term vanishes.
c) Since the extended pairing {·, ·} behaves as the original one under the action of ǫ, the claim

follows from a) and b) as in the proof of Theorem 3.3. �

8.3. Hecke operators. For a finite index subgroup Γ and a double coset Σn satisfying (H), we

define the operation |Σ of the Hecke operators T̃n on ŴΓ
w as in Section 5. Although matrices in the

definition of T̃n do not preserve V̂ Γ
w , we have the following generalization of Proposition 5.2 and of

Corollary 5.3.

Proposition 8.7. Assume the pair (Γ,Σn) satisfy (H), and for part (b) assume that Σn = Σ′
n and

Γ is normalized by ǫ. Let T̃n ∈ Rn be any element satisying (5.1).

(a) We have ρ̂f |[Σn] = ρ̂f |ΣT̃n for f ∈ Mk(Γ).

(b) We have ρ̂±f |[Σn]
= ρ̂±f |ΣT̃n for f ∈ Mk(Γ).

(c) The operators T̃n preserve the space ŴΓ
w .
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Proof. (a) The proof is the same as of Prop. 5.2, once we show that f̃ |ΣT∞
n = f̃ |[Σn]. Equation

(5.4) becomes

f̃ |ΣT∞
n (A) =

∑

M∈M∞
n ∩Γ1ΣnA

∫ i∞

Mz
[f |AM (t)− a0(f |AM )](t−Mz)wj(M,z)wdt

= nw+1
∑

M∈M∞
n ∩Γ1ΣnA

∫ i∞

z

[
f |MAA(u) − a0(f |AM )j(M,u)−k

]
(u− z)wdu

As in Proposition 5.2, we obtain f̃ |ΣT∞
n (A) =

∫ i∞
z

[
(f |[Σn])|A − c(n, f,A)

]
(u − z)wdu where

c(n, f,A) is the sum of the terms involving a0(f |AM ) (which is independent of u since j(M,u) = dM
for M ∈ M∞

n ). Since the integral converges, we must have c(n, f,A) = a0(f |[Σn]|A) (which can

alsp be proved directly, using Prop. 8.1), hence the last expression equals f̃ |[Σn](A).
(b) The proof is the same as of Corollary 5.3.
(c) This follows from part (a) and the decomposition (8.7) �

Proposition 8.8. Assume the hypotheses of Prop. 8.7 and furthermore that Σ∨
n satisfies (H). We

have for all P̂ , Q̂ ∈ ŴΓ
w

{P̂ |ΣT̃n, Q̂} = {P̂ , Q̂|Σ∨ T̃n}.

Proof. As in the first proof of Theorem 5.9, we decompose P̂ = R + ρ+f + ρ−g + ρ̂e with R ∈ CΓ
w,

f, g ∈ Sk(Γ), e ∈ Mk(Γ). Taking into account Theorem 8.6, Proposition 8.7 and the fact that the
adjoint of the operator [Σn] is [Σ

∨
n ] with respect to the extended Petersson inner product on Mk(Γ)

[PP12], it remains to show that

(8.14) {R|ΣT̃n, ρ̂e} = {R, ρ̂e|[Σ∨
n ]
}.

We use Prop. 8.3. Let R = R′|(1 − S), with R′(A) = c(A) ∈ C and R′|(1 − T ) = 0. By (5.1)

R|ΣT̃n = R′|ΣT∞
n (1 − S), and for A ∈ Γ1 we have R′|ΣT∞

n (A) =
∑

M∈M∞
n

c(AM )dwM where dM is

the lower right entry of M , and MA−1 = A−1
M MA with AM ∈ Γ1, MA ∈ Σn. The left side of (8.14)

becomes (up to a constant which we ignore in the right side as well)

LHS =
∑

M∈M∞
n

∑

A∈Γ\Γ1

MA−1∈A−1

M
Σn

c(AM )a0(e|A)dwM .

Since c(AT ) = c(A), a0(e|AT ) = a0(e|A), we can replace M by T iMT j in the interior sum without
changing it. Therefore, if we write M = Ma,d,b =

(
a b
0 d

)
and fix d, the interior sum depends only

on b modulo ga,d = gcd(a, d) and we have

LHS =
∑

d|n
b mod ga,d

∑

A∈Γ\Γ1

Ma,d,bA
−1∈A−1

M
Σn

c(AM )a0(e|A)
dw+1

ga,d
.

For the right side of (8.14), from the proof of Prop. 8.7 we have for B ∈ Γ1

a0(e|[Σ∨
n ]|B) =

∑

M∈M∞
n

MB−1∈B−1

M
Σ∨

n

a0(e|BM )
nw+1

dkM
.
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Since MB−1 ∈ B−1
M Σ∨

n ⇐⇒ M∨B−1
M ∈ B−1Σn, the right side of (8.14) becomes, after interchang-

ing BM and B

RHS =
∑

M∈M∞
n

∑

B∈Γ\Γ1

M∨B−1∈B−1

M
Σn

c(BM )a0(e|B)
nw+1

dkM

=
∑

d|n
b mod ga,d

∑

B∈Γ\Γ1

M∨
a,d,b

B−1∈B−1

M
Σn

c(BM )a0(e|B)
aw+1

d

d

ga,d

where the second line follows by writing M = Ma,d,b as before. Comparing the expressions obtained
for RHS and LHS finishes the proof of (8.14). �

From the duality in Proposition 8.3 and from Propositions 8.7, 8.8 we immediately obtain:

Corollary 8.9. Assume that both Σn and Σ∨
n satisfy property (H). There exist bases of Ek(Γ)

and CΓ
w such that the matrix of the operator [Σ∨

n ] acting on Ek(Γ) is the same as the matrix of the

operator |ΣT̃n acting on CΓ
w.

As an application, we let Γ = Γ1(N), and χ a character modulo N , and we show that the
trace of Hecke operators Tn on the Eisenstein subspace Ek(N,χ) ⊂ Mk(N,χ) is the same as the

trace of T̃n on CΓ,χ
w (see §5.4 for the notation). For Γ1, when CΓ1

w =< Xw − 1 >, a direct proof
is immediate, but for Γ = Γ1(N) it seems difficult to prove the statement without using the dual

space ÊΓ
w and the pairing {·, ·}.

Proposition 8.10. (a) Let Γ = Γ1(N) and let ÊΓ,χ
w ⊂ ŴΓ

w be the image of the Eisenstein subspace
Ek(N,χ) ⊂ Mk(Γ) under the map f → ρ̂f . For (n,N) = 1 we have

Tr(Ek(N,χ)|Tn) = Tr(ÊΓ,χ
w |∆T̃n) = Tr(CΓ,χ

w |∆T̃n).

(b) For Γ = Γ0(N) and n‖N , let Θn be the double coset and let Wn be the Atkin-Lehner
operator defined in Section 5.1. We have

Tr(Ek(Γ)|Wn) = Tr(ÊΓ
w|ΘT̃n) = Tr(CΓ

w|ΘT̃n).

Proof. (a) The duality in Prop. 8.3 between CΓ
w and ÊΓ

w with respect to the pairing {·, ·} implies

dualities between CΓ,χ
w and ÊΓ,χ

w . Therefore, taking Σn = ∆n for (n,N) = 1 in Corollary 8.9,

it follows that the eigenvalues of |∆T̃n on CΓ,χ
w are the same as the eigenvalues of T ∗

n = [∆∨
n ] on

Ek(N,χ), which are the same as the eigenvalues of Tn on Ek(N,χ) (the latter space has a basis of
eigenforms for Tn with (n,N) = 1).

(b) The claim follows from Corollary 8.9, using the fact that Θn = Θ∨
n . �

Remark 8.11. Prop 8.10 shows that for Γ = Γ1(N) and (n,N) = 1 we have

Tr(WΓ,χ
w |∆T̃n) = Tr(Mk(N,χ)|Tn) + Tr(Sk(N,χ)|Tn),

and the same for Atkin-Lehner operators on Γ0(N). For Γ = Γ1, this fact was an ingredient used
by Zagier to sketch an elementary proof of the Eichler-Selberg trace formula, by computing directly

the left side for an appropriately chosen T̃n [Za93]. A generalization of this approach giving a simple
trace formula for Mk(N,χ) is work in progress of the second author and Don Zagier.
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8.4. Extra relations revisited. Theorem 8.6 gives another way of determining the extra relations
satisfied by all period polynomials of cusp forms which are independent of the period relations.
Assuming that ρ̂− is an isomorphism (see Proposition 8.4), it follows that there exist g ∈ Ek(Γ)
such that ρ̂−g form a basis for (ÊΓ

w)
−. Since the pairing {·, ·} is nondegenerate, it follows that the

linear relations {P, ρ̂−g } = 0 are satisfied by P = ρ+f , for all f ∈ Sk(Γ), but they are not satisfied

by some P ∈ (CΓ
w)

+. A similar argument applies to determine the relations satisfied by ρ−f , when

(CΓ
w)

− 6= 0 and ρ̂+ is an isomorphism. These linear relations can be used to define other versions of
the linear forms λ+, λ− in Proposition 7.1, which are entirely explicit once the period polynomials
of Eisenstein series are determined.

As an example we take Γ = Γ1(N), and we assume k > 3. Then the Eisenstein subspace Ek(Γ)
has a basis of Eisenstein series which are Hecke eigenforms for the Hecke operators of index coprime
with the level [DS05, Ch. 5]. Their period polynomials for the identity coset can be determined
in terms of special values of Dirichlet L-functions by Proposition 8.1. For other cosets A ∈ Γ\Γ1

the period polynomials of the Hecke eigenforms are harder to compute. Instead, consider a second
basis, consisting of Eisenstein series which vanish at all but one cusp, so that the action |A permutes
the elements of this basis. The elements of the second basis can be decomposed in terms of Hecke
eigenforms, so their period polynomials corresponding to all cosets A can be determined explicitly.
For Γ0(N) we are planning to return to this question in a future work.
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